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ABSTRACT

Let E be an elliptic curve defined over an imaginary quadratic field
K with complex multiplication by the ring of integers of X . It has long
been felt that certain special values of the complex Hecke L-functions
attached to powers of the Grossencharacter of the curve E over K are

deeply related to the arithmetic of the curve.

Recent results of Katz have shown the existence of two variable
p-adic L-functions which interpolate these special values. The purpose of
this thesis is to relate these p-adic L-functions to the arithmetic of the
éurve E . In particular, it will be shown that they are the characteristic

power series of certain Iwasawa modules attached to the curve E .
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CHAPTER 1

INTRODUCTION

Let K be an imaginary quadratic field with class number 1 , and 0
the ring of integers of K . In this thesis, we shall study the arithmetic
of an elliptic curve E defined over K with complex multiplication by

0 . Let y be the Grossencharacter attached to the curve E over K by

the theory of complex multiplication, and let L(Ek, s) be the complex
Hecke [L-function attached to the powers of ¢ (k =1, 2, 3, ...) ; here
we have fixed an embedding of K in C . As Eisenstein seems to have been
the first to suggest (see [13]), certain special values of these Hecke
L-functions seem to be deeply related to the arithmetic of E . The

underlying idea of this thesis is to exhibit some of these connections.

To state our results precisely, we first recall the work of Visik-
Manin [12] and Katz [6] on the p-adic interpolation of these special
values. Let p be a prime number # 2, 3 , such that FE has good
reduction above p . 1In addition, we always assume that p splits in KX ,
say (p) = EE* (very little is known about either p-adic interpolation or

classical descent theory relative to powers of p when this is not the

case). Tix a Weierstrass model for E

5“3
¥, =4 - g2~ g, (1)

such that g, and g4 belong to (0 and the discriminant of (1) is prime

to p . Let L be the period lattice of the Weierstrass P-function

associated with our model, and choose an element 2, € L such that



L= QmO Loeihen, A6 "dK denotes the discriminant of X , Damerell's

Theorem shows that the numbers
(enpvad) 7o **9 0 (74, 1)

are algebraic, and in fact belong to K for integers k and j satisfying

0=g k.

For each pair of integers il and iz modulo (p-1) , Katz has

(i)

proved the existence of a power series G [Tl, T2] with coefficients

~

in the ring of integers I_ of a certain unramified extension of the
completion of K at p with the following interpolation property. If
0 =<gJ <k, we write

L7, 1) = (1w /py*Y) (LT s ip k)

[2n/\/a7;)'j§2;(k+j L@, 1) (2)

and we fix a topological generator u of [l+pzp]x . Then, for each pair

of int i ' > - =3 & '
integers kl and k2 satisfying kl k2 > 0 and (kl’ k2) = (1la 32]

modulo (p-1) ,

[£..2.) & k k -k

1 S 271, [="17"2
Bomg g Pag) = (kl—l)zﬂg Lm[w : kl]

>

where i  is a certain unit in Im which may be regarded as the p-adic

e

analogue of the period Q_ of E . (For more precise details, see

Chapters 5 and 9.) Similar functions also exist if p = 2 or 3

In the spirit of Iwasawa and of Coates and Wiles, we shall relate

these interpolating power series to the structure of a certain Iwasawa



module attached to the elliptic curve E . If a 1is an element of 0 , we

let Eﬁ be the kernel of the endomorphism a of F£ , and for each n =2 0 ,

Let Un " be the local units of the completion of

3

we put Kn = K(E n+l)
P

Kh at a prime V which are congruent to 1 modulo V , and put

Un = ITE'Un’v , where the product is taken over al; primes of Kn lying

above p . Robert's group of elliptic units Cn for the field Kﬁ (see

Chapters 4 and 9 for a precise definition) can be embedded in Un by the
diagonal map, and we denote by Eﬁ their closure in Un . Let w(g) =T
and w(g*) = m* , and denote the canonical characters with values in Z
giving the action of the Galois group GO of KO over K on E’TT and

E + by Xy and X respectively. For each pair of integers il and ¢

m 2
= [il’ZQ] —
modulo (p-1) , we write (Un/cn) for the eigenspace of Un/cn on
7:l i?
which @¢. actsvia X. X, . Let K = U K , and write I for the
0 1 Az w = = Py
nz0
Galois group of K _ over KO . Then
(N O
ptabr. = 3 V35 )
Y = lim [Un/Cn] )

where the projective limit is taken relative to the norm maps, has a natural

structure as a module over the Iwasawa algebra Zp[[F]] :

Let A = zp[[Tl’ Té]] be the ring of formal power series in

indeterminates T, and T, with coefficients in Z_ . The canonical

characters Ky and K, with values in Z giving the action of T on

Enn+l and Eﬂ*n+l (n =0, 1, 2, ...) respectively, give rise to an



2
~ X
isomorphism [Kl, KQ} ¢ ' —= (l+pr) . If we let Yy and Y, denote

the unique elements of T such that Kl[yl) = KQ(YQ} = u and

Kl[Y2} = KQ(Yl) = 1 , then Yl and Y2 are topological generators of T ,

and we can make Y _ a A-module by setting (1+Tl]y = Yy¥ and

(,.2,)
(1+T2}y = Yo for @all y € Y Our main result is as follows.

oo

(£,,2,)
THEOREM 1. The characteristic power series of Y L' % isa power

[oe]

series in N generating the same ideal in Tw[ETl, Tz]] as Katz's

(¢,.5)

interpolating power series G (Tl, T2) defined above.

(512,
l)
In fact, we shall prove much more about the structure of Ym 2
(see Theorem 30).

Finally, we mention some of the motivation behind proving Theorem 1.

Let Wl be the Tate-Safarevic group of E over K fthat is those
o8]

elements of Hl(G(?VKm), F(E)) which are everywhere locally trivial). We

define the Selmer group S, to be the inverse image of the p-primary part

oL IR Hl[G(?YK), E m) . Then classical descent theory gives us the
p

following exact sequence

0+ B(K,) @ K /0, > 5, + U (p)+0.

Since S is a discrete [I-module, the Pontryagin dual of S, s

S, = Hom[Sm, (b/zp} is a compact Zp[[F]]-module and hence can be equipped

with a A-module structure in the same way as Y_ . The fundamental problem



in the study of the arithmetic of the curve E over K is to determine the

AO ~
Si ,0) of S_ on which GO

characteristic power series of the eigenspace i

acts trivially.

To relate this to our present work, we need to introduce a certain
Galois group. Let M_ be the maximal abelian p-extension of K_
unramified outside p , and let X denote the Gaiois group of M_ over
K . We equip X _ with an action of the Galois group G_ of K  over K

oo

by inner automorphisms and make X_-° a A-module in the usual way. It is

not difficult to show that S_ 1is isomorphic to Hom[Xw, E m) . Hence
™
SiO,O) is isomorphic as a A-module to Xil’O)(—l) , where (-1) denotes a
twist minus one times by the Tate module F _ .
m

The main conjecture of Iwasawa theory for elliptic curves is that the

(1,0)

characteristic power series of X_

is given by a power series in A

generating the same ideal in IW[ETl, TQJ] as Katz's interpolating power
. (1,0) . o : .

series G [Tl, TQJ defined above. Similar conjectures also exist for

the other eigenspaces, except that it is probably necessary to make a minor
modification to obtain power series which interpolate special values of

primitive L-functions.

We write En for the group of global units of Kn which are

congruent to 1 modulo each prime of Kn lying above p , and let Ek

denote their closure in Un under the diagonal embedding. We easily deduce

from class field theory the exact sequence

0~ Lim (E /C ) > lim (U /C ) ~X_ > Gal(H /K ) + 0



where the projective limits are taken relative to the norm maps and H_ is

the union of the Hilbert class fields Hn of Kﬁ (0 = 0,8y 25 was) » By

our main theorem, the conjecture as to the characteristic power series of

~

X _ , and hence of 8., 5 18 equivalent to.proving that lim (En/cn) and

Gal(Hw/K@) have the same characteristic power series. We see no way of
resolving this at present, but, as we have mentioned earlier, a solution
would have very deep consequences for the study of the arithmetic of the

elliptic curve E .



CHAPTER 2

NOTATION

As in the introduction, we let K be an imaginary quadratic field

with class number 1 and discriminant —dK lying inside the complex field

C , and denote by 0 the ring of integers of K . We let 'E be an
elliptic curve defined over K whose endomorphism ring is isomorphic to

0 . We shall denote by S the finite set consisting of 2, 3 and the
rational primes g such that E has bad reduction at at least one prime of

K above q . We fix a Weierstrass model (1) for E such that g, and 94

belong to 0 and the discriminant of (1) is divisible only by primes of KX
lying above primes in S . Let P(2) be the Weierstrass function
associated with (1), and L the period lattice gf BP(z) 5 Put

(s ) = [P(z), P'(z)} . As usual, we identify 0 with the endomorphism ring
of F in such a way that the endomorphism corresponding to a in 0 is

given by E&E(z) +— E(az)

Let Y be the Grossencharacter of E over K , and write for the

I+n

conductor of Y . Choose an element 2 of the period lattice L such

that L = Q 0 and a generator f of f .

We fix for the rest of this thesis a prime p of KX lying above a

rational prime p such that p § S and p is of degree 1 . Hence

(p) = pp* . Put w = Y(p) and 7* = Y(p*) , and observe that these are

generators of the respective ideals. For each o in 0 , let E(1 be the

kernel of the endomorphism o of E , and for each pair of integers

My e D, Jet P denote the field K(E ) and KX the field
m n*m+l n,m



i |

8 i

F [E ) . It is well known that the extension KX over F is totally
mt" n+l FEai i

ramified at the primes above p , and that p is unramified in Fm « In

fact, from the definition of the Grossencharacter, we see that the number of

primes of F& lying above p , which we denote by Y is given by the

X
index of the subgroup generated by m 1in (O/pyﬂ+l} . Hence, there exists
5 ’ L s q K jM £
an integer M such that P ELP for m< M an oL = Py or
mzM

We choose and fix a prime of F, lying above p , and let P,

Py M

denote the unique prime of F& lying above (or below) Py -

We write Pii for the unique prime of Kn,m lying above P, If

w 1is any prime of ﬁw lying above p , we let En LA be the completion

= sltts

of Kn it at the unique prime above w , and we let @m 3 denote the

2 3

completion of F at w . We shall write 1 for the ring of integers
m m,w

of @m . and we shall also write w for the maximal ideal of Im W For

simplicity, we shall omit the subscript for the prime when referring to

completions at or above Pl s Denote by Kp the completion of K at p ,

and we shall identify its ring of integers 0_ with £Z

Put K. .= ‘U KX - Eo= WP Jand & = U & ., Let o
nym oo m 0
n,m=0

denote the Artin symbol (p, F_/K) for the extension F_ over K and

observe that ¢ induces the Frobenius automorphism for the extension @m

over KI . Note that we always view our global fields as lying inside the
‘ “

complex numbers, and equipped with embeddings into their completions.



Write G for the Galois group of K_ over K , and let

xX
E = U E and E _= U E . ket k. 3 G .+ 1 and
m n=0 MR i m=0 ATt * p
K, Gyl Z;,rﬂnpoctively,lnz the characters giving the actions of G_ on

E - and F i Observe that if o € Gm and o 1is an element of (0 such
i T*

: ¢ +1
that u° = au for all u € E Liaq then K2(G) is given modulo pm by
"IT*
. . : #mtl
a representative lying in Z of the coset of a modulo p These
rational integral representatives are precisely the rational integers
o = T - sigie .
belonging to the coset of o modulo pm . , and so, under our identification
of Z with 0. , it follows that
P P
K,(0) = a mod pm+l : (3)

Now it is plain that G_=T X A , where I 1is the Galois group of K_

over KO 0 and A 1is the product of two cyclic groups of order p - 1

which can be identified with the Galois group of KO o over K . We

observe that the canonical characters Kl and Ko provide an isomorphism

[K R < } 0 R ol iy ; and we deduce that I'=2Z x Z ., and that if
LS TPy P WP

Xy and Xy denote the restriction of K and K to A respectively,

1 2
then together they generate Hom{&, Z;)
. [il’iQ}
If A is any Zp[A]—module, we define A4 to be the submodule
. %
¢ : . 1 _
of A on which A acts via Xy Xo + Thus, we have the canonical

decomposition
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(2,.2))
A -5 @ 2 i Sl
b10%2
mod (p-1)
Let A be the ring of formal power series in the commuting
indeterminates Tl and T2 with coefficients in £ Choose a
X
topological generator # of (l+p2p) and let Yi and Y, be the
elements of I for which Kl[Yl) = Kz[yg} = u and Kl(YQ) = KQ[Yl) =1
It is clear from our earlier remarks that such a choice is possible and that
Yy and Y, area set of topological generators for I . Any compact
Zp—module B on which [I' acts continuously can be endowed with a unique
A-module structure such that Y& = [1+Tl)m and Y % = (1+T2}x for all =z
in B,

The rings

= -

nym i where the product
3

is taken over the set of primes w of F% lying above

p , have a natural

action of the Galois group

G - wags- -follows: Let o (k
c© k,w

be a Cauchy sequence of elements of K

(or F ] which converge to o
n,m m

L) [or $ ).
7 ,m 40 m 4w

in Then the wo

component of [a ]G is the limit of

the Cauchy sequence

(0] . =
o1 R R R [ TG - T
k ,w A o 0]
1M W
We embed Kn » and F? in these rings vta the diagonal map, and it is easy
5 f i

to verify that the usual norm and trace maps on

[

s @ . K and F
n,m> m

n,m ’
as well as the Galois action, all commute with these embeddings.

~

Let F

be the formal group giving the kernel of reduction modulo

on E . The parameter of %

p

is
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t = -2x/y = -2P(3)/P'(3) = e(z) . (4)
Since E is defined over Op , we have the power series expansions
=5 3
x =t alt) , y= =2t alE) (5)
where a(t) has coefficients in (O_  and constant term equal to 1 . We
can view 2 as being a parameter of the formal additive group Ga , and
then €(2) is the exponential map of E . We write A : E —:;-Ga for the
logarithm of E which is the inverse of (4). Denote by E iy the kernel
i

~

; L . . ) :
of the endomorphism [ﬂn J on E , which, of course, we identify with

=1
o

n+l
T

Finally, we denote by U’ the units of En i and by Un

n,m,w M 1M W

the subgroup consisting of those units which are congruent to 1 modulo the

maximal ideal. Put U' =] U' and U O U , where again
n,m n,m,w n,m p MW

the product is taken over the primes w of F& lying above p , and let

U! and U_ denote the projective limits of the U’ and U
®© n,m M ,m

respectively relative to the norm maps on the En i We endow U_  with
o

its natural structure as a Z [G_J-module. In particular, U_ 1is a compact
p Qo o8]

-module, and thus also a A-module.
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CHAPTER 3
COLEMAN POWER SERIES AND LOGARITHMIC DERIVATIVES
Let Tﬂ denote the Tate module %iﬁ.% hip o where the limit is taken
il
relative to the usual projection maps given by multiplication by powers of
m . We fix a basis (un} of TTT , and let B = [Bn,m,w} be an element of

U$ _ Coleman [4] has shown that for each integer m = 0 and each prime

of F 1lying above p , there is a unique power series
m : LN

Cm,m,B(” ¢ Im,w[Li]] SR as
Lp_
e ¥ C >_- .
R m, e : ,B[u ] for all n 0 (6)

(We adopt the convention throughout this thesis that an element of the
Galois group written in this position acts only on the coefficients of the

power series.)

Moreover, these power series satisfy the functional equation

7(.[) m = 7
B [W]](i) _Tjr cm,w,B(T * 1) (7)
- nEETT

where 7T * n denotes the sum of T and n under the addition on the

~

formal group E . It will be convenient to denote by

[

e (T7) Lthe element
m,B

Um,w,ﬁ(y)} € T;T'Im,w[[T]] , which we shall write as Im[[T]] , with the

obvious Galois structure inherited from the structure on ¢
m

!

For m'"2m and w' a prime of F , lying above the prime w of
m

e ” b
piov, et K-, denote the local norm map from = ¢ g LHOTTE
, W n,m',w 1 M 5 W




Then it is clear that for each prime w of F% lying above p ,

-n
@
TT o, 16 0 gl

w'|w

where the product on the left is taken over all primes w®' of F%, lying

above w . Since ¢ has coefficients in 1 and u belongs
i m'm',B mr,wr n 5

to & , it 1s evident that

}| = e’ [un] = B
| UEGaJ_[dJm, i w]
b 2

From the uniqueness of the Coleman power series, it follows that we

have the following lemma.

LEMMA 2. Let m'zm= 0, and let U , denote the norm map from

2

Im,[[T]] to Im[[T]] . Then, for each B ¢ U  ,

(7))

C

i
cm,B(T) Mm’,m( 8

The derivative of the logarithm map, A'(T) , is a unit of the ring

Zp[[T]] , and hence of Im w[[?jl . It is also clear that for each m =2 0

and each prime w of F% lying above p , the Coleman power series

13

¢ (T) attached to an element B of U' is a unit in 1 [[T]] . We
m,w, B 0o myw
denote by g _ (T) the element of ] [[T]} whose Ww-component (g (T)]
m, B m m, B ‘W
. : -1 d
is given by A (T — log e T
g : ) dr ~°5 Cm,m,B( )
We take this opportunity to observe that if B = (8 ) € U' then
) n,m,w %
B = W ( ) ) S
e n,m,w(B) Bn,m,w , where (Bn,m,w belongs to Un,m,m and
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{%zgn,w(B) is a root of unity in @m’w « Clearly <Bn,m,w) corresponds
SORA e ieueRt o Vo # WHISH we shall denote by (B , and (w, . (B)) is
an element of Ué whose Coleman power series for each pair m and w is

€ 1 ri] .
wo,m,m(g) c m,w[[ J]
In particular
= T 8
cm,w,B(T) wo,m,w(B)cm,m,(B)( X (8)

and consequently

gm,B(T) = gm,<8)(T) : (9)

LEMMA 3. Let m' =2m =0 and let T s - denote the trace map from

3

Ll o 1o

Then, for each B ¢ e s

gm,B(T) i Tpm',mgm’,B(T) 4

and 9 B satisfies the funetional equation
2

ﬂgﬁ,B([ﬂ]T) B

]

g, (T * 1) . (10)

s
M
x>

Proof. The first assertion is clear from the previous lemma and the

: ; ; -1 d
fact that the Galois action commutes with the operator A'(T) 7 log .

Since A is the logarithm map, it is clear that AT * n) = A(T) for
= = : "‘j
all n € B s and hence

7 ME * m) = AT .

Thus
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-1
(gm B(T i n))w o L%% AL H)J . é%'log “m,w B(T * 0
1id
= )\P(T) af[,— lOg W,L},B(T * T])

The functional equation (7) shows that

(gm B(T * n))w = ANyt é%.log{ci b ° [m] [(T) .

Tl o

né .

On the other hand

-1
d : d @

P
(gmgs([ﬂ]T)] o g(LTID)

W 3

Ayt é%—log(0$ Wy [n]J(T) ,

since A([m]T) = wA(T) . Combining the last two equations, we obtain

equation (10).

We denote the subring [ | Im . of @m by Im , and write %i@_lm
W 2

for the projective limit of the rings Im relative to the trace maps. We

also put I_= U Im and denote the completion of I by I . The

o0 o0
m=0

following theorem allows us to associate a power series with each element of

1im I
~— m
THEOREM 4. Let b ¢ iiﬂ,lm - Then there is a unique power series
() € 1_[(71] such that
” . K.(o) m+1
hy (T) = ) (07) (1+41) © mod((1+7)P -1
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for all m = 0 . Here [bo] denotes the Em—component of the

m,gm

projection onto Im of the image of b wunder the action of any element

of G_ whose restriction to F_ 1is o .
o m

Proof. Observe firstly that if 6 ¢ Gal(X_/K) is trivial on Eh :

m+1 K2(0)

then KQ(B) = 1 mod p , and hence (1+7) is well defined modulo

m+1
[(l+T)p —l} for all O € Gal(E&/K] . All that we need check is that the

appropriate compatibilities are satisfied. Let m' >m . Then
o . 0
E N T
g BEGal(}ﬁ,/K] )
6|F =0
m

as this is precisely the trace compatibility of an element of 1lim I

Consequently
K 00) K, la) m+1
) e ar R s (&%) (147) ° mod((1+T)P -1)
OEGal(iﬂ,/K) 4 ’BW' m’Eﬁ
0|, =0

which is sufficient to prove the theorem.

If b € iiﬁ-lm »and J = 0 , we define

| i) ;
A = Sl J m
Lj(b) ((l+T) dTJ ﬂb(i)lT:O £ 1

oo

and we note that

5.(b) = <, (0)™7 (5°) mod p/tt (11)
. o€cal(F /k) =
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where p_ 1is the maximal ideal of ks

The following theorem provides the key to the rest of this thesis.
THEOREM 5.

For each B in U' , there is a unique power series

ggwl,TJ ETmH?erJ] such that

& 3 K2(G)
{gm,B(Tl}J (1+T2]

m+1
mod[[l+T2]p —lJ
P

cﬁGaS%}/K)

for all m = 0 . Moreover, Jg satisfies the funetional equation

-1
Ky (9)
W (mlT,, [1+T2] -1 = Z; gB[Tl * 1, Tz] : (12)
n€bﬂ
Proof. The first statement is an obvious corollary of Theorem 4. From
the definition of gB(Tl, T2] , it is clear that
=L
K, (@) K,(0)
g |[nir., (1+7.) 2 -1| = m|g%® [nlr (1+7,) 2
B 1 2 c€CallF /K} m,B e 2
b m P
Dm+l \

modulo [(1+T2)“ -1 Now, equation (10) shows that, for all

0 € Gal(F /3

0 € kil( m/K} ;

r'U(p m 17 = % o g * ]
P nee m
and so
< (@)t R ) K,(0)

ﬂﬂR{[W]Tl, [1+Tq) ¥ ~l} = S‘ E: g B( s * n] (1+Tn} .

i ) UEGal(F /K) s s ) :

m - nes
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- m+1
modulo [{l+T?]p —l} . Thus, equation (12) is satisfied.
Observe that if o € G_ and n 2 0 , then ug = [Kl(o)][un) -
Equation (6) clearly implies that if B € U] , then the power series
_ 0
8 Shigyls Lm,B{[Kl(G)] (7))
m,B
Thus
—_ O gl
g ST = Kl(U)gm,B[[Kl(o)J(T)] ,
m,B
and from this it is easy to see that
K2(U)-l ]
m = m - 5 3
gBO[Tl, 12} Kl(G)gB[[Kl(O)] (11}, (1+T2} y (13)
Let k=1 and J = 0. We define, for each B € U00 N
k-1 ~J
! _ 1 _l a ] { : a ] — L,},
S 5 (B) = |2 [Tl) H_"BTl_ ‘[1+T2} __BTQJ gB(Tl, 12}1(0,0) : (14)

The following lemma summarises the basic properties of these maps

j

W

LEMMA 6. Let k=21 and g =<0 . Then §

18 a homomorphism of

Kyd

Zp-moduies from U_  to 7@ , and for all B € U00 and all o € G_,

S,

M syl

[BU} : Kl(o)sz(O)jé (B (15)

Kyd
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(,.%,)
In particular, if B € U_ , then 6k J.(B) = 0 unless
(k, §) = (i, ,) mod (p-1) and if gy 7] € A,
_ ik J
6k,j(h(Tl’ Tz]B} = Alu=1, & -1}5k,;(8) \ (16)
Proof. It is clear that 6k . ' ig a Zp—homomorphism, and equation

(15) is evident from equations (13) and (14). The next assertion follows
from the first two if we take 0 € A , so it remains to prove equation (16).

Jut this is merely a restatement of equation (15) if we take h[Tl, T2] to

be either 1 + Tl or 1 % T2 , and follows in general by linearity and

continuity.

k-1
. -1 d
> Al
Finally, we note that [ (T) 8?} gm,B(T)|T=O € Im , and, for a
fixed B , gives rise to an element d,(B) € 1lim I . From the definition
k =N
of Gk : and the power series QB(Tl’ TQ} , it is apparent that

S 7 (B) = 6j[dk(8)}

In particular, we see from equation (11) that

m+l

0505 (Bil = ¥ KQ(G)_j[dk(B)Gl mod p_
J =

: . (17)
K GEGal(Fm/K} g m,

P
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CHAPTER 4
ELLIPTIC UNITS
In this chapter, we shall define and establish a number of basic
results about Robert's [10] elliptic units, which will play an important
role in the proof of our main theorem.
If L is any lattice in the complex plane, let
2
olz, L) =z T (1-(z/w))exp((z/w)+(%(z/w)*))
w€L
w0
be the Weierstrass o-function of L . Let
12
Bz, L) = A(L)exp[—fﬁgz(L)z2 .oz, L) s
where A(L) 1is the discriminant function of L and
g,(L) = lim ) m_zlmldzs .
s+0 welL
w#0
Recall that L = @ 0 is the period lattice of our model (1) of the
cuarve E . Let a be an integral ideal of K . We define
B : Nc -
0z, a) = 0(z, 1)"2/6(z, a L)
where Na 1is the absolute norm of a , and q_lL denotes the lattice
ng_l . In fact, as is shown in [2], ©O(z, a) 1is an elliptic function for

the lattice L , and an explicit expression for it in terms of P(2) is

given by



ML) 17T aczy/ (P(2)-P(1))® (18)

e ey
Alg™"L) 1L

where the product on the right is taken over any set {l} of representatives

-1
of the non-zero cosets of a "L modulo L .

_ n+
Let Rn 2 and Rm denote the ray class fields modulo fp 1p*m+l

Py —

and

AM+1

modulo fp respectively. It is well known (see, for example [2]) that

we have the following diagram of fields.

m+ y .
Put Dm = Qm/f“* L and let Bm be a set of integral ideals of K

prime to fp* such that {(2, Rm/K} + b € Bm} is precisely the Galois

S ]

group of Rm over Fm . If a is an integral ideal of K prime to 6pf ,

set

A (2, 3) = bTE_B\' O(z+p(blp _, a) - (19)
= "m

LEMMA 7. The function Am(s, a) ts a rational function of P(z) and
P'(z) with coefficients in E}I, and is independent of the choice of the

set of ideals Bm

Proof. We have already seen that ©O(z, a) is a rational function of
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P(z) with coefficients in K . By the addition theorem @(3+pm, g) is a
rational function of P(2) and P'(2) with coefficients in Rm Se1Er S
(bR, /K)
is any integral ideal prime to fp* , then E[pm} = g[w(g)pm} , and

so we obtain the function O[3+W(Q)Dm, g} on applying [2, Rm/K) to the
coefficients of O(3+pm, EJ . The lemma is now plain as

{(g, Rm/K} i b E %n} is precisely the Galois group of Rm over Eh

Let I denote the set of integral ideals of X which are prime to

bpf , and let

8= {U : I>1 | u(a) = 0 for almost all a € T and ) (Na-1l)u(a) = O} ;

ael
If €S , we set
O(z; w) =1 [ 9(z, g)U(g) (20)
aerl
and
¥ ua)
Retz: gy =1 [ B8 (2, a) =" . {213
! m >
ael
Choose i) (it is unique modulo [ ) such that w, = E(Tn] , and
- n+l \ )
choose €, € 0 such that enﬂ* = 1 mod p . Observe that w* is a unit
L - =

m+1 ]

in Z , and that we have Eﬂ*_(m+l)]u = E[E 1
p n n nj

m+1 : .
Robert has shown that @[En Tn+pm; u] isia anit of R for all

1,

m+1
T

£ uJ is a unit of KX . We call the
n n n

L R

M € S , and consequently AW{E
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group of such units the elliptic units of Kn n and denote this group by
?

C; . It is easy to show that Cé

is stable under the action of GOo .
2

Rl

LEMMA 8. Let m'"2m=0 and n'

Y

n=0. Then, for each u € S ,

n'-n
' P ,Rm/K}

i ! [: :
R /R 0 87 ' T?’I'+Om'; U} =0 (z"'pm; U)' (22)

Proof. Let c be an integral ideal of ' K , prime to 6pf whose Artin

symbol O _ = [g, R

; ,/K) fixes the subfield R . Since, if p 1is any
n',m nym

n+l *m+l ¥

fp P ~division point of L , &£(p) == &(y(c)p) , it follows that
¥(e) = 1 mod £En+l:*m+l ) (23)
Thus
'+1 O '+1
9[Ez,+ T tP 15 U] = @\w(g)€$,+ Tn,+W(g)om,; u}
= Greg:+lTn,+pm,+6 : u]

\ —

m'+1
where & = [w(i)—l)[E 'ﬂl:*pmr}

!
A m'+1 : L
Since S, R T 1s a primitive £
n n* o m ——

e A L ;
p* -division point of

'

. : , _ o Wl=vt M= e s :
L , it follows from (23) that 6c is a p p* -division point of L .

oy 1
. m'+1
Hence, every conjugate of G[En' Tn,+om,; u under Gal(R

/R

w m” J i
51 n,m

. m'+1 n'-n._m'-m ,. . . \
given by O € Tn,+pm,+5; uJ for some p p? -division point & of

n'+m'-(n+m . g ; . .
L « There are p ( ) such division points, which 1s equal to the

number of conjugates, so we must have



m'+1 ) m'+1 ]
Ny R ) € 1 T P13 u] 1 | @[en, Tn,+pm,+6, u)
n'.m'" n,m

where the product on the right is taken over any set {8} of

. n-n' m-m'
representatives of p p* L modulo L

It follows from Lemma 6 of Coates and Wiles [3] and the fact that

n'-n .m'-m nlsn .m'=m
m m# generates p p* that
! !
m'+1 1 m+1 n'-n
o T . : J - -

wiimt Tn.m

As observed in the proof of the previous lemma,

n'-n_ - [: m )
O.z+w(£) o s uJ =0 (z+pm, u)

from which we conclude that equation (22) holds.
The importance of this lemma is the following corollary.

COROLLARY - 9. [Let w € 8 and put

-7 I
(1) = A‘; (z; Wl

e
n.,m m+l
¥

n n

Then (e (u)) € U’ .
namo 0

2

Proof. Observe that, for fixed n and m , e m(u) is a unit of
k]

K” m and so can be regarded as belonging to Ué . It remains to check
b ] ’m

the norm compatibility, which we can do in the global fields.

Now, for the reasons explained in the proof of Lemma 7, and the fact

that both (p, Rm,/K] and ¢ 1induce the same automorphism on Fm' , Lemma 8
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says that
v—n' 5
A (23 1 = A" (z;
Ve ok Mg (E W | niel - (a; u)\z L,
. n,n a=€ =
n',m 1,M R . og
Thus, the €. m(u) are compatible with respect to the norm map, and hence
b

(e, ) €U;

",

We shall denote [en m(u)] by e(u) in future, and write C  for the
g

projective limit of the C' with respect to the norm maps. Clearly
3

e(u) € ¢! for all u €38

THEOREM 10. Let u € S . Then the Coleman power series

Um,e(u)(i) € Im[[iJ] attached to e(u) are given by

T*—(m+l)

(1) = A (1 \NT); )

c';rm,e(u)

Proof. It is necessary, first of all, to explain the notation. Recall

that Lemma 7 showed that Am(z; u) is a rational function of P(z) and

P'(z) with coefficients in F_, and so A?(S; u) has a power series
] n

expansion with coefficients in F , and hence in ¢ . Thus
m m

- (m+1 =
Am(ﬂ* i )X(T); U] can be regarded as an element of @mtjfj] .

: : -(m+1 m+1 .
Now, observe that since [ﬂ* )Ju = ElE T , it follows that
n n n)

since A 1is the inverse of ¢
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; : «=(m+1l) .
Thus, the only thing we need to show 1s that Am(ﬂ A(T); U]
belongs to kﬂ[[T]] . From equation (18), we see that
L ) .
Ofztp , a) = ———— T | (P(at+p_ )-P(1)) (24)
we = A(L)Nﬂ' 7 m-

where {7} runs over a set of representatives of the non-zero cosets of
g_lL modulo L[ . Let H denote the extension of Rm obtained by

adjoining all the P(Z) , and let P be any prime of H lying above p

Consider the expansion of the right hand side of (24) as a power series

in ¢t = €(z) . Since [ has good reduction at p , A(L) is a unit at P

and ﬁ[g_lL] is integral at P . By the addition theorem

P'(z)-P'(p )
&3 . s - o
Plato ) - P(1) = % PGP0 ) P(z) - Pe ) - P(1) . (25)

Recall, as was mentioned in Chapter 2, that all the torsion in the

kernel of reduction modulo P of F 1is contained in E o A P|p . Thus,
, =

since E(7) and g[p ] are points of F whose order is prime to m ,
m

their co-ordinates must lie in OP , the ring of integers of the completion

of g at P . Thus, substituting the expansions (5) for P(z) and
L =1 , . :
P'(z) , we see that U(z+p R a) has a power series expansion in terms of
- =

t with coefficients in (). . In other words

o(A(r)+p , a) ™" € 0, [I7]] .

It follows that, for each prime w of FE lying above p ,




Am(K(T); U]Fl has coefficients which are integral at

A (m*ar); u) 7t

m

€1 [fr]] .
In addition

A 05 w7 = (i p 000, 1))
m m

and so is a unit of Eﬁ (see [3]1).

Thus, it follows that Am[n*"mx(T); u) € I (7]

w , and so
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CHAPTER 5

LOGARITHMIC DERIVATIVES OF ELLIPTIC UNITS

Having defined our group of elliptic units (! = lim Cé S0 and having

2

determined the Coleman power series associated with an element e(u) of

this group, we turn now to consider the value of our homomorphisms Gk . at
2

(e(u)? . To do this we shall need to introduce some further notation.
Let O be an element of the Galois group of F& over K . For each

%> | —X \ . . !
> , we denote by CF (0, Y ,_8) the partial zeta function which 1s the

m

analytic continuation of the function given by setting

% a N
Cp (O, v, 8) = > w(g)kMg ® . Re(s) > k/2+ 1., (26)
m (a,2 /k)=0
where the sum on the right i1s taken over all integral ideals of K

prime to fp* whose Artin symbol for the extension F& over K is ©

Let L be a lattice in the complex plane. Then, for each integer

kK > 1 , the complex valued function

Bz, 8, 1) = T G)|asw] ™, Re(e) > k/2 + 1,

WE L

can be analytically continued to the whole complex plane as a function of

8 . Following Weil [13], we set Ez(z, L) = Hk(z’ k, L)

It can fairly easily be deduced from Weil [13], that if (z, L)

denotes the Weierstrass zeta function (d/dz) log o(z, L) and a(lL) the
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area of the fundamental parallelogram of L , we have the following

formulae.

LEMMA 11. () Ej(z, L) = t(s, L) - ag,(L) - mz/a(l) .

(it) E3(a, Lyos Bla, L) # gQ(LJ :

|V

k K=2
_ (-1) d
(i21) Ei(z, L) = ?Z?ITT‘[ZE} Poza b)) o1 Bi= 3.

(Here 7w denotes the usual real number 3.141... .)

COROLLARY 12. For all k = 1, and for all integral ideals a of

(k-1)! Z: {NgEz(w(g)pm, L]—Ei{w(g)pm’ gflL]} w4 27D

Proof. Using the definitions at the beginning of the previous chapter,

one readily sees that

—— log ©

dq [W*n(m+1)3+w(g)gn, ﬁ]

(m+1)

= l?ﬂ*“(m+l){Na 3+¢(2)Dm]]

= 1 4
{Q{n* s )z+w(g)om, L]—QQ(L)(W* |

]! [C[ﬂ*~(m+l)z+w(b)o ’ Q*lLI-Q (m_lb)[ﬂ*_(m+l)z+¢(g)p }I} .
=""m" = j o2 =""m] )

" -1 .
Observing that a(g L] = a(L)/Na , it follows from Lemma 11 that the

right hand side is equal to

5= (m+1)

lQﬂ*_(m+l){

, -(m+1) -1
~ X ~ & o
Ngﬁl[ﬁ u+w(£)pm, L] Ei[n* M+W(g)pm, a L]} s

The desired formulae can now be obtained by repeated differentiation




and applying the definition of Am(z, a)

Let a € I . Then we have the following two equalities

THEOREM 13.
EZ2'Y and m= 0 g

for all
e 1kl ~(m+1)
(2) |7 1log Am[ﬂ 2, §)|g:o
- l?(-l)k_l(k~l)!(9m/jj_k Ngﬁﬂ,[], Vo, k]—wk(ﬁ)ﬁv G , U, k]}
m Ia’?? =
where o = (a, F /K] , and
a =>"m"

fer all o € Gal(ﬁh/K}

a_lL is the lattice

Observe firstly that the lattice

Proof.

-1 am+l : : E . 4
P(a) gnﬁp since Y(a) 1is a generator of a Note also that if
a€C .

EX¥(az, al) = a"kE*(z L)
k % o2
From this we deduce that
kK -k_. Jm+l
o “EX(V(ab), fp* ) ,

Ei(w(g)pm, g_lL} = P(a)

and so to prove the first part of the theorem, it will suffice to show that



: : , . o )
To see this, first notice that if w € fp*m , then

w((w(gg)+w)] = y(ab) + w , since P 1s a Grossencharacter of conductor £

Since K 1is a field with class number 1 , our very choice of Bm ensures

that {(¢(g§)+w} : b€ Bm’ w € fp*m+l} is precisely the set of ideals of

K , prime to fp* , whose Artin symbol for the extension E& over K 1is

Ga . From this, it follows that

%
E: H [w(gg), 8, ) = I [0 o U, 31 , Re(s) >k/2 + 1
beB 2 = Fnl 2 J

F

fp,§m+l

whence we must have (28).

*_(m+l)z, g}| must

="' 12=0

Kk
From Lemma 7, it is clear that [g%} log Am[ﬂ

i : ! k
lie in Fm . By choosing the ideal a so that o, =1 but Na# pla)

it is easy to see that the first assertion of (77) is true.

The final equality can be established by noticing that if ¢ € I ,

(e.F_/k)

m

A [ﬂ*_(m+l)z, a) =TT e[ﬂ*_(m+l)z+w(bgjpm’ Q]
s St

beB
= m

Hence, for the same reasons as were given in the proof of part () ,

k (e.F /)
d -(m+1
[[C—ZEJ log Am (TF* (”+ )3., n_a__) ‘ ”“O]

" lz(-l)k‘l(k-l)!(Qm/f)"k{f@:cF [oc,

Ji =
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The final equality is now apparent from (7).

_k

For a fixed k =2 1 , let Cm(k) =0 Cp [l, @k, k} . We have seen that

m

cm(k) € F& , and it is clear from Theorem 13 that if m' =2 m ,

I

. -k %
trp g Gy oK) i e c (o, ¥°, &)

m'm GEGal[%%,/E%) 7

Cm(k)

Thus (Cm(k)} € }iﬂ_@m , where the projective limit is taken relative

to the trace maps, and we denote it by (k) . Recall that if D € }im Im

.
le o]

. ] a)? .
and 4 =0 , 6j(b) = [(1+T) de hb(T)lT:O € 1

COROLLARY 14. et n €S, and let k=1, 4 =0 be integers.

Then
(a,F_/K)
5, s(tem)) = 6j[12(—l)k"l(k~1)!fk Y ula) (Nag(o-v @)k - )
b2 L7 ‘_-EI
(29)
Proof. Observe that if f is any function,
il . 4.
A ) a?-f[A(T)} N = f(z)\Z:A(T) :
In particular, since A(0) = 0 , we have that
k k
d -(m+1) et 3 -(m+1)
(EEJ log Am[ % -, g} BB [X (T) aﬁﬂ log Am(ﬂ* A(T), EJ]T:O .

It follows from this, equation (21) and Theorems 10 and 13 that
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1 d]k"l

[A’(T) a9 i

m,e(u)

(0]
4 1
= 12(—1)k l(k-l):f"C ¥ u(g)[N_eiC (k)—wk(g)c (k) 2| .
=" — M i
aer
Equation (29) is now apparent from equation (9) and the remarks at the end

of Chapter 3.

Katz [6] allows us to interpret the right hand side of equation (29)
in terms of Hecke L-functions. To state this precisely, we need a small
amount of extra notation. Tate [1l] has shown that to give an isomorphism
between two formal groups is equivalent to giving an isomorphism between the
corresponding Tate-modules. The Weil pairing shows that

Hom(lim E m } is naturally isomorphic to the Tate-module
=L n+l

)
pELY —

lim F ey where here all the projective limits are taken relative to the
' *
il

maps given by multiplication by powers of p . Thus, to give an isomorphism

between FE and the formal multiplicative group Gm amounts to choosing a

primitive element of 1lim E . Recall that we chose € € (0 such that
— Jmtl n
(1
s s ML ) h A A
€ = 1l mod p . We choose the isomorphism n : F —> Gm such that, for

a1l m =0,

1+ H(E(Qm/ﬂn+l}} _ Qm/wnﬂ, E:+lﬂm/ﬁ*n+l

n
where [ , )n denotes the Weil pairing of the pn+l—th division points of
L .
It is easy to see that any isomorphism between % and Gm must have a
power series expansion of the form exp(Yk(T)] -1 , and a careful




examination of the proof of the existence of such an isomorphism in [9]

~

shows that Yy is a unit in Im . We conclude then, that our chosen

~ ~o ~

isomorphism n : E — Gm is defined over I_ , and that its power series

expansion is given by n(T) = exp(QpA(T)) - 1= QPT + ... , Where Qp is a

~

unit of 1, . Note that Qp depends on the choice of the embedding of KX

in C and on the embedding of the fields K in E . A change in
n,m n,m

X
either of these would result in Qp being replaced by a Zp multiple.

- .
If, as usual, we let L[w % s} denote the complex valued function

which is the analytic continuation of the function given by setting

L[ﬁk, s] = E: @k(g)mg_s s, Rel(s8) > k/2 + 1 ,
f

then we have the following theorem.

THEOREM 15. Let yu € S and let k and §j be integers such that

k=1 and g =0 . Then,

6, s(e@n) = 1260 TGy T u) (v @ )
i a€rl

. [1-6;‘“‘7'(;:*)/;@*1‘:)[zw/@}‘jgiszi‘kz,(u_;k‘j, k) . (30)

Proof. A proof of this theorem, based on the formulae given in [6], is

contained in Appendix 1.
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CHAPTER 6

SOME BASIC RESULTS ON THE TI'-TRANSFORM

For want of adequate references elsewhere, we shall summarise in this
chapter some of the basic properties of the two-variable I transform which
we shall use later. We recall that the T-transform was first introduced by
Leopoldt [7]. However, it will be more convenient for us to follow Katz's

formulation of this notion in terms of p-adic measures.

~

Let U be a measure on L X Zp taking values in I_ . Then u
corresponds in a natural way to a power series fu[Tl’ T2] € Im[ETl, Té]]

where

7" (31)

% : ; e ,
Here [k) denotes the binomial coefficient function

oy - 2l(x-1)...(x-k+1)
() - K!

which takes values in [Z o LR AT
P p

Conversely, given a power series f(Tl, TQ) € ?m[ETl, Té]] , one can

~

2 A : -
recover the Im-valued measure uf on Zp to which it corresponds under

equation (31) as follows.

Suppose that n =2 0 . Then, for k and J modulo pn , there are

uniquely determined elements b, . € I_ such that

k,J



36
2 ; pn pn
i 2,0 2 X ) b (147 )" (141, )moa | (147))P -1, (1+7))P -1 . (32)
k,jmodp
Then uf is the unique measure for which
[ A= D) 4 o
J[k HZJ [ ”z] f kg
+ X|J+
p p J1p p
If x is any unit in Z , we write x = w(x)Xx) , where w(x) is a
(p-1)th root of unity and (z) = 1 med p . Then, if il and i2 are
integers mod(p-1) and f a power series in ?W[ETl, T2]] correspond ing
to a measure Uf , we define a TI'-transform
(Z,.2,) '
" 359 , 22 e
I A
by
[il’iz) =h S, 1y Ty .
Ff (sl, 32) = J A (z) Kz} “w (xl)w [xzjduf . (33)
L xZ
BB
Recall that u is a topological generator of 1 + pzp . Define a
i _ X
homomorphism 1 : Z_ Zp by
Lj
o ul(x) Vo € Z; : (34)

LEMMA 16. Let f be a power series in Tm[[Tl, r.]] and let i,

and i2 be integers modulo p - 1 . Then there is a power series

b v )
f S € Iw[[Tl, TQJJ such that for all 8.5 8, ¢ Zp -
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(£..,2.) ot |0 8 8
1
ro it (8,5 85) = 1 0 R, w41 . (35)
Proof. Equations (33) and (34) together show that
(£..2.) s L(x,) s L{x,]) © 1
P 2 s ) [ e ) e 1) e oo e
f 1% "2 0! 1 L
VAR YA
P P
The binomial theorem shows that the right hand side of this last
equation is equal to
s S L{z. )y (ll(x,)y 2 1
Y ) z-l}MJ [ ! N 2 ]w Lz Yo 2. )du,
Aon 2 i n m 1 25
v AR/
P P
and so we may take f [Tl, TQ} to be the power series for which the
coefficient of TTTS is given by
[ Il(xl)J[Z(xz]]wll[x ]wtg[ Jd
W g "n m ) X .’II2 Uf ’
L x7
PP
3 A
LEMMA 17. Let D, be the operator (1+Ti] 5?2- on Im[[Tl, TQJJ
for 7 =1, 2, and let uy be a measure on Z; s "Fhen,, Tor w, W20 ,

n.m | .
DlDth eorresponds to the measure W o defined by

5

J ¢dun . J ¢[xl, X ]xnxmdu
o i

% p

for all measurable functions ¢ : 1° - 1
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Proof. It will suffice to show that leU corresponds to W o
2

e . K :
Now, from equation (31), it is clear that the coefficient of TlTJ in

2
. g 3 111*2
oty 5 [ (2]

4
P
2 } xl] (1)
It is easy to see that :@l[kJ = k[k) +'(k+l)kk+l) , and so we
Z1) (%)
conclude that this coefficient 1is equal to J [ [ . |du -
L
P

Thus, equation (31) shows that leu is indeed the power series

corresponding to the measure Hy o -
>

We say that a measure | is supported on a measurable subset A of

2 if, for all measurable functions ¢ : ! 1 s
P p =

J ddu = [ ddu .
72 Y|

LEMMA 18. Suppose f ¢ im[[Tl, TQJ} 18 such that the corresponding

measure |, 18 supported on Z: X ;; . Let il and iz De integers
J L

modulo (p-1) . Then, for each pair of non-negative integers kl’ k2 such

that [kl, kQJ B (il, i2]mod(p—l) 4

T k., k
. : - _ l 2 '
- (ks k) = [Dl D, fJ(o, 0) - (36)

Proof. From the conditions on kl and k2 it is clear that for all
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k. % k R T 7
x o 1 e ! 2 ] .
[ml, xz} € Zp X Zp z w, = (xl> (x2> w (xl}w (xg] . Since He is

2

supported on 2% Z; , it follows from the above and equation (33) that

kl k2
re (kl, k2) = J z @, duf ,

T
We conclude from the previous lemma and the fact that [ lJ[ 2] is

y 2 :
the constant function on Zp with value 1 , that

4 b
1{21@
0,59 1%
72 DlDQf
p 1“2

But, by equation (31), the right hand side of this equation is the constant

k, k K. &
1 )
to [Dl 02 f}(o, 0)

2 ; ¢
term of Dl D:2 f which is equal
Finally, we give a lemma which shows how to construct the power series

X

x L .
P

corresponding to the restriction of a measure to L

LEMMA 19, Let f(r,, 7)) € Tm[[Tl» r,]] and let

}[Tl, 7.} = fles 7)) - < g_, fle(aer)-1, 1)) (37)
C =1

where the sum on the right is taken over the full group of pth roots of

unity. Then }[Tl, T2] € Tm[[Tl, T2]] and for all measurable functions

J : ¢du} = j : ¢duf 5

L L x1
E P P
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Proof. Observe that equation (32) shows that for #n = 0 |

\ .
f[Tl, T2] = ¥ [J dufl[l+Tl)k(l+T2}J

! n
mod[[l+T )P 21, (a+r)P -1]

A straightforward calculation shows that

m y ) ;
f{Tl, T2J = y ” : k dufJ [l+Tl) (1+T2]
k,jmodp’” [k+p Z 1X[j+p Z

k* Omodp P) 4

p?’i p?’l ]
mod[[l+Tl] -1, [l+T2] —lJ

. - - - x
and so it follows that u} is the restriction of Uf to Zp X Zp i
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CHAPTER 7

»-ADIC INTERPOLATION

In this chapter, we shall use the TI'-transform which we defined in the

previous chapter to produce a A-homomorphism from U00 to the A-module

i [0r,. 2.]] -

Recall that n(7) = Q T + ... 1is our chosen homomorphism from E to

Fa

Gm defined over I_ . Let ((T) € iw[[T]] be the inverse of n(7) and

recall that gB(Tl, T2] denotes the two variable power series attached to

an element B of U00 .

LEMMA 20. Let B € U_ and put hB(Tl, Tz] = gB[L[Tl), Tz] . Clearly
hB[Tl, T2] : }m[[Tl, T2]] . The ?a;valued measure on Z; corresponding to

X

hB[Tl, TQ] 18 supported on Zp X Zp

Proof. From Theorem 5, it is evident that

K,(o) m+1
[l+T2} mod[(l+T2)p —lJ

h(T., T,) = > [gg (e(z,))
BH1" "2 oecal(Fm/K) s L

EU

)

X
Since K, takes values in Zp , it follows from equation (32) that

x
T ) corresponds to a measure supported on Zp X L

LEMMA 21. Let k=21 and g <0 . For each R € U_, let

oo

-~

hB{Tl, Tz] € im[[Tl, TQJJ be as in Lemna 20. Then, if h [T T ] 18 the

corresponding power series as in equation (37),




y2

k=1, ~d% . _ ol-k K-3 00 1=d
D hB[Tl, 12)|(O’O) = 2 (1-w(£) / (dip) ]ék S8 (38)

D
i 2 >

Proof. Since o n(?) =7 , and n(T) = exp[ka(T)} - 1, it is easy

to see that

(14n(T)) o " (n(T)) = (QPA'(T))'l .

d

From this it follows that [i@pk’(?)}‘l é%—f(?i}/ : > [l+Tl} 3%—-f[Tl]
< =t P=e\ T g
1

and in particular that

pk-1pd3, e, 71 = (@ arem)™t ji-k_lD*J? (n(ry, 7.) | (39)
1 Y2 MgV fol 0,00 T (VY ) AT g g AIESls =adlig o)
Recall that
-~ . N l
hB[n(T), 7,) = hB(n(T), o 5 J hB(c(1+n(T)}-1, 8
tP=1
and observe that hB(n(T), TQ) = gB(T, Tz} . Now, if P =1, £ -1 is

a point of order p on Gﬁ , and since ¢ 1is an isomorphism, as g . runs

~

over the solution set of CP =1, ¢(g-1) runs over the elements of E_
Moreover, we also have that
n(e(z-1) * T} = C[l+n(T)] -1
and so
h6[§[1+n(T)}~l, 7} = QB(L(C—l) * T, T2]

4-2'

We conclude that
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%B(H(T)’ T2) = GB[T’ Tz) 2

T =

_Y: QB[T T T?} >
nEE}

and equation (12) shows that the right hand side is equal to

K2(cp)_l

o ﬂ
gB[T, 7.l = > 9g|Lm7, (1+7.,) et
Recall that ¢ = (p, F_/K) and that it follows from the definition of

the Grossencharacter that ¢ acts on E _ wvia Y(p) . We conclude from
(5 ;

equation (3) that Kz(w) =T . Notice also that

R
. .

; -1 d
n[ [pr ) f(W)J ‘

d
£
r P W=[11(T)

and that

—-1
(1+7) é%-f[(l+T)“ _1]} ﬁ‘l[(1+W) 5%.f(W)]‘ "

‘ . w=(1+7)" -1

Combining all these facts, we see that equation (39) becomes

K=1_-3% it
by "D, hB(ll’ T2}|(0,O)

: k-1 . ; .
Ll e ~d k-g , 1-3

Equation (1%) shows that the right hand side of equation (40) is equal

to Q;_k(l = w(g)k_j/(ﬁg)l_j}é

k,j(B)

The following theorem provides the homomorphism to which we alluded at

the beginning of this chapter.
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THEOREM 22. Let il and £2 be integers modulo (p-1) , and let
B€U_. Then there is a unique power series
(il’?:z}
GB (T]_’ Tg) € fm[[Tl’ TQ:I:I
such that for all kl >1 and k2 < 0 satisfying
(k5 k) = (2,5 2 )mod(p-1) ,
(2.,2.) & k -k k.~k. 1-k
: i 2 i L 2 2
G, fe s ") w QB (= /b °)8, ,kQ(B) . (41)
Moreover, if h € A ,
(2. ,2,) (£.02. )
i) " 1="2
Grg (B0 250 5 Bl2. . 1,)6, (2,5 1) (42)

~

Proof. Lemmas 19 and 20 together show that the power series hB of

X

X
Lemma 21 corresponds to a measure supported on Z) X Zp . We deduce from

Lemma 18 and equation (38) that for kl and k2 as in the theorem

On the other hand, Lemma 16 shows that there is a power series

w[il—l,—iz}
hB (Tl’ TE) € TmEEfl,Yé]J such that for all 815 8, € Zp ,
O I A (2,1, -2.) s s
ry . : (sl, 8] = hg 2 2" (u o 2—1]

B L

Thus, if we set




it is clear that equation (41) will be satisfied. Such a power series is

clearly unique, and so equation (42) follows immediately from equation (16).



CHAPTER 8

THE STRUCTURE OF U_

We observe that Gal(Em/Kp] can be decomposed into the product of two

groups, the Galois group Gal[Em/EO 1 of £, Over EO,O , and a group

3

/K ) . From our knowledge of the

which may be identified with Gal(Eo o' &
3

decomposition of p , it is clear that we can identify Gal(Em/E with

0,0}

Gal(Km/K C I' , and we note that this is the subgroup of T -~ which is

0 ,M)

M

topologically generated by Y, and yp

z Thus, any compact Zp—module B

on which Gal[Em/EO O] acts continuously can be equipped with a structure
2

M
p _
as a Zp [%l’ [l+T2) —_] module.

0 O/Kp]]—module A has a canonical decomposition

Any Zp [Gal (E

(2,.2,)
hia ® 2 5 e,

ilmodp—l

zzmod(p—l)/ro

(3)52,)
where A - is the submodule of A4 on which Gal(EO O/Kp] acts via
. 7
§ Sl
If v 1is any prime of FM s We let U 3 denote the projective limit

relative to the local norm maps of the Un o o for the primes w 1lying

2 2

above (or below) Vv . As usual, we omit the subscript for the prime when
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referring to Py - Then, both U_ and lim u ney C2D0 be equipped with
P
M
Zp [}l’ [1+T2]p _i] -module structures, and possess a natural Gal(EO O/Kb]

action. Moreover, it is well known from the Weil pairing that

. (2,.2)) o
[%&E_upn+l) = 0 unless [zl, 12) = (1 l)mod[p—l, p-l/ro] .

Wintenberger [14] has studied the structure of U_ as a
M
Zp F%l, [l+T2}p ——1 -module and his results may be summarized in the

following lemma.

LEMMA 23. Let <. and <, be integers. Then we have the following

¥ 2
pM
exact sequence of Zp [%l’ (1+T2) —:] modules
TR NGO i o)
b L . 1?72
0> 0, S AT | R TR Ry

There is an obvious isomorphism between U and I | U , where the
o @ \)
V

product is taken over the primes Vv of 3M lying above p , whose inverse

may be constructed as follows. Let (Bv) € T“T U, 2 Then (Bv] is
Vv

2

mapped onto the element of U_ whose projection onto Un » has its
%

w-component given by the product over the primes Vv of EM lying above (or

below) w of the projection of B € U onto U . From this, it is
v © V) n,m,w

easy to see that Uco = | | u_ 3 < , where the product is now taken
vlp,

over primes v of FM lying above Py - This is because all the components
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(2152,)
of an element (Bv} € [T_T'Uw v] ord are uniquely determined by those
\) 2

associated to primes lying above Py °

LEMMA 24. Let i, and i, be integers. Then there is an injection

L 2
W I >+ N which s a homomorphism of MA-modules. Moreover,
if [il, iz] 3 (1, 1)mod(p-1, (p-l)/ro] , W is an isomorphism; and
if (il, ig) = (1, 1)mod(p-1, (p—l)/ro] , the image of W is the

M M
tdeal of N generated by 1 + T, -u and [l+T2]p - P

[i R
Proof,. 1f R € U Lt : det | (B denote the p,,-component of R
i e Py =
J
: Lo M
viewed as an element of T_TUoo o Since Py (J S0, 06.550D »l} is the
V . ==

complete set of primes of EM lying above Py » it follows from the remarks

above that B 1is completely determined by the set

j |
Y
2 M
(B } Jd = 0, » P =l
Py
M
(L y ] P =i [L 7 ] N
L Sl o - * g
Let W (B) 2 }‘ (l+T9] Jw 12 [B 2] . It 1s easy to see
d=0 f L9}
(i),5,) -
that W is a A-homomorphism. Furthermore, since the [l+T2J g
! M ; : :
[J 2 Q8 P —l) provide a complete set of representatives for the

- M
additive group A/Zp [}l’ [l+T2]p —_1 s we conclude from Lemma 23 that
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(2,.2,)
o) AL : : 2
7% is injective, and an 1somorphism unless

(7., ,) = @, L)mod (p-1, (p-1)/r)

Since Gal[Em/KPJ acts on (lim u n+l) via KK (this is clear from

22
the Weil-pairing), the image of w is the ideal of
M M 1
L {% 3 [1+T Jp —"] generated by [T +l—u) and (l+T )p - up 4 4
hog 2 i 1 : 2
(il, iz) =5 ' ) l)mod[p—l, (p—l)/ro] , and hence the image of W is
as described in the lemma.
In future, we shall denote the image of W by H

| We now seek to establish a connection between the two NA-homomorphisms

G and W . In order to do this, we need to first establish

the existence of certain elements of UOo 4

LEMMA 25. Let (8 ) €U . Then there exists B € U_ whose
n,m,w n,m o0
projection onto Un o 18 [Bn . w) 1f and only i1f, for all primes w of
Fm lying above p , the Local norm from :n,m,w to Kp of Bn,m,w tg L .

I

Proof. Thanks to our isomorphism between U and T | U s LE mill
oo o \)

Vv 3
suffice to show that if B €U , then there exists f € U_ whose
n,m n,m o0
projection onto U is B if and only if the norm from E to X
n.m n,m 5 n,m P
of s 1
Bn,m

Now the extension E” n over K  decomposes into an unramified
2
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- . n
extension and a totally ramified extension of degree (p-1)p , and so the

image of U under the norm map from = to K 1is precisely
n,m n,m

n
o pp . From local class field theory, we know that if HC JC L are

. A ; X
local fields, then a € NL/JL 1f and only if NJ/HG € NL/HL , and so

B?1 m can be lifted to an element of U_ 1if and only if its norm to Kp is
2

Py

LEMMA 26. Let 1, and iz be integers modulo (p-1) , and let kl

and Kk, be integers such that 1 = kl 2 Dus k2 <0 and

[kl, k2) = (il, ig} mod p-1 . Then there is an element o € U_ such that

"

6k % (a) 28 @ unit in T_ .

Proof. We denote by IéJ) the subspace of IO on which Gal(FO/K)

is a free Z -module of rank

acts via Xg . It is easily seen that IéJ)

1 , and that each component of any basis of is a unit of the

(7)
IO
appropriate component ring.

Let Vv(7) be an isomorphism of formal groups over Zp s V1 E—F ,

Py

where E is the Lubin-Tate formal group on which the endomorphism m is

given by [m]T = 1T + ¥ . We remark that we only introduce this special
formal group in order to simplify the construction, which could be made
appealing only to the properties of E . We shall treat the construction of
the element o in two cases.

(2,)

Firstly, suppose kl <p-1. Let a be a Zp—basis of I0 f and put
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k !
a’ =1+ a[v(u )} . € U . Since v[u ] belongs to the maximal ideal
0,0 0 0,0 0
of each component of EO w the norm to Kp of each component of aé 5 is
clearly congruent to 1 mod p . It follows that we can choose an element
xr € U0 0 in such a way that each component of x belongs to 1 + pOp and
has the same norm to Kp as the corresponding component of aé 0 " We set
b ]
GO,O = x_laéso , and it 1s clear that a0,0 can be lifted to an element
kl p-1
and that = U . : is is a sli Sé€
o € U, and that GO,O L% a(v[ O)] mod 0.0 (This is a slight abuse

of notation to denote in each component a congruence modulo the (p-1)th

power of the maximal ideal of the local field.) It follows that for such an

o b
kl Ip*l
co,w,a(T) = 1% (a)w[v(T)) mod (w, )
On the other hand, if kl =p -1, we proceed as follows. Again we
: (7,)
choose a Z -basis a for IO and we set

] , and so

The minimal equation satisfied by l/v(ul) over EO 0 is

) m -1 ]p—l I

¢ an_j_ 4 ;qﬁ—TA, and so, since p 1is odd and u[uo_ -m , it
0 0
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-] -1

follows that the norm to E of is equal to 1 + ﬂ(a® a(aw Jp)

!
0,0 e ¥
w-l
If w 4is any prime of FO lying above p , [a ]i = (a)uJ mod W , and we

!

N

deduce from this that the norm to K of each component of «

congruent to 1 modulo p2 . We can choose X € Ul 0 in such a way that
== 9

each component of # belongs to 1 + p0 and has the same norm to K as

o

I

! We set « -z ta! , and it is

the corresponding component of al,O o 1,07 1.0

clear that dl 9 can be lifted to an element o of Uoc and that
2

-1

al 0 = 0 # a® (v(ul}]p_l mod pp(%_l)'. It follows that, for such an o ,

p -1 (p-1)
co,w,a(T) s B (a)mfv(T)]p mod(w, ok }

Thus, in both cases, we have an element a € UOO such that the
corresponding Coleman power series satisfy

k k_+1

Comal® =1+ @, () T R

Li4)
where a is a L -basis for IO

L

The logarithm map AE of E satisfies A'(T) = 1 mod [P, Tp_l) (see,
E ——

for example [2]). Since A(T) = Ag[v(T)] by the uniqueness of the

logarithm map, it follows that K'(T)_l é%-f(v(T)) - Aé[v(T)]qlf'(v(T)] §
and so we see that
k,-1 k

i

(56.6(D),, = Ky@), (vD) L podifw, 2 )




It is evident that

2

X )
r =, = 1
[[A (T) E?} gO G(T)Jw = kl.(a)wmod(w, 205

and so

-k
5 2 0
S Kay 2 k(o) “k t(a”) mod Pi
ky ok, OEGdl%FO/K] ; : Po
= kll X2 2(0)[a ) mod p_ -
o€Gal(F /K) Po =
i

; 2
But 0 acts on a via X (0) , and so

8, (a) = (p—l)kl!(a)EO mod Po >

~
and is therefore a unit of 1

THEOREM 27. Let i, and i2 be integers modulo p - 1 . Then

1
(Ll’iQ} A
there 1s a power series ¢ (Tl, TQ) € Iw[[Tl, 7_]] such that, for
(Z15%,)
all gelU * 2 |
o 0]
[il,z ) [Z,+2.) (2. 1]
o DR ER  Kle L o L ,
GB (Jl, J“2] = ¢ (jl, sznf (B) - (43)
(Z,.2,)
Furthermore, ¢ B [Tl’ TQ) 18 a unit.
Proof. Suppose for the moment that
(il’iz)
(i]a iz) F {1, l)mod(p—l, (p~l)/ro] . If we let o be the element
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of A such that W (a } = 1 , then it is clear that
¢ T., T,| = . L5 satisfies equation .
1* o (2.,2. ]V 1> "2
s ) R
(2,:2,)
Let kl and k2 be as in Lemma 26, and choose a € U00 2 such

that 6k 2 () is a unit in fm ; [This is possible since Lemma 6 shows

12

il £2

that ék % (B) depends only on the X; X, part of B .)] Equations (41)

1°72

and (43) together show that

(2,,2,) (2.,2.) 1-k k-1 k_-k
o6 Y 2, w T % () - Yapt At s (@)
) 2 kl k2 8) kl’kQ
(6 <l =1} g
kl—l _kl—k2
Since (kl, k2) ol l)mod[p—l, (p—l)/ro) o ip /T b is =
unit of Zp , and so the right-hand side is a unit.
[e ot ] K k .
Hence ¢ L2 (u l—l, u 2—1) is a unit of Iw , and so
(il’ig} : ; 5
¢ (Tl, T2) is a unit of Im[[‘fl, TQ:']
Suppose now that [il, iz} = (1, 1)mod(p-1, (p—l)/ro) . Let o, and
(,.2,) (¢,52,)
a, be the elements of Um L such that W = [al} = Tl + 1 -u and
[ilJQ} MM
W (a,) = (1)’ -u¥ . It clearly follows from equation (42) that
Mooy (2,,7,) (st
w W P I REa e = 2 B ) S L
[(1+f2) Flo, VP, 1) = (e, Y (n 1)




From the Weierstrass preparation theorem, we conclude that there is a

(‘il’?:g? ~
power series ¢ [Tl, Tg) € Im[ETl, TQ]] such that
(£152,) (£.,2.)
2 - 12
Gal (z..1,) = ¢ (7,5 7,) (7,41

(624 ] (st ] M M
1°%3 SaPl b Lo P _p 1
Gu2 2,-8,) =4 {75 TQ}I[1+T2} w |
[?:l’iQ}
and, since 0y and a, generate U, as a A-module by Lemma 24,
(5,1,
it follows from Theorem 22 that equation (43) holds for all B € U_

Let k. < 0 be chosen so that k. = i2 mod (p-1) and 1 - k2 is

2 2
(1,2)

"8

prime to p . Then, by Lemma 26, we can choose an a € U00 < such that
l,k?(a) is a unit in I_ . Once again, we see that
(1,7,) (1.%,.] 1-k
¢ S (O R T A (a)1' - (1-(a/7 )8 (o)
3 2> ) 1,k
k2 2
(u—l,u —l}

: £ 1 Y . M42y X :
Since T generates a subgroup of index rOpH in (O/ﬁj } , and this

A l_k .
is a cyclic group of order (p—l)pﬁ+l s W - i 1 mod p”+2 :
[1,&2] M M
Now W (o) € (l+Tl~u}A + I(l+T2)p P JA , and so
(2,2, (1,7,) k
W . (a) | ) € pM+l . It follows that ¢ 2 (u-1, u 2—1) is a

u-1.,u 2—1
( J



(_L,izj

unit in ?m , and hence ¢ (Tl, T2} is a unit of /I\OO[[Tl, TQM :
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CHAPTER 9

p-ADIC INTERPOLATION OF SPECIAL VALUES OF L-FUNCTIONS

Recall that for k > g = 0 , we defined Lm(@k+a, k) to be the element

of K given by equation (2). In fact, it follows from Theorem 15 that, if

we define Lm($k+a, k} to be the algebraic number given by equation (2)

. Hetd -
for all k=21 and J = 0 , then Lm[w +J, k} belongs to Kp when viewed

in the manner described in the appendix. In this chapter we shall produce

power series giving p-adic interpolations of the numbers Lm[w ; j) , and

(2,52,)
in the process we shall determine the image under W of the

N-submodule D of U_ generated by {(e(u)) : u € S} .

Before doing that, we shall make one remark about the relationship
between this submodule D and the group of elliptic units. Recall that

c! is the group of elliptic units of K We denote by C the
n,m n,m n

] bl 3m
subgroup of Cé ; consisting of those elements which are congruent to 1
b
¥ i ; i i C =7 w U
modulo each prime of Kn,m lying above P [that 18, " m - o ),
and we let C denote the closure of C in U [which is the
n,m n,m n,m

A-module generated by Cn }. Then, if we let E& denote the projective

Y

limit of the Cn " relative to the norm maps, it is clear that C_ is a

5

A-submodule of U_ containing D . Moreover, the image of D wunder the

rojecti £ U U i i C !
projection map from U_ to B 8 precisely e

If p €S and il and i2 are integers modulo p - 1 , we define
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[il’i )
2
Ry s 7
1 7 —
= Y u(a)|Na-w l(w(g))w QUP‘(Q)] [1+Tl}z[w(i)) (1+T2]Z(w(g)]J ,  (h44)
a€rl
and observe that for all (kl’ k2} = (il, iQ}mod(p-l) ’
(¢..1.) * k kK, k
BE o i 2] - T wte (me-v @b 2@) . (45)
¥ aerl
LEMMA 28. Let H be the MA-module generated by
(£42.) - (2,.2,)
172 , et N S e
{hu (Tl, T2} ¢ 1€ S} . Then H = N unless (zl, 12] = (0; 0)

or (1, l)mod(p-1) ; H(O’O) 18 the MA-module generated Dby Ty and T

2

(1:0)

and H 18 the module generated by Tl +1-u and T2 L R

Proof. Observe firstly that, for all u € S ,

0,0
1090, o) = Y u(a)(wa-1) = 0
; a€r
and
(1)
h (-1, u-1) = Y wu(a)(va-p@(a)) = o,
d X3
, N
and so it follows that the H are all contained in the A-module to

which the lemma asserts they are equal. Since A is Noetherian, it will

(2,.2,)
suffice to show that the H 2

contain elements which are congruent

modulo [p, Tl, Tz)m to generators of the appropriate A-modules for each

integer m = 0 .



To do this, let

C be a primitive

(p-1)th

root of unity in

a3

2° , and
p

let a, b, ¢ and d be integers which we shall fix later according to the

case under considerati

prime to each element of

L=

1 Qaub mod pm . o

2
ideals 21 = [al) and

function uyu € S defin

u(g) = 0 otherwise.

(15%,)

25ria d sn b ) e d b
N {2 b= e ) +n (1% (1+Tl)
1.C
2°cab d m
+ 5 ° (cu -1) (1+7,) “mod (p, R Byl
Now, if a=¢ =1 and b =d = 0 , we see that
(20,4 ) I
£y - o X 2 m
r, £ 7,) = (¢ "~z °)(1-2)mod (p, ;18 T2} ;
il i2 |
and [g - }(l—c) is a generator of A unless il = i2 mod p-1 . On the
other hand, if g =1, ¢ = E%i- and b =d = 0 , then
(,,2.) i z
Ly " i o m
h, (745 7,) = 2(z 7-1) + (1-(-1) ) (1-5)mod (p, Tan 2 s
[?:]_’?:2)
and so we conclude that §J = A unless il = iz =0 or 1mod p-1.

These last two cases can be dealt with as follows.

a=d=0 and b = ¢

on.

= 1 mod fpm and &2 =

=

ed by u[gl) .

Choose elements o

such that o

Ng2- E u(a] =

1 and a2 in

. m
1 = 1 mod Eﬂ* N

Ccud mod pm .

_—_2

A simple calculation shows that

7.a

:l’

0 which are

Clearly the
[az} both belong to I , and we consider the

1 - Na, and

Observe that when
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h(o,o)

" m \m
| (Tl, T (1-£)7, mod (p, I 7.

and

h(l,l)

G, 1) = Q-7 a-ulmed(p, T, 7).

Moreover, when a =d =1 and b=¢ = 0 ,

(0,0) . m
n 2., ,) = (£-1)7, med (p, 7,, g )
and
h(l’l)(T 7)) = (g-1)(r +1-w)mod(p, 7., T.)"
1 o F 2 S

0,4 is the module generated by T. and T, and that

It follows that H 1 2

H(l’l) is the module generated by Tl * 1 -~ % and T2 + 1 - u as claimed.

THEOREM 29. [Let il and ig be integers modulo p - 1 . Then there

(¢,.7,)

18 a power series G [Tl, T2] € ?m[[Tl, szj such that, for all

1l

integers kl > 1 and k2 < 0 satisfying [kl, kz] [Ll, 12)mod(p—l) 5

[Ch..) & K k, -k k -k

6 2 P (u tn, u 2) = (k1)1 lz,m[w 1772, kl] | (46)
Moreover
(£..5. ) (£..4.) (2 .2 ) (£.51.) (Z.,%.)
” 1”2 (D 1 2) 6 ( o (Tl,Tg}*lG 1° 2 (TlaTQ}H 1" 2

Proof. Equations (2), (30), (41) and (45) together show that if kl

and k2 are as in the theorem and u € S , then the value of



6l

(i, :% ) k K
2 1
G oqu)y Ty To) at

1tk -k k. (2.,2.) Kk K 1+k, -k k -k
e Ot B A T | 2 a2 dakr E P
12(-1) foh, @ -1, u —1}[kl—l}.ﬂp Lm[w : li
sy %y L(f)
Observe that 12(-1) W (f)(l+Tl} is a unit power series in
kl k2 l+kl—k2 k
A whose value at f(u -1, u “-1) is 12(~1) f whenever

(kl, kz} = (il, ig)mod(p—l) . It follows by the linearity in Theorem 22

that for each element h € H there is a corresponding element ey

of D such that for kl and k2 as in the theorem

[t i) k k
1>
Ge . (u l—l, u 2-1}
h
k k 1+k_-k k. -k
il 2 —
= hlu *-1, u “-1) (K -1)r0 2 le[w %2 5 ] wn
X P ' 1
(And conversely, for each e in D , there is an h € H such that

equation (47) holds .]

The theorem is now clear from the previous lemma and Theorem 27 unless

= (0, 0) or (1, l)mod(p-1) , in which case it still remains to be

i
)
'—l
53
N
s
|

shown that there is a power series satisfying equation (46).

Suppose (il, iQ} = (0, 0)mod(p-1) , and let €, be the element of D

; ; 0,0 : 4
corresponding to the power series T H( » 7 as in equation (47).

2

k
G(O"O)(u 3
e

=3 5 O} = 0 for all kl > 1 such that
0

Observe that
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kK. = 0 mod p-1 , and so G(O’O)(T /i ) =3 7 G(O’O)[T T } for some
1 : e, L p 2 1 "2
power series G(O’O)[T I ) ¢ T [ET i ]] . It is clear from equation
1> 2 o 1= T2
(0,0) : A
(47) that G [Tl, T2} has the desired properties.
This leaves the case where [il, i2) = (1, l)mod(p-1) . Consider the

element e of D corresponding to the power series Tl +1-u , and

(1,1) %
observe that Ga : (u—l, U —l} = 0 for all k2 = 0 such that

!
k, =1 mod (p-1) . It follows that there is a power series

2

G(l’l)[Tl, r,) € 1 [[r,, 7,)] such that

(1,1) g CEsd)
GQl (Tl, Tg) = Q [Tl+l—u}G (Tl, T2)

o

and it 1s clear that it has the properties required by the theorem.
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CHAPTER 10
(i]’iz}
THE STRUCTURE OF v _
As in the introduction, we define Y _ to be lim U /C , where the
= N, .
projective limit is taken relative to the norm maps.
THEOREM 30. Let il and i2 be integers modulo p - 1 . Let
(215%,)
G [Tl, TQ) be an element of N which generates the same ideal in
(£,.%.] [£52,)
2 - 125 e Ji=a o .
Im[[Tl, T2]J as G (Tl, T2] o Then Y_ 18 1somorphic to
(¢.,2.) (¢..2,) (2.2.)
1379 129 e LD
H /e (7,, 7,)H
Proof. We recall that in Chapter 8 we defined H to be the
image of W and that this is A unless
(2,.2,)
' - - ) . 1> 2 :
[ll, 12} = (1, 1)mod (p-1, (p—l)/ro} 5 in which case #H is generated
PM pM
by Tl + 1 - u and (T2+l} - U
e el At (2520 (Gt} oy = _
The projection map p s Y -~ U has as its image those
1 4m o N oM
(2,52,)
elements of U}_1 o | | odor which the local norm to XF of each component is
1 . It is clear that N ker p = {1} . As we have already observed
n,m=0 gt
[i L) (L s ]
1 / -\ 1
- it Y e (48)
n,m n,m
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Let jn - be the composition of P, m with the canonical surjection

2 2

of U onto U /C The image of J is precisely
n.,m n,m n,m n,m
(2,.2,) (2,,2,) _(2,2)
the image of Y_ under the projection onto U e o In

n,m n,m

.
HS

view of equation (47), it is plain that the kernel of J

n,m
(i ,iq} .
D L ker p , and that g is a A-homomorphism.
1 M M
(il’iz) [il’iz} [il’i2)
Thas. ¥ _ = =~ lim U /D ker p . But
o desant, 10D n,m
(i) i) ()
N ker p = {1} and so it follows that Y = | /D
n ,m=0 i i ”

The theorem is now clear from Theorems 27 and 29.

We see from the above theorem that we have the following exact sequence

of A-modules:

H[il’lz]
i TP O S— :
| (£151,) (215%,)
G 7.0, d
A A
S e e - o2 B + 0 , (49)
G(zl,z?) ) H[Ll,LQJ [11,12] .
[Tl, 2) +G (Tl,Tg]
where
(sl [Eysd,]
o Ee L2y 7, )A
& = (152,) (£1:7)]
G T,»T,)H
Clearly A injects int i d H(il’iz) d
ear injects into — , an
) § ] “TEI?ZET- a an

a



ideal of

(,.2,)
A

A

f

m
L

, and

, T, A

~
N
S
—
fu
Lo
®
0
}_—l
[’-!'_\.I
e
g
}_.A
«
0
o
=
(]
[
=
®
oL
=15
=
S
@)
o]
5
O
e
®
B
G
H
i—-l-
=]
0
!.-—I-
&
oY
+-_J

is pseudo-isomorphic to

This proves Theorem 1.
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APPENDIX 1

CONSTRUCTION OF MEASURES ON z;

In this appendix, we shall indicate how one may deduce the existence of
measures on 7 with certain properties from the results in Katz [6]. 1In

particular, we shall construct a measure which will enable us to prove the

congruence in Theorem 15.

Let N be any positive rational integer which is prime to p , and

denote by u, the group of WNth roots of unity. Observe that p_ is

e o]

N

unramified in the extension F [u ] ever F.., and fix 'a prime P of
coN" Y oo =5}

co

F [UN) lying above p_ . We denote by Up the Artin symbol

(p, Fm(pN)/kj , and by W the ring of integers of the completion of Fw[uw)

at P_ . As usual, we regard Fm(UNJ as lying in the complex field C ,

and we equip it with an embedding into its completion at P _

In §6 of his paper, Katz produces measures which, when evaluated at a

3 : : : 2
suitable test object, give rise to W-valued measures on Z . Moreover,

as we shall see, Katz has shown how certain integrals over these measures
may be evaluated and related to transcendental expressions for numbers which

lie in Fm(uN) .  We shall borrow much of our notation from Katz [6], and

the references in all that follows refer to the numbered equations and

paragraphs in that paper.

Consider the test object (0, $, o) where ¢ is an isomorphism of
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Zp-modules $ : Qp/Z s Hl and a 1is any level N-structure

a : (Z/NZ)° = 0/N0 . If we identify Qp/zp with K /0 in the usual

o

way, we may associate with ¢ a unique element p € Gal(F_/K) such that

& ﬁ*—(m+l) mod Opl = K2(p)w*_(m+l) mod 0 for all m= 0 .
)

The isomorphism ¢ : U o i which Katz associates with
m=0." p

¢ in 8.3.15 is given by

q)(,”--(m+l)] r (Qm/ﬂm+l, ds(p—-(m«l»l)]gw]

m

m+l]

where ( 5 )m denotes the Weil-pairing of the [p th division points

of L . The corresponding isomorphism of formal groups in 8.3.17, which we

shall denote for the moment by np : B — G& , 1s the unique isomorphism

~

defined over [ satisfying

ny(e(@,m™ ) = o(n ) -1

It will be useful to relate np to our standard isomorphism n chosen
in Chapter 5. Recall that we chose e, € 0 such that enn* = 1 mod p

and observe that é(p-(m+l)} = @[e:+lﬁ*_(m+l)J . It follows from the

KQ(D)

m+l)) m+l})

definitions of np and of N that np(e(ﬂm/ﬂ = H(E(Qw/ﬂ

On the other hand, Gal(X _/K) acts on u _ via K K, » and so we easily
p

deduce that np(T) = (1) . Moreover, the power series expansion of



(03}
[@o)

np(T) is clearly eXp[K2(p)QpA(T)} - 1, and so we conclude that

0
0 '= k. (p)R
p 3P p

Observe that N(dI/1+T) = QEA'(T)dT , and that, since A'(T)dT is

defined over X and is equal to ¢€*(dz) , where dz 1is the standard

=7
differential on C/L , we may take [QE] as the unit ¢ 1in 8.3.16 and
P)

Q_ as the period §8 in 8.3.17.

o0

Let g be any function g : O/N0 + 0 and let € be any locally

constant function € : 22 > 0 . We write f for the function

P

i (Z/NZ)2 * (| , depending on both g and o , given by

Fa, v) = Y glalw, v))det a)?
wmod IV

where det o 1s the Nth root of unity associated with o 1in 2.0. If €

: r : ;
1s constant on cosets modulo p , we write (Ef)r for the function

(Ef)p : (Z/pPNZ)Q + W defined by

-3

(Ef)r.(_u mod p'N, vmod p W) = €(u, v)(f(u mod N, v mod N)) 2

Consider the p-adic modular form Qék,j,(Efjr e v(Ww, F(p N

defined in 5.11.2. It is clear from Lemma 8.3.25 that 2%

belongs to W . In fact, as we see in 8.6.5-8.6.7,
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s 0 dz B

o 3

5 —(k+j+l)
0, ¥, o) = [Qp} x 8] (50)

k,j,(af)r k+g+l -J 5 (Ef) [

Q. dz, By X Bu) belongs to Fm{UNJ . The

where 20k+j+l,—j,(€f)r[50’ %

- I] - - - . i
function on 0/p N0 which occurs in the transcendental expression given in

8.6.8 for this element of ﬁg(uw) is easily :seen from the diagram 8.8.2 and

equation 3.6.1 to be given explicitly by

P
o+ gla) 4%; E: LVt, <, (p)ai ( ) (51)

r
p

p

Before applying this to the construction of WW-valued measures with
: . 2 :
certain properties on Zp , we need one more result about p-adic modular

forms which will enable us to perform Katz's 'changing level trick".

Suppose F € V[W, F[pPN)arith] and let F(r) € V[w, F(N)apith] be the

image of F wunder the "exotic'" isomorphism 5.6.4. Then we see from Lemmas

B.,3.25 and 8.6.2 that both F and F(P) take values in W and are related
by the formula
i o
(r) P %
g, ) = [P, 8, o)) 2 - (52)

X : a
Choose an element a € ZP and consider the W-valued measures up( )

and 1° on Zi defined by

(a,1)

J ¢ (2, y)dug(a) = J d(x, y)flu, v)du (0, &, o)

and
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[ ¢ (x, y)dug = J ¢(x, y)flu, v)duN(O, $, a)

ﬁhere uga’l) and UN are the measures constructed in Theorems 6.1.1 and
P x?
6.4.7 respectively. Of course, ug is supported on Z . It follows from

8.5.0 and equation (52) that, if p 1is any integer chosen so that

b=1mod N and b = a mod p* ,
r
6
k j (a) k+j+1 =
J pla) _ ., ktg+ %
[ £ ‘Zj E(:L', y)dug e Qq’k’j,(ef)r 2a cpk,j,[b](Ef)P (O, L‘ﬁ, 05)
and
] o Olz:
= *
J x i elz, y)dug (gék’J=(€f)r(O’ $a @)) =
Here [b](ef)r denotes the function on (Z/pPNZ]2 which we obtain if
we replace € by the function (u, v)+— e(bu, bv) . Moreover,

&F .
k,J,(Ef)P

2
X
depends only on the restriction of € to Z , and we see from the proof

2
of Corollary 8.5.4 that if € 1is supported on Zx

wi,j,(ﬁf)P = ¢k,j,(€f)r . Thus, we can calculate these integrals explicitly
using equations (50) and (51) together with 8.6.8.

We shall now specialize to a particular choice of the function g .
Let N be a positive rational integer belonging to £ which is prime to

p , and consider the function g : (0/N0O) - 0 defined by
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1 if (@) = o,
gla) =

0 otherwise.

We see immediately that

-(k+j+1)
0% [_QQ]

k.70 B, a) = k:Nk+l(2n/vE§jJQ;(k+j+l)L[$R+J+l, k+1) .(53)

Now, as mentioned in the introduction, if k=g = 0 ,

(Qﬂ/VEK]JQ;(k+J+l)L(@k+J+l, k+l} € K , and so it follows that, for such Kk

and J , I xkdeug(a) lies in fm . Because of the p-adic continuity of

Up(a) , this is sufficient to prove that ug(a) , and hence ug , 18 an

~

I_-valued measure. The obvious consequence of this is that the numbers

] for k, J = 0, when viewed

[zn/@jg;(k+j+l)z,(‘q?k+j+l, k+1), which lie in K{u,

as elements of the completion of Em(uN) at P_,actually lie in Kp

Llp(a)

Let and up denote the Tm—valued measures defined by

J ¢ (x, y)dup(a) = _ % J ¢[_ &, _deuo(a)

and

I
|
==
ps
P ———
|
=8
|
g
 —_
8y
=

[ ¢ (x, y)iup

It is evident from equation (53) that these measures are independent of the
choice of N , and that if we omit the superscript p when ¢ 1is the
isomorphism corresponding to the identity in Gal(F_/K) ,

o}
j ¢ (x, y)dup(a) = [j ¢ (x, y)du(a)l
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and

P
J ¢ (x, y)dup = [J ¢ (x, y)du} :

THEOREM 31 (Katz). Let u(a) and yu be the Tm—valued measures

defined above, and let h : Z; > Zp be any function which is constant on

cosets modulo pr . Extend h to the whole of Zp by zero. Then, for

k=21l and j =z 0 , we have the following formulae:

] e (1—ak+j][Qpﬂm}_(k+j)(QH/VEE]j(k—l)IL($k+j, k), (54)

J xk'lyjdu = (QPQ¢]_(k+j)[2ﬂ/%§}]j(k—l)!

¢ (10 @)/ (LT /L (T, 1), (55)

|

J gl dne a (Qme}_(k+j)[Qﬂ/VE;JJ(k-l)!

: 5 [h[xz(q)]—ak+jh(ax2(0)]]CF (o, T, &) (56)
o€Gal(F /K] i S
and
| J Pt VAT [Qpﬂm)_(k+j)[2ﬂ/V3;]j(k-l)!
k+J
Y “(p) .
’ 5 h[KQ(U)} - e h K”(Oo—l1I]CF (o, $k+J, k) (57)
0 €G: 1lL[FP/ K) NI)J L P § o

(a)

Proof. The first integral follows from the definition of W and
equation (53). The remaining integrals can be determined in the same way by

calculating the value of 2 (0, §, o) for the appropriate choice

@k_l,j,(ef)r

oF E .
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We remark here that equation (55) plainly shows the existence of the

- - "‘
(?’l 3?’2]
power series G le, T2] . However, from our knowledge of the action

of Gal(F_/K) on Qp , it is clear that the generator A of p chosen in

8.7.3 is Y(p) , and so, with an appropriate choice of function g , 2t is

(4,1,

clear that the existence of the power series G . [T T ) is already

L 2
implied by equation 8.7.6.

Finally, we turn to the proof of Theorem 15. Let k=1 and J <0

4 % "y
akJ

and let H € S . Choose a unit aq € Zp such that # 1 . To prove

Theorem 15, it will clearly suffice to show that

(1-a*9) ¥ U(g)(&§-¢k(g)@ﬁ(g)][Qpﬂm]j—k(2ﬁ/vagjj

aer —
. (k—l)![l—wk_J(p*)/NE*kJL(Ek“J, k)
k (ﬂ f /}‘x)
£ (o 1)J9 6 (k=131 T uta) (War (- @)ck) )|, (58)
P a€r
Let hj : Z; > L be a function which is constant on cosets modulo pm

and which satisfies
hj(-y) = yJ mod pm for all y € Z;

Now, we see from Theorem 31 that the left hand side of equation (58) is

equal to

J Y u@)mav @) @)y

z XZX aEI
p p

On the other hand, this is clearly congruent to



4
K~ k He
J g > H(a) Nihj(—y)—w (g)hj[—w l(g)y]}du(a) mod ?Z ,
Z xL~ atl
P P
and Theorem 31 shows that this integral is equal to
Q”k(k—l)! [h.(Kz(U)}—akh,[aKz(O)]]
5 o€cal(r /k) ‘7 J
Z’ (;.1-ﬂpn:./-"{) g
s |2 U(ﬂ){ﬁéﬁ (k)-v~(a); (k)
EE. &L M =""m
1 (AR
But, (k-1)! Y u(a) quwfk)—¢t(g)ém(k) J belongs to Im , as
a€l Y
was shown in Corollary 14, and

L

hj(Kz(o)] - akhj[aKz(G)J (—l)j[l—ak_j]KQ(G)j mod p .

It follows that the last mentioned integral is congruent to the right hand

side of equation (58) modulo Pi . Thus equation (58) holds modulo PZ for

an arbitrary choice of m , and so we must have equality. This establishes

the assertion of Theorem 15.
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APPENDIX 2

A KUMMER CRITERION

As an application of the ideas developed in this thesis, we shall

relate the following simple arithmetic property of the curve FE to p-adic

.properties of special values of primitive Hecke L-functions.

Let F be any Galois extension of K contained in KO We say

0"

2

that p 1is irregular for F 1if there is a cyclic extension of F of

degree p which is unramified outside the primes of F 1lying above p ,

and which is distinct from the composition of F and the first layer of the

unique Zp—extension K of K unramified outside p

The best result in this direction is due to Coates and Wiles [1] who
give a criterion for determining whether p 1s irregular for the ray class

field of K modulo p in terms of the p-adic properties of Hurwitz
numbers. We shall extend their result to provide criteria for determining
whether p 1s irregular for any Galois extension of K contained in

Ko o °

We write L($k, s] for the primitive Hecke L-function attached to @k

for each integer k = 1 . Since L[@k, s] differs from L(@k, s) only by
a finite number of Euler factors, it follows from our earlier results that

the numbers
(2n/MdK}JQ;(k+J)L($k+J, ) . k=21, 420, (59)

belong to Kp
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In order to state which of the numbers (59) determine whether p is

irregular for a given field F , we introduce the following notion. Let F

be any Galois extension of K contained in KO 0" We shall say that a
E]

character Y of Gal(K /K) belongs to F 1if Gal(K /F) is contained

0,0 0,0

in the kernel of X . Then, our result is as follows.

THEOREM 32. Let F be any Galois emtension.of K contained in

Ke g Then the prime p 18 trregular for F <if and only if there exist
, —y

integers k and j with 0=gj <p-1, 1< k =p such that x?X;J 18 a

non-trivial character belonging to F and the number

(ep@ e, LGN, 1) s mot @ wnit in 0 .

As a numerical example, consider the field K = Q(Z) and the elliptic

2 3 : .
curve F 1y = 44 -4 . 1f p 1is a prime congruent to 1 modulo U4 ,

and p 1s a prime lying above p , then the characters belonging to Rp s

the ray class field of K modulo p , are the characters XiX;J for which

J = 0mod (p-1) and k = 0 mod 4 , while the characters belonging to Rp 5

the ray class field of KX modulo p , are the characters XTX;J for which

K+ = O0Omod 4 . Using the table in Hurwitz [5], together with the

formulae in Weil [13] p. 45, it is easy to calculate the following table of

values for [2H/V3;3j(k—l)!Q;(k+j)L($k+j, k)

It follows from Theorem 32 that p 1is regular for both Rp and Rp

when p S , but that while p 1is regular for R_, it is irregular for

Rp when p = 29 , since 29 divides ﬂQ;QOL(EQO, 19)
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Values of ﬂJ[k—l)!Q;(k+J)L{@k+J, k] for the curve yz = 4x3 - 4x

J
k+g 0 1 2 ’ 3
1 e et ia* e e
8 2% .8.5 3.7 2.37% i
12 ! 3% 5t 9 157" A 2° 77 g+
el 2%t st et ar g 4 2 .8%, 1 18 210 5
20 i S S T | ot 37 7.197 L, 0o 213 .33.67 213,32, 37
A D e D i T e 1 D S LR 0

2

Similarly, p 1is irregular for Rp when p = 37, 389 or 15629

—20

: X A a2 4
since these primes divide w §_ L[w . =

, 17) , w L(p

o0]

, 23) and

“29;24L($24, 22} respectively.

Proof of Theorem 32. Let M denote the maximal abelian p-extension
of F unramified outside the primes of F dividing Pl and let F denote
the composition of F and K . It can be shown that for F as in our
theorem, Gal(M/F) is finite, and it is easy to deduce from this that P
1s irregular for F if and only if Gal(M/F) is non-trivial. Thus, the

idea of our proof is to relate the formula given in Theorem 11 of Coates and

Wiles [1] for the order of Gal(X/F) to the numbers (59).

It will be convenient to do this in two parts. The first part is to
prove the p-adic analogue of the well known formula which gives the product
of the regulator and the class number of an abelian extension of K in

terms of logarithms of Robert's elliptic units. The y-adic logarithms of
g P p g



78

these elliptic units arise in the work of Lichtenbaum [8] as special values
of certain Iwasawa functions which he constructs and which, as we shall
show, are related to the functions which Katz produced interpolating the
numbers (59). The congruences which arise from this observation will yield

Theorem 32.

For the moment, let us suppose only that F is a finite abelian

extension of K of degree d and conductor g . For each character x of

Gal(F/K) , we let FX denote the fixed field of the kernel of x and we

write g for the conductor of Ek . If we denote by R the ray class

field of K modulo EX

, it is clear that we may regard - X as a character
of Gal(Rg /K} , and hence, via the reciprocity map,as a primitive character
X

of the ray class modulo EX which we shall denote by Cl(gx) . Let nx

be the smallest positive rational integer in EX and let w be the

&

number of roots of unity in K which are congruent to 1 modulo %X . Let

w and Wp be the number of roots of unity in KX and F respectively, and

let A denote the class number of F . Then, if ¢ (C) , C € Cl(EX) is

the invariant defined by Robert [10] p. 1%, we have the following lemma.

LEMMA 33. With a suitable choice of the sign of the regulator R of

bd"lwhﬁ/wF " (60)

—

T—T' I X_l(C)loglw (C)|}/n W =
x#1 ‘cecl(g, ) LT

where the product on the left is taken over all non-trivial characters of

Gal(F/X) .
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Proof. This is Theorem 3 (ii) of Robert [10], if we note that the

2
numbers Robert denotes by p(x') satisfy {| | Q(X’)J =1
XF1

From now on, we fix our choice of the regulator R of F so that

equation (60) holds, and we shall now prove a p-adic analogue of this

formula. We denote by Cp an algebraic closure of Kp » and let 1log Dbe

an extension of the p-adic logarithm to the whole of Cp

Let A be the

group of values taken by the characters of Gal(F/K) By fixing an

embedding of K , the algebraic closure of K , in C , we may regard the

elements of A both as elements of C and of C

Naturally, our results

will be independent of this choice.

Recall that R_ 1is the ray class field of KX

g modulo g and we
extend log| | and log:_E to R; ® Z[A] by defining
logla ® a|l = a log |af (61)
and
logB a®a = a logg o for a € R; and q € Z[A] . (62)

Let ¢ denote the expression {w (&) @)X_l(C)1 , and
X 0601i§ ) V& J

observe that if

g € Gal(F/X) , then

g _
Py = wx ® x(o) .

It follows that
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det |log (¢ ‘ = det(x(o)} . | | E: X_l(C)loglw ()]
X X#1,0#1
x#1,0#1 Y#1 Céc1(§x] g
(63)
and that
0] -1
= . C c
det[logE @XJ dEt(X(U))x#l,cil W > x (C) logp mg (C)
B X#1,0#1 X#1 CGCl[gX) = =X
- (64)
Choose units €1s st €4 3 in F which generate a subgroup of index

Wy in the group of units of F so that

il

s »
IV o#1,155<d

o
R =2 ldet[log

We define the p-adic vegulator of F , Rp by

R = det[log\ QQ1 :
4 P JIg#1,155<d

(This definition fixes the sign of R _, but otherwise agrees with that used
P

by Coates and Wiles [1].)

Now, if CO is a fixed element of Cl[EX] T (C)/ng(CO] is a undit

in R fopr all ¢ € Cl(;x) , and it is clear that

g

o= TT (o, ©)e_ (c))) ®xHO)
cecl[;x} Ex By -

Moreover, since @X is fixed by Gal(Rg/F] , it follows that if W denotes

the group of roots of unity in F , there are elements aX . € Z[A] and

2
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ux € W® Z[A] such that
=1
¢, = U e.®a
X X J‘:l J XSJ
Thus, if o € Gal(F/K) ,
9] od_l o]
= T Te.®a ;
e Sk W
J_
and so we conclude that
d-1
det[log ¢ ‘] = det(a_ .) bk~ RfD (65)
X1)y1,0¢1 X" %L s d=i<d
and
det(log wUJ = detfa .] 23 asded R . (66)
£ X X#1,0#1 Xsd X s 1= E

But, it is easy to see that det[x(c)] is non-zero (see, for

X#1,0#1
instance, Lemma 10.9 of Lichtenbaum [8]), and so, since R # 0 , we conclude
from Lemma 33 and equations (63)-(66) that we have the following p-adic

analogue of Lemma 33.

THEOREM 34. With our given choice of the sign of Rp s

12d'lwhﬁ /wF 3 (67)

¥ ~Liayen 7| T
ok 1 . i et Wy P

x#l ‘Cec nx) X By

where the product on the left is taken over all non-trivial characters of

Gal(F/K) .

Recall that if ¥ is any character of Gal(F/K) , we may regard ¥ as

a character of the ray class modulo g and hence as a primitive Dirichlet
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m
Suppose EX = E_ng , Where gx is prime to

character of conductor gx
uniquely as the product of two primitive

X
m

Then we may express
and p X

P -
respectively.

Dirichlet characters Xo and Xp of conductor ¢
be the point'of exact order

Y of ¢ ., and let P
X =K X
on the curve E given by B =P + P where P = E(Q Y ] and
X Xo X Xo i
B
m

Choose a generator

o
X

may be regarded as a point of order p

m
P =&(@/mX) . The point P
X = X
E P
on the formal group E , and so, if n denotes our chosen isomorphism of
~ ~ m
t B —* G% as usual, CX B n{PX ) +1 18 a p X_th root

Io

formal groups n

for the Gauss sum

of unity. We write CX

m
X

-m., P
_ X a
C = ( ) -
X : azi %2 ) CX

=4
Let E denote the triple [E, 2dx/y , N *) as in §6 of Lichtenbaum [8]
Then we have the

and let L(E, ¥, PX} be the function he defines in §8.1.

following theorem.
K

be the relative discriminant of F over

THEOREM 35. Let dF/K

Then T | L(E, X, P.)(1) , with the product taken over all non-trivial

X#1
characters of Gal(F/K) , has the same p-adic valuation as

phR

A _3
— « TT (a-tv)™7) ,
vy alp
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where the product is taken over the prime ideals of F lying above p and
Nq denotes the norm to K of q

Proof. It is easy to see from Corollary 9.4 of Lichtenbaum that, if Y
is non-trivial

E 1
L{E, %, PX}( )

¥ 06 1ap

” CEClZ(E,X) p %,

(C) .(68)

Since p

m
is prime to 2 and 3 , and Y. + T X is prime to

= s
=K

is clear from equations (67) and (68) that it will suffice to prove that
I'Te, (1-x(m/p)

x#1 X

%
has the same p-adic valuation as pd.°

rig T_T'[l~(¢2)_l).
alp

m
Now, it is well known that

3 is a unit in C , and so the

conductor-discriminant theorem shows that [ ] C

has the same p-adic
X#1L X o
i
valuation as d._°

F/K °

Moreover, if H denotes the maximal abelian extension
of KX

contained in F in which p

is unramified, it is easy to see that

only those characters X which belong to H# contribute to | (l—x(ﬂ)/p).

X#1
We conclude that | | (le(W)/p) has the same
X#1

P—adic valuation as
1-[H:X]
P

» which is also the same as the p-adic valuation of
=)
p | ] (1-tnq) 3.

alp B

From now on we suppose, as in Theorem 32, that

F is a Galois
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extension of K contained in KO 0 ° The importance of the previous
s

theorem can be seen from the following corollary.

COROLLARY 36. Let F be a Galois extension of K contained in

KD o Then p <8 regular for F <if and only if the number

T BLE, % PX)(l) s Where the product is taken over all non-trivial
X#1

characters of GallF/K) , i8 a unit in Cﬁ .

Proof. Recall that M denotes the maximal abelian p-extension of F

unramified outside the primes of F 1lying above p , and that F denotes

the composition of F and K . Since the p-adic regulator 'Rp is non-

zero, it follows from Theorem 11 of Coates and Wiles [1] that Gal(M/F) is

finite, and that it is trivial if and only if | [ L(E, ;o PX}(l) is a unit
X#1

in C . But since Gal(F/F) has no torsion, we conclude that p is

regular for F if and only if Gal(M/F) is trivial, and the assertion of

the corollary is now plain.

To conclude the proof of Theorem 32, we need to relate the numbers (59)

to the values of L[E, 0 & PX} . Let p be the Dirichlet character of

conductor £ given by

O} = Ul(({l)) Jo s ke, £) = 1 (69)

Kk - i ) Mo
and observe that the character J when viewed as primitive Dirichlet

character, is given by

xix;j(a) = wk(a)w_j(&)pk+J(a) " (70)




x
where W 1s the usual Teich-Muller character on Zp [and hence a

Dirichlet character of conductor p under our identification of 0  with

i ). By the characters on the right hand side of equation (70) we mean,

of course, the associated primitive characters.

ey

THEOREM 37. For each integer + modulo w , there is an 1_-valued

2
X
measure . supported on Z) such that

J 2 xk“ly'j(jui - (-1)k+j(k—1)z[zw/@J(Qpﬂm)'(k+'j)(l-wk+'7 (g)/Ngjﬂ]

Z. =
P

[l—$k+j(g*)/ﬁg*k7wL(@k+j, k)

-

jerall k=1, G =0 satisfying k+j = 2 mod w (71)

and

P iy, DR N 1
J K lw.](y)dui - 0k (0.9 F I (@) Gpip) T8 (oa)kw ()
5 P = - o€l o
Z
. a£0

gor all- k=3 .and 7% 0med p-1 . (72)

: X , 2 (a)
Furthermore, i1f a € Z7 , there is another 1 _-valued measure W on

ZX such that
p

Jz #lau® = (1) 0F 010 9) - @) p)al (7, 1)

E."

Jorall K= 1 such that k= £ wod w . (73)

Proof. Let N be a positive rational integer belonging to the

-1 : . ’ . 1 .
conductor of p which is prime to p . We regard o as a function
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P

o ¥ . 0/M0 »0 and let ; Dbe the corresponding measure defined in

Appendix 1. It is easy to check that the measure M defined by

J bz, y)du?’ < %’J (b[‘;_j'a deU .

P
has all the required properties. Similarly, if we define uéa) by
J plaign® - L | q)[f dn'?)
(2 VJ " N =7
£ %Y
g P

it is a simple matter to verify that it satisfies equation (73).

We are now in a position to prove the following theorem, from which we

will be able to deduce Theorem 32.

THEOREM 38. Let x be a non-trivial character of Gal(F/K) , and let
' “ %
il and £2 be integers modulo (p-1) such that ¥ = S (O Then
—il il
Xg = Xw and xp = w . Choose a generator YX of the conductor N

of Xq as before, and let PX be the corresponding primitive gx_diuision

point of E . Then L(E, ¥ PX] 18 an Iwasawa function,and if a 1is a

h primitive (p-1)th root of unity and wu = 1-i. mod p-1 ,

i

| r _’L
} = 2 :
. - o d Ap=1)
, YXQE J [Yxx} W (y)c:i'u,‘bl_‘?’2 » %o 3 0 mod (p-1)
L{E, ¥, PX)(u) 2 J_Y 5
22 )@ ) 2 g )
11 YX LLl L) 12 - p
1-a
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Proof. Since L(E, x, PX) is a continuous function, it will suffice
to prove that if k=2 3 and k = il mod (p-1) , L[E, X, PX)(l—k) is given
by the formula in the theorem, since this is a dense subset of Z_ . But,

for such k , Theorem 8.2 of Lichtenbaum [8] shows that

}_J

/k

_k[l—xo(ﬂ)ﬂk/pJE
0

L(E, X, PX)(l*k) = _Q -

o

is given by Theorem 7.2 and

%
2 1
-1 %1 (y /Qm]k .2 (“i“
X a€l o
a# 0

E’v
k’ SX O

. e T A
Since x, (M = w Q[w(g)]w (p) , the theorem follows immediately from

equations (72) and (73).

Let X be a non-trivial character of Gal(F/K) and choose integers k

and J with 0 =g < p-l and 1< k =p such that Yy = x?x;J . Bince

L(E, X s PX} is an Iwasawa function, L[E, s PX}(l) is an integer in Cp

(in fm » in fact), and it is a unit if and only if L[E, X » PX](l—k) is a

unit. Now, if 4 =0 ,

L(E, X s PX}(l—k) = (_l)k-l(k—l)lﬂl_k(

Ky, 9,0 (-0 @) p)ul (7, 1)

and so we conclude that L{E, X s PX](l) is a unit if and only if

Q;kL(ﬁk, k) is a unit in OP :

On the other hand, if j # 0 , it follows from the fact that




e
I

= wJ(y) mod p for all y € Zp and Theorem 38, that L[E, % Py](l—k)

. . g . l_k 'i . . 0 -
is a unit if and only if { X y”dup+i 1s a unit. Again, we deduce from
J LT

equation (71) that this is the case if and only if

(QH/VZ;]jQ;(k+JJL(@k+j, k] is a unit in OD

These facts, together with Corollary 36, yield Theorem 32.

o
o
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