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Abstract

In this paper we develop approximation algorithms for two-stage convex chance constrained

problems. Nemirovski and Shapiro [18] formulated this class of problems and proposed an

ellipsoid-like iterative algorithm for the special case where the impact function f(x,h) is bi-affine.

We show that this algorithm extends to bi-convex f(x,h) in a fairly straightforward fashion.

The complexity of the solution algorithm as well as the quality of its output are functions of the

radius r of the largest Euclidean ball that can be inscribed in the polytope defined by a random

set of linear inequalities generated by the algorithm [18]. Since the polytope determining r

is random, computing r is difficult. Yet, the solution algorithm requires r as an input. In

this paper we provide some guidance for selecting r. We show that the largest value of r is

determined by the degree of robust feasibility of the two-stage chance constrained problem –

the more robust the problem, the higher one can set the parameter r.

Next, we formulate ambiguous two-stage chance constrained problems. In this formulation,

the random variables defining the chance constraint are known to have a fixed distribution;

however, the decision maker is only able to estimate this distribution to within some error. We

construct an algorithm that solves the ambiguous two-stage chance constrained problem when

the impact function f(x,h) is bi-affine and the extreme points of a certain “dual” polytope are

known explicitly.

1 Introduction

The simplest model for a convex chance constrained problem is as follows.

min cTx

s.t. x ∈ Xε(Q) =
{
y ∈ X | Q(H : f(y,H) > 0) ≤ ε

}
,

(1)
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where x ∈ Rn is the decision vector, the uncertain parameter H ∈ Rm is distributed according to

the known distribution Q, X ⊆ Rn is a convex set, and f(·,H) : Rn 7→ R is convex in x for each

fixed H. Since a collection of convex constraints fi(x,H) ≤ 0, i = 1, . . . , p, can be formulated as

a single convex constraint f(x,H) = max1≤i≤p{fi(x,H)} ≤ 0, restricting the range of constraint

function f(·,H) to R does not represent any loss of generality. Also, by introducing a new variable

if necessary, one can assume that the objective function is linear and independent of the uncertain

parameter.

Chance constrained problems are computationally very difficult to solve. Except for a very

restricted class of measures, evaluating Q(H : f(x,H) > 0) involves numerically computing a

multidimensional integral that becomes difficult as the number of parameters grows. Moreover, even

if the function f(x,H) is linear in x, the feasible set Xε(Q) of (1) is, in general, not convex. General

chance constrained problems (i.e., f(x,H) is possibly non-convex) have a very rich literature.

See [19, 22] for a survey of solution methods.

Recently there has been a renewed interest in the special case of convex chance constrained prob-

lems. One approximates the convex chance constrained problem (1) by the sampled optimization

problem

min cTx

s.t. x ∈ Y[H1,N ] = {y ∈ X | f(y,Hi) ≤ 0, i = 1, ..., N},
(2)

where Hi, i = 1, . . . , N , are N IID samples from Q. de Farias and Van Roy [9] use results from

Learning theory [1, 15, 27] to show that for the special case of linear constraints a sample size of

N ≥ 4n

ε
log

(
12

ε

)
+

4

ε
log

(
2

δ

)

ensures that the set of decision vectors feasible for the sampled problem (2) is contained in Xε(Q)

with a probability at least 1− δ. Erdoğan and Iyengar [11] show a similar bound for general convex

constraints with the constant n replaced by the Vapnik-Chervonenkis (VC) dimension df of the

constraint function. Calafiore and Campi [7, 8] show that when

N ≥ 2n

ε
ln

(
2

ε

)
+

2

ε
ln

(
1

δ

)
+ 2n,

the optimal solution of the sampled problem (2) is feasible for (1) with a probability at least

1− δ. This bound is particularly relevant since the VC dimension df of a constraint can be orders

of magnitude larger than the problem dimension n. Note that these results only provide upper

bounds for the number of samples, i.e. only a sufficient condition. Thus, a natural question of

the quality or “tightness” of the approximation arises. Recently, Nemirovski and Shapiro [18, 17]

established logarithmically separated upper and lower bounds on the number of samples required to

approximate a convex chance constrained problem when the measure Q has a certain concentration-

of-measure property.
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The chance constrained problem assumes that the distribution Q of the random parameter H

is known and fixed. In practice, however, the distribution Q is only specified with some error.

Erdoğan and Iyengar [11] model this ambiguity in the measure by assuming that the measure Q is

only known to belong to the set

Q = {Q : ρp(Q,Q0) ≤ β} ,

where ρp(·, ·) denotes the Prohorov metric (see § 4). Given this description of the information

available to the decision-maker, the ambiguous chance constrained problem is given by

min cTx

s.t. x ∈ X̄ε =
{
y ∈ X | Q(H : f(y,H) > 0) ≤ ε, ∀Q ∈ Q

}
.

(3)

Although the problem (3) was explicitly introduced in Erdoğan and Iyengar [11], the minimax

formulation has a long history in stochastic programming [28, 10, 25, 23, 24]. Motivated by the

fact that the sampled problem (2) is a good approximation for the chance constrained problem (1),

Erdoğan and Iyengar approximate (3) by the robust sampled problem

min cTx

s.t. x ∈ Y[N, β] = {y ∈ X | f(y, z) ≤ 0, ∀ z s.t. ‖z−H0
i ‖ ≤ β, i = 1, . . . , N},

(4)

where H0
1,N are N IID samples drawn from the central measure Q0 and ‖ · ‖ is the norm used to

define the Prohorov metric ρp(·, ·). For appropriately chosen norms, such problems can be solved

efficiently using the technique detailed in [6]. The following approximation results were established

in [11].

(a) N ≥ 4df

ε−µ log
(

12
ε−µ

)
+ 4

ε−µ log
(

2
δ(1−β)

)
, where df is the VC-dimension of the function class

{f(x, ·) : x ∈ X} and µ = 2( ε2 + log(β + 2−ε/2)), suffices to ensure P(Y[N, β] ⊆ Xε(Q)) ≥ 1− δ,
for any fixed Q ∈ Q.

(b) N ≥ 2n
ε−β ln

(
2
ε−β

)
+ 2

ε−β ln
(

1
δ

)
+ 2n ensures that the optimal solution x̂ of (4) satisfies P(x̂ ∈

X̄ε) ≥ 1− δ.

The model (1), while quite general in its ability to model constraints, is limited to the so-

called single stage problems where decisions must be made before the uncertain parameter H is

revealed. A natural extension is to consider two-stage problems where one has to commit to the

first stage decision x before the realization of the uncertain parameter H, and the second stage

decision variable v can be chosen after observing the parameter H. A prototypical example of a

two-stage problem is the network design where the first stage variables are the capacities on the arcs

and the second stage variables are the routing decisions. The simplest two-stage chance constrained

problem is given by

min cTx

s.t. x ∈ X̂ε(Q) =
{
y ∈ X | Q

(
H : ∃v s.t. Wv ≥ f(y,H)

)
> 1− ε

}
,

(5)
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where the impact function f(x,h) : Rn × Rm 7→ Rl is bi-affine, v ∈ Rk, and W ∈ Rl×k. Since

the matrix W does not depend on the realization of H, problems of the form (5) are said to have

a fixed recourse. Thus, (5) is a two-stage linear chance constrained problem with a fixed recourse.

This model was introduced by Nemirovski and Shapiro [18].

One could attempt to approximate (5) by the sampled two-stage LP

min cTx

s.t. x ∈ Y[H1,N ] = {y ∈ X | ∃vi s.t. Wvi ≥ f(y,Hi), i = 1 . . . , N}.
(6)

However, note that since each scenario Hi has its own set of second-stage variables vi, i = 1, . . . , N ,

the problem dimension grows with N , and the results of Calafiore and Campi [7, 8] no longer yield

a good bound on the number of samples required to produce a good approximation. Also, since

it is difficult to quantify the VC-dimension of the two-stage constraint, the results in [11] cannot

be applied. Nemirovski and Shapiro [18] constructed an iterative solution algorithm for (5) that

closely resembles the ellipsoid algorithm [5, 16, 26].

Our contributions in this paper are as follows.

(a) We extend the iterative algorithm proposed in [18] to solve two-stage chance constrained prob-

lems where the impact function f(x,h) (see (5) for details) is bi-convex, i.e. convex in one

variable when the other variable is held constant. We still assume a constant recourse ma-

trix W. This fairly straightforward extension is discussed in § 3.

(b) Since the iterative algorithm proposed in [18] closely resembles the ellipsoid algorithm, the

number of iterations required to compute a feasible solution as well as the quality of the

solution are functions of the radius r of a ball with the largest volume contained within the

feasible set of the problem. We show that the value of the parameter r is determined by the

degree of robust feasibility of the chance constrained problem. This is similar to the results

relating the condition number of optimization problems to the complexity of solving them to

optimality [20, 21, 13]. This result is proved in § 3 and discussed in § 3.1.

(c) We formulate the ambiguous two-stage chance constrained problem and modify the algorithm

proposed in [18] to compute a good solution for this problem. Our extension is limited to the

special case where the function f(x,h) is bi-affine (i.e. the case considered in [18]) and the

extreme points of a certain “dual” polytope are known explicitly. We extend all the known

results for chance constrained problems to the ambiguous setting.

The rest of the paper is organized as follows. In § 2 we introduce the notation that we use in

the rest of the paper. In § 3 we discuss the two-stage chance constrained problems with bi-convex

impact functions. In § 4 we present the extension to the ambiguous two-stage chance constrained

problems. In § 5 we present the results of our numerical experiments with a two-stage network

design problem on a very simple network. In § 6 we discuss the results in the paper and include

some concluding remarks.
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2 Notation

Sets will be denoted by calligraphic letters, e.g. A, and Ac will denote the complement of the set

A. All (deterministic) vectors will be denoted by the boldface lowercase letters, e.g. x. Random

vectors and samples of random vectors will be denoted by the boldface uppercase letters, e.g. H,

and measures will be denoted by the mathematical boldface letters, e.g. P. We will denote that a

random vector H has distribution Q by H ∼ Q and a σ-algebra on a space H by F(H).

The norm ‖·‖ will denote the usual Euclidean norm ‖x‖ =
√

xTx =
√∑

i x
2
i . Br(y) will denote

a Euclidean ball of radius r centered at y, i.e. Br(y) = {x : ‖x − y‖ ≤ r}, and the set Br will

denote a Euclidean ball of radius r, i.e. Br = Br(y) for some fixed y. Given an input x ∈ Rn, a

separation oracle SA for a convex set A ⊂ Rn returns an affine function L : Rn 7→ R satisfying

SA(x) =

{
L s.t. L(z) ≤ 0, ∀z ∈ A, L(x) > 0 x 6∈ A,
L ≡ 0 otherwise

The gradient of a function L : Rn 7→ R will be denoted by ∇L.

3 Approximating two-stage convex chance constrained problems

In this section we develop an approximation algorithm for the two-stage convex chance constrained

problem

min cTx

s.t. x ∈ X̂ε(Q) =
{
y ∈ X | Q(H : f(y,H) 6∈ C) ≤ ε

}
,

(7)

where C denotes the polyhedron

C =
{
z ∈ Rl | z ≤Wv,v ∈ Rk

}
, (8)

x ∈ Rn is the decision vector, H ∈ H is a random parameter vector distributed according to Q,

W ∈ Rl×k is a recourse matrix, and f(x,h) : X ×H 7→ Rl is an impact function. Nemirovski and

Shapiro [18] introduced the particular form for the set C and the associated chance constrained

problem (7). To reiterate, the variable x denotes the first stage decisions and the variable v ∈ Rk

denotes the second stage decisions. We assume that the impact function f(x,h) and the sets X
and H satisfy the following conditions.

Assumption 1

(i) The sets X and H are convex compact sets. Let ‖x‖ ≤ RX (resp. ‖h‖ ≤ RH) for all x ∈ X
(resp. h ∈ H).

(ii) The impact function f(x,h) is bi-convex, i.e. for all fixed h ∈ H (resp. x ∈ X ), the function

f(·,h) : X 7→ Rl (resp. f(x, ·) : H 7→ Rl) is a convex function.
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(iii) f(x,h) = f0(x) + f1(x,h), where f1(x, αh) = αf1(x,h), for all α ≥ 0, (x,h) ∈ X ×H.

(iv) There exists a non-decreasing (finite-valued) function KH
f : R+ 7→ R+ such that

‖f(x1,h)−f(x0,h)‖ ≤ KH
f (‖h‖)‖x1−x0‖, for all h ∈ H and x0, x1 ∈ X . Let K̄H

f
∆
= KH

f (RH).

(v) There exists a non-decreasing (finite-valued) function KX
f : R+ 7→ R+ such that

‖f(x,h1)−f(x,h0)‖ ≤ KX
f (‖x‖)‖h1−h0‖, for all h1, h0 ∈ H and x ∈ X . Let K̄X

f
∆
= KX

f (RX ).

The condition (i) is not essential for the results to hold and is almost always satisfied in practice.

Assuming f(x,h) is convex in x for all fixed h ∈ H is necessary to ensure that the sampled version

of (7) is tractable. The assumption that f(x,h) is convex in h for all fixed x ∈ X and has a com-

ponent that is homogeneous allows one to leverage the concentration-of-measure property defined

below in Definition 1. The assumption that f(x,h) is Lipschitz continuous individually in each

variable is sufficient, though not necessary, to establish the approximation results. Assumption 1

may appear overly restrictive; however, there are many function classes that satisfy these. Two

canonical examples are as follows.

(a) Affine constraints: f(x,h) = A0x +
∑m

i=1 hiAix with X ⊂ Rn, H ⊂ Rm, and Ai ∈ Rl×n

for i = 0, . . . ,m. The growth functions KH
f (‖h‖) = O(1)(|||A0||| + ‖h‖

∑m
i=1 |||Ai|||) and

KX
f (‖x‖) = O(1)‖x‖∑m

i=1 |||Ai|||, with the constants depending on the particular choice of the

vector norm ‖ · ‖ and the matrix norm ||| · |||, satisfy Assumption 1.

(b) Second-order cone constraints: Each component of f(x,h) is a conic quadratic representable

function [5], e.g. fj(x,h) =
√

(ΓAjx + ρ)T (ΓAjx + ρ)− tTj x− vj with X ⊂ Rn, Aj ∈ Rk×n,

tj ∈ Rn, vj ∈ R for j = 1, . . . , l, and H =
{
h = (Γ,ρ) : Γ ∈ Rp×k,ρ ∈ Rp,

}
. In this case,

we can set KH
f (‖h‖) = O(1)(|||T||| + ‖h‖|||A|||) and KX

f (‖x‖) = O(1)‖x‖|||A|||, where T =

[tT1 ; tT2 ; . . . ; tTl ], A = [A1;A2; . . . ;Al].

We assume that Q satisfies the (θ̄, ψ)-concentration of measure property defined as follows [18].

Definition 1 ([18]) Let θ̄ ∈ (1
2 , 1] and ψ(α, θ) : [1,∞)× (θ̄, 1] 7→ R+ be a convex, non-decreasing

and non-constant function of α. A distribution Q on Rm is said to have (θ̄, ψ)-concentration of

measure property if for all α ≥ 1 and closed convex sets B with Q(B) ≥ θ > θ̄,

Q({H 6∈ αB}) ≤ exp{−ψ(α, θ)}.

This assumption essentially states that a small “blow-up” of the set B with a measure of at least θ̄

increases its measure exponentially. The prototypical example of a measure satisfying such a

property is the multivariate Normal distribution, N (0, I) – it satisfies the concentration property

with ψ(α, θ) = 1
2α

2Φ−1(θ)2, where Φ(·) denotes the CDF of a N (0, 1) random variable. The

assumption that the impact function has a homogeneous component (see Assumption 1 part (iii))

is made to leverage the concentration property of the measure Q.
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As discussed in § 1, a convex chance constrained problem is approximately solved by computing

a solution to an appropriately defined sampled problem. Erdoğan and Iyengar[11] (see also [9])

compute bounds for the number of samples required to reliably produce a solution for the chance

constrained problem when the VC-dimension of the constraint function is known. Since the VC

dimension of the constraint defining (7) is difficult to quantify, VC-dimension based bounds are

not useful in solving (7). Calafiore and Campi [7, 8] bounded the number of samples required

in terms of the number of decision variables when all the constraints are convex in x for any

fixed h. Since we need the second stage variables v to check feasibility for each sample, the

number of decision variables grows linearly with the number of samples; this renders the bounds

in [7, 8] worthless. We propose to approximately solve (7) using Algorithm SolveChance shown

in Figure 1. SolveChance is a simple extension of an algorithm proposed by Nemirovski and

Shapiro [18] to solve the special case with bi-affine impact functions f(x,h). The extension to

the bi-convex case is fairly straightforward; our main contribution is to show that feasibility of

an appropriately defined conservative version of (7) implies that SolveChance returns a “good”

solution with a high probability. Next, we carefully describe the algorithm and then prove a series

of intermediate results that are needed to establish the main result.

SolveChance uses two oracles, SX and SR. The oracle SX is the separation oracle for the

convex compact set X and the oracle SR(x;h), for a fixed h ∈ Rm, returns a linear inequality

L : Rn 7→ R that separates x ∈ Rn from the convex set

R =
{
x | f(x,h) ∈ C

}
= {x | ∃v ∈ Rk s.t. Wv ≥ f(x,h)}. (9)

Thus, x ∈ R if, and only if, the value of the optimization problem

min ‖u− x‖
s.t. Wv − f(u,h) ≥ 0

(10)

is equal to 0. When the optimal value of (10) is strictly positive, any sub-gradient d at the optimal

solution u∗ satisfies dT (u− x) > 0 for all u ∈ R and, therefore, serves as a separating hyperplane.

Note that (10) is a convex optimization problem and can be solved very efficiently when f(x,h) is

an affine function or a conic quadratic representable function [5]. The above discussion establishes

that the separation oracle SR(x;h) is well-defined.

We will call an output x̂ of SolveChance well-defined if x̂ 6= ∅. Nemirovski and Shapiro [18]

established the following result (see also Theorem 4).

Theorem 1 Suppose the output x̂ of SolveChance is well-defined, (i.e. x̂ 6= ∅). Then x̂ is

infeasible for (7), i.e. x̂ 6∈ X̂ε(Q), with a probability at most Mδ.

Note that Theorem 1 does not consider the case x̂ = ∅. Next, we compute an upper bound on the

probability that the output x̂ = ∅. Let I = {L1, . . . , LMN} denote an ordered list of the MN linear
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Input: ε > 0, δ ∈ (0, 1), separation oracles SX and SR

Output: x̂

set P ← ∅, N ← d1ε ln
(

1
δ

)
e, M ← d2n2 ln(

nR2

X ‖c‖2

rω + 2)e
set x0 ← 0, E0 ← RX I

for t = 1, . . . , M do

Construct a direction vector dt

st ← SX (xt−1)

if xt−1 6∈ X , set dt ← ∇st
else

generate H1,N IID Q

LN(t−1)+i ← SR(xt−1;Hi), i = 1, . . . , N .

if ∃ j ∈ {1, . . . , Nt} such that Lj(xt−1) > 0, set dt ← ∇Lj
else set dt = c and P ← P ∪ xt−1

Given (xt−1,Et−1) and dt, set (xt,Et) by the Ellipsoid method update

if P = ∅ return x̂← ∅; else return x̂← argminx∈P{cTx}

Figure 1: Algorithm SolveChance

inequalities generated by the calls to the oracle SR over the course of one run of SolveChance.

Let XI denote the convex compact set

XI = {x ∈ X : Lj(x) ≤ 0, j = 1, . . . ,MN}. (11)

Note that the set I and, therefore, XI depend on the IID samples H1,MN , where each Hi ∼ Q.

The following lemma was stated in [18] without a proof.

Lemma 1 Suppose the set XI contains a Euclidean ball Br of radius r. Then the output x̂ of

SolveChance is well defined, i.e. x̂ 6= ∅.

Proof: We will prove the result by contradiction. Suppose SolveChance returns x̂ = ∅. Let

{(xt−1,dt) : t = 1, . . . ,M} denote the iterates and the separating hyperplanes generated during

one run of SolveChance. Since x̂ = ∅, for each xt, t = 0, . . . ,M − 1, either xt 6∈ X or there exists

some j ∈ {1, . . . , N(t+ 1)} such that Lj(xt) > 0. Thus, xt 6∈ XI for all t = 0, . . . ,M − 1.

By the definition of XI , it follows that {(xt−1,dt) : t = 1, . . . ,M} is a set of iterates and

separating hyperplanes that could have been generated while using the Ellipsoid algorithm to solve

the convex optimization problem min{cTx : x ∈ XI}. Since xt 6∈ XI for all t = 0, . . . ,M − 1, it

follows that the Ellipsoid algorithm returns an empty solution. This is a contradiction because of

the choice of the iteration count M [5].

For α > 1 and r > 0, define

Xε(α, r) =
{
x ∈ X−r

∣∣∣Q
(
H : f(x, αH) ∈ C−rK̄H

f

)
> 1− ε

}
, (12)
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where

A−γ ∆
= {y ∈ A | y + u ∈ A, for all ‖u‖ ≤ γ}, (13)

denote the interior γ-ball of the set A. Recall that K̄H
f = KH

f (RH) is the maximum value of the

growth function KH
f (·). ¿From (13), it follows that

f(x,h) ∈ C−µ ⇔ f(x,h) + u ∈ C, ∀u : ‖u‖ ≤ µ. (14)

Since f(x,h) ∈ C if, and only if, there exists a v ∈ Rk such that Wv ≥ f(x,h); we have that

f(x,h) ∈ C−µ if, and only if, for all u with ‖u‖ ≤ µ, there exists a v ∈ Rk (possibly a function of

u) such that Wv ≥ f(x,h) + u. The set Xε(α, r) can be interpreted as the set of decision vectors

that are robustly feasible for the chance constrained set X̂ε(Q) [4].

Theorem 2 Fix y ∈ Xε(α, r). Then the Euclidean ball Br(y) ⊆ XI with a probability at least

1−MNe−ψ(α,1−ε).

Proof: Let µr = rK̄H
f . Then we have that

1− ε < Q(H : f(y, αH) ∈ C−µr),

= Q(α−1H : f0(y) + f1(y,H) ∈ C−µr). (15)

Let Hy = {h : f0(y)+ f1(y,h) ∈ C−µr}. Then (15) and the concentration property of Q imply that

Q(Hy) ≥ 1− e−ψ(α,1−ε) provided 1− ε > θ̄.

Since y ∈ X−r, it follows that Br(y) ⊆ X , and Lipschitz continuity of f implies that for all

x ∈ Br(y) and h ∈ Hy,

‖f(x,h)− f(y,h)‖ ≤ KH
f (‖h‖)‖x− y‖ ≤ rKH

f (RH) = µr,

i.e. f(x,h) = f(y,h) + u for some u with ‖u‖ ≤ µr. Since y ∈ Xε(α, r), it follows that

f(x,h) ∈ C, ∀x ∈ Br(y), h ∈ Hy. (16)

Suppose Hi ∈ Hy, for all i = 1, . . . ,MN . Then (16) implies that Br(y) ⊆ XI . Thus,

{h1,MN : hi ∈ Hy, i = 1, . . . ,MN} ⊆ {h1,MN : Br(y) ⊆ XI}. (17)

Consequently,

QMN (H1,MN : Br(y) 6⊆ XI) ≤ QMN ((H1,MN : Hi ∈ Hy, i = 1, . . . ,MN)c),

≤ MNQ(Hcy) < MNe−ψ(α,1−ε).

Theorem 2 implies the following result.
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Corollary 1 Suppose Xε(α, r) 6= ∅. Then the output x̂ of SolveChance is well-defined (i.e.

x̂ 6= ∅) with a probability at least 1−MNe−ψ(α,1−ε).

Proof: Lemma 1 implies that the solution x̂ is well defined if the set XI contains a Euclidean ball

Br of radius r; and, by Theorem 2, the probability of this event is at least 1−MNe−ψ(α,1−ε).

Corollary 1 establishes that the output x̂ of SolveChance is well defined with a high proba-

bility provided the chance constrained problem (7) is robustly feasible and the measure Q has a

concentration of measure property. Next, we establish a bound on the value cT x̂. We will call a

well-defined output x̂ (i.e. x̂ 6= ∅) of SolveChance an (α, r, ω)-approximation of (7) if

cT x̂ ≤ inf
x∈Xε(α,r)

cTx + ω. (18)

This definition was introduced in [18].

Theorem 3 Suppose Xε(α, r) 6= ∅. Then SolveChance returns an (α, r, ω)-approximate solution

of (7) with a probability at least (1−MNe−ψ(α,1−ε))(1−Mδ).

Proof: Fix κ > 0 and choose yκ ∈ Xε(α, r) such that

cTyκ ≤ inf
x∈Xε(α,r)

cTx + κ. (19)

By Lemma 1, x̂ is well defined on the event {Br(yκ) ⊆ XI} and by Theorem 2 the probability

of this event is at least 1 −MNe−ψ(α,1−ε). Combining this with Theorem 1, we can show that

SolveChance produces a well-defined output x̂ that is feasible for (7) with a probability at least

(1−MNe−ψ(α,1−ε))(1−Mδ).

Next, we show that Br(yκ) ⊆ XI implies

cT x̂ ≤ min
x∈XI

cTx + ω. (20)

This result is established by exploiting the close resemblance of SolveChance to the Ellipsoid

algorithm. We closely follow the analysis of the Ellipsoid algorithm detailed in the proof of Theo-

rem 5.2.1 in [5].

Let x∗
I = argminx∈XI

{cTx}. Let (xt,Et), t = 0, 1, . . . ,M − 1, denote the iterates generated by

SolveChance . Let Et denote the ellipsoid Et = {z | (z−xt)
TE−1

t (z−xt) ≤ 1}. The choice of the

iteration count M ensures that there exists ν ≤ 1 and z ∈ XI such that

(i) vol(Et)/rn ≤ ν ≤ 1,

(ii) y = x∗
I + ν(z− x∗

I) 6∈ EM .

Since y ∈ XI ⊂ X , it follows that y ∈ E0. Therefore, there exists τ < M such that y ∈ Eτ but

y 6∈ Eτ+1. Then it follows that dTτ s > dTτ xτ for all s ∈ Ecτ+1 ∩ Eτ , and, in particular,

dTτ y > dTτ xτ . (21)

10



We claim that the iterate xτ ∈ P, i.e. it is one of the candidate points for computing the output x̂.

Suppose this is not the case. Then we must have that xτ 6∈ Xτ , where

Xτ = {x ∈ X | Lj(x) ≤ 0, j = 1, . . . , N(τ + 1)} ⊇ XI ,

and the separating hyperplane dτ must satisfy dTτ s ≤ dTτ xτ for all s ∈ Xτ . Thus, the bound (21)

together with the fact that y ∈ XI ⊆ Xτ leads to a contradiction. Now, the analysis in the proof

of Theorem 5.2.1 in [5] implies that cTxτ ≤ minx∈XI
cTx + ω and the bound (20) follows.

Finally, Br(yκ) ⊆ XI implies minx∈XI
cTx ≤ cTyκ, which together with (19) imply that

cT x̂ ≤ min
x∈XI

cTx + ω ≤ cTyκ + ω ≤ inf
x∈Xε(α,r)

cTx + κ+ ω

Since κ > 0 was arbitrary, the result follows.

3.1 Discussion of the approximation result

Algorithm SolveChance has three tunable parameters, namely δ, ω and r. Nemirovski and

Shapiro [18] study the effects of these parameters on the running time and approximation quality

of SolveChance. While the parameters δ and ω have a well-defined meaning, the parameter r is

rather ad-hoc and it is not clear how to set its value. The parameter r is clearly very important

for the performance of SolveChance: the iteration count M , the probability that the output x̂

of SolveChance is well-defined and feasible for (7) (see Theorem 1 and Corollary 1), and the

approximation guarantee on the output x̂ (see Theorem 3) are all inversely proportional to the

parameter r. Since the set XI is random, selecting r is difficult. Yet, SolveChance requires r as

an input.

The main contribution of this paper is to provide guidance in selecting r. The iteration count M

as well as the probability that a well-defined x̂ is infeasible are inversely proportional to r. This

suggests that r should be set as high as possible. For any fixed α > 0, the maximum allowed value

r̄ of r is limited by the requirement that the set Xε(α, r) (see (12)) is non-empty, i.e. the set of

decisions that are robustly feasible for (7) is non-empty [4]. Thus, the computational complexity of

SolveChance is intimately related to the robust feasibility of (7) – the more robust the chance

constrained problem, the easier it is to compute a feasible solution. This is similar to the relationship

between the complexity of computing an optimal solution of a conic linear program and its condition

number [20, 21, 13]. Although setting a high value for the parameter r induces SolveChance to

efficiently produce a feasible solution, it results in a weak approximation guarantee (see (18)).

Let p = (1−Mδ)(1−MNe−ψ(α,1−ε)) denote the probability that the output x̂ is well-defined

and feasible. If p > 0, then T = − ln(γ)
p independent replications of SolveChance ensure that

with a probability 1− γ at least one of the outputs is feasible. The requirement p > 0 implies an

upper bound on M , and consequently, a lower bound r on r. Thus, it follows that there is a lower

bound on the achievable approximation guarantee. Within the range [r, r] one can trade-off the

optimality with efficiency.
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4 Ambiguous two-stage chance constrained problems

In this section, we extend the approximation results to ambiguous two-stage chance constrained

problems where the distribution of the uncertain parameter H is not completely known; instead,

the limited knowledge about the distribution is characterized by the uncertainty set

Q =
{
Q : ρp(Q,Q0) ≤ β

}
. (22)

The metric ρp(·, ·) denotes the Prohorov metric defined as

ρp(Q1,Q2) = inf {γ : Q1(B) ≤ Q2(Bγ) + γ,∀B ∈ F(H)} , (23)

where

Bγ =
{
x ∈ X : inf

z∈B
‖x− z‖ ≤ γ

}
.

Although the definition appears asymmetric, ρp is a metric. It plays an important role in prob-

ability because it metrizes weak convergence. Moreover, ρp(Q1,Q2) is the minimum distance “in

probability” between random variables distributed according to Qi, i = 1, 2.

The assumption here is that the uncertain parameter H is distributed according to some fixed

distribution Q ∈ Q; however, the decision maker can only estimate the distribution to within the

error β. The goal is to compute a solution x̂ that performs “well” for all distributions in the set Q.

We will characterize the details of the approximation later in this section. We make the following

additional assumptions on the function f(x,h).

Assumption 2

(a) The function f(x,h) is bi-affine, i.e. f(x,h) = a0(x)+A1(x)h, where the vector a0(x) and the

matrix A1(x) are affine functions of x.

(b) The extreme points {λ̄(i)
: i = 1, . . . , p} of the polytope {λ : WTλ = 0,1Tλ = 1,λ ≥ 0} are

explicitly known.

These constraints are quite restrictive and we will comment on them in § 5.

The aim of this section is to establish that Algorithm SolveAmbChance displayed in Figure 2

produces a solution x̂ that performs “well” for all Q ∈ Q. The structure of SolveAmbChance is

very similar to SolveChance, with the following two distinctions. First, the number of samples N

per iteration is given by N = d 1
ε−β ln

(
1
δ

)
e (contrast with N = d1ε ln

(
1
δ

)
e); thus ambiguity requires

us to generate more samples per iteration. And second, instead of SR, Algorithm SolveAm-

bChance employs the oracle SRβ
that is a separation oracle for the set (for a fixed h)

Rβ =
{
x | f(x, z) ∈ C, ∀ z s.t. ‖z− h‖ ≤ β

}
,

=
{
x | ∀z s.t. ‖z− h‖ ≤ β, ∃v s.t. Wv ≥ f(x, z)

}
. (24)
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Input: ε > 0, δ ∈ (0, 1), separation oracles SX and SRβ

Output: x̂

set P ← ∅, N = d 1
ε−β ln

(
1
δ

)
e, M = d2n2 ln(

nR2

X ‖c‖2

rω + 2)e
set x0 ← 0, E0 ← RX I

for t = 1, . . . , M do

Construct a direction vector dt

st ← SX (xt−1)

if xt−1 6∈ X , set dt ← ∇st
else

generate H1,N IID Q0

LN(t−1)+i ← SRβ
(xt−1;Hi), i = 1, . . . , N .

if ∃ j ∈ {1, . . . , Nt} such that Lj(xt−1) > 0, set dt ← ∇Lj
else set dt = c and P ← P ∪ xt−1

Given (xt−1,Et−1) and dt, set (xt,Et) by the Ellipsoid method update

if P = ∅ return x̂← ∅; else return x̂← argminx∈P{cTx}

Figure 2: Algorithm SolveAmbChance

The set Rβ has the same structure as the feasible set of an adjustably robust linear program [3].

It is well-known that checking membership in such a set is NP-Complete when the underlying

polytope is described by a set of inequalities [3]. Since we assume (see Assumption 2-(b)) that

the extreme points of the underlying polytope are explicitly available, membership in Rβ can be

checked efficiently. From (24), it follows x ∈ Rβ if, and only if, for all z satisfying ‖z− h‖ ≤ β,

0 ≤ Pxz = max θ

s.t. Wv − f(x, z) ≥ 1θ.

(25)

It is easy to check that Pxz is always feasible. In order to construct the separating hyperplane, we

consider the following two cases.

(i) There exists y such that Wy > 0. In this case, x ∈ Rβ for all h. Thus, SRβ
(x) = 0.

(ii) There does not exist y such that Wy > 0. Then Pxz is bounded; thus, by strong duality,

there is no duality gap, i.e.

Pxz = min{−
(
f(x, z)

)T
λ : WTλ = 0,1Tλ = 1,λ ≥ 0},

= min{−
(
f(x, z)

)T
λ̄

(i)
: i = 1, . . . , p},

where {λ̄(i)
: i = 1, . . . , p} are the extreme points of the dual polytope. Recall that we have

assumed that {λ̄(i)} are explicitly known.
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Thus, x ∈ Rβ if, and only if,

0 ≤ min{Pxz : ‖z− h‖ ≤ β},
= min

1≤i≤p

{
−(a0(x) + A1(x)h)T λ̄

(i) − β‖A1(x)T λ̄
(i)‖

}
.

Suppose the minimum above is strictly negative. Let k = argmin1≤i≤p

{
−(a0(x)+A1(x)h)T λ̄

(i)−
β‖A1(x)T λ̄

(i)‖
}
. For a fixed h consider the convex function g(u;h) : Rn 7→ R defined as

follows

g(u;h) = (a0(u) + A1(u)h)T λ̄
(k)

+ β‖A1(u)T λ̄
(k)‖.

Then any sub-gradient of the function g(·;h) at u = x serves as the separating hyperplane.

The following result extends Theorem 1 to the ambiguous setting. Note that for all the results in

this section the relevant probability measure is the product measure QMN
0 , since all the samples

are drawn independently from the central measure Q0.

Theorem 4 Suppose the output x̂ of SolveAmbChance is well-defined, i.e. x̂ 6= ∅. Then, for

every fixed Q ∈ Q, we have that Q(H : f(x̂,H) 6∈ C) > ε with a probability at most Mδ.

Proof: Fix a measure Q ∈ Q and let X̂ε(Q) = {x ∈ X | Q(H : f(x,H) 6∈ C) ≤ ε}. By construction,

the events {x̂ 6= ∅} = ∪M−1
t=0 {xt ∈ P}. Consequently,

{x̂ 6= ∅} ∩ {x̂ 6∈ X̂ε(Q)} ⊆ ∪M−1
t=0

(
{xt ∈ P} ∩ {xt 6∈ X̂ε(Q)}

)
. (26)

Fix t. Let Bt denote the event that xt−1 satisfies all the N inequalities generated by the oracle SRβ

at iteration t. Define

Yt[N, β] =
{
x ∈ X | f(x, z) ∈ C, ∀ z s.t. ‖z−H0

i ‖ ≤ β, i = N(t− 1) + 1, . . . , Nt
}
, (27)

where H0
N(t−1)+1,Nt denote N IID samples drawn according to the central probability measure Q0

at iteration t. Then it is clear that the event Bt = {xt−1 ∈ Yt[N, β]}.
Let At denote the event that the iterate xt−1 satisfies all the N(t− 1) inequalities generated by

the oracle SRβ
before iteration t. Then it is clear that {xt−1 ∈ P} = At ∩Bt. Thus,

QNt
0

(
At ∩Bt ∩ {xt−1 6∈ X̂ε(Q)}

)
≤ QNt

0

(
Bt ∩ {xt−1 6∈ X̂ε(Q)}

)
,

≤ QNt
0

(
Bt | {xt−1 6∈ X̂ε(Q)

)
,

≤ δ, (28)

where the bound (28) follows from Theorem 6 in [11]. The result follows applying the union bound

to the expression in (26).

As before, define

XI = {x ∈ X : Lj(x) ≤ 0, j = 1, . . . ,MN},
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where Lj , j = 1, . . . ,MN , denote the set of linear inequalities generated by the oracle SRβ
over the

course of Algorithm SolveAmbChance. Then a simple extension of the technique used to prove

Lemma 1 establishes the following.

Lemma 2 Suppose the set XI contains a Euclidean ball Br of radius r. Then the solution x̂

returned by the SolveAmbChance is well defined, i.e. x̂ 6= ∅.

For α > 1, r > 0, and a fixed measure Q ∈ Q, let

Xε(Q, α, r) =
{
x ∈ X−r

∣∣Q(H : f(x, αH) ∈ C−µr) > 1− ε
}
, (29)

where

µr = (α+ 1)βKX
f

(
RX

)
+ rKH

f

(
RH + β

)
. (30)

The set Xε(Q, α, r) denotes the set of points that are robustly feasible for the chance constraint

corresponding to the measure Q.

Theorem 5 Fix y ∈ Xε(Q, α, r). Then the Euclidean ball Br(y) ⊆ XI with a probability at least

1−MNe−ψ(α,1−ε−β).

Proof: Let µr = (α+ 1)βKX
f

(
RX

)
+ rKH

f

(
RH + β

)
. Then, we have that

1− ε < Q(H : f(y, αH) ∈ C−µr), (31)

≤ β + Q0(H + u : ‖u‖ ≤ β, f(y, αH) ∈ C−µr), (32)

≤ β + Q0(H : f(y, αH) ∈ C−µr+αβKX
f

(RX )), (33)

= β + Q0(α
−1H : f0(y) + f1(y,H) ∈ C−µr+αβKX

f
(RX )), (34)

where the inequalities (31) and (32), respectively, follow from the definitions of y and the Prohorov

metric, and the inequality (33) follows from the Lipschitz continuity of the function f .

Let Hy = {h : f0(y) + f1(y,h) ∈ C−µr+αβKX
f

(RX )}. Then (34) and the concentration property

of Q0 imply that Q0(Hy) ≥ 1− e−ψ(α,1−ε−β) provided 1− ε− β > θ̄. By Assumption 1 we have

Hy ⊆
{
h : f(y, z) ∈ C−µr+(α+1)βKX

f
(RX ),∀z s.t. ‖z− h‖ ≤ β

}
. (35)

Thus, for all h ∈ Hy and x ∈ Br(y), Assumption 1 implies that for all z satisfying ‖z−h‖ ≤ β, we

have that

‖f(x, z)− f(y, z)‖ ≤ KH
f (‖z‖)‖x− y‖,

≤ rKH
f (‖h‖+ β),

≤ rKH
f (RH + β). (36)

Since h ∈ Hy, (35) and (36) imply that for all z satisfying ‖z− h‖ ≤ β,

f(x, z) ∈ C−µr+(α+1)βKX
f

(RX )+rKH
f

(RH+β) = C0 = C.
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Consequently,

QMN
0 (H1,MN : Br(y) 6⊆ XI),

≤ QMN
0 ((H1,MN : f(x, z) ∈ C,∀x ∈ Br(y),∀z s.t. ‖z−Hi‖ ≤ β, i = 1, . . . ,MN)c),

≤ MNQ0(Hcy) ≤MNe−ψ(α,1−ε−β).

The following corollary establishes that the output of SolveAmbChance is well-defined with a

high probability.

Corollary 2 Suppose Xε(Q, α, r) 6= ∅. Then the output x̂ of SolveAmbChance is well-defined

(i.e. x̂ 6= ∅) with a probability at least 1−MNe−ψ(α,1−ε−β).

Proof: Lemma 2 implies that the solution x̂ is well defined if the set XI contains a Euclidean ball

Br of radius r and the probability of such event is, by Theorem 5, at least 1−MNe−ψ(α,1−ε−β).

Remark 1 By setting β = 0, we recover the corresponding “unambiguous” versions of Theorem 4

and Corollary 2, namely Theorem 1 and Corollary 1.

We are now in position to state the main result of this section. Consider the chance constrained

problem,

min cTx

s.t. x ∈ X̂ε(Q) =
{
y ∈ X | Q(H : f(y,H) 6∈ C) ≤ ε

}
,

(37)

corresponding to a measure Q ∈ Q. We will call x̂ an (Q, α, r, ω)-approximate solution of (37) if

cT x̂ ≤ inf
x∈Xε(Q,α,r)

cTx + ω. (38)

Then the following result holds.

Theorem 6 For all Q ∈ Q such that Xε(Q, α, r) 6= ∅, SolveAmbChance returns an (Q, α, r, ω)-

approximate solution with a probability at least (1−MNe−ψ(α,1−ε−β))(1−Mδ).

The proof of this result proceeds along the lines of Theorem 3.

5 Computational Experiments

In this section we illustrate the techniques proposed in this paper by solving a two-stage net-

work design on the simple network displayed in Figure 3. The node s is a source node with

an infinite capacity and the nodes 1,2, and 3 are sink nodes with demands given by the vector

d = (d1, d2, d3)
T ≥ 0. For a given demand vector d the network design problem is given by
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Figure 3: Chance constrained Network Design

min cTu

s.t. Av ≥ d,

u− v ≥ 0,

u,v ≥ 0,

(39)

where the cost vector c is assumed to be strictly positive, −A denotes the node-arc incidence matrix

of the network, the variable u denotes the capacity on the arcs, and the variable v denotes the flow

on the network.

Once the network is constructed, i.e. the capacities u are installed on the arc, we assume that

it will be used over a reasonably long period over which the demand d can change. We model

variation in demand by assuming that it is random. In particular we assume that the random

demand D ∼ Q where Q ∈ Q = {Q : ρp(Q0,Q) ≤ β}, Q0 = N (d̄, σ2I) is a multivariate normal

distribution with mean d̄ and covariance matrix σ2I, and I denotes the Identity matrix. Note that

the flow conservation constraints Av ≥ d in (39) are formulated as inequalities instead of equalities

as is usually the case – this is necessary to accommodate random demands D.

Although the capacity cannot, typically, be altered over the life of the network, the flow v

is chosen after observing the realization of the demand. Thus, the network design problem is a

two-stage optimization problem: the capacities u are the first stage variables, and the flows v ∈ Rn

are the second stage variables. The objective of the two-stage optimization problem is to find a

minimal cost capacity allocation u that guarantees that at least (1 − ε)-fraction of the random

demand D can be feasibly routed in the resulting network. One can transform this network design

problem into a chance constrained problem of the form (7) by setting

x = u, H = D, W =




A

−I

I


 , f(x,H) =




H

−x

0


 , X = Rn

+.

In our computational experiments, we compare performances of three different solution strategies:

(a) Deterministic solution: xdet denotes a solution of the deterministic optimization problem (39)

with the demand vector D is set equal to its mean value d̄.
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(b) Chance constrained solution: xsc is an output of Algorithm SolveChance .

(c) Ambiguous chance constrained solution: xsac is an output of Algorithm SolveAmbChance .

Instead of simply verifying the theoretical results presented in the previous sections, we have at-

tempted to investigate issues that we were not able to settle theoretically. For example, we test

the hypothesis that the ambiguous chance constrained solution is very conservative (and protects

against a set of measures much larger than Q) by using different test distributions Q.

5.1 Algorithmic details

Oracles and Sampling SolveChance uses two oracles, SX and SR, and SolveAmbChance ex-

ploits SX and SRβ
. Since X = Rn

+ and the function f(x,h) is bi-affine, (10) implies that SX and

SR are polynomial-time oracles. The oracle SRβ
requires explicit characterization of extreme points

of a polytope, therefore is not polynomial for some cases. However, for a network design problem,

Atamtürk and Zhang [2] establish that SRβ
is a polynomial-time oracle for some special networks.

The algorithms SolveChance and SolveAmbChance use samples from N (d̄, σ2I). Since

SolveAmbChance uses more samples than SolveChance , to avoid generating too many samples,

we first run SolveAmbChance and use the samples generated during its run to calculate an output

of SolveChance .

Stopping criterion The number of iterations M in SolveChance and SolveAmbChance (see

Figure 1 or Figure 2) was chosen large enough to guarantee convergence in the underlying Ellipsoid-

like algorithm. In fact, any stopping rule that guarantees convergence in the Ellipsoid algorithm is

sufficient for the results in this paper to hold.

In our experiments we use a new stopping rule proposed in [5]. Let M denote the upper bound

defined in Figure 1. For t = 1, . . . ,M , define vt = RX ‖dt‖ − dTt xt−1, Vt = max{Vt−1, vt}, with

V0 = 0, and ρt = |det(Et)|1/n. Then, we terminate the algorithm at any iteration t ≤M when

ρt
r
<

ω

Vt + ω
.

In our numerical experiments M = 521 whereas the average number of iterations M̂ with the new

stopping rule was approximately M̂ = 464. This reduction in the number of iterations significantly

reduces the number of samples generated. In Table 1, the column labeled Nasc(β) lists the number

of samples required per iteration of SolveAmbChance for a given β > 0 (Nasc(0) corresponds to

SolveChance ), the columns labeledM×Nasc(β) and M̂×Nasc(β) list the total number of samples

needed with the old and the new stopping rule, respectively, and the last column summarizes the

decrease in the number of samples.
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β Nasc(β) M ×Nasc(β) M̂ ×Nasc(β) (M − M̂)×Nasc(β)

0.0300 150 78150 69600 8550

0.0200 100 52100 46400 5700

0.0150 86 44806 39904 4902

0.0100 75 39075 34800 4275

0.0050 67 34907 31088 3819

0 60 31260 27840 3420

Table 1: Number of iterations and samples as a function of the stopping rule

Performance evaluation We assume that the distribution Q of the random demand D is uncer-

tain and is only known to belong to the uncertainty set Q = {Q : ρp(Q0,Q) ≤ β,Q0 ∼ N (d̄, σ2I)}.
Since checking whether a measure Q ∈ Q is hard, we test the performance of the solutions using

measures that are “similar” to N (d̄, σ2I). In Section 5.2 we discuss performance of the solutions

when the test measure Q is another Normal distribution with different parameters and in Section 5.3

we discuss the results for Cauchy and Pareto distributions.

The performance of the solutions was estimated by out-of-sample testing. We generated 50

batches of 1000 samples each (i.e. a total of 50000 samples). The error of a solution x with respect

to a batch k, k = 1, . . . , 50, is given by

errk(x) =
1

1000

1000∑

j=1

(1− 1R(Hj)(x))

where 1A is the indicator function of set A and R(Hj) = {x | ∃v ∈ Rk s.t. Wv ≥ f(x,Hj)}. The

error of x, err(x), is defined as the average of errk(x) over the 50 batches.

Problem parameters The mean demand vector d̄ was set to d̄ = (3, 2, 2)T and standard devi-

ation σ was set to σ = 0.5× 10−2. The unit capacity costs are taken as cs1 = 2, cs2 = 0.5, cs3 = 2,

and c13 = 0.1. The target violation probability ε was set to ε = 0.05. The other parameters

δ = 0.05, r = 10−2, and ω = 10−2.

5.2 Experiments with the Normal distribution

In this section we report the performances of the three solutions when the test samples are

drawn from N (d̄ + β̂ e
‖e‖ , σ

2I), where e is the vector of all ones and β̂ = 0.0475, i.e. a Normal

distribution with a shifted mean. As indicated in the previous section, the training distribu-

tion Q0 = N (d̄, σ2I). The solutions xsc and xasc were computed from one run of Algorithms

SolveChance and SolveAmbChance , respectively. We will comment on this later in this sec-

tion.

Table 2 displays the performance of the three solutions strategies as a function of β. The

columns labeled “err” list the empirical estimate of the violation probability, the column labeled
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xasc xsc xdet

β̂ err stdev c err stdev c err stdev c

0.0475 0 0 11.3888 0.2131 0.0019 11.1810 1.0000 0.0000 11.0000

0.0450 0 0 11.3790 0.2623 0.0014 11.1814 0.9999 0.0001 11.0000

0.0400 0.0000 0.0000 11.3277 0.0955 0.0014 11.1873 0.9997 0.0001 11.0000

0.0300 0.0000 0.0000 11.2912 0.0707 0.0014 11.1707 0.9983 0.0002 11.0000

0.0250 0.0000 0.0000 11.2798 0.0137 0.0006 11.1910 0.9954 0.0003 11.0000

0.0200 0.0001 0.0001 11.2509 0.0130 0.0005 11.1799 0.9894 0.0005 11.0000

0.0150 0.0001 0.0001 11.2358 0.0087 0.0003 11.2074 0.9775 0.0006 11.0000

0.0100 0.0002 0.0001 11.2162 0.0045 0.0003 11.1834 0.9577 0.0010 11.0000

0.0050 0.0005 0.0001 11.1922 0.0015 0.0002 11.1790 0.9233 0.0010 11.0000

0.0025 0.0003 0.0001 11.1916 0.0010 0.0001 11.1875 0.9033 0.0013 11.0000

0.0005 0.0005 0.0001 11.1759 0.0027 0.0002 11.1680 0.8782 0.0014 11.0000

Table 2: Performance when the test distribution Q = N (d̄ + β̂ e
‖e‖ , σ

2I).

“stdev” lists the standard deviation of the empirical estimate, and the column labeled “c” lists

the cost of the solution. We highlight the instances where empirical estimate “err” violates the

bound ε = 0.05 by listing the value in bold face. The constant β defining the uncertainty set

Q (see (22)) for the ambiguous chance constraint problem was set equal to β̂. We can draw the

following conclusions from the results displayed in Table 2.

(i) The deterministic solution xdet does not have any tolerance for variance in demand. This is

not surprising since it completely ignores the distributional information.

(ii) The chance constrained solution xsc has more tolerance for random variations in demand as

well as changes in the underlying distribution – the chance constrained solution meets bound

on the violation probability ε = 0.05 for all values of β ≤ 0.025. However, this tolerance

come with a higher capacity cost. As β is increased beyond the threshold value of 0.025, the

performance of the chance constrained solution deteriorates very sharply.

(iii) The ambiguous chance constrained solution never violates the bound ε = 0.05. In fact, setting

the constant β defining Q equal to β̂ of the test distribution results in very conservative

solutions – the violation probability estimates are considerably smaller than the allowable

bound of ε. This also results in a correspondingly higher capacity cost.

Since setting β = β̂ resulted in very conservative solutions, we next investigated whether setting

β << β̂ results in feasible solutions with costs comparable to that of the chance constrained

solution xsc. Table 3 displays the performance of the ambiguous chance constrained solutions for

different values of β when β̂ = 0.0475. We see that xasc(β) for all β ≥ 0.015 is feasible with respect

to β̂. Moreover, the cost of xasc(0.015) is comparable to that of the chance constrained solution
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xasc(β)

β err(xasc(β)) stdev(xasc(β)) c(xasc(β))

0.0475 0 0 11.3799

0.0450 0 0 11.3589

0.0400 0 0 11.3393

0.0300 0.0020 0.0002 11.2867

0.0250 0.0015 0.0002 11.2935

0.0200 0.0078 0.0004 11.2570

0.0150 0.0184 0.0006 11.2406

0.0100 0.0632 0.0013 11.2154

0.0050 0.0776 0.0011 11.2109

0.0025 0.2176 0.0018 11.1806

0.0005 0.2319 0.0018 11.1790

Table 3: Performance when the test distribution Q = N
(
d̄ + β̂ e

‖e‖ , σ
2I

)
, with β̂ = 0.0475.

x̂sc

err stdev c

0.1853 0.0017 11.1851

x̂asc(β)

β err stdev c

0.0300 0.0005 0.0001 11.3006

0.0200 0.0071 0.0004 11.2599

0.0150 0.0220 0.0007 11.2413

0.0100 0.0462 0.0010 11.2223

0.0050 0.1150 0.0015 11.1997

Table 4: Performances of x̂asc(β) and x̂ac when Q = N (d̄ + β̂ e
‖e‖ , σ

2I), β̂ = 0.0475.

xsc while at the same time providing insurance against all test distributions with 0 ≤ β̂ ≤ 0.0475.

These results reiterate that xasc(β) is very conservative for a given level β; therefore, the designer

has to carefully select β to protect against over-designing.

The chance constraint is a non-convex constraint and the output of Algorithms SolveChance and

SolveAmbChance are both random. Erdoğan and Iyengar [12] show that taking a convex combi-

nation of samples of a random solution significantly improves the performance in such a situation.

We test this result by studying the performance of the solutions x̂sc and x̂asc that are generated by

taking the empirical average over N = 50 independent runs. Table 4 presents the results related to

x̂asc(β) and x̂sc. It is clear from the results in Table 4 that averaging improves the performance.

In particular, the x̂asc(β) is feasible for β̂ = 0.0475 even when one sets β = 0.01.
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xsc

err stdev c

0.0681 0.0081 11.1930

xdet

err stdev c

0.8722 0.0109 11.0000

xasc(β)

β err stdev c

0.0475 0.0286 0.0044 11.3710

0.0400 0.0378 0.0058 11.3384

0.0300 0.0414 0.0067 11.2827

0.0250 0.0395 0.0057 11.2688

0.0200 0.0495 0.0063 11.2482

0.0150 0.0489 0.0069 11.2445

0.0100 0.0481 0.0066 11.2238

0.0050 0.0631 0.0064 11.2115

0.0025 0.0712 0.0074 11.1998

Table 5: Performance when test distribution Q is multivariate Cauchy with median d̄.

5.3 Experiments with other distributions

Table 5 displays the performance of the three solution strategies when the test distribution Q is a

multivariate Cauchy distribution with median d̄, i.e. each Di is a Cauchy random variable with

median di, i = 1, 2, 3. We assumed that Di, i = 1, 2, 3 are independent. Once again we see that

the deterministic solution xdet and the chance constrained solution xsc are both infeasible. The

ambiguous chance constrained solution is feasible for all values of β ≥ 0.01 and the additional cost

for the robustness offered by the ambiguous chance constrained solution is at most 1.6%. Note that

we have no guarantee that the Cauchy distribution belongs to the uncertainty set Q for any value

of β.

Table 6 displays the performances of the three solutions when the test distribution is Pareto

with variance σ2I and a new mean d̂ such that CDF of N (d̄, σ2I) is greater than the CDF of the

Pareto for all d, i.e. each component of the chosen Pareto distribution stochastically dominates

N (d̄i, σ
2) for i = 1, 2, 3. The performance of the three solutions is very similar to the case when

the test distribution was Cauchy – the ambiguous chance constrained solution provides robustness

to perturbation in the distribution at a modest increase in cost.

6 Conclusion

In this paper we study two-stage convex chance constrained problems. Nemirovski and Shapiro [18]

formulated this class of problems and proposed an ellipsoid-like iterative solution algorithm for the

special case where the impact function f(x,h) (see (7)) is bi-affine. We show that the Algo-

rithm SolveChance (see Figure 1) extends the results in [18] to bi-convex f(x,h) in a fairly

straightforward fashion. The computational complexity of SolveChance as well as the quality of

its output x̂ depend on the radius r of the largest Euclidean ball that can be inscribed in the random

set XI (see (11)) that is defined by the random set of linear inequalities generated during one run
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xsc

err stdev c

0.0554 0.0076 11.1846

xdet

err stdev c

0.9809 0.0045 11.0000

xasc(β)

β err stdev c

0.0475 0.0013 0.0011 11.3842

0.0450 0.0016 0.0014 11.3626

0.0400 0.0036 0.0016 11.3297

0.0300 0.0080 0.0030 11.3004

0.0250 0.0082 0.0028 11.2753

0.0200 0.0108 0.0032 11.2443

0.0150 0.0241 0.0053 11.2402

0.0100 0.0255 0.0046 11.2230

0.0050 0.0513 0.0067 11.2221

0.0025 0.0513 0.0070 11.1911

0.0005 0.0666 0.0073 11.2259

Table 6: Performance when Q is multivariate Pareto with a shifted mean and variance σ2I.

of SolveChance. Since the set XI is random, selecting r is difficult; yet SolveChance requires r

as an input. In this paper we provide some guidance for selecting r. We show that the largest value

of r is related to the degree of robustness of the two-stage chance constrained problem – the more

robust the problem, the higher one can set the parameter r. This is reminiscent of results relating

the condition number of optimization problems to their computational complexity [20, 21, 13].

Next, we formulate ambiguous two-stage chance constrained problems. In this formulation, the

random parameter H is known to have a fixed distribution Q. However, the decision maker is only

able to estimate that Q belongs to an uncertainty set Q of the form Q = {Q : ρp(Q,Q0) ≤ β}, where

ρp denotes the Prohorov metric and β is an exogenously defined constant. We construct an algo-

rithm SolveAmbChance that solves the ambiguous two-stage chance constrained problem when

the impact function f(x,h) is bi-affine and the extreme points of the dual polytope correspond-

ing to the set C are explicitly known. The bi-affine assumption can be defended on the grounds

that it still allows one to model a wide variety of applications; however, the latter assumption is

much more serious and cannot be relaxed in general. We are currently exploring the possibility

of replacing the adjustable robust characterization (24) by a chance constrained characterization.

Let L = {λ : WTλ = 0,1Tλ = 1,λ ≥ 0} and let P denote any probability measure on L. Let

g(x,h,λ) = (a0(x) + A1(x)h)Tλ + β‖AT
1 (x)λ‖. Then x ∈ Rβ if, and only if, g(x,h,λ) ≤ 0, for

all λ ∈ L, i.e. P(λ : g(x,h,λ) ≤ 0) = 1. Currently, we are investigating how one can relax this

constraint to P(λ : g(x,h,λ) ≤ 0) > 1− ε.
In the context of ambiguous chance constrained problems, the choice of the Prohorov metric can

be justified by the fact that it is the natural metric for defining weak convergence of measures. It

is, however, not clear how one should compute the constant β. We propose the following strategy.

Suppose we assume that H is described by a parametric family of distributions F(θ), θ ∈ Θ.
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Suppose we estimate θ using an estimator TN (H1, . . . ,HN ) and let Q0 = F(θ0), where θ0 =

TN (H1, . . . ,HN ). In the robust statistics literature, there is a “breakdown point” ε(T ) associated

with every estimator beyond which the estimator is completely unreliable [14]. Heuristically, the

estimator is said to perform well for all measures Q such that ρp(Q,Q0) ≤ 1
4ε(T ). Thus, we could

set β = 1
4ε(T ).
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