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We study two classical problems in graph Ramsey theory, that of determining the Ramsey
number of bounded-degree graphs and that of estimating the induced Ramsey number for
a graph with a given number of vertices.

The Ramsey number r(H) of a graph H is the least positive integer N such that every
two-coloring of the edges of the complete graph KN contains a monochromatic copy of H .
A famous result of Chvátal, Rödl, Szemerédi and Trotter states that there exists a constant
c(Δ) such that r(H)≤c(Δ)n for every graph H with n vertices and maximum degree Δ.
The important open question is to determine the constant c(Δ). The best results, both due
to Graham, Rödl and Ruciński, state that there are positive constants c and c′ such that

2c′Δ≤c(Δ)≤2cΔ log2 Δ. We improve this upper bound, showing that there is a constant c
for which c(Δ)≤2cΔ logΔ.

The induced Ramsey number rind(H) of a graph H is the least positive integer N for
which there exists a graph G on N vertices such that every two-coloring of the edges of
G contains an induced monochromatic copy of H . Erdős conjectured the existence of a
constant c such that, for any graph H on n vertices, rind(H)≤2cn. We move a step closer
to proving this conjecture, showing that rind(H)≤2cn logn. This improves upon an earlier
result of Kohayakawa, Prömel and Rödl by a factor of logn in the exponent.
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1. Introduction

Given a graph H, the Ramsey number r(H) is defined to be the smallest
natural number N such that, in any two-coloring of the edges of KN , there
exists a monochromatic copy of H. That these numbers exist was first proven
by Ramsey [30] and rediscovered independently by Erdős and Szekeres [17].
Since their time, and particularly since the 1970s, Ramsey theory has grown
into one of the most active areas of research within combinatorics, overlap-
ping variously with graph theory, number theory, geometry and logic.

The most famous question in the field is that of estimating the Ramsey
number r(t) of the complete graph Kt on t vertices. However, despite some
small improvements [32,5], the standard estimates, that 2t/2 ≤ r(t) ≤ 22t,
have remained largely unchanged for over sixty years. Unsurprisingly then,
the field has stretched in different directions. One such direction that has
become fundamental in its own right is that of looking at what happens to
the Ramsey number when we are dealing with various types of sparse graphs.
Another is that of determining induced Ramsey numbers, i.e., proving, for
any given H, that there is a graph G such that any two-coloring of the
edges of G contains an induced monochromatic copy of H. In this paper, we
present a unified approach which allows us to make improvements to two
classical questions in these areas.

In 1975, Burr and Erdős [2] posed the problem of showing that every
graph H with n vertices and maximum degree Δ satisfied r(H) ≤ c(Δ)n,
where the constant c(Δ) depends only on Δ. That this is indeed the case
was shown by Chvátal, Rödl, Szemerédi and Trotter [4] in one of the earliest
applications of Szemerédi’s celebrated regularity lemma [34]. Remarkably,
this means that for graphs of fixed maximum degree the Ramsey number
only has a linear dependence on the number of vertices. Unfortunately, be-
cause it uses the regularity lemma, the bounds that the original method
gives on c(Δ) are (and are necessarily [21]) of tower type in Δ. More pre-
cisely, c(Δ) works out as being an exponential tower of 2s with a height that
is itself exponential in Δ.

The situation was remedied somewhat by Eaton [11], who proved, using
a variant of the regularity lemma, that the function c(Δ) can be taken to be
of the form 22cΔ

. Soon after, Graham, Rödl and Ruciński proved [22], by a
beautiful method which avoids any use of the regularity lemma, that there
exists a constant c for which

c(Δ) ≤ 2cΔ log2 Δ.

For bipartite graphs, they were able to do even better [23], showing that
if H is a bipartite graph with n vertices and maximum degree Δ then
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r(H)≤2cΔ logΔn. They also proved that there are bipartite graphs with n
vertices and maximum degree Δ for which the Ramsey number is at least
2c′Δn. Recently, Conlon [6] and, independently, Fox and Sudakov [19] have
shown how to remove the logΔ factor in the exponent, achieving an essen-
tially best possible bound of r(H)≤2cΔn in the bipartite case. These results
were jointly extended to hypergraphs in [7], after several proofs [8,9,29] using
the hypergraph regularity lemma.

Unfortunately, if one tries to use these recent techniques to treat general
graphs, the best one seems to be able to achieve is c(Δ)≤2cΔ2

. In this paper
we take a different approach, more closely related to that of Graham, Rödl
and Ruciński [22]. Improving on their bound, we show that c(Δ)≤2cΔ logΔ,
which brings us a step closer to matching the lower bound of 2c′Δ.

Theorem 1.1. There exists a constant c such that, for every graph H with
n vertices and maximum degree Δ,

r(H) ≤ 2cΔ log Δn.

A graph H is said to be an induced subgraph of G if V (H)⊂ V (G) and
two vertices of H are adjacent if and only if they are adjacent in G. The
induced Ramsey number rind(H) is the smallest natural number N for which
there is a graph G on N vertices such that in every two-coloring of the edges
of G there is an induced monochromatic copy of H. The existence of these
numbers was independently proven by Deuber [10], Erdős, Hajnal and Pósa
[16] and Rödl [31]. The bounds that these original proofs give on rind(H)
are enormous, but it was conjectured by Erdős [13] that the actual values
should be more in line with ordinary Ramsey numbers. More specifically,
he conjectured the existence of a constant c such that every graph H with
n vertices satisfies rind(H)≤ 2cn. If true, the complete graph shows that it
would be best possible.

In a problem paper, Erdős [12] stated that he and Hajnal had proved a

bound of the form rind(H)≤22n1+o(1)

. This remained the state of the art for
some years until Kohayakawa, Prömel and Rödl [25] proved that there is a
constant c such that every graph H on n vertices satisfies rind(H)≤2cn log2 n.
As in the bounded-degree problem, we remove one of the logarithms in the
exponent.

Theorem 1.2. There exists a constant c such that every graph H with n
vertices satisfies

rind(H) ≤ 2cn log n.
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It is worth noting that the graph G that Kohayakawa, Prömel and Rödl
use in their proofs is a random graph constructed with projective planes.
This graph is specifically designed so as to contain many copies of our target
graph H. Recently, Fox and Sudakov [18] showed how to prove the same
bounds as Kohayakawa, Prömel and Rödl using explicit pseudo-random
graphs. We will follow a similar path.

A graph is said to be pseudo-random if it imitates some of the properties
of a random graph. One such random-like property, introduced by Thomason
[35,36], is that of having approximately the same density between any pair
of large disjoint vertex sets. More formally, we say that a graph G=(V,E)
is (p,λ)-pseudo-random if, for all subsets A,B of V , the density of edges
d(A,B) between A and B satisfies

|d(A,B) − p| ≤ λ
√|A||B| .

The usual random graph G(N,p), where each edge is chosen independently
with probability p, is with high probability a (p,λ)-pseudo-random graph
where λ is on the order of

√
N . A well-known explicit example, known to

be (1
2 ,
√

N)-pseudo-random, is the Paley graph PN . This graph is defined
by setting V to be the set ZN , where N is a prime which is congruent to 1
modulo 4, and taking two vertices x,y∈V to be adjacent if and only if x−y
is a quadratic residue. For further information on this and other pseudo-
random graphs we refer the reader to [27]. Our next theorem states that, for
λ sufficiently small, a (1

2 ,λ)-pseudo-random graph has very strong Ramsey
properties. Theorem 1.2 follows by applying this theorem to the particular
examples of pseudo-random graphs given above.

Theorem 1.3. There exists a constant c such that, for any n∈N and any
(1
2 ,λ)-pseudo-random graph G on N vertices with λ ≤ 2−cn lognN , every

graph on n vertices occurs as an induced monochromatic copy in all 2-edge-
colorings of G. Moreover, all of these induced monochromatic copies can be
found in the same color.

The theme that unites these two, apparently disparate, questions is the
method we employ in our proofs. A simplified version of this method is the
following. In the first color we attempt to find a large subset in which this
color is very dense. If such a set can be found, we can easily embed the
required graph. If, on the other hand, this is not the case, then there is
a large subset in which the edges of the second color are well-distributed.
Again, this allows us to prove an embedding lemma. Such ideas are already
explicit in the work of Graham, Rödl and Ruciński and, arguably, implicit in
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that of Kohayakawa, Prömel and Rödl. The advantage of our method, which
extends upon these ideas, is that it is much more symmetrical between the
colors. It is this symmetry which allows us to drop a log factor in each case.

In the next section, we will prove Theorem 1.1. Section 3 contains the
proof of Theorem 1.3. The last section contains some concluding remarks
together with a discussion of a few conjectures and open problems. Through-
out the paper, we systematically omit floor and ceiling signs whenever they
are not crucial for the sake of clarity of presentation. All logarithms, unless
otherwise stated, are to the base 2. We also do not make any serious attempt
to optimize absolute constants in our statements and proofs.

2. Ramsey number of bounded-degree graphs

The edge density d(X,Y ) between two disjoint vertex subsets X,Y of a
graph G is the fraction of pairs (x,y)∈X×Y that are edges of G. That is,
d(X,Y )= e(X,Y )

|X||Y | , where e(X,Y ) is the number of edges with one endpoint in
X and the other in Y . In a graph G, a vertex subset U is called bi-(ε,ρ)-dense
if, for all disjoint pairs A,B ⊂U with |A|, |B| ≥ ε|U |, we have d(A,B) ≥ ρ.
We call a graph G bi-(ε,ρ)-dense if its vertex set V (G) is bi-(ε,ρ)-dense.
Trivially, if ε′ ≤ ε and ρ′ ≥ ρ, then a bi-(ε′,ρ′)-dense graph is also bi-(ε,ρ)-
dense. Moreover, if ε>1/2, then every graph is vacuously bi-(ε,ρ)-dense as
there is no pair of disjoint subsets each with more than half of the vertices.

Before going into the proof of Theorem 1.1, we first sketch for comparison
the original idea of Graham, Rödl, and Ruciński [22] which gives a weaker
bound. We then discuss our proof technique. They noticed that if a graph G
on N vertices is bi-(ε,ρ)-dense with ε=ρΔ/(Δ+1) and N ≥2ρ−Δ(Δ+1)n,
then G contains every n-vertex graph H of maximum degree Δ. This can
be shown by embedding H one vertex at a time. In particular, if a red-blue
edge-coloring of KN does not contain a monochromatic copy of H, then the
red graph is not bi-(ε,ρ)-dense, and there are disjoint vertex subsets A and
B with |A|, |B|≥εN such that the red density between them is less than ρ. It
is then possible to iterate, at the expense of another factor in the exponent
of roughly log(1/ρ), to get a subset S of size roughly εlog(1/ρ)N with red
edge density at most 2ρ inside. Picking ρ= 1

16Δ , a simple greedy embedding
then shows that inside S we can find a blue copy of any graph with at most
|S|/4 vertices and maximum degree Δ.

To summarize, the proof finds a vertex subset S which is either bi-(ε,ρ)-
dense in the red graph or very dense in the blue graph. In either case, it is
easy to find a monochromatic copy of any n-vertex graph H with maximum
degree Δ.
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We will instead find a sequence of large vertex subsets S1, . . . ,St such
that, in one of the two colors, each of the subsets satisfies some bi-density
condition and the graph between these subsets is very dense. The bi-density
condition inside each Si is roughly the condition which ensures that we can
embed any graph on n vertices with maximum degree di, where d1 + . . .+dt =
Δ−t+1. A simple lemma of Lovász guarantees that we can partition V (H)=
V1 ∪ . . .∪ Vt such that the induced subgraph of H with vertex set Vi has
maximum degree at most di. Our embedding lemma shows that we can
embed a monochromatic copy of H with the image of Vi being in Si. We
now proceed to the details of the proof.

Definition. A graph on N vertices is (α,β,ρ,Δ)-dense if there is a sequence
S1, . . . ,St of disjoint vertex subsets each of cardinality at least αN and non-
negative integers d1, . . . ,dt such that d1+. . .+dt =Δ−t+1, and the following
holds in the blue graph:

• for 1≤ i≤ t, Si is bi-(ρ2di ,ρ)-dense, and
• for 1≤ i<j≤ t, each vertex in Si has at least (1−β)|Sj | blue neighbors in

Sj.

Note that since d1+. . .+dt =Δ−t+1 and each di is nonnegative, we must
have t≤Δ+1.

Trivially, if a graph is (α′,β′,ρ,Δ′)-dense and α′≥α, β′≤β, and Δ′≥Δ,
then it is also (α,β,ρ,Δ)-dense.

We say that a red-blue edge-coloring of the complete graph KN is
(α,β,ρ,Δ1,Δ2)-dense if the red graph is (α,β,ρ,Δ1)-dense or the blue graph
is (α,β,ρ,Δ2)-dense. We say that (α,β,ρ,Δ1,Δ2) is universal if, for every
N , every red-blue edge-coloring of KN is (α,β,ρ,Δ1,Δ2)-dense.

Lemma 2.1. If β ≥ 4(Δ2 + 1)ρ and (α,β,ρ,Δ1,Δ2) is universal, then
(1
2ρ2Δ1α,β,ρ,Δ1,2Δ2 +1) is also universal.

Proof. Consider a red-blue edge-coloring of a complete graph KN . If the
red graph is bi-(ρ2Δ1 ,ρ)-dense, then, taking t=1, S1 =V (KN ) and d1 =Δ1,
we see that the red graph is (1,0,ρ,Δ1)-dense. Since α≤ 1, β ≥ 0, the red
graph is also (α,β,ρ,Δ1)-dense and we are done. So we may suppose that
there are disjoint vertex subsets V0,V1 with |V0|, |V1| ≥ ρ2Δ1N such that
the red density between them is less than ρ. Delete from V0 all vertices in
at least 2ρ|V1| red edges with vertices in V1; the remaining subset V ′

0 has
cardinality at least 1

2 |V0| ≥ 1
2ρ2Δ1N . Since (α,β,ρ,Δ1,Δ2) is universal, the

coloring restricted to V ′
0 is (α,β,ρ,Δ1,Δ2)-dense. Thus, the red graph is

(α,β,ρ,Δ1)-dense (in which case we are again done) or the blue graph is
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(α,β,ρ,Δ2)-dense. We may suppose the latter holds, and there are subsets
S1, . . . ,St each of cardinality at least α|V ′

0 | ≥ 1
2ρ2Δ1αN and nonnegative

integers d1, . . . ,dt such that d1+. . .+dt =Δ2−t+1, and the following holds:

• for 1≤ i≤ t, Si is bi-(ρ2di ,ρ)-dense, and
• for 1≤ i<j≤ t, each vertex in Si has at least (1−β)|Sj | neighbors in Sj.

Since each vertex in V ′
0 (and hence in each Si) is in at most 2ρ|V1| red

edges with vertices in V1, there are at most 2ρ|Si||V1| red edges between Si

and V1. For 1≤ i≤ t, delete from V1 all vertices in at least 4(Δ2+1)ρ|Si| red
edges with vertices in Si. For any given i, there can be at most 1

2(Δ2+1) |V1|
such vertices. Therefore, since t ≤ Δ2 +1, the set V ′

1 of remaining vertices
has cardinality at least |V1|− t · 1

2(Δ2+1) |V1|≥|V1|/2.
Since (α,β,ρ,Δ1,Δ2) is universal, the coloring restricted to V ′

1 is
(α,β,ρ,Δ1,Δ2)-dense. Thus, the red graph is (α,β,ρ,Δ1)-dense (in which
case we are done) or the blue graph is (α,β,ρ,Δ2)-dense. We may sup-
pose the latter holds, and there are subsets T1, . . . ,Tu each of cardinality
at least α|V ′

1 | ≥ 1
2ρ2Δ1αN and nonnegative integers e1, . . . ,eu such that

e1 + . . .+eu =Δ2−u+1, and the following holds:

• for 1≤ i≤u, Ti is bi-(ρ2ei ,ρ)-dense, and
• for 1≤ i<j≤u, each vertex in Ti has at least (1−β)|Tj | neighbors in Tj .

Note that e1+. . .+eu+d1+. . .+dt =Δ2−u+1+Δ2−t+1=(2Δ2+1)−(u+t)+1.
Moreover, β≥4(Δ2+1)ρ, implying that for all 1≤ i≤u and all 1≤j≤ t every
vertex in Ti has at least (1−β)|Sj | neighbors in Sj . Therefore, the sequence
T1, . . . ,Tu,S1, . . . ,St implies that the blue graph is (1

2ρ2Δ1α,β,ρ,2Δ2 + 1)-
dense, completing the proof.

By symmetry, the above lemma implies that if β ≥ 4(Δ1 + 1)ρ and
(α,β,ρ,Δ1,Δ2) is universal, then (1

2ρ2Δ2α,β,ρ,2Δ1+1,Δ2) is also universal.
As already mentioned, if ε > 1/2, every graph G is vacuously bi-(ε,ρ)-

dense. As ρ2·0 = 1 > 1/2, setting t = 1 and S1 = V (G), we have that, for
arbitrary α,β,ρ ≤ 1, every graph G is (α,β,ρ,0)-dense. This shows that
(1,2ρ,ρ,0,0) is universal, which is the base case h=0 in the induction proof
of the next lemma.

Lemma 2.2. Let h be a nonnegative integer and D := 2h − 1. Then
(2−2hρ6D−4h,2(D+1)ρ,ρ,D,D) is universal.

Proof. As mentioned above, the proof is by induction on h, and the base
case h = 0 is satisfied. Suppose it is satisfied for h, and we wish to show
it for h+ 1. Let D = 2h − 1, D′ = 2D + 1 = 2h+1 − 1, and β = 4(D + 1)ρ =
2(D′+1)ρ≥2(D+1)ρ. Recall that, for β≥β′, if (α,β′,ρ,Δ1,Δ2) is universal
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then so is (α,β,ρ,Δ1,Δ2). Therefore, since (2−2hρ6D−4h,2(D+1)ρ,ρ,D,D)
is universal, (2−2hρ6D−4h,β,ρ,D,D) is also. Applying Lemma 2.1, we have
that (1

2ρ2D2−2hρ6D−4h,β,ρ,D,2D+1) is universal. Applying the symmetric
version of Lemma 2.1 mentioned above, we have that

(1
2
ρ2(2D+1) 1

2
ρ2D2−2hρ6D−4h, β, ρ, 2D + 1, 2D + 1

)

= (2−2(h+1)ρ6D′−4(h+1), β, ρ,D′,D′),

is universal, which completes the proof by induction.

We will use the following lemma of Lovász [28].

Lemma 2.3. If H has maximum degree Δ and d1, . . . ,dt are nonnegative
integers satisfying d1 + . . .+dt =Δ− t+1, then there is a partition V (H)=
V1∪ . . .∪Vt such that for 1≤ i≤ t, the induced subgraph of H with vertex
set Vi has maximum degree at most di.

The next simple lemma shows that in a bi-(ε,ρ)-dense graph, for any
large vertex subset B, there are few vertices with few neighbors in B.

Lemma 2.4. If G is a bi-(ε,ρ)-dense graph on n vertices with ε≥1/n and
B ⊂ V (G) with |B| ≥ 2εn, then there are less than 3εn vertices in G with
fewer than ρ

2 |B| neighbors in B.

Proof. Suppose for contradiction that the set A of vertices in G with fewer
than ρ

2 |B| neighbors in B satisfies |A| ≥ 3εn. Partition A ∩B = C1 ∪C2

with |C1| ≤ |C2| into two sets of size as equal as possible. Then the sets
A′=A\C2 and B′=B\C1 are disjoint, |A′|≥	|A|/2
≥εn, |B′|≥|B|/2≥εn,
the number of edges between A′ and B′ is less than |A′|ρ2 |B|, and the edge

density between A′ and B′ is less than |A′| ρ
2
|B|

|A′||B′| = ρ
2

|B|
|B′| ≤ ρ, contradicting G

is bi-(ε,ρ)-dense.

The following embedding lemma is the last ingredient for the proof of
Theorem 1.1. The assumption, that the graph G is (α, 1

2Δ ,ρ,Δ)-dense, im-
plies that there is a collection of large vertex subsets S1, . . . ,St such that Si

is bi-(ρ2di ,ρ)-dense with d1 + · · ·+ dt = Δ− t+1 and such that the density
between any two sets is at least 1− 1

2Δ . Let H be a graph of maximum degree
Δ. By Lemma 2.3, we may split its vertex set V (H) into t pieces V1,V2, . . . ,Vt

such that the maximum degree in each piece is d1,d2, . . . ,dt, respectively. To
embed a copy of H in G, we use the bi-density condition within each set
Si to find a copy of the induced subgraph of H on Vi and the high density
assumption between sets to patch these different subgraphs together.
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Lemma 2.5. If ρ≤ 1/30 and G is a graph on N ≥ 4(2/ρ)2Δα−1n vertices
which is (α, 1

2Δ ,ρ,Δ)-dense, then G contains every graph H on n vertices
with maximum degree at most Δ.

Proof. Since G is (α, 1
2Δ ,ρ,Δ)-dense, there is a sequence S1, . . . ,St of dis-

joint vertex subsets each of cardinality at least αN and nonnegative integers
d1, . . . ,dt such that d1 + . . .+dt =Δ− t+1, and the following holds:

• for 1≤ i≤ t, Si is bi-(ρ2di ,ρ)-dense, and
• for 1≤ i<j≤ t, each vertex in Si has at least (1− 1

2Δ)|Sj| neighbors in Sj.

By Lemma 2.3, there is a vertex partition V (H)=V1∪ . . .∪Vt such that the
maximum degree of the induced subgraph of H with vertex set Vi is at most
di for 1 ≤ i ≤ t. Let v1, . . . ,vn be an ordering of the vertices in V (H) such
that the vertices in Vi come before the vertices in Vj for i < j. Let N(h,k)
denote the set of neighbors vi of vk with i≤h. For vk∈Vj, let M(h,k) denote
the set of neighbors vi ∈Vj of vk with i≤h, that is, M(h,k)=N(h,k)∩Vj .
Notice that |M(h,k)|≤dj for vk ∈Vj since the induced subgraph of H with
vertex set Vj has maximum degree at most dj.

We will find an embedding f : V (H) → V (G) of H in G such that
f(Vi)⊂Si for each i. We will embed the vertices in increasing order of their
indices. The embedding will have the property that after embedding the first
h vertices, if k > h and vk ∈ Vj, then the set S(h,k) of vertices in Sj adja-
cent to all vertices in f(N(h,k)) has cardinality at least 1

2(ρ/2)|M(h,k)||Sj|.
Notice that this condition is trivially satisfied when h=0. Suppose that this
condition is satisfied after embedding the first h vertices. The set S(h,k) are
the potential vertices in which to embed vk after the first h vertices have
been embedded, though this set may already contain embedded vertices.

Let j be such that vh+1 ∈Vj . We need to find a vertex in S(h,h+1) to
embed the copy of vh+1. We have

|S(h, h + 1)| ≥ 1
2
(ρ/2)|M(h,h+1)||Sj | ≥ 1

2
(ρ/2)dj |Sj |

since |M(h,h+1)| ≤ dj . If dj = 0, we may pick f(vh+1) to be any element
of the set S(h,h + 1)\{f(v1), . . . ,f(vh)}. We may assume, therefore, that
1 ≤ dj ≤ Δ. In this case we know, for each of the at most dj neighbors vk

of vh+1 with k > h+ 1 that are in Vj, that the set S(h,k) has cardinality
at least 1

2(ρ/2)dj |Sj|. Let ε = ρ2dj . Since, for 1 ≤ dj ≤ Δ and ρ ≤ 1/30, Sj

is bi-(ρ2dj ,ρ)-dense, |S(h,k)| ≥ 1
2 (ρ/2)dj |Sj | ≥ 2ρ2dj |Sj|= 2ε|Sj | and ε|Sj|=

ρ2dj |Sj | ≥ ρ2ΔαN ≥ 1, we may apply Lemma 2.4 in Sj with B = S(h,k).
Therefore, for each vertex vk∈Vj,k>h+1 adjacent to vh+1, at most 3ρ2dj |Sj|
vertices in Sj have fewer than ρ

2 |S(h,k)| neighbors in S(h,k). Thus, all but at
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most dj ·3ρ2dj |Sj | vertices in Sj have at least ρ
2 |S(h,k)| neighbors in S(h,k)

for all vk ∈ Vj,k > h+1 that are neighbors of vh+1. Since, for ρ≤ 1/30, we
have dj ·3ρ2dj ≤ 1

4(ρ/2)dj , there are at least

|S(h, h + 1)| − dj · 3ρ2dj |Sj | − h

≥ 1
2
(ρ/2)dj |Sj | − dj · 3ρ2dj |Sj | − h ≥ 1

4
(ρ/2)dj |Sj| − h

≥ 1
4
(ρ/2)ΔαN − h ≥ (2/ρ)Δn − h > 0

such vertices that are not already embedded. We can pick any of these
vertices to be f(vh+1). To continue, it remains to check that any such choice
preserves the properties of our embedding. Indeed,

• for any k <h+1 for which vh+1 is adjacent to vk, f(vh+1) is adjacent to
f(vk);

• if k > h+1 and vk and vh+1 are not adjacent, then S(h+1,k) = S(h,k)
and M(h+1,k)=M(h,k);

• if, for some k > h+ 1, vk and vh+1 are adjacent and vk ∈ V� with � �= j,
then M(h+1,k)=0 since vertices of Vj are embedded before vertices of
V�, �>j, so no vertex of V� was embedded yet. Also, |S(h+1,k)|≥ 1

2 |S�|
since |N(h+1,k)| ≤Δ, the vertices in f(N(h+1,k)) each have at least
(1− 1

2Δ)|S�| neighbors in S�, and hence |S(h+1,k)|≥|S�|−Δ· 1
2Δ |S�|= 1

2 |S�|;
• if k > h+ 1, vk and vh+1 are adjacent and vk ∈ Vj , then |M(h+ 1,k)| =

|M(h,k)|+ 1. Moreover, by our choice of the vertex f(vh+1), it has at
least ρ

2 |S(h,k)| neighbors in S(h,k). Therefore |S(h+1,k)|≥ ρ
2 |S(h,k)|≥

1
2(ρ/2)|M(h,k)|+1|Sj|= 1

2 (ρ/2)|M(h+1,k)||Sj |, as required.

As we supposed there is an embedding of the first h vertices with the
desired property, the above four facts imply that there is an embedding of
the first h+1 vertices with the desired property. By induction on h, we find
an embedding of H in G.

We can now prove the following theorem, which implies Theorem 1.1.

Theorem 2.6. For Δ ≥ 2, in every 2-edge-coloring of KN with N =
284Δ+2Δ32Δn, at least one of the color classes contains a copy of every graph
on n vertices with maximum degree Δ.

Proof. Let h be the smallest positive integer such that D := 2h − 1 ≥ Δ.
By the definition of D, Δ ≤ D < 2Δ. Let ρ = 1

8D2 , α = 2−2hρ6D−4h ≥ ρ6D,
and β =2(D+1)ρ≤ 1

2D . Lemma 2.2 implies that every red-blue coloring of
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the edges of the complete graph KN is (α,β,ρ,D,D)-dense. By Lemma 2.5,
since

4(2/ρ)2Dα−1n ≤ 4(16D2)2D · (8D2)6Dn ≤ 4(16(2Δ)2)4Δ(8(2Δ)2)12Δn

= 22(26Δ2)4Δ(25Δ2)12Δn = 284Δ+2Δ32Δn = N,

at least one of the color classes contains a copy of every graph on n vertices
with maximum degree Δ.

3. Induced Ramsey numbers

The goal of this section is to prove Theorem 1.3. We will do this by finding,
in any 2-edge-coloring of the pseudo-random graph G, a collection of vertex
subsets S1, . . . ,St satisfying certain conditions. The conditions in question
are closely related to the notion of density that we applied in the last section.
Now, as then, we demand that the graph of one particular color satisfies a
certain bi-density condition within each Si. In addition, we demand that
between the different Si the other color be sparse. This may look like a
simple rearrangement of the condition from the previous section, but, given
that we are now looking at colorings of a pseudo-random graph G rather
than the complete graph KN , the condition is more general. Moreover, it is
exactly what we need to make our embedding lemma work.

In the following definition, f will be a two-variable function from R×N

to R.

Definition. An edge-coloring of a graph G on N vertices with colors 1
and 2 is (α,β,ρ,f,Δ1,Δ2)-dense if there is a color q∈{1,2}, disjoint vertex
subsets S1, . . . ,St each of cardinality at least αN and nonnegative integers
d1, . . . ,dt with d1 + . . .+dt =Δq− t+1 such that the following holds:

• for 1≤ i≤ t, Si is bi-(f(ρ,di),ρ)-dense in the graph of color q, and
• for 1≤ i< j≤ t, each vertex in Si is in at most β|Sj | edges of color 3− q

with vertices in Sj.

We say that (α,β,ρ,f,Δ1,Δ2) is universal if, for every graph G, every
edge-coloring of G with colors 1 and 2 is (α,β,ρ,f,Δ1,Δ2)-dense. Note that
the density condition used in the last section corresponds to the case when
G=KN and f(ρ,di)=ρ2di . Essentially the same proofs as Lemmas 2.1 and
2.2 give the following two more general lemmas. We include the proofs for
completeness.

Lemma 3.1. If β ≥ 4(Δ2 + 1)ρ and (α,β,ρ,f,Δ1,Δ2) is universal, then
(1
2f(ρ,Δ1)α,β,ρ,f,Δ1,2Δ2 +1) is also universal.
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Proof. Consider an edge-coloring of a graph G with colors 1 and 2. If
the graph of color 1 is bi-(f(ρ,Δ1),ρ)-dense, then, taking, q = 1, t = 1,
S1 = V (G) and d1 = Δ1, we are done. So we may suppose that there are
disjoint vertex subsets V0,V1 with |V0|, |V1|≥f(ρ,Δ1)N such that the density
of color 1 between them is less than ρ. Delete from V0 all vertices in at least
2ρ|V1| edges of color 1 with vertices in V1; the remaining subset V ′

0 has
cardinality at least 1

2 |V0|≥ 1
2f(ρ,Δ1)N . Since (α,β,ρ,f,Δ1,Δ2) is universal,

the coloring restricted to the induced subgraph of G with vertex set V ′
0

is (α,β,ρ,f,Δ1,Δ2)-dense. Thus, there is q ∈ {1,2}, disjoint vertex subsets
S1, . . . ,St ⊂ V ′

0 each of cardinality at least α|V ′
0 | and nonnegative integers

d1, . . . ,dt with d1 + . . .+dt =Δq− t+1 such that the following holds:

• for 1≤ i≤ t, Si is bi-(f(ρ,di),ρ)-dense in the graph of color q, and
• for 1≤ i< j≤ t, each vertex in Si is in at most β|Sj | edges of color 3− q

with vertices in Sj.

If q=1, we are done. Therefore, we may suppose q=2.
Since each vertex in V ′

0 (and hence in each Si) is in at most 2ρ|V1| edges
of color 1 with vertices in V1, then there are at most 2ρ|Si||V1| edges of color
1 between Si and V1. For 1 ≤ i ≤ t, delete from V1 all vertices in at least
4(Δ2+1)ρ|Si| edges of color 1 with vertices in Si. For any given i, there can
be at most 1

2(Δ2+1) |V1| such vertices. Therefore, since t≤Δ2 +1, the set V ′
1

of remaining vertices has cardinality at least |V1|− t · 1
2(Δ2+1) |V1|≥|V1|/2.

Since (α,β,ρ,f,Δ1,Δ2) is universal, the coloring restricted to the induced
subgraph of G with vertex set V ′

1 is (α,β,ρ,f,Δ1,Δ2)-dense. Thus, there is
q′∈{1,2}, disjoint vertex subsets T1, . . . ,Tu⊂V ′

1 each of cardinality at least
α|V ′

1 | and nonnegative integers e1, . . . ,eu with e1 + . . .+eu =Δq′ −u+1 such
that the following holds:

• for 1≤ i≤u, Ti is bi-(f(ρ,ei),ρ)-dense in the graph of color q′, and
• for 1≤ i<j≤u, each vertex in Ti is in at most β|Tj | edges of color 3−q′

with vertices in Tj .

If q′=1, we are done. Therefore, we may suppose q′=2.
Note that e1+. . .+eu+d1+. . .+dt =Δ2−u+1+Δ2−t+1=(2Δ2+1)−(u+t)+1.

Moreover, β ≥ 4(Δ2 +1)ρ, implying that for all 1 ≤ i ≤ u and all 1 ≤ j ≤ t
every vertex in Ti is in at most β|Sj | edges of color 1 with vertices in Sj.
Therefore, the sequence T1, . . . ,Tu,S1, . . . ,St implies that the edge-coloring
of G is (1

2f(ρ,Δ1)α,β,ρ,f,Δ1,2Δ2 +1)-dense, completing the proof.

By symmetry, the above lemma implies that if β ≥ 4(Δ1 + 1)ρ and
(α,β,ρ,f,Δ1,Δ2) is universal, then (1

2f(ρ,Δ2)α,β,ρ,f,2Δ1 +1,Δ2) is also
universal.
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Lemma 3.2. Let h be a nonnegative integer and f be such that f(ρ,0)=1.
Define

αh = 2−2hf(ρ, 0)−1f(ρ, 2h − 1)−1
h∏

i=0

f(ρ, 2i − 1)2.

Then (αh,2h+1ρ,ρ,f,2h−1,2h−1) is universal.

Proof. The proof is by induction on h. As already mentioned, if ε > 1/2,
every graph G is vacuously bi-(ε,ρ)-dense. Since α0 = 1 > 1/2, setting t = 1
and S1 =V (G), we have (1,2ρ,ρ,f,0,0) is universal, which is the base case
h=0.

Suppose the lemma is satisfied for h, and we wish to show it for h+1. Let
D=2h−1, D′=2D+1=2h+1−1, and β=4(D+1)ρ=2(D′+1)ρ=2h+2ρ. Note
that, for β≥β′, if (α,β′,ρ,f,Δ1,Δ2) is universal then so is (α,β,ρ,f,Δ1,Δ2).
Therefore, since (αh,2(D + 1)ρ,ρ,f,D,D) is universal, (αh,β,ρ,f,D,D) is
also. Applying Lemma 3.1, we have that (1

2f(ρ,D)αh,β,ρ,f,D,2D + 1) is
universal. Applying the symmetric version of Lemma 3.1 mentioned above,
we have that
(1

2
f(ρ, 2D + 1)

1
2
f(ρ,D)αh, β, ρ, f, 2D + 1, 2D + 1

)
= (αh+1, β, ρ, f,D′,D′),

is universal, which completes the proof by induction.

A graph G is n-Ramsey-universal if, in any 2-edge-coloring of G, there
are monochromatic induced copies of every graph on n vertices all of the
same color. The following lemma implies Theorem 1.3.

Lemma 3.3. If G is (1/2,λ)-pseudo-random on N vertices with λ ≤
2−140nn−40nN , then G is n-Ramsey-universal.

The set-up for the proof of this lemma is roughly similar to the one pre-
sented in the previous section. We start with a collection of bi-dense sets,
in say blue, such that the density of red edges between each pair of sets is
small. The goal is to embed a blue induced copy of a given graph H on ver-
tices 1, . . . ,n. We embed vertices one at a time, always maintaining large sets
in which we may embed later vertices. Suppose that at step i of our embed-
ding, after v1,v2, . . . ,vi are chosen, we have sets Vj,i for j > i corresponding
to the possible choices for future vj . If the vertices j,�>i are not adjacent,
then, by the pseudo-randomness of G, the density of nonedges between any
two large sets is roughly 1/2, and it is therefore easy to guarantee that we
can pick vj and v� so that they are nonadjacent. On the other hand, if the
vertices j,�>i are adjacent, then we need to guarantee that vj and v� will be
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joined by a blue edge. Thus, it would be helpful to ensure that the density
of blue edges between Vj,i and V�,i is not too small. In the bounded-degree
case we maintain such a property by exploiting the fact that the blue den-
sity between any two large sets is large. Here, we do not have this luxury in
the case that Vj,i and V�,i are subsets of different bi-dense sets in the collec-
tion. It is instead necessary to use the fact that the underlying graph G is
pseudo-random.

To see how this helps, suppose that we now wish to embed vi+1. This
will affect the sets Vj,i and V�,i, resulting in subsets Vj,i+1 and V�,i+1. We
would like these subsets to mirror the density properties between Vj,i and
V�,i. The way we proceed is to show that using pseudo-randomness we can
choose vi+1 such that the density of red edges between the sets Vj,i+1 and
V�,i+1 remains small. Since G is pseudo-random, the total density between
large sets is roughly 1/2 and therefore there will still be many blue edges
between these two sets.

Proof of Lemma 3.3. We split the proof into four steps.

Step 1: We will first choose appropriate constants and prepare G for em-
bedding monochromatic induced subgraphs.

Any (1/2,λ)-pseudo-random graph on at least two vertices must satisfy
λ≥1/2. Indeed, letting A and B be distinct vertex subsets each of cardinal-
ity 1, we have

1/2 = |d(A,B) − 1/2| ≤ λ
√|A||B| = λ.

It follows that N ≥2140nn40nλ≥2138nn40n.
We will start by picking some constants. Pick ρ=2−13n−3, h= logn�≤

log2n, β=2h+1ρ≤8nρ=2−10n−2, f(ρ,0)=1 and f(ρ,d)=2−5nρd if d>0, so

α = 2−2hf(ρ, 0)−1f(ρ, 2h − 1)−1
h∏

i=0

f(ρ, 2i − 1)2

= 2−2hf(ρ, 2h − 1)
h−1∏

i=1

f(ρ, 2i − 1)2

= 2−2h−5nρ2h−1
h−1∏

i=1

2−10nρ2(2i−1)

= 2−2h−(2h−1)5nρ3·2h−2h−3

≥ (2n)−12nρ6n = 2−90nn−30n.
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Lemma 3.2 implies that (α,β,ρ,f,2h − 1,2h − 1) is universal. As 2h ≥ n, it
follows that (α,β,ρ,f,n−1,n−1) is also universal. Let ε1 = 1

2n , ε2 = ε1ρ
32n =

2−19n−5, ε3 =ε4 = 1
8n , ε5 = 1

8n2 , ε6 =ε2ε5 =2−22n−7 and β′=2nβ≤2−9n−1.
Since every red-blue edge of G is (α,β,ρ,f,n− 1,n− 1)-dense, we may

assume that there are disjoint vertex subsets S1, . . . ,St each of cardinality
at least αN and nonnegative integers d1, . . . ,dt with d1+ . . .+dt =n−t such
that

• for 1≤ i≤ t, Si is bi-(f(ρ,di),ρ)-dense in the blue graph, and
• for 1≤ i<j≤ t, each vertex in Si is in at most β|Sj | red edges with vertices

in Sj.

We will show that we can find a monochromatic blue induced copy of
each graph H on n vertices. We may suppose the vertex set of H is V (H)=
[n] := {1, . . . ,n}. Partition [n] = U1∪ . . .∪Ut, with the vertices in Ui coming
before the vertices in Uj for i < j and |Ui|= di +1 for 1≤ i≤ t. For j ∈Ul,
let D(i,j) denote the number of neighbors h of j with h ≤ i and h ∈ Ul.
Arbitrarily partition Si into di +1 sets

⋃
k∈Ui

Vk each of cardinality at least

	 |Si|
di+1
≥	 |Si|

n 
≥ |Si|
2n ≥ α

2nN , where we use di+1≤n, |Si|≥αN , and the lower
bounds on α and N .

Step 2: We now describe our strategy for constructing induced blue copies
of H. In broad outline, we proceed by induction, embedding each successive
vertex i in the set Vi. To achieve this, we have to maintain several conditions
which allow us to embed future vertices.

At the end of step i, we will have vertices v1, . . . ,vi and, for j >i, subsets
Vj,i⊂Vj such that the following four conditions hold.

1. for j,� ≤ i, if (j,�) is an edge of H, then (vj ,v�) is a blue edge of G,
otherwise vj and v� are not adjacent in G;

2. for j≤ i<�, if (j,�) is an edge of H, then vj is adjacent to all vertices in
V�,i by blue edges, otherwise there are no edges of G from vj to V�,i;

3. for j>i, we have |Vj,i|≥4−iρD(i,j)|Vj|;
4. for �>j >i, if j∈Uq1 and �∈Uq2 with q1 <q2, then each vertex in Vj,i is

in at most (1+ε1)iβ′|V�,i| red edges with vertices in V�,i.

Note that Vj,i is a subset of vertices of G in which we can still embed vertex
j from H after i steps of our embedding procedure. Clearly, at the end of
the n steps of this process we obtain the required blue induced copy of H.
For i=0 and j ∈ [n], define Vj,0 =Vj. Notice that the above four properties
are satisfied for i=0. Indeed, the first two properties are vacuously satisfied,
the third property follows from Vj,0 =Vj, and the last property follows from
the simple inequality β′|V�,0| = 2nβ|V�| ≥ β|Sq2|. We now assume that the
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above four properties are satisfied at the end of step i and show how to
complete step i+1 by finding a vertex vi+1∈Vi+1,i and, for j>i+1, subsets
Vj,i+1⊂Vj,i such that conditions 1-4 still hold.

Before we begin the next step of the proof, we need to introduce some
notation. For a vertex w∈Vj and a subset S⊂V� with j �=�, let

• N(w,S) denote the set of vertices s∈S such that (s,w) is an edge of G,
• R(w,S) denote the set of vertices s∈S such that (s,w) is a red edge of G,
• B(w,S) denote the set of vertices s∈S such that (s,w) is a blue edge of

G,
• Ñ(w,S) = N(w,S) if (j,�) is an edge of H and Ñ(w,S) = S \N(w,S)

otherwise,
• B̃(w,S) = B(w,S) if (j,�) is an edge of H and B̃(w,S) := S \N(w,S)

otherwise.

Note, for all S⊂V� and w∈Vj, that B̃(w,S)=Ñ (w,S)\R(w,S). Moreover,
since the graph G is pseudo-random with edge density 1/2, we expect that
for every large subset S⊂V� and for most vertices w∈Vj the size of Ñ(w,S)
will be roughly |S|/2.
Step 3: We next show that if there is a vertex satisfying certain conditions,
then we can continue our embedding. In the last step we show that there is
such a “good” vertex.

Let q be the index such that i+1∈Uq. Call a vertex w∈Vi+1,i good if

1. for all j >i+1 such that (j, i+1) is an edge of H and j∈Uq, |B(w,Vj,i)|≥
ρ|Vj,i|,

2. for all j >i+1, |Ñ(w,Vj,i)|≥
(

1
2 − ε1

20

) |Vj,i|,
3. for all � > j > i+1 with j ∈Uq1 , �∈Uq2 , and q1 < q2, there are at most

ε2|Vj,i| vertices y∈Vj,i such that y is in at least β′ (1
2 − ε1

10

) |V�,i| red edges
with vertices in V�,i and y is in at least

(
1
2 + ε1

10

) |R(y,V�,i)| red edges with
vertices of Ñ(w,V�,i).

Note that, because the graph G is pseudo-random with edge density 1/2,
we expect a typical vertex in Vi+1,i to be adjacent (and also nonadjacent) to
roughly 1/2 of the vertices in Vj,i and V�,i. Moreover, condition 3 roughly says
that for a typical vertex, the density of red edges between its neighborhoods
in Vj,i and V�,i is not much larger than the overall density of red edges
between these two sets.

We will now show that if there is a good vertex w∈Vi+1,i, then we may
continue the embedding by taking vi+1 = w and, for j > i+1 with j ∈Uq1,
letting Vj,i+1 be the subset of B̃(w,Vj,i) formed by deleting all vertices y for
which there is �>j with � �∈Uq1 such that y is in at least β′ (1

2 − ε1
10

) |V�,i| red
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edges with vertices in V�,i and y is in at least
(

1
2 + ε1

10

) |R(y,V�,i)| red edges
with vertices of Ñ(w,V�,i). Note that, by the third property of good vertices,

(1) |Vj,i+1| ≥ |B̃(w, Vj,i)| − nε2|Vj,i|.
Let us verify each of the required properties of our embedding in turn.

To verify the first property, we need to show that if j≤ i and (j, i+1) is an
edge of H then (vj ,vi+1) is a blue edge and, if (j, i+1) is not an edge of H,
then (vj ,vi+1) is not in G. But this follows by induction since, when the first
i vertices were embedded, we had that for all j≤ i<l, if (j, l) was an edge of
H, then vj was adjacent to all edges of Vl,i by blue edges. Otherwise, there
were no edges between vj and Vl,i. Taking l = i+1, the necessary property
follows.

For the second property, we would like to show that for j ≤ i+1 < l, if
(j, l) is an edge of H, then vj is adjacent to all vertices in Vl,i+1 by blue edges
and, otherwise, there are no edges between vj and Vl,i+1. Observe that, for
all l>i+1, the set Vl,i+1 is a subset of the set Vl,i. Therefore, by induction,
we only need to check the condition for j = i+1. But Vl,i+1 is a subset of
B̃(vi+1,Vl,i), so this follows by definition.

We now wish to prove that, for all j>i+1, |Vj,i+1|≥4−(i+1)ρD(i+1,j)|Vj |.
Inequality (1) together with the first property of good vertices implies that
if j > i+1, (j, i+1) is an edge of H and j ∈Uq (recall that also i+1∈Uq),
then, since ε2≤ρ/(2n) and D(i+1, j)=D(i,j)+1,

|Vj,i+1| ≥ (ρ − nε2)|Vj,i| ≥ ρ

2
|Vj,i| ≥ ρ

2
4−iρD(i,j)|Vj | ≥ 4−(i+1)ρD(i+1,j)|Vj|.

Inequality (1), the second property of good vertices and the inductive as-
sumption that w has at most (1+ ε1)iβ′|Vj,i| red neighbors in Vj,i if j �∈Uq

together imply that for all other j >i+1, we have

|Vj,i+1| ≥ |B̃(w, Vj,i)| − nε2|Vj,i| = |Ñ(w, Vj,i) \ R(w, Vj,i)| − nε2|Vj,i|
≥

(
1
2
− ε1

20

)
|Vj,i| − (1 + ε1)iβ′|Vj,i| − nε2|Vj,i|

≥
(

1
2
− ε1

20
− 3β′ − nε2

)
|Vj,i|

≥
(

1
2
− ε1

10

)
|Vj,i| ≥ 1

4
4−iρD(i,j)|Vj | = 4−(i+1)ρD(i+1,j)|Vj |.

Here we use that ε1 =1/2n, β′≤2−9n−1, ε2≤ε1/32n, and D(i+1, j)=D(i,j)
(since i+1 and j are either nonadjacent or belong to different Us). In either
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case, the required lower bound on the cardinality of Vj,i+1 holds. Note the
intermediate inequality that |Vl,i+1|≥

(
1
2 − ε1

10

) |Vl,i| whenever l �∈Uq.
If i+1<j<� is such that j∈Uq1 and �∈Uq2 with q≤q1 <q2, our deletion

of vertices from B̃(w,Vj,i) implies that each vertex y in Vj,i+1 is in less than

β′
(

1
2
− ε1

10

)
|V�,i| ≤ β′|V�,i+1|

red edges with vertices in V�,i or y is in less than
(

1
2

+
ε1

10

)
|R(y, V�,i)| ≤

(
1
2

+
ε1

10

)
(1 + ε1)iβ′|V�,i|

≤
(

1
2

+
ε1

10

)
(1 + ε1)iβ′|V�,i+1|

/ (
1
2
− ε1

10

)

≤ (1 + ε1)i+1β′|V�,i+1|
red edges with vertices of Ñ(w,V�,i). In either case, we see that the last
desired condition of the embedding is satisfied.

Step 4: We have shown that if there is a good vertex, then we can continue
the embedding. In this step we show that there is a good vertex in Vi+1,i,
which completes the proof.

The next three claims imply that the fraction of vertices in Vi+1,i that are
good is at least 1−nε3−nε4−n2ε5 >1/2, i.e., more than half of the vertices
of Vi+1,i are good. Indeed, Claim 1 shows that the first property of good
vertices is satisfied for all but at most nε3|Vi+1,i| vertices in Vi+1,i. Claim
2 shows that the second property of good vertices is satisfied for all but at
most nε4|Vi+1,i| vertices in Vi+1,i. Claim 3 shows that the third property of
good vertices is satisfied for all but at most n2ε5|Vi+1,i| of the vertices in
Vi+1,i. These three claims therefore complete the proof.

Claim 1. For j > i+1 such that (j, i+1) is an edge of H and j ∈ Uq, let
Qj denote the set of vertices w∈Vi+1,i such that |B(w,Vj,i)|<ρ|Vj,i|. Then
|Qj |<ε3|Vi+1,i|.
Proof. Suppose, for contradiction, that |Qj| ≥ ε3|Vi+1,i|. As j, i + 1 ∈ Uq

and |Uq| = dq + 1, we have dq ≥ 1 and f(ρ,dq) = 2−5nρdq . Since 23n ≥ 8n2,
|Vi+1,i|≥4−iρD(i,i+1)|Vi+1| and |Vi+1|≥|Sq|/2n, we have

|Qj | ≥ ε34−iρD(i,i+1)|Vi+1| ≥ ε341−nρdq |Vi+1| ≥ ε3

n
4−nρdq |Sq| ≥ f(ρ, dq)|Sq|.

We also have

|Vj,i| ≥ 4−iρD(i,j)|Vj | ≥ 41−nρdq |Vj | ≥ n−14−nρdq |Sq| ≥ f(ρ, dq)|Sq|.
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Since Sq is bi-(f(ρ,dq),ρ)-dense in blue, the blue edge density between Qj

and Vj,i is at least ρ, contradicting the definition of Qj .

Claim 2. For j>i+1, let Pj denote the set of vertices w∈Vi+1,i such that

|Ñ (w, Vj,i)| <

(
1
2
− ε1

20

)
|Vj,i|.

Then |Pj |<ε4|Vi+1,i|.
Proof. The definition of Pj implies that the density of edges between Pj

and Vj,i is either less than 1
2− ε1

20 or more than 1
2+ ε1

20 (depending on whether
or not (i + 1, j) is an edge of H). Therefore, since G is (1/2,λ)-pseudo-
random, we have ε1

20 < λ√
|Pj ||Vj,i|

. Note that, for j >i, since ρ=2−13n−3 and

α≥2−90nn−30n,

(2) |Vj,i| ≥ 4−iρD(i,j)|Vj | ≥ 4−nρn|Vj | ≥ 2−15nn−3n α

2n
N ≥ 2−106nn−34nN.

Hence, since we also have ε1 =1/2n, ε4 =1/8n and λ≤2−140nn−40nN ,

|Pj | <
400λ2

ε2
1|Vj,i| <

292−280nn−80nN2

(2n)−22−106nn−34nN
= 211n22−174nn−46nN(3)

≤ 2−163nn−44nN ≤ (8n)−12−106nn−34nN ≤ ε4|Vi+1,i|.

Claim 3. Fix a pair j and � with i+1<j <�, j ∈Uq1, �∈Uq2, and q1 <q2.
Let X = Vi+1,i, Y = Vj,i, and Z = V�,i. Define the bipartite graph F = Fj,�

with parts X and Y where (x,y)∈X×Y is an edge if

|R(y, Z)| ≥ β′
(

1
2
− ε1

10

)
|Z|

and

|R(y, Z) ∩ Ñ(x,Z)| >

(
1
2

+
ε1

10

)
|R(y, Z)|.

Let Tj,� denote the set of vertices in X with degree at least ε2|Y | in F . Then
|Tj,�|≤ε5|X|.
Proof. For y ∈ Y , let Xy ⊂X denote the neighbors of y in graph F . Note
that, for every x∈Xy, the fact that |R(y,Z)∩ Ñ (x,Z)|> (

1
2 + ε1

10

) |R(y,Z)|
implies that, in either the graph G or its complement, x has at least
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(
1
2 + ε1

10

) |R(y,Z)| neighbors in R(y,Z) (this is again because Ñ(x,Z) is ei-
ther the neighborhood of x or its complement depending on whether or not
(i+1, �) is an edge of H). Therefore, since G is (1/2,λ)-pseudo-random,

ε1

10
≤ λ

√|Xy||R(y, Z)| .

Note that, by the first condition on F , if y has any neighbors in X, |R(y,Z)|≥
β′|Z|/4. Therefore,

|Xy| ≤ 100λ2

ε2
1|R(y, Z)| ≤

400λ2

ε2
1β

′|Z| ≤ ε6|X|.

This last inequality follows as in the previous claim. Indeed, since β′ =
2nβ=2h+2nρ≥4n2ρ≥2−11n−1, ε6 =2−22n−7, Z =V�,i, and X =Vi+1,i, using
inequality (2) as in (3)), we have

400λ2

ε2
1β

′|Z| ≤ β′−12−163nn−44nN ≤ 2−152nn−43nN

≤ 2−22n−72−106nn−34nN ≤ ε6|X|.
Therefore, the edge density of F between X and Y is at most ε6 and there
are at most ε6|X||Y |

ε2|Y | =ε5|X| vertices in X with degree at least ε2|Y | in F .

4. Concluding remarks

Another interesting concept of sparseness, introduced by Chen and Schelp
[3], is that of arrangeability. A graph H is said to be p-arrangeable if there
is an ordering of the vertices of H such that, for any vertex vi, the set of
neighbors to the right of vi in the ordering have at most p neighbors to the
left of vi (including vi itself). Extending the result of Chvátal, Rödl, Sze-
merédi and Trotter [4], Chen and Schelp showed that for every p there is
a constant c(p) such that, for any p-arrangeable graph H with n vertices,
r(H)≤c(p)n. This result has several consequences. Planar graphs, for exam-
ple, may be shown to be 10-arrangeable [24], so their Ramsey numbers grow
linearly. The best bound that is known for c(p), again due to Graham, Rödl
and Ruciński [22], is c(p) ≤ 2cp(logp)2. Unfortunately, it is unclear whether
the bounds that we have given for bounded-degree graphs can be extended
to the class of arrangeable graphs. It would be interesting to prove such a
bound.

An even more problematic notion is that of degeneracy. A graph H is
said to be d-degenerate if there is an ordering of the vertices of H such that
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any vertex vi has at most d neighbors that precede it in the ordering. Equiv-
alently, every subgraph of H has a vertex of degree at most d. A conjecture
of Burr and Erdős [2] states that for every d there should be a constant
c(d) such that, for any d-degenerate graph H with n vertices, r(H)≤c(d)n.
This conjecture, which is still open, is a substantial generalization of the
results on Ramsey numbers of bounded-degree graphs. The best result that
is known, due to Fox and Sudakov [20], is r(H)≤2c(d)

√
lognn.

An old related problem is to bound the Ramsey number of graphs with
m edges. Erdős and Graham [15] conjectured that among all graphs with
m=

(n
2

)
edges and no isolated vertices, the complete graph on n vertices

has the largest Ramsey number. Motivated by the lack of progress on this
conjecture, Erdős [12] asked whether one could at least show that the Ram-
sey number of any graph with m edges is not much larger than that of the
complete graph with the same size. Since the number of vertices in a com-
plete graph with m edges is on the order of

√
m, Erdős conjectured that

r(H)≤2c
√

m holds for every graph H with m edges and no isolated vertices.
Until recently the best known bound for this problem was 2c

√
m logm (see [1]).

To attack Erdős’ conjecture one can try to use the result on Ramsey num-
bers of bounded-degree graphs. Indeed, given a graph H with m edges, one
can first embed the 2

√
m vertices of largest degree in H using the standard

pigeonhole argument of Erdős and Szekeres [17]. The remaining vertices
of H span a graph with maximum degree

√
m. Hence, one may apply the

arguments used to prove the upper bound for Ramsey numbers of bounded-
degree graphs to embed the rest of H. However, this approach will likely
require an upper bound of 2cΔn on the Ramsey number for graphs on n
vertices of maximum degree Δ, which we do not have yet. Recently, the
third author [33] was able to circumvent this difficulty and prove Erdős’
conjecture.

Finally, we would like to stress that the proofs given in this paper are
highly specific to the 2-color case. The best results that are known in the
q-color case (q ≥ 3) are obtained by an entirely different method [19] and
are considerably worse. For example, the q-color Ramsey number rq(H) of
a graph on n vertices with maximum degree Δ is only known to satisfy the
inequality rq(H) ≤ 2cqΔ2

n. It would be of considerable interest to improve
this latter bound to rq(H)≤2cqΔ1+o(1)

n.
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[8] O. Cooley, N. Fountoulakis, D. Kühn and D. Osthus: 3-uniform hypergraphs
of bounded degree have linear Ramsey numbers, J. Combin. Theory Ser. B 98 (2008),
484–505.
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