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Abstract

Many school districts in the US employ centralized clearing houses for the placement of students
to public schools. A popular mechanism from two-sided matching theory, the Gale-Shapley student-
optimal stable mechanism, has recently replaced two de�cient mechanisms that were in use in NYC
and Boston. An important potential threat against any school choice mechanism is the tendency of
schools to circumvent the procedure via two kinds of strategic manipulations introduced by Sönmez
(1997, 1999): manipulation via underreporting capacities and manipulation via pre-arranged matches.
This paper studies the extent of the vulnerability of a school choice mechanism, and in particular, that
of the student-optimal stable mechanism, to the two manipulations, and identi�es conditions under
which they can be avoided. Journal of Economic Literature Classi�cation Numbers: C71, C78, C79,
D61, D71, D78
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1 Introduction

Starting in 1987 with Minnesota, several US states began using centralized school choice programs that
o¤er students �exibility over choosing schools they wish to attend. In a school choice program, each
student submits a list of preferences over schools to a central placement authority, such as the school
district, which then decides which school each student will attend by also taking into consideration the
priorities of students for each school. Several criteria may be used for determining a priority order for
a school. For example, under the current Boston public school system, a student is given priority for a
particular school before others, if he is in the school�s walk zone and has a sibling attending that school,
and the remaining priorities are determined based on which one of the two criteria a student satis�es,
and so on.

A standard school choice problem or simply, a problem, contains two pieces of information: a prefer-
ence pro�le of students and a priority pro�le of schools. At a matching, each student is assigned to at
most one school, and the number of students assigned to a particular school does not exceed the capacity
of that school. A school choice mechanism or simply, a mechanism, is a systematic way of selecting a
matching for a given problem.

A very closely related problem is the well-known two-sided matching problem of Gale and Shapley
(1962).1 The main di¤erence is that in two-sided matching, the �priorities of students for schools�are
replaced by the �preferences of schools over (groups of) students.� In the school choice context however,
priorities are imposed by local/state laws, and schools have no say on the way priority orders are deter-
mined. For a school choice problem a matching is stable if (1) each student prefers his own assignment
to not having any (real) assignment, and (2) there is no unmatched student-school pair (i; x) such that

�Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA; e-mail:
okesten@andrew.cmu.edu. Any remaining errors are my own responsibility.

1See Roth and Sotomayor (1990) for a thorough analysis of this problem.
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student i prefers school x to his assignment, and student i has higher priority than at least one student
who is assigned a seat at school x.2

Many school districts determine each school�s priority order either completely independently of that
paticular school�s own evaluation of the students (such as in Boston), or o¤er only a limited number of
schools such an opportunity (such as in New York City). Therefore, priorities cannot be seen and inter-
preted to be representative of the preferences of schools. This observation led the standard approaches to
the school choice problem to consider schools as merely �objects�to be consumed, and ignore the strate-
gic (as well as the welfare aspects) of the problem for the school side. A recent study on the New York
City public high school system by Abdulkadiro¼glu, Pathak, and Roth (2005) shows that this may not
always be the case. In particular, in New York City substantial number of schools were seen to conceal
their capacities to get matched with the students they preferred under the school choice mechanism that
was in use between 1990�s and 2002.

Shortly before the school choice problems came to widespread attention, Sönmez (1997, 1999) intro-
duced and studied two interesting kinds of strategic behaviour for two-sided matching problems. The �rst
one is the behaviour Abdulkadiro¼glu, Pathak, and Roth (2005) observed in New York City: �manipulation
via capacities�(Sönmez, 1997): A school may circumvent the centralized procedure by underreporting its
capacity. The second one is the possibility of �manipulation via pre-arranged matches�(Sönmez, 1999):
A student-school pair may commit themselves to a mutual agreement prior to the centralized procedure,
according to which the student does not participate in the procedure, and in return is o¤ered a seat in
the school, which results in a strict gain for at least one of the two parties while hurting neither. It turns
out that no stable mechanism survives any of the two manipulations (Sönmez 1997, 1999).

The pioneering work of Abdulkadiro¼glu and Sönmez (2003) on school choice problems examines some
of the real-life student placement mechanisms, and o¤ers two alternative competing mechanisms as attrac-
tive replacements.3 One of these mechanisms, the Gale and Shapley student-optimal stable mechanism
inherits a number of appealing properties from two-sided matching theory such as stability and strategy-
proofness4. Among school choice mechanisms, the student-optimal stable mechanism has taken an early
lead over its competitors by recently replacing two controversial school choice mechanisms in New York
City (which has the largest public school system in the country with over a milion students) and Boston
(which has over 60,000 students enrolled in the public school system; see Abdulkadiro¼glu, Pathak, Roth,
and Sönmez, 2005 and Ergin and Sönmez, 2006).

In this paper we study the two manipulation notions for school choice problems. In our formulation
of the problem, we extend a standard school choice problem to also contain the preferences of each school
which are now assumed to be its private information and possibly di¤erent than the corresponding
priorities. Hence, the central planner is unable to observe schools�preferences, and from his perspective
they are quite unrestricted.

We show that between the two manipulation notions, capacity manipulations are easier to avoid,
while it is essentially impossible to achieve immunity againts manipulations via pre-arranged matches
(Proposition 1 and Theorem 2). Furthermore, quite interestingly, the popular student-optimal stable
mechanism is prone to capacity manipulations unlike some other less popular mechanisms (Corollary
1). Motivated by its increasing popularity, we further investigate the causes of the manipulability of
the student-optimal stable mechanism, and identify a su¢ cient and necessary condition on the priority

2The counterpart of stability in our context is the elimination of �justi�ed envy.�An allocation su¤ers from the justi�ed
envy of a student if there is some school x which he prefers to his placement, and there is some other student who has lower
priority for school x than him but was placed to school x. Here we will not concentrate on this aspect of the problem. See
Abdulkadiro¼glu and Sönmez (2003) and Kesten (2004) for more on this.

3To the best of our knowledge, Balinski and Sönmez (1999) is the �rst to formulate and study the school choice problem
in an abstract setting.

4 It requires that no agent ever bene�ts by misrepresenting his preferences. See Pápai (2000) for a characterization of a
large class of strategy-proof mechanisms and Ehlers (2002) for a study of group strategy-proof mechanisms.
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pro�le and the vector of minimum capacities (that can be reported), that ensures its immunity to capacity
manipulations (Theorem 1).

The paper is organized as follows: In the next section we introduce the model, and describe the
student-optimal stable mechanism. Section 3 discusses manipulations via capacities, and Section 4 ma-
nipulations via pre-arranged matches. We brie�y conclude in Section 5. All the proofs are given in the
Appendix.

2 The Model

Let N � f1; 2; : : : ; ng; n � 3; denote the �nite set of students. Let X denote the �nite set of schools.
Each school x 2 X has a capacity qx which is the maximum number of students it can be assigned. Let
q � (qx)x2X be the capacity vector.

Each student i 2 N is equipped with a complete, transitive, and strict preference relation Ri over
X [ f?g where ? represents not being assigned to any school in X: Let Ri denote the class of all such
preferences for student i 2 N: For each i 2 N; let Pi denote the strict relation associated with Ri:

For each school there is a complete and transitive priority order over all students, which are deter-
mined according to state/local laws and certain criteria of school districts (such as proximity of residence,
possible speci�c needs of a student etc.). In the US public school system, for each school, the priority
between any two students who are identical in every relevant aspect is determined by a lottery. Hence,
for each school the associated priority order is strict. Let �x denote the priority order for school x: For
example, i �x j means that student i has higher priority for school x than student j: Let the upper
contour set of �x at student i be denoted by Ux(i) � fj 2 N j j �x ig: The collection of priority orders
�� (�x)x2X is called a priority pro�le. The pair (�; q) is called a priority structure. We assume that a
priority pro�le is given as a primitive of model.

A matching is a function � : N [X ! 2N[X such that:
1. For all i 2 N; j�(i)j � 1 and �(i) � X:
2. For all x 2 X; j�(x)j � qx and �(x) � N:
3. For all (i; x) 2 N �X; �(i) = fxg if and only if i 2 �(x):
Given a priority structure (�; q), a matching � is stable if there is no unmatched student-school pair

(i; x) such that x Pi �(i); and no j 2 �(x) such that i �x j:
Each school x 2 X is equipped with a strict and responsive (Roth, 1985) preference relation Rx over

2N : Each school�s preferences are its private information, and hence are not observable by the central
planner. Preference relation Rx is responsive if for all M � N;

1. For all i 2 NnM; M [ figPxM if and only if fig Px ?:
2. For all i; j 2 NnM; M [ figPxM [ fjg if and only if figPxfjg:
Let Rx denote the class of all such preferences for school x 2 X:
A (school choice) problem is a pair ((Rs)s2N[X ; q) or simply, (R; q) that speci�es the preferences

of each student, the unobservable preferences of each school, and the capacity of each school. Let
E ��s2N[XRs � NjXj+ be the class of all problems.

Given a priority structure (�; q), the matching outcome is determined according to the �mechanism�
chosen based only on the submitted preferences of students. A (school choice) mechanism ' associates
to each (school choice) problem (R; q) a matching '(R; q). A mechanism is stable if its outcome is stable
at each problem. For ease of notation, we will sometimes use 'i(R; q) to refer to '(R; q)(i):

2.1 Student-optimal Stable Mechanism

Gale and Shapley (1962) proposed the student-optimal stable mechanism to �nd the stable allocation
that is most favorable to each student for any given two-sided matching problem. Since then this mech-
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anism (as well as its dual for the school side) has been the central mechanism in two-sided matching. Its
outcome can be calculated via the following deferred acceptance algorithm for a given problem:

Step 1: Each student applies to his favorite acceptable school. For each school x, those qx applicants
(all applicants if fewer than qx) who have the highest priority for school x are tentatively placed to school
x: The remaining applicants are rejected.

Step k, k � 2: Each student who was rejected from a school at step k � 1 applies to his next favorite
acceptable school. For each school x, those qx students who have the highest priority for school x among
the new applicants and those who were tentatively placed to it at an earlier step are tentatively placed
to school x: The remaining applicants are rejected.

The algorithm terminates when each student is either tentatively placed to a school, or has been
rejected by every school acceptable to him. We denote the student-optimal stable mechanism (SOSM)
associated with the priority pro�le � by '�:

SOSM has proven quite successful not only in two-sided matching theory but also in a number of
entry-level labor markets the biggest of which is the re-designed US National Resident Matching Program
(Roth and Peranson, 1999). One main reason (aside from its stability property) behind its success is the
fact that it makes it a dominant strategy for students to state true preferences (Roth (1982); Dubins and
Freedman (1981)).

SOSM has so far been the leading mechanism for school choice applications as well. Since the �rst
study on this problem by Abdulkadiroglu and Sönmez (2003), it has often been advocated for school
choice problems. These e¤orts recently paid o¤, and it has been adapted by the New York City (in
2002) and Boston (in 2005) public school systems who have been su¤ering from congestion (NYC) and
incentive (Boston) problems.

3 Manipulation via Capacities

Sönmez (1997) considers a two-sided matching application with medical interns on one side of the market
and hospitals on the other. He introduces an interesting kind of manipulation that a hospital may engage
in by withholding its capacity. We consider the same possibility for the school choice problem where
preferences of each school are now its private information, and the capacity reported by each school is
the only parameter it has an in�uence on among those that get included in the calculation of the outcome
of the central clearing house. In fact, this is not a merely theoretical concern. Indeed, Abdulkadiroglu,
Pathak, and Roth (2005) report that public schools in NYC were withholding capacity under the old
public school system5 that was in use from 1990s till 2003.

For each school x 2 X; we now interpret qx as the capacity reported by school x: In many school
districts, each school is typically required to admit a certain number of students. Therefore it is not
realistic to assume that a school�s capacity can be arbitrarily small. We incoporate this possibility into
our model via the following restriction: For each x 2 X; let qx denote the minimum capacity imposed on
school x. That is, school x can never report a capacity less than qx. Let q � (qx)x2X be the minumum
capacity vector. Let ' be a mechanism:

Non-manipulability via Capacities: For all (R; q) 2 E ; all x 2 X; and all qx � q0x < qx; we have
'(R; q)(x) Rx '(R; q

0
x; q�x)(x):

5 It was a centralized system which operated through three rounds of application processing, and subsequenty su¤ered
from congestion problems. See Abdulkadiroglu, Pathak, and Roth (2005) for more.

4



Sönmez (1997) shows that the hospital-optimal stable mechanism that was used by the National
Resident Matching Program is not immune to manipulation via capacities, and moreover, there is no
stable mechanism that is non-manipulable via capacities in the two-sided matching context.

For school choice problems it turns out that non-manipulability via capacities requires that if a stu-
dent is matched to a school when that school underreports its capacity, then the student should continue
to be matched to that school when the school truthfully reports its capacity. All proofs are deferred to
the Appendix.

Proposition 1. A school choice mechanism ' is non-manipulable via capacities for a problem (R; q) if
and only if '(R; q0x; q�x)(x) � '(R; q)(x) for all qx � q0x < qx:

Surprisingly, the most popular mechanism in two-sided matching theory, which is also gaining pop-
ularity among school districts, is not immune to capacity manipulations. On the contrary, its closest
competitor, the top trading cycles mechanism introduced in Abdulkadiroglu and Sönmez (2003) as well
as the mechanism it recently replaced in Boston survive this manipulation test.

Corollary 1. The student-optimal stable mechanism is manipulable via capacities, whereas the top trad-
ing cycles mechanism and the Boston mechanism are not.6

The student-optimal stable mechanism is currently in use in a number of entry-level labor markets (see
Roth and Rothblum (1999) for a list of these markets). Due to its increasing popularity also among the
public school systems in the US, we next study this mechanism more closely and analyze the causes and
the extent of its manipulability. We �rst consider an example that illustrates how it can be manipulated:

Example 1: Let N = f1; 2; 3g, X = fa; bg where (true) capacities are qa = 2 and qb = 1: Also let

�a �b
1 3

3 2

2 1

f1; 2; 3g Pa f1g Pa f2; 3g Pa f3g Pa f2g;
b P1 a P1 ?; a P2 b P2 ?; a P3 ?;

where a school not speci�ed in a student�s preference relation is ranked lower than those speci�ed. It
is straightforward to calculate that '�(R; q)(a) = f2; 3g: Now let q0a = 1: Observe that when school a
underreports its capacity as q0a = 1; student 2 is now rejected from school a. Next he applies to his
second favorite school which is b; and causes student 1 to be rejected from school b: This, in turn, causes
school a to admit student 1 and reject student 3: Thus, '�(R; q0a; q�a)(a) = f1g; and school a gains by
underreporting its capacity. �

6The Boston mechanism is a member of a large class of priority matching mechanisms studied by Roth (1991). These
mechanisms have been in use in the entry-level labor markets in the UK. Any such priority matching mechanism that satis�es
the monotonicity requirement of Proposition 1 is also immune to capacity manipulations.
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Ergin (2002) identi�es conditions under which the student-optimal stable mechanism can achieve a
number of appealing properties it lacks otherwise. He introduces a notion of �acyclicity� for priority
structures, and shows that it is su�cient as well as necessary to recover properties such as Pareto e¢ -
ciency and group strategy-proofness. We argue that acyclicity (adopted appropriately to our setting)
also plays a key role for the student-optimal stable mechanism to avoid capacity manipulations.

A given priority structure (�; q) contains a cycle if the following two conditions are satis�ed:

Loop condition: There are distinct i; j; k 2 N and x; y 2 X such that i �x j �x k and k �y i:
Scarcity condition: There exist (possibly empty) disjoint sets of students Nx; Ny � Nnfi; j; kg such that
Nx � Ux(j); Ny � Uy(i); jNxj = qx � 1 and jNyj = qy � 1:

The priority structure (�; q) is acyclical if it has no cycles.

Acyclicity restrictions (the loop condition and the scarcity condition) apply jointly on the priority
pro�le and the minimum capacity vector. For the student-optimal stable mechanism, loosely speaking,
acyclicity prevents those situations in which a school, by underreporting capacity, initiates a new rejection
chain that eventually leads to the application of a completely new student to this school (recall Example
1). For example, in the presence of a cycle in the priority structure, some school, say x; can simply refuse
to be assigned some low priority student, say k; by concealing an open slot. Such refusal may however
give rise to a subsequent rejection of some high priority student, say i, from another school, say y; causing
him to apply to school x.

Two extreme examples of acyclic structures are the following: If the minimum capacity a school can
report is n; then school seats are always in abundance (hence the scarcity condition is not satis�ed), and
there are no cycles. On the other hand, if the priority orders are identical for each school, then the loop
condition is not satis�ed, and the structure is again acyclic regardless of minimum capacities. In general,
as minimum capacities get larger, formation of cycles becomes harder. We refer the interested reader to
Ergin (2002) for a nice visual characterization of an acyclic structure.

Next is our main result. It turns out that the student-optimal stable mechanism is immune to ma-
nipulation via capacities so long as the priority structure (�; q) is acyclical.

Theorem 1. The student-optimal stable mechanism '� associated with a priority pro�le � is immune
to manipulation via capacities if and only if the priority structure (�; q) is acyclical.

An acyclic priority structure completely eliminates capacity manipulations. The presence of a cycle in
a priority structure however introduces the possibility of manipulation. Consequently, as also suggested by
the proof of Theorem 1, the more cycles a priority structure has, the more room there is for manipulation
opportunities.

Example 1 as well as the proof of Theorem 1 hint at a second observation about capacity manipu-
lations: Any school sucessfully gaining by underreporting capacity should indeed have preferences that
have certain degree of �correlation�with the school�s priority order. The connection between capacity
manipulations and the acyclicity of a priority structure shown by Theorem 1 also entails an important
practical advice suggested by the next result.

Corollary 2. Fix a priority pro�le � : Consider a school district that uses the student-optimal stable
mechanism '� and needs to choose between two possible minimum capacity vectors q and q0 such that
q 	 q0: If a school can manipulate by underreporting its capacity when q is imposed, then the same school
can also manipulate when q0 is imposed. However, the converse is not necessarily true.
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Corollary 2 implies that the Boston and NYC school districts can simply reduce the chances of
capacity manipulations by setting higher minimum capacity restrictions on schools.

Konishi and Unver (2006) consider capacity manipulation games in the hospital-intern market appli-
cation of the model. They analyze the pure strategy equilibria of the game-form under the school-optimal
(hospital-optimal in their context) and the student-optimal (intern-optimal in their context) stable mech-
anisms. They show that neither game may have a pure strategy equilibrium.

Now an admissible capacity of each school x is a nonnegative integer no more than its minimum
capacity qx. Thus, x can report q0x 2 Qx � fqx; qx + 1; : : : ; qxg: De�ne the set of admissible capacities as
Q = �x2XQx: A capacity reporting game under a mechanism ' is described by a strategic form game
(X; (Qx; Rx)x2X): A pure startegy Nash equilibrium of a game (X; (Qx; Rx)x2X) is a strategy pro�le at
which no school has a pro�table deviation.

Theorem 1 has direct implications for capacity reporting games. We know that under the acyclicity
restriction no school bene�ts by underreporting its capacity. Then the following is immediate.7

Corollary 3. The capacity reporting game under the student-optimal stable mechanism '� associated
with a priority pro�le � has a pure strategy Nash equilibrium if the priority structure (�; q) is acyclical.

4 Manipulation via Pre-arranged Matches

Sönmez (1999) studies the vulnerability of two-sided matching markets to an alternative form of manip-
ulation: manipulation via pre-arranged matches: A student-school pair agree on an arrangement before
the formal procedure according to which the student is enrolled at the school, and the student does not
participate in the procedure. This arrangement is successful if (at least) one of the two parties gains
and neither one su¤ers as a result. Such a behavior was observed in the US hospital-intern market and
the Canadian lawyer market where stable mechanisms were in use. Sönmez (1999) shows for two-sided
matching problems that there is no mechanism that is both stable and non-manipulable via pre-arranged
matches.

We now study this second kind of manipulation for school choice problems. In the present context,
since the population of students might change, a (school choice) problem is de�ned by a triplet (N;R; q).
The rest of the de�nitions and notations identically apply. Let ' be a mechanism:

Non-manipulability via pre-arranged matches: Given a problem (N;R; q); there is no school-
student pair (x; i) such that x Ri 'i(N;R; q); and

(fig [ 'x(Nnfig; R
Nnfig
�i ; q�x; qx � 1)) Rx 'x(N;R; q):

with at least one of the relations holding strictly.

It turns out that manipulations via pre-arranged matches are essentially impossible to avoid. The
next result makes this point precise.

Theorem 2. Suppose that there is a school x 2 X such that n > qx: Then no mechanism is immune to
manipulations via pre-arranged matches.

Theorem 2 shows that mechanism design is almost helpless about the potential pre-arrangements
of agents from the two-sides of the problem. This result simply suggests that essentially the only way
to prevent this kind of behaviour would be via establishing explicit laws and regulations within school

7Also see Kojima (2006) and Kojima and Pathak (2007).
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districts that discourage schools from enrolling students on their own, and avoiding systems that would
allow decentralized behaviour prior to the centralized procedure.

Corollary 4. All three of the student-optimal stable mechanism, the top trading cycles mechanism, and
the Boston mechanism are manipulable via a pre-arranged match.

5 Conclusion

Our results show that immunity to capacity manipulations is easier to achieve than to those via-pre
arranged matches. We have shown that while the top trading cycles mechanism (TTCM) and the
monotone priority matching mechanisms such as the Boston mechanism are readily immune to capacity
manuevers, certain restrictions are needed to make this possible for the student-optimal stable mech-
anism (SOSM). At a �rst glance these results may seem in odd con�ict with those of Kesten (2006)
where SOSM has been shown to have the edge over TTCM in terms of other desirable properties such
as population/resource monotonicity8 and consistency. One way to recoincile the two results is that the
monotonicity property of SOSM (in particular, its resoure monotonicity), when viewed from the perspec-
tive of schools, translates into a chance of pro�table manipulation for the school side given the stability
of SOSM. It is also worthwhile to note that �cyclicity of a priority structure�has once again proven to be
the main reason behind another vulnerable aspect of SOSM.

6 The Appendix

Proof of Proposition 1: The �if�part simply follows from the responsiveness of schools�preferences.
To see the �only if�part suppose there exist a mechanism '; a problem (R; q); a school x 2 X; and qx �
q0x < qx such that '(R; q

0
x; q�x)(x)n'(R; q)(x) 6= ?: But because schools�preferences are unobservable by

the mechanism designer, the outcome is independent of the preferences of school x: Then, one can easily
construct preferences such that '(R; q0x; q�x)(x) Px '(R; q)(x):

Q.E.D.

Proof of Corollary 1: Example 1 shows that SOSM does not satisfy the property given in Proposition 1.
To see that the Boston mechanism and TTCM indeed do, simply observe that the steps and assignments
of students for problems (R; q0x; q�x) and (R; q) are identical under each mechanism, until right after the
last seat of school x is assigned.

Q.E.D.

Proof of Theorem 1:
(i) Acyclicity of �=)Non-manipulability via capacities:

Suppose that there are (R; q) 2 E ; x 2 X; and qx � q0x < qx such that '�(R; q0x; q�x)(x) Px '�(R; q)(x):
Let � � '�(R; q) and �0 � '�(R; q0x; q�x): If qx > j�(x)j; then � 6= �0 implies q0x < j�(x)j: Otherwise, qx =
j�(x)j and since q0x < qx; clearly q0x < j�(x)j: Thus, j�0(x)j � q0x < j�(x)j: This means j�(x)n�0(x)j � 1:
Moreover, since �0(x) Px �(x); we have �0(x)n�(x) 6= ?. Recall the way the outcome of '� is calculated:
Each student applies to his favorite choice and if rejected, applies to his next favorite choice and so
on. Note that the only di¤erence between (R; q) and (R; q0x; q�x) is that q

0
x < qx: This means that each

student applies to the same schools at (R; q0x; q�x) as he did at (R; q); and to possibly more, since now
q0x < qx: This is also equivalent to saying that all students are made weakly worse o¤.9 Moreover, all
students in the set (�0(x)n�(x)) [ (�(x)n�0(x)) are made strictly worse o¤ at (R; q0x; q�x):

8The resource/population monotonicity property requires that all students are a¤ected in the same direction (in welfare
terms) whenever the set of schools/students shrinks or expands.

9This is the �resource monotonicity�property of SOSM.
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We prove this part by constructing a matching �00 that Pareto dominates �0 for the problem (R; q0x; q�x)
when we consider only students� welfare (i.e., we assume that schools are now irrelevant for welfare
considerations just as in Ergin (2002)). Then by Ergin (2002) this means that priority structure (�;
q0x; q�x) has a cycle according to the de�nition in Ergin (2002). Since qx � q0x and qy � qy for any
y 2 Xnfxg; the priority structure (�; q) has a cycle according to our de�nition. A contradiction.

McVitie and Wilson (1970) showed that the outcome of the student-optimal stable mechanism is
independent of the sequence according to which students make their applications. Therefore one can
alternatively calculate '�(R; q0x; q�x) as follows: Initially run the DA algorithm for the problem (R; q):
Then decrease the quota for x from qx to q0x: This will cause only those qx � q0x students with lowest
priority to be rejected from x: Next each rejected student will apply to his next choice, and the algorithm
will eventually terminate when there are no more rejections.

Let i0 2 �0(x)n�(x): Also let i0 2 �(y0) for some y0 2 Xnfxg:10 Since student i0 is worse o¤ at �0,
there exists i1 2 �0(y0)n�(y0) such that i1 6= i0; who did not apply to y0 at (R; q) (otherwise, he would
be accepted by y0). Let i1 2 �(y1) for some y1 2 Xnfx; y0g: Since student i1 is worse o¤ at �0, there
exists i2 2 �0(y1)n�(y1) who did not apply to y1 at (R; q): Let i2 2 �(y2) for some y2 2 Xnfx; y0; y1g:
Continuing in this fashion, there must exist ik 2 �0(yk�1)n�(yk�1) for some yk�1 2 Xnfx; y0; : : : ; yk�2g
with k � 1 and x � y�1; who is the �rst student (according to the steps of the DA algorithm) in this
sequence to apply to his assignment at (R; q0x; q�x) to which he did not apply at (R; q): By the above
described calculation of '�(R; q0x; q�x); this student has to belong to �(x)n�0(x) or otherwise, �0 = �:
Then let �00 be such that if i 2 fi0; i1; : : : ; ikg; �00(i) = �(i); and otherwise �00(i) = �0(i): (i.e., �00 is
obtained from �0 by simply assigning each it with t 2 f0; 1; :::; kg to �0(it+1) where ik+1 � i0:) Since
k � 1; �00 clearly Pareto dominates �0 at (R; q0x; q�x) from the view of the student side.

(ii) Non-manipulability via capacities=)Acyclicity of �:
Suppose by contradiction that a priority structure (�; q) contains a cycle. In particular, there are (1)
i; j; k 2 N and x; y 2 X such that i �x j �x k and k �y i and (2) Nx; Ny � Nnfi; j; kg such that
Nx � Ux(j); Ny � Uy(i); jNxj = qx � 1, jNyj = qy � 1; and Nx \ Ny = ?: Let (R; q) be a problem
satisfying the following: Let q � q be any capacity vector with qx > qx and qy = qy: For all m 2 Nx and
all z 2 Xnfxg; x Pm z Pm ?: For all m 2 Ny and all z 2 Xnfyg; y Pm z Pm ?: For all z 2 Xnfx; yg; y
Pi x Pi ? Pi z and x Pk y Pk ? Pk z: For all z 2 Xnfxg; x Pj ? Pj z. For all m 2 Nn(Nx[Ny [fi; j; kg)
and all z 2 X; let ? Pm z: Finally, suppose Nx [ fig Nx [ fj; kg:

Clearly, '�(R; q)(x) = Nx[fj; kg: Now let q0x = qx: Then, '�(R; q0x; q�x)(x) = Nx[fig: Thus, school
x successfully manipulates '� via underreporting its capacity at (R; q):

Q.E.D.

Proof of Corollary 2: Suppose (�; q) is imposed and there exist a problem (R; q) 2 E ; and a school
x 2 X that can manipulate '� by underreporting its capacity at (R; q): Then by Theorem 1 (�; q) has a
cycle. Since q 	 q0; the priority structure (�; q0) shares the same cycle. Then since qx0 � qx; school x can
manipulate '� at (R; q) in the same way if (�; q0) is imposed instead. For the converse case, consider
Example 1. Note that school a can manipulate if qa = qb = 1 however this would not be possible if qa
were raised to two.

Q.E.D.

Proof of Theorem 2:
Consider any mechanism ': Let a priority structure (�; q) be given. Take a school x 2 X with n > qx:

Let R be any preference pro�le satisfying the following: Choose any N 0
x � N with jN 0

xj = qx+1 and for all
10Note that y0 6= ? since '� is individually rational. Otherwise student i0 would have never applied to school x at

(R; q0x; q�x):
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i 2 N 0
x and all z 2 Xnfxg; let x Pi z Pi ?: For all i 2 NnN 0

x and all z 2 X; let ? Pi z: Let � � '(N;R; q):
By feasibility, there is m 2 N 0

x such that �(m) 6= x: Suppose the pair (x;m) makes a pre-arrangement.
Let �0 � '(Nnfmg; RNnfmg�m ; q�x; qx � 1): Simply letting fmg [ �0(x) Px �(x) is su¢ cient to show that
the pair (x;m) can succesfully manipulate at (N;R; q):

Q.E.D.

References

1. Abdulkadiroglu, Atila , P. Pathak, and A. Roth (2005), The New York City High School Match,
American Economic Review, Papers and Proceedings, 95, 2, 364-367.

2. Abdulkadiroglu, A., P. Pathak, A. Roth, and T. Sönmez (2005), The Boston Public School Match,
American Economic Review, Papers and Proceedings, 95, 2, 368-371.

3. Abdulkadiro¼glu, A. and T. Sönmez, School choice: A mechanism design approach, American Eco-
nomic Review, 93, 729-747.

4. Balinski, M. and T. Sönmez (1999), A tale of two mechanisms: Student placement, Journal of
Economic Theory, 84, 73-94.

5. Dubins, L.E. and D.A. Freedman (1981), Machiavelli and the Gale-Shapley algorithm, American
Mathematical Monthly, 88, 485-494.

6. Ehlers, L. (2002), Coalitional strategy-proof house allocation, Journal of Economic Theory, 105,
298-317 .

7. Ergin, H. (2002), E¢ cient resource allocation on the basis of priorities, Econometrica, 70, 2489-
2497.

8. Ergin, H. and T. Sönmez (2006), Games of school choice under the Boston mechanism , Journal of
Public Economics, 90, 215-237.

9. Gale D. and L. Shapley (1962), College admissions and the stability of marriage, American Math-
ematical Monthly, 69, 9-15.

10. Kesten, O. (2006), On two competing mechanisms for priority based allocation problems, Journal
of Economic Theory, 127, 155-171.

11. Konishi, H. and Unver, U. (2006), Games of capacity manipulation in hospital-intern markets,
Social Choice and Welfare, 27, 3-24.

12. Kojima, F. (2006), Mixed Strategies in Games of Capacity Manipulation in Hospital-Intern Market,
Social Choice and Welfare 27, 25-28.

13. Kojima, F. and Pathak, P. (2007), Incentives and Stability in Large Two-Sided Matching Markets,
mimeo.

14. McVitie D. and B. Wilson (1970), Stable marriage assignment for unequal sets, BIT, 10, 295-309.

15. Pápai, S., Strategy-proof assignment by hierarchical exchange, Econometrica 68 (2000), 1403-1433.

16. Roth, A. (1985), The college admissions problem is not equivalent to the marriage problem, Journal
of Economic Theory, 36, 277-288.

10



17. Roth, A. and E. Peranson. (1999), The e¤ects of a change in the NRMP matching algorithm,
American Economic Review, 89, 748-780.

18. Roth, A. (1982), The economics of matching: Stability and incentives, Mathematics of Operations
Research, 7, 617-628.

19. Roth, A and U.G. Rothblum (1999), Truncation strategies in matching markets �In search of advice
for participants, Econometrica 67, 21-43.

20. Roth, A. and M. Sotomayor (1990), Two-sided matching, New York: Cambridge University Press.

21. Roth, A. (1991), A Natural Experiment in the Organization of Entry-Level Labor Markets: Regional
Markets for New Physicians and Surgeons in the United Kingdom, American Economic Review,
81, 415-440

22. Sönmez, T. (1997), Manipulation via capacities in two-sided matching markets, Journal of Economic
Theory, 77, 197-204.

23. Sönmez, T. (1999), Can pre-arranged matches be avoided in two-sided matching markets, Journal
of Economic Theory, 86, 148-156.

11


