
ON TWO VARIABLE p-ADIC L-FUNCTIONS 

by 

Rodney Ian Yager 

This thesis was submitted to the 

Australian National University 

for the degree of 

Doctor of Philosophy 

July , 1981 



(i) 

STATEMENT 

Except where otherwise indicated , the work presented In this thesis lS my 

own . 

Rodney I . Yager 



(ii) 

ACKNOWLEDGEMENTS 

The work presented in this thesis was undertaken at the Australian 

National University and , for a period of eighteen months , at the Universite 

de Paris-Sud . I would like to thank both these institutions for the 

excellent facilities which they provided for my research , and for the 

willing assistance which I obtained from each member of staff . 

Particular thanks are due to my supervlsor , John Coates , who 

introduced me to the problems considered i n this thesis , and whose door was 

always open to listen to my ideas and answer my many quest i ons . I cannot 

overstate my indebtedness for his constant encouragement during the last 

three and a half years , and for his invaluabl e s uggestions and comm,ents on 

the numerous drafts of this thes i s . 

I would also like to thank Mrs B. M. Geary , who typed this thesis with 

her usual skill , care and attention to detail . My wife , Elsie , who helped 

me proof-read this thesis , and my family also deserve thanks for their 

constant love and support , without which this work would not have been 

possible . 

Many others have contributed in varlOUS ways to the completion of this 

work, and to all of them I express my Slncere thanks , hopin8 that I may be 

forgiven for not mentioning them each by name . 

Finally , I would like to acknowledge the financial support which I 

received from the Australian Government , in the form of a Commonwealth 

Po~t~r~duate R searc h Award , througllout the period of my research, except 

for a portion of my stay in France , during which I received a French 

Government Scholarsllip . The Australian National University also provided me 



with a small additional allowance for the entire period of my research, 

and bore the cost of my travel to and from France . 

(iii) 



(iv) 

ABSTRACT 

Let E be an elliptic curve defined over an imaginary quadratic field 

K with complex multiplication by the ring of integers of K. It has long 

been felt that certain special values of the complex Hecke L-functions 

attached to powers of the Grossencharacter of the curve E over K are 

deeply related to the arithmetic of the curve. 

Recent results of Katz have shown the existence of two variable 

p-adic L-functions which interpolate these special values . The purpose of 

this thesis lS to relate these p-adic L-functions to the arithmetic of the 

curve E . In particular , it will be shown that they are the characteristic 

power series of certain Iwasawa modules attached to the curve E. 
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CHAPTER 1 

INTRODUCTION 

Let K be an imaginary quadratic field with class number 1 ,and 0 

the rlng of integers of K. In this thesis, we shall study the arithmetic 

of an elliptic curve E defined over K with complex multiplication by 

O. Let ~ be the Grossencharacter attached to the curve E over K by 

the theory of complex multiplication, and let L(~, s) be the complex 

Hecke L-function attached to the powers of ~ (k = 1, 2 , 3, ... ) ; here 

we have fixed an embedding of K In C. As Eisenstein seems to have been 

the first to suggest (s ee [13J), certain special values of these Hecke 

L-funct ions seem to be deeply related to the arithmetic of E. The 

underlying idea of this thesis is to exhibit some of these connections. 

To state our results precisely , we first recall the work of Visik-

Manin [12J and Katz [6J on the p - adic interpolation of these special 

vaJues . Let p be a prime number f 2, 3 , s uch that E has good 

reduction above p . In addition, we always assume that p splits in K , 

say (p ) = pp* (very little is known about e ither p-adic interpolation or 

classical descent theory relative to powers of p wh en this is not the 

case) . Fix a Weierstrass model for E 

(1) 

such that and belong to o and the discriminant of (1) is prlme 

to p . Let L be the period lattice of the We i erstrass P-funct i on 

assoc i ated with our model, and choose an element rt E L 
00 

such that 



L - r2 0 
00 

Then, if -d denotes the discriminant of K , Damerell's 
K 

Theorem shows that the numbers 

2 

are algebraic, and In fact belong to K for integers k and 
. 

J satisfying 

o s. j < k . 

For each palr of integers and modulo (p-l) , Katz has 

proved the existence of a power series with coefficients 

,A. 

In the rlng of integers T of a certain unramified extension of the 
00 

complet ion of K at p with the following interpolation property . If 

o s. j < k , we write 

and we fix a topological generator u of (l+pZ ) x 
p 

Then, for each palr 

of integers kl and k2 satlsfying k > -k > 0 
1 2 

and 

modulo (p-l) , 

k -k [k-k 
(k -1)!r2 2 lL ~ 1 2 

1 P 00 ' 

,A. 

where r2 lS a certain unit in 
p 

Too which may be regarded as the 

analogue of the period S""2 of E' . 
00 

(For more preclse details, see 

Chapters 5 and ~ . ) Similar functions also exist if p - 2 or 3 . 

p-adic 

In the spirit of Iwasawa and of Coates and Wiles, we shall relate 

these interpolating power series to the structure of a certain Iwasawa 



module attached to the elliptic curve E . If ex lS an element of 0 , we 

let E be the kernel of the endomorphism ex of E and for each n > 0 , -
ex 

we put K -
K(E n+l) Let U be the local units of the completion of -

n n,v 
p 

X at a pr me V which are congruent to 
n 

1 modulo V , and put 

U - -IT u , where the product lS taken over all prlmes of K lying 
n I n V 

n 
V p , 

-

above p Robert ' s group of elliptic units C for the field K 
n n 

(see 

Chapters 4 and 9 for a preclse definition) can be embedded In 

diagonal map , and we denote by C 
n 

their closure In U Let 
n 

U by the 
n 

1JJ(p) - 'IT 

and 1JJ(p*) - 'IT * , and denote the canonical characters with values In z 
p 

giving the action of the Galois group GO of KO over K on E 
'IT 

and 

E * 'IT 
and respectively . For each palr of integers 

( . . ) 
1". , 1". 

modulo (p-l) , we write ( - ) 1 2 lU IC n n 
for the elgenspace of 

which acts V1".a 

Galois group of K 
00 

over 

(ii ' i ) 
Y 2 

00 

Let K 
00 

Then 

U 
n~O 

]{ , and write 
n 

(i , i I 
(U C) 1 2-

- lim I -(- . n n 

r 

and 

U IC on 
n n 

for the 

3 

, 

wh ere the projective limit lS taken relative to the norm maps, has a natural 

structure as a module over the Iwasawa algebra Z [[ r J] 
p 

Let 

indeterminates 

characters 

E and 
n+l 

TT 

T 
1 

and 

and 

be the rlng of formal power serles In 

with coefficients In Z 
P 

The canonical 

with values In Z 
P 

glvlng the action of r 

(n = 0, 1, 2, . . . ) respectively, g lve rlse t o an 

on 



isomorphism If we let and denote 

and we can mak e a A-module by setting and 

for all Our maln result lS as follows. 

THEOREM 1. The characteristic power ser&es of 
. 
&s a power 

. 
1\ generating the same ideaZ 

. 
loo[[T l , T2J~ Katz's ser&es &n &n as 

interpoZating power 
. h,i) ( 

T 2) defined above. ser&es G T
l

, 

In fact , we shall prove much more about the structure of 

C see Theorem 30). 

Finally , we mention some of the motivation behind provlng Theorem 1. 

00 
be the Tate-Safarevic group of E over K 

00 
(that is those Let W 

elements of Hl(GCK/K
oo

) ' E'CK)) which are everywhere locally trivial). We 

define the Selmer group 5 to be the invers~ image of the 
00 

p-prlmary part 

of W 
00 

In t?- (GCK/K) , E J 
p 

Then classical descent theory gives us the 

following exact sequence 

Since 5 lS a discrete 
00 

f-module, the Pontryagin dual of 5 , 
00 

A 

5 
00 

- Hom (5 , 0 / Z I 
00 7? p-

lS a compact Z [CfJ]-module and hence can be equipped 
p 

4 

with a A-module structure In the same way as y 
00 

The fundamental problem 
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In the study of the arithmetic of the curve E over K lS to determine the 

A 

characteristic power serles of the elgenspace 
8 ( 0 , 0) 

co of Bco on which GO 

acts trivially . 

To relate this to our present work , we need to introduce a' certain 

Galois group . Let Mco be the maximal abelian p - extension of K co 

unramified outside p , and let Xco denote the Galoi s gr oup of Mover co 

]{ 
co We equlp x co with an action of the Galois group G co of ]{ 

co over 

by lnner automorphisms and make x co a A- module in the usual way . It is 

not difficult to show that Bco i s isomorphic to Hom (Xco ' E co) 
'IT 

Hence 

K 

5(0,0) 
co lS isomorphic as a A-module to X(l , O) ( _l ) , where ( -1) denotes a co 

twist mlnus one times by the Tate module E co 
'IT 

The maln conjecture of Iwasawa theory for , elliptic curves lS that the 

characteristic power serles of lS glven by a power serles in 

generating the same ideal in 1co [ [Tl ' T~ J as Katz ' s interpolating power 

ser les G (1 , 0) (T T) 
l' 2 

defined above . Similar conjectures also exist for 

the other elgenspaces , except that it is probably necessary to make a mlnor 

modification to obtain power serles which interpolate special values of 

primitive L-functions . 

He write E 
n 

for the group of global units of K 
n 

which are 

congruent to 1 modulo each prlme of K 
n 

lying above p , and let E 
n 

denote their closure In U under the diagonal embedding. We easily deduce 
n 

from class field theory the exact sequence 

° -r lim 4-._ 
(E IC ) -r lim 

n n +--
( U I C ) -r X -r Ga 1 ( H I K ) -r ° n n co co co 



where the projective limits are taken relative to the norm maps and R 
00 

the union of the Hilbert class fields H 
n 

of K 
n 

(n = 0, 1, 2 , ... ) . 

our ma1n theorem , the conjecture as to the characteristic power ser1es of 

A 

X ,and hence of S 
00 00 

lim (E Ie ) 
+- n n 

1S equivalent to prov1ng that and 

Gal(R IX) have the same characteristic power serles . We see no way of 
00 00 

resolving this at present, but, as we have mentioned earlier, a solution 

would have very deep consequences for the study of the arithmetic of the 

elliptic curve E . 

\ 

6 

1S 

By 
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CHAPTER 2 

NOTATION 

As in the introduction, we let K be an imaginary quadratic field 

with class number 1 and discriminant ~K lying inside the complex field 

C , and denote by a the rlng of integers of K . We let ' E be an 

elliptic curve defined over K whose endomorphism r ing is isomorphic to 

O . We shall denote by S the finite set consisting of 2 , 3 and the 

rational prlmes q such that E has bad reduct i on at at least one prlme of 

]{ above q . We fix a Weierstrass mode l (1 ) for E such that and 

belong to a and the discriminant of (1 ) lS div isible only by prlmes of K 

lying above primes in S . Let P(z) be the Weierstrass function 

associated with (1) , and L the period lattice of P( z ). Put 

~(z) = (P (z ), P'( z) ) As usual , we identify a with the endomorphism rlng 

of E In such a way that the endomorphism corresponding to a In 0 lS 

g l V en by ~ (z) f-+ ~ (CiZ ) • 

Let ~ be the Grossencharacter of E over K , and write f for the 
-

cond ctor of ~ . Choose an element ~oo of the period lattice L such 

tha L = ~oo O and a generator f of f . 

We fix for the rest of this thesis a prlme p of K lying above a 
-

ra ional prime p such that p f S and p lS of degree 1 . Hence 
- -

(p) - pp* I ut n - ~(p) and n* - ~(p*) and observe that these - . - - are , 
- -

generators of the respective ideals . For each a In 0 , let E be the 
a 

kernel of the endomorphism a of E , and for each palr of integers 

m n _ 0 let Fm denote the field K(E *m+l) 
n 

and K the field 
n ,m 
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F (E ) It lS well known that the extension Kover F 
n ,m m 

lS totally 
m n+l 

1T 

ramified at the prlmes above p , and that p lS unramified In F 
m 

In 

fact , from the definition of the Grossencharacter , we see that the number of 

primes of F 
m 

lying above p , which we denote by r 
m 

is given by the 

(O /p ~+l ) x 
index of the subgroup generated by 1T In Hence, there exists 

an integer M 

m>M . 

such that r 
m 

for m < M and 
M 

rm - rop for 

We choose and fix a prlme EM of lying above p , and let 

dcnoLe the unlque prlme of Fm lyinG above (or below ) ~ . 

We write p 
-'d2 ,m 

for the unlque prlme of K 
n ,m 

lying above p . 
;dTl 

If 

W lS any prime of F 
m 

lying above p , we let 
n ,m,w 

be the completion 

of K at the unlque prlme above 
n ,m 

W , and we let ~ denote the 
m,w 

completion of F at 
m 

w . We shall write I for the rlng of integers 
m,w 

of ¢ and vie shall also vwite W for the maximal ideal of I For 
m,w m,w 

simplicity , we sh 11 omit the subscript for the prlme when referring to 

comple t ions t or above p . 
=m 

Denote by K 
P 

the completion of K at 

and we shall identify its ring of integers o with Z 
P P 

Put K 
00 

U 
n ,m?:O 

K , 
n,m 

F 
00 

U 

m?:O 
F , and 

m 
U 

m?:O 

¢ 
m 

Let 

denote the Artin symbol (p, Foo/K) for the extension Foo over K and 

observe that induces the Frobenius automorphism for the extension 

p , 

at th~t we alwQys view our ~lobal fields as lying inside the 

complex numbers, and equipped with embeddings into their completions. 



E 
00 

TI 

K2 

Write 

G 

U 
n:=:O 

00 

G for the Galois group of Kover K, and let 
00 00 

E 
n+l 

TI 

and E 

x 
Z , respectiv 
p 

00 

TI* 

ly , be 

U 
m:=:O 

Let 

the characters glvlng 

and 

the actions of 

9 

G on 
00 

E and E Observe that if o E G and 
. 

an element of 0 such a lS 
00 00 00 

TI TI* 

that 
0 

for all u E E then K2 (0) modulo 
m+l 

by u - au lS glven p - , 
*m+l 

TI 

a representative lying in Z of the coset of a modulo *m+l These p . 
-

rational integral representatives are precisely the rational integers 

belonging to the coset of a modulo 
m+l 

p ,and so, under our identification 

of Z with 0 ,it follows that 
p p 

_ m+l 
a mod p (3 ) 

Now it lS plain that G = r x 6 , where 
00 

r is the Galois group of 

over KO 0 , and 6 lS the product of two cyclic groups of order p - 1 
, 

which can be identified with the Galois group of KO 0 over K. We 
, 

observe that the canonical characters and provide an isomorphism 

Z
x 

x , and we deduce that 
p 

r ~ Z x Z ,and that if 
p P 

and denote the restriction of 

th h Hom [ /\, Zpx] en toget er they generate u 

If A lS any Z [6J-module, we define 
p 

and to respectively, 

(il' i ) 
A 2 to be the submodule 

of A on which 6 acts v ~a Thus , we have the canonical 

decomposition 

K 
00 
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A -

Let A be the rlng of formal power serles In the commuting 

indeterminat~s Tl and T2 with coefficients in 

topological generator u of (l+pZ )x and let Yl p 

clements of r for which Kl (Y 1) = K
2

(Y
2

) = u and 

Z 
P 

Choose a 

and Y2 
be the 

Kl (y 2) = K
2

(Y
l

) = 1 . 

It lS clear from our earlier remark s that such a choice lS possible and that 

and are a set of topological generators for r . Any compact 

Z -module B on which r acts continuously can be endowed with a unique 
p 

.In B . 

The rlngs 
n,m 

= n~ n,m,w 
W 

and ~m = n ¢m w ' where the product 
w ' 

lS taken over the set of prlmes w of F 
m 

lying above p , have a natural 

action of the G lois group G as follows. Let a 
k,w 

(k - 0, 1, 2 , ... ) 
co 

be a Cauchy sequence of elements of j{ 

In -;::; ( or ¢ ) . Then the 
0 

~ W 
n,m,W m,w 

the Cauchy 
0 (k - 0 , 1, sequence a -
k,w 

n,m 
(or F ) which converge to 

m 
a 

W 

component of (a )0 the limit lS 
w 

2, ... ) -;::; (or ¢ ) . In ~ 

0 0 
n,m,w m,w 

of 

We embc K and F lnthese rlngs v~a the diagonal map, and it is easy 
n , 17/ Tn 

to verify that the usual norm and trace maps on ~ ~ K and F , 
~ n,m' m' n,m m 

as well as the Galois action , 11 commute with these embedd ings . 

"'-

Let E be the formal group glvlng the kernel of reduction modulo p 

"'-

on E . The parameter of E lS 



t - -2x/y - -2P(z)/P ' (z) - c(z) . 

'" Since E lS defined over o , we have the power serles expanslons 
p 

-3 Y - -2t a(t) 

vrhere a(t) has coefficients In 0 and constant term equal to 1. 
P 

We 

can Vlew z as being a parameter of the formal additive group 

'" 

G , and 
a 

11 

( 4 ) 

( 5 ) 

then c (z) lS the exponential map of E We write G 
a 

for the 

'" logarithm of E which lS the lnverse of (4) . Denote by 

'" 

'" 
E 

n+l 
IT 

the kernel 

of the endomorphism on E , which , of course , we identify with 

E . 
n+l 

TT 

Finally, we denote by V ' the units of ~ and by 
n ,m,w - n ,m,w 

Lhe subgroup consisting of those units which are congruent to 1 

maximal ideal . Put U ' = n V ' and U - n V -
n,m n,m,w n,m n,m ,w 

W W 

he product lS taken over the prlmes W of F lying 
m 

above p , 

U ' nd U denote the proj ect ive limits of the U ' and U 
00 00 n,m n ,m 

respectively relative to the norm maps on the 
~ .. 
~ n , m 

He endow 

V 
n ,m,w 

modulo the 

where again 

and let 

U with 
00 

its natur 1 structure as a ZpCGooJ-module . In particular, Uoo lS a compact 

r -module c.md thus al so a A-module . 



12 

CHAPTER 3 

COLEMAN POWER SERIES AND LOGARITHMIC DERIVATIVES 

A 

Let Tn denote the Tate module lim E , where the limit lS taken 
~ n+l 

n 

relative to the u sual projection maps glven by multiplication by powers of 

n . We fix a basis (u ) of T , and let S = (s 1 be an element of 
n n n,m,w' 

U ' Coleman [4J has shown that for each integer m ~ 0 and each prlme W 
co 

or F 
m 

lyinG Quove p , there lS a unlque power serles 

c BeT) E I [[ TJJ such that 
m,w, m,w 

-n 
S - c4"> (u ) for all n > 0 . 
n ,m,w m,w, S\. n 

( 6 ) 

(We adopt the convention throughout this thesis that an element of the 

Galois group written in this pos ition acts only on the coefficients of the 

power series . ) 

oreover , these power serles satisfy the functional equation 

[c 4"> 0 [n ] 1 (T) -
. m,w , S 

TJ c BeT * n) 

EE 
m ,W, 

n n 

( 7 ) 

where T * n denot es the sum of T and n under the addition on the 

A 

( onnl11 p,roup E lL \-/ ill be convenient to denote by c S (T) the element 
m, 

( m w, S(T») E I [[TJJ which we shall write as I [[TJJ 
m,w m 

w 

obvious Galois structure inherited from the structure on ~ 
m 

, with the 

For m' _ m and w' a prlme of F , 
m 

lying above the prlme w of 

F ,let 
m 

N
11 

d 
w' W 

enote the local norm map from ~ 

-n,m', w ' 
to 

n ,m,w 



Then it lS clear that for each prlme W of F 
m 

lying above p , 

S 
n ,m, w 

where the product on the left lS taken over all prlmes w' of F , 
m 

above w . Since c 
m' w' a , , f.J 

has coefficients In 

to 
n ,m,w 

, it lS evident that 

-n 

IT 
w' lw [OEGal (<I> ~ , /<1> 1 

m ,w m ,w 

a l~ 
cm ', w', S 

I 
m' w' , 

and u 
n 

(u ) - S . 
n,m ,W n 

lying 

belongs 

From the unlqueness of the Co l eman power serles , it follows that we 

have the following lemma . 

13 

LE~1MA 2. Let m' > m > 0 ., and let 1 denote the norm map from 
m' m , 

I , [CTJJ 
m 

to I [CTJ] . 
m 

Then ., for each S E U' 00 ., 

c aCT) - N , (c , aCT») . 
m , f.J m ,m m , f.J 

The derivative of the logarithm map , A' CT) , is a unit of the rlng 

Zp [C TJ] , and hence of I [C TJ] . 
m,w 

It is also clear that for each m > 0 

nd each prlme w of F lying above p , the Coleman power serles 
m _ 

attached to an element s of U' 
00 

lS a unit In I [CTJ] We 
In , W In W 

J note by g B( T) the element of 
m, 

whose w-component (gm , sCT»)w 

lS glven by , ' CT)-l !L (T) 
1\ dT log c Q • m,w , f.J 

'le take this opportuni t to observe that if S - (S ) E U' then nmw 00 , , 

Bn - w C (3) <B ) , where < S ) belongs to U and 
rr/,W n m w /'1. m w n m w n m w , , , , 



, 

14 

lS a root of unity in cp 
m, W 

Clearly ( S ) 
n ,m,w 

corresponds 

to an element of U ,which we shall denote by 
00 

(B) , and (W (s) 1 lS 
n,m ,w . 

an element of U' whose Coleman power serles for each palr m 
00 and W lS 

W ( S) E I [[TJ]. 
O,m , w m,w 

In particular 

c BeT) - Wo ( S)c (B)(T), m,w, ,m,w m,w, - (8) 

nd consequently 

g BeT) - g (S)(T). m, m, (9) 

LEr'1MA 3. Let m' ~ m ~ 0 and let Tr , denote the trace map from 
m ,m 

I , [[TJ] 
m 

and 

to I [[T]] . 
m 

Then ~ for each S E U' 
00 ~ 

sati 

g BeT) - Tr, g , BeT) ~ 
m, m ,m m , 

ies the functional equation 

rrg<f> S([rrJT) -
m, 

A 

nEE 
rr 

g s('i' * n) . m, 
(10) 

Proof. The first assertion lS clear from the prevlous lemma and the 

fact that the Galois action commutes with the operator -1 d 
A '( T) dT log . 

Since A lS the logarithm map , it is clear that A(T * n) - A(T) for 

all A d 
n E Err ' and hence dT A(T * n) - A ' (T) . 

Thus 



(g BeT * n)) 
In, w [ 

d ]-1 d 
- dT A(T * n) . dT log Cm,w,S(T * n) 

-1 d 
= A'(T) :Tif log C BeT * n) . 

elL m,w, 

The functional equation (7) shows that 

'" nEE 
TT 

( ) -1 d [ <p ] 
gm , S(T * n) w - A'(T) aT log cm,w,S 0 [TT] (T) • 

On the other hand 

-1 -1 d [ <p ] 
- TT A ' (T) CIT log C m ,w, S 0 [TT] (T) , 

slnce A([TT]T) - TTA(T) . Combining the last two equations, we obtain 

equation (10). 

We denote the subring ~ I of ~ by I , and write lim I 
Ilmw m m +-m 
w ' 

for th ~ projective limit of the rlngs I relative to the trace maps. 
m 

Iso put I 
00 

U 
m~O 

I 
m 

and denote the completion of I by 
00 

'" I 
00 

The 

15 

We 

following theorem allows us to associate a power serles with each element of 

lim I 
-(- m 

THEOREM 4. Let b E lim I 
-0:- m Then there 'L-S a unique power serL-es 

such that 



for all m > 0 . Here (bO) denotes the p -component of the 
m, p ~ 

.:d7l 

projection onto I of the image of b under the action of any element 
m 

of 

hen 

G whose restriction to F 
m 

1"S 
00 

Proof . Observe firstly that if 

m+l 
- 1 mod p , and hence 

° . 

8 E Gal(K IK) 
00 

lS trivial on F 
m 

lS well defined modulo 

16 

for all ° E Gal (F IK) 
m All that we need check lS that the 

appropriate compatibilities are satisfied . Let m' ~ m . Then 

)' 

8EGal(F ,IK) 
m 

81 =0 
F 
m 

as this is precisely the trace compatibility of an element of 

Consequently 

)' 

8EGal [F ,IK ) 
m 

81F =0 

m 

K (8) 

( b 
8

) , ( 1 +T) 2 
m ,p , 
~ 

Hhich lS sufficient to prove the theorem . 

If b E lim I ,and J < 0 , we define 
m 

and we note that 

o .(b) -

lim I 
+-- m 

(11) 



"-

\tJhere P
oo 

lS the maximal ideal of I 
00 

The following theorem provides the key to the rest of this thesis. 

THEORE~1 5. For each S in U ~ ., there &s a unique power series 

for all m ~ O . Moreover ., gs satisfies the functional equation 

"-

nEE 
TT 

17 

(12) 

Proof. The first statement is an obvious corollary of Theorem 4 . From 

the definition of gS(T
l

, T
2

) , it is clear that 

modulo ((1+T
2
)pm+l_l ) . Now , equation (10) shows that, for all 

a E Ga 1 (F I K) , 
m 

and so 

"-

nEE 
· TT 

[ ) 

K2(O) 

t L gm
O 

S ( Tl * n) ( 1 +T2) 
oEGal F IK) "- , 

m nEE -~ 
TT 
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Thus , equation (12) lS satisfied. 

Observe th t if a E G and 
00 

Equation (6) clearly implies that if B E U 1 then the power series 
00 ' 

Thus 

and from this it lS easy to see that 

(13 ) 

Let k:: 1 and J < 0 . We define, for each S E U , 
00 

The following lemma summarlses the basic properties of these maps 

L EM~1A 6. Let k > 1 and J SO . Then ok . l,S a homomorphism of 
,J 

Z -modules from U to 1. , and for all 
p 00 00 

S E U 
00 

and all a E G , 
00 

(15) 

/ 
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In particular ~ if Ok . (s) - 0 
,J 

unless 

(k, j) and if h (T l' T 2) E A ~ 

(16) 

Proof. It lS clear that ok . lS a Z -homomorphism, and equation 
,J p 

(15) lS evident from equations (13) and (14). The next assertion follows 

from the first two if we take 0 E 6 , so it remains to prove equation (16). 

But this is merely a rest tement of equation (15) if we take h(T
l

, T
2

) to 

be either 1 + Tl or 1 + T2 ' and follows In general by linearity and 

cont inu i ty . 

Finally , we note that , and, for a 

fixed S , glves rlse to an element d
k 

( S) E lim I 
~ m 

From the definition 

of 0k,j and the power serles gS(T
l

, T
2

) , it is apparent that 

In particular , we see from equation (11) that 

(17) 



CHAPTER 4 

ELLIPTIC UNITS 

In this chapter , we shall define and establish a number of basic 

results about Robert ' s [lOJ elliptic units, which will play an important 

role in the proof of our main theorem . 

If L lS any lattice ln the complex plane , let 

o(Z , L) = Z r-r (1-(z/ w»)exp ((z/w)+( ~(z/w)2)) 
wE L 
w,t O 

be the Weierstrass a-function of L. Let 

where 6( L) lS the discriminant function of Land 

Recall that L = st 0 
00 

- lim L w- 2 \w\-2S . 

s+0+ wE L 

w,tO 

lS the period lattice of our model (1) of the 

curve E . Let a be an integral ideal of K . We define 

Vlhere Na lS the absolute norm of a , and 
-1 

a L denotes the lattice 

.20 

-1 
st a 

00= 
In fact , as lS shown in [2J, 0(z , a) lS an elliptic function for 

the lat lce L and an explicit expresslon for it ln terms of P(z) lS 

glven by 
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8(z , a) - (18) 

where the product on the right is taken over any set {l} of representatives 

of the non-zero cosets of 
-1 

a L modulo L . 

Let R and R f 
n+l *m+l 

denote the ray class fields modulo p p and 
n ,m m 

fp
*m+l . 

modulo respectlvely . It is well known ( see , for example [2J) that 

we have the following diagram of fields . 

R 
m 

]{ 

Put Pm 
- st

ex
/ fTT *m+ 1 

and let B -
m 

prlme to fp* such that { (b, R /K( 
m -

. 
--

r;roup of R over F If a lS an 
m m 

set 

R 

F 
m 

be a 

n ,m 

set 

b E B } 
m 

integral 

K 
n ,m 

of integral 

lS precisely 

ideal of ]{ 

ideals of ]{ 

the Galois 

prlme to 6pf , 

A (z , a) 
m 

- IT 8(z+W(b)P , ~ (19) 
bEB - m 
= m 

7 . The fun tion A (z, a) 
111 -

is a rational function of P(z) LEMMA 

P' (z) with coe icients in F -' and is independent of the choice of the 
m 

et of ideals B 
m 

and 

Proof. We have already seen that 8(z , a) lS a rational function of 



P(z) with coefficients in K . 

rational function of P(z) and 

By the addition theorem e(z+p , a1 
. m ~ 

P' (z) with coefficients 1n R 
m 

1S any integral ideal pr1me to fp* , then 

1S a 

If b 

so we obtain the function e(Z+tJ;(b)Pm' ~ on applying ~ , Rm/K) to the 

coefficients of e(z+P
m

, ~ . The lemma is now plain as 

is precisely the Galois group of Rover F 
m m 

Let I denote the set of integral ideals of K which are pr1me to 

6P!_ ' and let 

s - {Il I-+ Z 111(~)-

If 11 E S , we set 

o for almost all a E I and L (Na-l)11(a) 
aEI 

- o} . 
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e(z; 11) - ITe(z , a)11(a) 

aEI 
(20) 

and 

Choose T 
n 

A (z; 11) 
m 

(it 1S un1que modulo 

choose € E 0 such tha 
n 

1n Z ,dnd that we have 
P 

(21) 

L ) such that U = €(T 1 , and 
n n-

Observe that n* 1S a unit 

Robert has sho\>ffi that e[€m+lT +P . 11] 
n n m' 

1S a unit of R for all 
n,m 

11 E S , and consequently [ 
m+l ] A € T;\.l 

m n n 
1S a unit of K 

n,m 
We call the 



23 

eroup of such units the elliptic units of K 
n ,m 

and denote this group by 

C' 
n ,m 

It lS easy to show that C' 
n ,m 

is stable under the action of G 
00 

LEMMA 8. Let m' > m > 0 and n ' > n > o . Then ~ for each ~ E S ~ 

[ 
n ' - n R IK] 

p , m 
- 0) - (z+ p

m
; ~ ) I m+l 

(22) 

Z=E: 'T 
n n 

Proof. Let c be an integral ideal of . K , prlme to 6pf whose Artin 

symLol a 
c 

fixes the subfield R 
n ,m 

Since, if P lS any 

[ n+ 1 *m+ 1 d ' .. . f P P - lVlSlon pOlnt 0 L , 
a 

~ ( p ) c - ~(~(c ) p ) , it follows that 

(23 ) 

Thus 

a 

[ 
m ' +1 

0) E: , 'T ,+P , ; 
n n m 

W 1 ~ -
) 

[ 
m ' +l 1 

- 0) E: , 'T ,+P ,+0 ; W 
n n m c ) 

. . , f n' + 1 *m ' + 1 d' .. . of lS a prlmltlve p p - lVlSlon pOlnt 

L , iL follows f rom (23) th t o 
c 

lS a 
n ' -n m ' -m 

p p* -division point of L . 

Hence, every conjugate of under Gal(R , , IR ) 
n ,m n,m 

lS 

glven by [ 
m'+ 1 ] 0) E: , 'T ,+p ,+0 ; W 
n n m 

for some 
n ' -n m' -m 

p p* -division point of 

L . There are 
n '+m ' -(n+m) 

p such division points , which lS equal to the 

number of conjugates so we must have 



[ 
m ' +l 1 

NR IR 8 S n ' L n ' +P m ,; II = 
n ' m ' nm ) 

[ 
m' +l 1 r-r 8 s , L ,+P ,+0 ; II o n n m ) , , 

where the product on the right is taken over any set { o} of 

representatives of 
n - n ' m-m ' 

p p* L modulo L . 

It follows from Lemma 6 of Coates and Wiles [3J and the fact that 

n ' -n m ' -m 
n n* generates 

n ' -n ~ '-m 
p p that 

As observed In the proof of the prev lous l emma , 

from which we conclude that equation ( 22 ) holds . 

The importance of this lemma lS the following corollary . 

COROLLARY 9. Let II E S and put 

-n 
e (ll) 

n ,m 
- Ai.fJ (z · ll)1 

m ' m+l 
z=s T 

n n 

Proof. OD,) crve t h 1- , for fixed nand m , 

K and so can be regarded as belonging to U' 
H,m n ,m 

lS a unit of 

It remalns to check 

the norm compatibility which we can do In the global fields . 

Now, for the reasons explained in the proof of Lemma 7 , and the fact 

24 

ha Doth (p 1:( ,I]() 
m . 

and induce the same automorphism on F , , Lemma 8 
m 



says that 

-1'1 ' 
~ 

NK /K I\m ' (z; 
n ' m' nm , , 

m' +l 
z=c , T , 

1'1 1'1 

-1'1 

- I\<.p (z· lJ)1 
m ' m+l 

Z=C T 
1'1 1'1 

Thus, L he are compatible with respect to the norm map, and hence 

25 

We shall denote In future, and write C' for the 
co 

projective limit of the C' with respect to the norm maps. 
n,m 

Clearly 

e(lJ ) E C' for all lJ E S . 
co 

THEOREM 10. Let lJ E S. Then the Coleman power series 

( )
(T) E I [CTJ] attached to e(lJ) are given by 

m,e lJ m 

Proof . It is necessary , first of all , to explain the notation. Recall 

th~t Lemma 7 showed that 1\ (z· 11) m ,I-' 
lS a rational function of P(z) and 

P'(z) Wl h coefficients in F , and so A (z; lJ) has a power serles 
m m 

expanslon with coefficients In F , and hence In P 
m m 

Thus 

can be regarded as an element of ~ [CTJ] . 
m 

Now, observe that SInce 

slDce A lS the lnverse of c . 

- C[Cm+1T I , it follows that 
1'1 1'1) 

-1'1 

Am<.p (z; lJ) 1 
m+l 

z=c T 
, 1'1 1'1 



Thus, the only thing we need to show is that Am(n*-(m+l)A(T); W) 

belongs to I [CTJ] 
m 

From equation (18), we see that 

( ~_
,1-1 

G z +p 'Ij -
m 

26 

(24) 

where {Z} runs over a set of representatives of the non-zero cosets of 

-1 
a L modulo L. Let H denote the extension of R obtained by 

m 

adjoining all the P(Z) , and let P be any prlme of H lying above p . 

Consider the expanslon of the right hand side of (24) as a power serles 

ln t = E (z ) Since E has good reduction at p, 6(L) is a unit at f 

lS integral at P . By the addition theorem 
-

P ( Z +p ) - P (Z ) 
m 

- P (p ) - P ( Z) • 
m 

(25) 

Recall , as was mentioned ln Chapter 2 , that all the torsion ln the 

kernel of reduc lon modulo P of E lS contained ln E 
co 

if Elp Thus, 
n 

Slnce ~(Z) and ~ (p ) are points of E whose order lS prlme to n , 
m 

their co-ordinates must lie ln Op , the rlng of integers of the completion 

of H at P . Thus , substituting the expanslons (5) for P(z) and 

t 

we see that 0 (z+Pm' ~) -1 has a power serles expanslon ln terms of 

with coefficients ln 0 
P 

In other words 

It follows that for each prlme w of F 
m 

lying above p , 



Am (A(T); ~)-l has coefficients which are integral at w , and so 

In addition 

-1 
A ( 0 ; ~) 

m 

and so l S a unit of F ( see [ 3 J) . 
m 

Thus , it follows that 

27 
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CHAPTER 5 

LOGARITHMIC DERIVATIVES OF ELLIPTIC UNITS 

Having defined our group of elliptic units c' 
00 

- lim C' ,and having 
~ n,m 

determined the Coleman power serles associated with an element e(~) of 

this group , \Ale turn now to consider the value of our homomorphisms 

(e(~) . To do this we shall need to introduce some further notation. 

Let o be an element of the Galois group of F over 
m 

K . For each 

k > 1 , we denote by ~F (0, ~, . s) the partial zeta function which lS the 

m 

analytic continuation of the function glven by se tting 

Re (s) > k/2 + 1 , (26) 

Hhere the s um on the right lS taken over all integral ideals a of K 

prlme to fp* whose Artin symbol for the extension F over 
m 

K lS o . 

Let L be a lattice in the complex plane . Then , for each integer 

k _ 1 , the complex valued function 

L - - k 1 1- 2s 
(z+w) z+w Re(s) > k/2 + 1 , 

wEL 

can be analytically continued to the whole complex plane as a function of 

Following Weil [ 13 J, we set Ek(Z , L) = Hk(Z , k, L ) . 

It can f irly easily be deduced from Weil [13J, that if ~(z, L) 

deno es the Weierstrass zeta function (d/dz) log o(z, L ) and a(L) the 
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area of the fundamental parallelogram of L, we have the following 

formulae . 

LEMMA 11. (i) Ei(z , L) - C;;(z , L) - zg2( L) - 'ITz/a(L) 

(ii) E~(Z, L) - P(z, L) + g2( L) . 

(_l)k ( dj k-2 
(iii) Ek(Z, L) = (k-l)! dz P(z, L) ~ k > 3 . 

(Here TI denotes the usual real number 3.141 .... ) 

COROLLARY 12. For all k > 1 ~ and for all integral ideals a of 

( 
d j k (- (m+ 1) ~ J 

dz ,log Am n* z , ~ Iz=o 

= '12(_1)k-1TT ,-k(m+l)(k_1) ! bh {NaEk(ljJ(b)P
m

, Ll-EklljJ(b)P
m

, a-
1
L]}. (27) 

= m 

Proof. Using the definitions at the beginning of the prevlous chapter, 

one re dily sees that 

d (-(m+l) 1 
dz log 8 n* z+\)J(Q) Pm , a) 

- 12TT,-(m+1){Na(~[TT,-(m+1)z+ljJ(b)Pm ' Lj-g2(£)(TT,-(m+1)Z+ljJ(b)P
m

jj 

- [~[ TT* - (m+l) z+ljJ(b )P
m

' a -1£] -g 2 (,,--1£ J (TT* - (m+l) z+ljJ(b ) Pm] ]} . 

Observing that a~-lL) - a(L)/N~ , it follows from Lemma 11 that the 

right hand side is equal to 

The desired formulae can now be obtained by repeated differentiation 



and applying the definition of A (z , a) . 
m 

THEOREM 13. Let a E I . Then we have the f ollowing two equali.ties 

for all k ~ 1 and m _ 0 ; 

(i) [ ~J k 10 A (n -* - (m+ 1 ) z a ) I 
dz g m ' ~ z=o 

where 0 - (a , F / K/ ~ and 
a = m -

(ii) (1 , t , k) E F 
m 

and 

for all o E Gal(F /K) . 
m 

Proof. Observe firstly that the lattice 
- 1 

a L 

lS a generator of a 

x 
a E C 

From thi s we deduce thdt 

L ) . 

lS the lattice 

Note also that if 

30 

and so to prove the first part of the theorem , it will suffice to show that 
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(28) 

bEE 
= m 

To see this , first notice that if w E fp~+l , then 

w((w(a~)+w)) - w(ab) + w , since W lS a Grossencharacter of conductor f. 

Since K lS a field with class number 1 , our very choice of E 
m 

ensures 

that {(w( aQ)+W) : h E Bm' W E fP*m+l} 1S precisely the set of ideals of 

K , prlmc to fp* , whose Artin symbol for the extension 

a rrom this , it follows that 
a 

F 
m 

over 

bt§ Hk(W(?b), s, !p*m+l) - SFm[aa' ~, s] , Re(s) > k/2 + 1 
m 

whence we must have (28) . 

K lS 

From Lemma 7, it 1S clear that [cfzJk log Am(rr*-(m+l)z, allz=o must 

lie in F 
m 

By choosing the ideal a so that a - 1 but 
a 

it lS easy to see that the first assert ion of (ii) is true. 

The final equality can be established by noticing that if c E I , 

(~,F IK) (1) 
Am- m (TI*- m+ z,~ = 

Hence, for the same reasons as were glven In the proof of part (i) , 

( (cfzt 
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The final equality lS now apparent from (i) . 

For a fixed k > 1 , let ~m(k) - ~:k~F (1 , ~ , k) . We have seen that 
m 

~ (k) E F , and it lS clear from Theorem 13 that if m' ~ m , 
m m 

~ 
-k ( ok ) 

~oo ~F 0 , tV , k 
oEGal F ,IF ) m' 

m m 

= ~ (k) . 
m 

Thus ( ~(k») ~ lim 4> , where the projective limit is taken relative m -(-- m 

to the trace maps , and we denote it by ~ ( k ) . Recal l that if b E lim I 
-(- m 

and J < 0 , 

COROLLARY 14. Let ~ E S ~ and Zet k > 1 
~ 

J < 0 be integers . 

Then 

07 .« e(~») 
(,J 

(29) 

Proof. Dbserve that if J lS any function , 

d 
- dz f ( z ) I z = >. ( T ) . 

In p rticular , Slnce >'(0) - 0 , we have that 

It fol lO\-1s from this, equat ion (21) and Theorems 10 and 13 that 
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Equation (29) 1S now apparent from equation (9) and the remarks at the end 

of Chapter 3 . 

Katz [6J allows us to interpret the right hand side of equation (29) 

1n terms of Hecke L-functions. To state this precisely, we need a small 

amount of extra notation. Tate [llJ has shown that to glve an isomorphism 

between two formal groups 1S equivalent to glv1ng an isomorphism between the 

corresponding Tate-modules . The Weil pairing shows that 

Hom (lim E l ' lim]J 1) is naturally isomorphic to the Tate-module 
+--- n+ +--- n+ 

'IT p 

lim E , where here all the projective limits are taken relative to the 
-f-- *n+l 

'IT 

maps glven by multiplication by powers of p. Thus, to glve an isomorphism 

between E and the formal multiplicative group G amounts to choosing a 
m 

rimitive element of lim E 1 
+--- *m+ 

'IT 

Recall that we chose E E 0 such that 
n 

n+l 
- 1 mod p We choose the isomorphism n suc h that, for 

11 n ~ 0 , 

where (, I
n 

denotes the Weil pa1r1ng of the pn+l_th division points of 

L . 

It 1S easy to see th t '" ny isomorphism between E and G must have a 
m 

m-ver ser1es expans10n of the form exp(YA(T)) - 1 , and a careful 
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examination of the proof of the existence of such an isomorphism In [9J 

" 
shows that y is a unit In I We conclude then , that our chosen 

00 

" r'.J " 
isomorp hism II E~ G lS defined over I , and that its power serles 

m 00 

expanslon lS glven by II (T) - exp (~ A (T)) - 1 = S"2 T + where ~ lS - . . . , 
p p p 
- -

" 
unit of I Note that ~ depends on the choice of the embedding of 

00 p 
-

In c K 
n,m 

and on the embedding of the fields in H A change In 
n,m 

Z
x 

either of these would result In ~ being replaced by a multiple. 
p p 

If , as usual , we let denote the complex valued function 

which is the analytic continuation of the function given by setting 

L , Re (s) > k/2 + 1 , 
(a , f)=l 

then we have the following theorem . 

THEOREM 15. Let ~ E S and let k and j be integers such that 

k > 1 arid J < 0 Then ;, 

- l2(_1)k+l-j (k-l) !fk I lJ(~) (N ~ _ljJk(a)ljJj (a)) 

aEI 

a 

K 
00 

Proof. 1\ proof of thir; theorem , based on the formulae glven In [6J, lS 

contLlin cl in I\ppendix 1 . 
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CHAPTER 6 

SOME BASIC RESULTS ON THE f -TRANSFORM 

For want of adequate references elsewhere , we shall summarlse In this 

chapter some of the basic properties of the two-variable f transform which 

we shall use later . We recall that the f-transform was first introduced by 

Leopoldt [7J . However , it will be more convenient for us to follow Katz ' s 

formulation of this notion In terms of p-adic measures. 

'" 
Let W be a measure on z x Z 

p P 
taking values In 1 00 

where 

I 
n ,m ~O 

Here (~) denotes the binomial coefficient function 

(~) -

x(x-l) .. . (x-k+l) 
k! 

which takes values In Z on Z 
p P 

'" 

Then II 

( 31) 

recover the I -valued measure 
00 

on to which it corresponds under 

equation (31) as follows . 

Suppose that n ~ 0 . Then , for k and J modulo 
n 

p , there are 

'" uniquely determined elements b
k 

. E I such that 
, J 00 



36 

(32) 

Then llf lS the unlque measure for Hhich 

If x lS any unit in Z , He write x = w(x)<x> 
p 

where w(x) lS a 

(p-l)th root of unity and <x> = 1 mod p . 
. 

Then , if ~l and ~2 are 

integers mod(p-l) and f a power series in 100 [[Tl , T;IJ corresponding 

to a measure llf ' we define a f-transform 

Z2 -+ I 
p 00 

by 

Recall that U lS a topological generator of 

homomorp hi sm l 

LEMMA 16. 

ZX -+ Z by 
P P 

( x> 
l (x) 

- U Z
x 

Vx E 
P 

1 + pZ 
D 

Define a 

and let 
. 
~ 

1 

and ~2 be integers modulo p - 1 . Then there ~s a power se~es 

(33 ) 

(34) 
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(35) 

Proof. Equations (33) and (34) together show that 

The binomial theorem shows that the right hand side of this last 

equation is equal to 

n , m~O 

and so we may take to be the power serles for which the 

coefficient of ~~ lS glven by 

LEMMA 17. Let Di be the operator (l+T
i

) d; . on 700 [[T
1

, T
2
JJ 

1., 

for 1., = 1 , 2 ., and let ~ be a measure on Z2 . 
p 

Then., for n, m ~ 0 ., 

D~D;fW carre ponds to the measure Wn ,m defined by 

A 

or all measlA.l"able unctions cp I 00 
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Proof. It will suffice to show that Dlf'fl corresponds to 'fl
l 

0 . , 

Now , from eqt.:ation ( .31) , ~ ~t is clea,r that the coefficient of In 

Thus , equation (31) shows that Dlf'fl lS indeed the power serles 

corresponding to the measure 'fl O · 1, 

We say that a measure 'fl lS supported on a measurable subset A of 

Z2 
P 

if, for all measurable functions rh •• Z2 -+ ~ 
't' 1 00 , 

P 

LE~1MA 18. Suppose f E Ioo[ [T l ' T) ] &S such that the corresponding 

measure 'fl &s supported on Zx ZX x . 
p p 

Let &1 and &2 be integers 

modu lo (p-l) . Then ~ for eac h pair of non- negative integers k
l

, k2 such 

that (k
l

, k) :: (i , i )Inod(p-l) -' 
212 

(36) 

Proof. From the conditions on kl and k2 it lS clear that for all 



Since ~f lS 

supported on it follows from the above and equation (33) that 

J 

kl k2 
2 xl x 2 d~f . 

z 
p 

We conclude from the prevlous lemma ~nd the fact that 

the constant function on Z2 with value 1, that 
p 

[XolJ (X02] lS 

39 

But , by equation (31), the right hand side of this equation lS the constant 

k k 
f D lD 2f . term 0 1 2 whlch lS equal to 

Finally, we glve a lemma which shows how to construct the power serles 

corresponding to the restriction of a measure to ZX x Z 
p P 

[(T
l

, T
2

) - (T
l

, T
2

) - ~ L f(~(l+Tl)-l, T
2

) 

~p =1 

(37 ) 

where the um on the right is taken over the full group of pth roots of 

unity. Then ~ (T l ' T 2) E Too [[T l' T 2J ] and for all measurable functions 

'" I ' 
00 -' 



L~ 0 

Proof. Observe that equation (32) shows that for n ~ 0 , 

A straightforward calculation shows that 

and so it follows that WJ lS the restriction of W
f 

to 
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CHAPTER 7 

p-ADIC INTERPOLATION 

In this chapt er , we shall use the f-transform which we defined in the 

previous ch pter to produce a A-homomorphism from U to the 
00 

A-module 

"'-

Recall that neT) = ~ T + .. . lS our chosen homomorphism from E to 
p 

"'-

G defined ov r I m 00 

Let c (T) E Ioo [CTJ] be the lnverse of neT) and 

recall that gS (T
l

, T
2

) denotes the two variable power series attached to 

an element S of u 
00 

"'-

The I -va lued measure on 
00 

1-S supported on 

Proof. From Theorem 5, it lS evident that 

Z2 corresponding to 
p 

Since takes values In it follows from equation (32) that 

corresponds to a measure supported on 

LEM~lA 21. Let k::: 1 arui J SO . For each S E U ~ let 
00 

orresponding power er1-es as 1-n equation (37) ~ 
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(38) 

Proof. Since G 0 neT) = T , and neT) - exp(~ A(T)I - 1 , it lS easy 
p . 

to see that 

From this it follows that 

and In particular that 

Recall that 

a point of order P on G 
m 

over the solut ion set of ~P 

oreover, we also have that 

and 

- 1 - , 

~ L. hS(~(l+n(T))-l, T 2 ) , 

~P=l 

Now , if ~P = 1, ~ - 1 is 

Slnce G lS an isomorphism, as ~ runs 

'" 
G(~-l) runs over the elements of E 

TI 

n(G(~-l) * T) = ~(l+n(T)) - 1 

and so 

We conclude that 



" nEE 
IT 

and equat ion (12) shows t hat the right hand side lS equal to 

43 

Recall that (j) = (p, Fc.(/K) and that it follows from the definition of 

the Grossencharacter that (j) acts on E v&a ljJ(p) . We conclude from 
00 

IT'* 

equation (3) that 
-

= IT Notice also that 

- TT [ ( ~ pA ' ( W) ) -1 d~ f ( W )] 
W=[IT](T) 

and that 

[ 
d --1 1 

(l+T) dT f( (l+T)IT -1)) -

--1 
IT 

W=(l+T) - 1 

Combining all these facts , we see that equation (39) becomes 

(40) 

Equo.tion (l it) shoHs Lhat the right hand side of equation (40) lS equal 

to 

The olloHing tllcorem provide s the homomorphism to Hhich we alluded at 

the beginning of this chapter . 



44 

THEOREM 22. Let ~1 and ~2 be integers modulo (p-1) ~ and let 

S E U 
00 

Then there is a un~que power ser~es 

such that for all k
1

::: 1 and k2 < 0 satisfying 

k -k 1-k 
1 2 2) 

1T /p 0 1 k (S) 
f(l' 2 

(41) 

Moreover ~ if h E A ~ 

(42) 

~ 

Proof. Lemmas 19 and 20 together show that the power serles hS of 

Lemma 21 corresponds to a measure supported on We deduce from 

Lelnma 18 and equat ion (38) t hat for 

(i -1 -i / 
r ~ 1 ' 2' (k -1 -k) 

h 1 ' 2 
S 

k 
1 

and as In the theorem 

k -k 1-k 
1T 1 2 /p 2) Ok k ( S) 

l ' 2 

On the other hand , Lemma 16 shows that there lS a power serles 

Thus, if we set 
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it is clear that equation (41) will be satisfied. Such a power serles lS 

clearly unique , and so equation (42) follows immediately from equation (16) . 
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CHAPTER 8 

THE STRUCTURE OF U 
00 

We observe that Gal(~oo/Kp ) can be decomposed into the product of two 

groups , the Galois group of over ~o ° ' and a group , 00 

which may be identified with From our knowledge of the 

decomposition of p , it 1S clear that we can identify with 

G l(Koo/Ko M) c r , and we note that this 1S the subgroup of r which 1S , 

M 

topologically generated by Y
l 

and ~ Thus , any compact Z -module B 
p 

on which Gal ( ~oo/~o 0) acts continuously can be equipped with a structure 
, 

l,-Jhere 

Any Zp[Gal(::o , oIKpJ ] -module A has a canonical decomposition 

If \) 

A - @ 

ilmodp-l 

i 2mod (p-l) Ir ° 

1S the submodule of A 

1S any pr1me of F
M

, we let 

on which 
. 

acts V'1-a 

U denote the projective limit 
OO,\} 

relative to the local norm maps of the U for the pr1mes w 
n,m,w 

lying 

above (or below) V . As usual, we omit the subscript for the pr1me when 
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referring to p~. Then, both U and lim ~ 1 
co +-- n+ 

can be equipped with 

p 

action . Moreover , it lS well known from the Weil palrlng that 

Wintenberger [14J has studied the structure of U as a 
co 

following lemma . 

LEMMA 23. Let 1,1 and 1,2 be integers . Then we have the fo llowing 

o -+ 0 • 

There lS an obvious isomorphism between u 
co 

and nU 
co,v 

, where the 

v 

product is taken over the prlmes V of FM lying above p, whose lnverse 

may be constructed as follows . Let (6) E n U 
V co V 

V ' 

mapped onto the element of U whose projection onto 
co 

U has its 
n,m 

w-component glven by the product over the prlmes V of FM lying above (or 

below) w of the projection of U 
n,m,w 

From this, it lS 

easy to see ha t 

over prlmes V of FM lying above ~O . This is because all the components 
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of an element are uniquely determined by those 

associated to prlmes lying above PO ' 

LEMMA 24. Let and be integers. Then there is an injection 

if is the 

ideal of A generated by and 

Proof. 6 E 

(i
l
,i

2
) 

(6) 6 If U , let denote the £N-component of 
00 

PM 

. 

viewed as an element of n Uoo \) Since 
~ (j 0, •.• , pM_I) . 

the 
~M 

- lS . -
\) , 

complete set of prlmes of lying above p ,it follows from the remarks 
= 0 

above that 6 is completely determined by the set 

Let 

that 

0, ... , 

(i , i ) 
f;l 1 2 (B) --' 

M 
P -1 

,-.. 

j=o 

. 
( 

. . ) J 
• 1.-,1.- Y 

( ) 
-J 1 2- ( 2) 

1+T
2 

w B _p 
}f 

It lS easy to see 

is a A-homomorphism. Furthermore, Slnce the 

(j - 0 , ... , p -1) provide a complete set of representatives for the 



L~ 9 

(il,i ) 
W 2 lS injective, and an isomorphism unless 

Since Gal (~ IK ) (lim ~ 1) 
. 

(this clear from acts on V1.a K1K2 lS 
00 P +-- n+ 

- p 

the Weil-pairing) , the of 
(i l' i 2) 

the ideal of lmage W lS 

Z pl~l ' (l+T)pM_~l generated by and if 

- -

(i
l

, i
2

,/ == (1, l)mod(p-l, (p-l)/r o) , and hence the image of lS 

as described In the lemma. 

In future , we shall denote the lmage of by 

We now seek to establish a connection between the two A-homomorphisms 

and In order to do this, we need to first establish 

the existence of certain elements of U 
00 

LEMMA 25. Let ' ( Bn m w) E U Then there exists B E U whose 
n,m 00 , , 

projection onto U 1.S (Sn m w) if arui only if~ for all pr1.mes W of 
n,m , , 

F lyin above the local norm from ::; to K of B 
. 

1 . P ~ - 1.S 
m - n,m ,w p n,m,w 

-

Proof. Th nks to our isomorphism between U and n U ,it will 
00 oov 

V ' 

suffjce to ShOH thclt if B E U ,then there exist s 
n,m n,m 

B E U whose 
00 

projection onto U 
n,m 

lS B n,m 
if and only if the norm from to 

n,m 

of B lS 1 . 
n,m 

Now the extension ~ over K decomposes into an unramified 
n ,m p 

K 
p 



extension and a totally ramified extension of degree 
n 

(p-l)p ,and so the 

lmage of U under the norm map from 
n,m n,m 

to K 
P 

lS precisely 

From local class field theory , we know that if H c J cLare 

x 
local fields , then a. E NL/~ if and only if 

can be lifted to an element of U 
00 

if and only if its norm to 

1 . 

LEMMA 26. Let and 

. and k2 be integers such that 

"'2 
be integers modulo 

1 < k < P -' 
1 

(p-l) -' and let 

K 
P 

Then there "'s an element a. E U such that 
00 

Proof. We denote by the subspace of 

cts v",a It lS easily seen that 

1 , and that each component of any basis of 

appropriate component rlng . 

lS a free Z -module of rank 
p 

lS a unit of the 

"'-
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. 
lS 

Let veT) be an isomorphism of formal groups over z . p , v E , 

"'-

where E lS tIle Lubin -Ta e formal group on which the endomorphism n lS 

,1vC'n hy [n]T = 'TTT + ~ We remark th t we only introduce this special 

formal group In order to simplify the construction , which could be made 

"'-

appealing only to the properties of E . We shall treat the construction of 

the element a. in two cases . 

Firstly, suppose kl < p-l . Let a be a Z -basis of 
p 

and put 



kl 
ab,o = 1 + a(v(u o)) E Uo,o' Since v(u o) belongs to the maximal ideal 

of each component of ~ the norm to 
~ O 0 ' , 

K 
P 

of each component of 

clearly congruent 0 1 mod p . It follows that we can choose an element 
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lS 

x E U in such a way that each component of x belongs to 1 + pO and 
0,0 -= p 

has the same norm to K 
p 

as the corresponding component of We set 

-1 
a

O 
0 - X a ' ,and it is clear that 

, 0,0 
can be lifted to an element 

a E U u.nd that 
00 

(Thi s is a slight abuse 

of notation to denote in each component a congruence modulo the (p-l) th 

power of the maximal ideal of the local field.) It follows that for such an 

a , 

c (T) 
O,w,a 

kl 
- 1 + (a ) (V (T) ) mod (w, r- l

) 
W 

On the other hand , if kl = P - 1 , we proceed as follows . Again we 

choose a Z -basis a for 
p 

a ' 
1 , 0 

and we set 

Observe thaL , by the definition of v , v(ul)P + TIV(U
l

) - v(u o) , and so 

-1 

a{,o - 1 + a~ v(uo)/v(u
l

) 

The minimal equation satisfied by over lS 

so , Slnce p lS odd and ( ) 
p-l _ 

v u
O

. -TI , it 



follows that the norm to ~ o ° of , 

If w lS any prlme of F
O 

lying 

deduce from this that the norm to 

a ' 
1,0 

above p 
-

. 
lS equal to 

-1 

, (atp )P == 
W 

K of each component 
P 
--
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(a) mod W , and we 
w 

of 
, 

0.1 ° lS 
, 

congruent to 1 modulo 
2 

P We can choose .r, E U 
- 1 ° In such a way that 

, 

each component of x belongs to 1 + pO and has the same norm to 
= p 

-

corresponding of a' 
-1 

the component . We set a = x a' , and 
1,0 1,0 1,0 

clear thClt a 
1,0 

can be lifted to an element a of U and that 
00 

-1 
- 1 + atp (v(u )~ P-l d p(p-l) 

1 .I mo P.=l , ° It fol lows that, for such an 

Co (T) - 1 + (a)w (V(T)) P-lmod (W, TP(p-l)) 
,w, a 

Thus, in both cases , we have an element a E U
oo 

such that the 

correspondinG ColemCln power series satisfy 

where a 

Co (T) 
,w,a 

lS a Z -basis for 
P 

The logarithm map of 

for example [2J) . Since A (T) 

'" E satisfies 

= A~(V(T)) 
t 

by 

A ' (T) - 1 mod 
'" E 

the uniqueness of Lhe 

K 
p 
-

it 

log rithm map , it fulloVJs that A' (T)-l %T f(V(T)) = A' (V(T))-lf '(V(T)) 
t 

and so we see that 

as 

lS 

a , 

( see , 

, 



It lS evident that 

and so 

But 

- k ! 
1 

a acts on a 

and lS therefore a unit of 

- (p-l)k re a) mod Poo ' 
1 Po = 

A 

I 
00 

THEOREM 27. Let ~l and ~2 be integers modulo p - 1 . Then 

there ~s a power ser~es such that ., for 

all 

(i ,i ) (i , i ) 
- ¢ . 1 2 (T l ' T 2) w 1 2 (S) 

Furthermore .., is a unit . 

Proof. Suppose for the moment that 

53 

(43 ) 

If we let be the element 
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satisfies equation (43). 

(il,i) 
be as in Lemma 26, and choose a E U 2 

00 
such 

'" 
that ok k (a) is a unit in Too 

l' 2 

(This is possible since Lemma 6 shows 

that depends only on the part of s .) Equations (41) 

and (43) together show that 

l-k k -1 k-k 
1 ( 1 - 1 2) - D I-p ITT Ok k (a) 

p l' 2 

k -1 k-k 
Since (k

l
, k

2
) $ (1, l)mod(p-l, (p-l)/rJ ' (l-p I In I 2) lS a 

unit of Z , and so the right-hand side lS a unit. 
p 

'" 
Hence lS a unit of Too ' and so 

Suppose nOH that (iI' i
2
) :: (1, l)mod(p-l, (p-I)/rJ . Let a

l 
and 

be he elements of 
00 

such that = T + 1 - u 
1 

and 

It clearly follows from equation (42) that 
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From the Weierstrass preparation theorem, we conclude that there lS a 

power serles such that 

Hence we also have that 

and, Slnce and generate as a A-module by Lemma 24, 

1 follmvs from Theorem 22 that equation (43) holds for all 

Let k2 < 0 be chosen so that k2 - i2 mod (p-l) and 1 - k2 lS 

prime to p . Then, by Lemma 26 , we can choose an 
l l ,i ) 

a E U 2 
00 

such that 

'" 
lS a unit in I 

00 
Once again, we see that 

Since generates a subgroup of index 
M (0 /pM+2) x and this TI ref ln , 

l-k 
4+1 

cyclic of ordel' (p-l )p 
- 2 

$ lS a group , TI 

ow 

[1, i 2J 
W (a)1 k 

lu-l,u 2_1) 

L +1 
E P It follows that 

1 mod 
M+2 

P 
--

lS a 
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A 

unit In Too ' and hence 
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CHAPTER 9 

p-ADIC INTERPOLATION OF SPECIAL VALUES OF L-FUNCTIONS 

k . . Loo(Jf-+j, k) Recall that for > J ~ 0 , we deflned ~ to be the element 

of K glven by equation (2) . In fact, it follows from Theorem 15 that, if 

d f · Loo(-;,;k+j, k: we e lne ~ J to be the algebraic number glven by equation (2) 

for all k > 1 and belongs to K 
P 

when viewed 

In the manner described In the appendix . In this chapter we shall produce 

. Loo(~' J.: , and power serles glvlng p - adic interpolatlons of the numbers ~ j 

In the process we shall determine the image under of the 

1\-submodule D of Uoo generated by {( e(~) : ~ E S} . 

Before doing that , we shall make one remark about the relationship 

between this submodule D and the group of elliptic units. Recall that 

C ' 
n,m 

is the group of elliptic units of 

subgroup of C ' consisting of those 
n,m 

modulo each of ]{ 

K 
n ,m 

elements 

We denote by C 
n ,m 

the 

which are congruent to 

C = C ' n U 

1 

pr lffie lying above p (that lS, 
n,m - n ,m n,m n,m 

and we let C denote the closure of C In U (which lS the 
n,m n,m n,m 

A-module generated by C ) . 
n,m 

Then, if we let Coo denote the projective 

limit of the C relat ive to the norm maps , it lS clear that C lS a 
n,m 00 

1\ -submodule of U containing D Moreover, 
00 

the lmage of D under the 

projection map from U to U is prec isely C 
00 n ,m n,m 

If ~ E S and and 1.-2 are integers modulo p - 1 , we define 

) , 



. . 

2:: 11 (il) (Na_W"1-1 (l/J (a))w"1-2 (l/J(a)) (l+T 1) l (l/J(a)) (l+T 2) l r l/J(a)))1 , 
aEI 

and observe that for all (k
l

, k
2

) - (i
l

, i
2

) mod(p-l) , 

LEMMA 28. Let be the A-module generated by 

Then 

or (1 , l)mod(p-l) H(O , O) is the A-module generated by Tl and T2 

and H(l,l) ~s the module generated by Tl + 1 - u and T2 + 1 - u . 

and 

Proof. Observe firstly that , for all ~ E S , 

h ( 1 , 1 ) (u -1 u -1) -
~ , 

aEI 

L w(a)(Na-~(a)~(a)) -

_ ~EI 
° , 
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(44) 

(45) 

and so i follows that the are all contained in the A-module to 

which the lemma asserts they are equal . Since A is Noetherian, it will 

suffice to show that the contain elements which are congruent 

modulo ~,Tl' T
2

)m to generators of the appropriate A-modules for each 

integer m::: ° . 
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To do this, let s be a primitive (p-l )th root of unity in 
x 

Z ,and 
p 

let a, b, C and d be integers which we shall fix later according to the 

case under consideration . Choose elements 

prlme to each element of s such that 

saub m - m -
Ct == mod p Ct

2 
- 1 mod fp and Ct

2 
-

1 
-

and 

m 
- 1 mod fp* 

- sCud mod - P -

, 

m 

-

In a which are 

Clearly the 

ideals a = ( Ct
l

) and a - ( Ct
2

) both belong to I and we consider the - , -=1 ~ 2 

function lJ E S defined by lJ ~l ) - Na
2 

- 1 lJ ( ~ ) - 1 - Na and - , -
--1 

lJ(a) - 0 otherwise . A simple calculation shows that 

Now, if a = c - 1 ana b = d - 0 , we see that 

. . 

and 
~l ~2 

(s -s )(l-s) lS a generator of A unless ~l - i2 mod p-l . On the 

other hand , if a = 1 , c = Cl 
2 

and b - d = o , then 

and so we conclude that - A unless ~l or 1 mod p-l . 

These last two cases can be dealt with as follows . Observe that when 

a = d = 0 and b = c = 1 
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h ( 0 , 0) (T T) - ( ) T d ( T T) m 
11 1 '2 1- L; 1 rno p , 1 ' 2 

and 

h l~l,l)(~l' T2) - (1 r)(T 1 ) d( T T)m ~ ~ -s 1+ -u rno p, l' 2 . 

Moreover, when a = d - 1 and b - c = 0 , 

h ( 0 , 0 ) (T T) - ( ) d ( ) m 
11 l' 2 L;-l T2 mo p, Tl , T2 

and 

It follows that lS the module generated by Tl and T2 and that 

H(l ,l) d d . eel lS the module generate by Tl + 1 - u an T2 + 1 - u as clalrn . 

THEOREM 29. Let &1 and i2 be integers modulo p - 1. Then there 

&s a power ser&es such that~ for all 

k -k [k-k 
(k -l)!~ 2 lL ~ 1 2 

1 prO' 
(46) 

Moreo er 

Proof. Equations (2), (30), (41) and (45) together show that if kl 

nd k2 are as in the theorem and 11 E S , then the value of 
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kl 7<.2 
(u -1, u -1) lS 

Observe that lS a unit power serles In 

A whose value at lS 

l+k -k k 
12(-1) 1 2f 1 whenever 

(k
l

, k
2

) = (i
l

, i
2
)mod(p-l) . It follows by the linearity in Theorem 22 

that for each element there is a corresponding element e
h 

of D such that for kl and k2 as in the theorem 

(47) 

(And conversely , for each e In D , there lS an such that 

qU3.tiol1 (L~7) holds .) 

The theorem is now clear from the prevlous lemma and Theorem 27 unless 

(i
l

, i
2

) - (0, 0) or (1, l)mod(p-l) , in which case it still remains to be 

shown that there lS a pOHer serles satisfying equation (46). 

Suppo se (i
l

, i
2

) - (0, O)mod(p-l) , and let be the element of D 

corresponding to the power serles T2 In as In equation (47). 

k 
Observe that G~O' O) (u 1_1, 0) - 0 for all kl > 1 such that 

o 



k - ° mod p-l , and so G(O,O)(T T) = ~ T G(O,O)(T T) for some 
1 eO l' 2 P 2 l' 2 

power serles GCo,O)(T
l

, T
2
) E 100 [[Tl , T~J It lS clear from equation 

(47) that G (0, 0) (T T) 
l' 2 

has the desired properties. 

This leaves the case where (i
l

, i
2

) = (1, l)mod(p-l) . Consider the 

element e
l 

of D corresponding to the power series Tl + 1 - U , and 

k 
observe that G~l,l)(U_l, U 2_1) - ° for all k2 < ° such that 

1 

k2 = 1 mod (p-l). It follows that there lS a power serles 

G(l,l)(T TIE I [[T T lJ such that 
l' 2- 00 l' cJ 

G(l,l)(T T)-
e l' 2 

1 

and it lS clear that it has the properties required by the theorem. 
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CHAPTER 10 

THE STRUCTURE OF 

As in the introduction , we define lim U Ie ,where the 
~ n,m n,m 

projective limit is taken relative to the norm maps. 

THEORD~ 30. Let and 
. 
~2 be integers modulo p - 1 . Let 

(i
l
,i

2
) 

G (T T) be an element of A which generate s the same ideal ~n 
l' 2 

Then is isomorphic to 

Proof. We recall that 1n Chapter 8 we defined 
(ii' i ) 

H 2 to be the 

1mage of und that this 1S A unless 

(i
l

, i
2

) - (1, l)mod(p-l, (p-l)/ro) , 1n which case 1S generated 

by and 

The projection map 

( i ,i I 
element s of 

1 2-
U 

n m 

1 . It is clear that 

00 n ,m 
has as iLs 1mage those 

for which the local norm to K of each component is 
p 

n 
n m?.O 

ker p = {l} . 
n,m 

As we have already observed 

(48) 



Let I n m be the composition of Pn ,m with the canonical 
, 

(i l ,i 2) ( i l ' i 2) _( i 1 ,i 2) . 
of 

. 
of U onto U Ie The 1mage I n m n ,m n ,m n ,m , 

the 1mage of under the projection onto 

V1 ew of equation (47), it 1S plain that the kernel of 

(il,i) 
I) k and l1a t I 1S a A-homomorphism . er p , ~ n m 

n 
n ,m~O 

Thus 

ker P 
n,m 

n ,m , 

and so it follows that 

The theorem 1S now clear from Theorems 27 and 29. 

But 

1S 

1S 
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surj ection 

precisely 

In 

We see from the above theorem that we have the following exact sequence 

of A-modules: 

o A 

(49) 

where 

A -

Clearly A injects into 
J\ 

, and and 
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(il,i) (i l ,i
2

) 
H 2 + G (T

l
, T

2
)A are clearly contained In no proper principal 

ideal of A , and so lS pseudo-isomorphic to 

(i ,i ) 
AIG 1 2 (T

l
, T

2
)A . Th o Th 1 t lS proves eorem . 



APP EN DIX 1 

CONSTRUCTION OF MEASURES ON Z2 
p 

66 

In this appendix , we shall indicate how one may deduce the existence of 

measures on Z2 with certain properties from the results in Katz [6J. 
p 

In 

particular , we shall construct a measure which will enable us to prove the 

coneruence in Theorem 15 . 

Let iV be any positive rational integer which is prlme to 

denote by ~N -[he group of 

unramified In the extension 

Nth roots of 

F 00 (llN) over 

We denote by o 
p 

unity . Observe that 

F , and fix a prlme 
00 

the Artin symbol 

p , and 

Poo lS 

P of 
-=00 

Foo(llN) lying above Poo ' 

(p, Foo(llN)/K) , and by W the rlng of integers of the completion of 

at P 
==00 

As usual , we regard Foo(llN) as lying in the complex field C , 

and we equlp it with an embedding into its completion at P 
=:CO 

In §G of his paper , Katz produces measures which, when evaluated at a 

suitable test object, glve rise to W-valued measures on Moreover, 

as we shall see, Katz has shown how certain integrals over these measures 

may be evaluat d and related to transcendental expressions fo r numbers which 

We shall borrow much of our notation from Katz [6J, and 

the references in all that follows refer to the numbered equations and 

paragraphs in that paper . 

Consider the test object (O , ~ , a) where ~ lS an isomorphism of 
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r-v 

Qp/Zp 
p*-(m+l) /0 Z -modules ~ ~ U and a. lS any level N-structure 

p 
m~O = 

(Z/NZ)2 
r-v 

a/iVa a. ~ . If we 

way , we may associate with 

~[TI*-(m+l) mod a [ -
Pj 

<P 

identify 

a unlque 

Q /Z with K /0 the usual In 
p p p p 

element p E Gal(F /K) such that 
00 

for all m > 0 • 

The isomorphism u P
-(m+l )/O r-v 

~ 1-1 00 which Katz associates with 
m~O = p 

<p In 8 . 3 . 15 lS glven by 

( (pm+ 1) th where ,J
m 

denotes the Weil-pairing of the division points 

of L . The corresponding isomorphism of formal groups In 8 . 3 . 17 , which we 

sh 11 denote for the moment by 
• A r-v 

n : E --~ G ,is the unique isomorphism 
p m 

A 

defined over 700 satisfying 

It will be useful to relate np to our standard isomorphism n chosen 

In Chapter 5 . Recall that we chose c 
n 

E a such that 
n+l 

- 1 mod p 

nd observe that It follows from the 

definitions of and of n that 
K (p) 

n (c(~ /TIm+l)) = n(c(~ /TIm+l)) 2 . 
P 00 • 00 

On the other hand, Gal(K /K) acts on 00 1-1 00 
vw KIK2 ' and so we easily 

p 

deduce that n (T) - nP 
(T) Moreover, the power serles expanslon of - . 

P 

, 



4 

Observe that n*(dT/l+T) - ~PA '(T) dT , and that, Slnce A'( T)dT lS 
P P 

defined over K and lS equal to s*(dz) , where dz lS the standard 

differential on e/L, we may take (npl- l 

~G as the unit c 
EJ 

In 8 .3.16 and 

~oo as the period ~ In 8 . 3 .17. 

Let g be any function g : O/NO ~ 0 and l et s be any locally 

constant function s Z2 ~ 0 
P 

We write f for the function 

f (Z/NZ)2 ~ (U , depending on both g and a, given by 

feu, v) - L g (a(w, v))(det a)uw 
wmodN 

68 

where det a lS the Nth root of unity associated with a In 2 . 0 . If s 

lS constant on cosets modulo 
r 

p , we write (sf) for the function 
r 

(s) : (Z/prNZ) 2 ~ W defined by 
r 

o-r 

(s )r\U mod prfJ , v mod prN) - s(u , v) (f(u mod N, V mod N)) p 

Consider the p-adic modular form 2¢ . E V(W r(prN)arith) 
k,J ,( sf)r . , 

defined in 5 . 11 . 2 . It lS clear from Lemma 8 . 3 . 25 that 2¢k , j,(Sf) (0, $, a) 
r 

belongs to W In fact , as we see In 8 . 6 . 5-8 . 6 .7, 



function on O/prNO which occurs In 

8 . 6 . 8 for this 

quat ion 3 . 6 . 1 

element o f Fro (~N) lS 

to be glven explic itly 

1 
a f--+ g (a) r 

p 

r 
p 

L 
t=l 

the transcendental expresslon glven 

eas ily seen from the diagram 8 . 8 . 2 

by 

Before applying this to the construction of W-valued measures with 
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(50) 

In 

and 

(51 ) 

certain properties on Z2 , we need one more result about p - adic modular 
p 

forms which will enable us to perform Katz ' s "changing level trick". 

Suppose F E V(W, f(prN)arith) and let F(r) E V(W , f(N)arith) be the 

image of F under the "exotic" isomorphism 5 . 6 . 4. Then we see from Lemmas 

8 . 3 . 25 and 8 . 6 . 2 that both F and take values In W and are related 

by the formula 

and 

and 

r 
o 

Fer ) P CO , <1), a) -

Choose an element Z
x 

a E 

on Z2 defined by 
p 

p 
and consider the W-valued measures 

J $ (x, y)d~~(a) - I $(x , y)f(u , v)d~~a,l)(O, ~, a) 

(52 ) 

p (a) 
~g 



where 
(a,l) 

ll;J 
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J ~(x , Yld~~ - J ~(x , ylf(u, vld~N(O, ~, al 

and are the measures constructed In Theorems 6.1 . 1 and 

2 

6 .4.7 respectively . Of course , P ZX II lS supported on It follows from 
g p 

8 . 5 . 0 and equation (52) that , if b lS any integer chosen so that 

b = 1 mod Nand b - a mod pr , 

r 

J x\j c(x , Yld~~(al - (t<Pk,j , (Eflp-2ak+j+l<Pk,j ,[bJ(EflJ (0, ~, alj 0p 

and 

Here 

Vie replace 

[bJ(sf) denotes the function on 
r 

s by the function (u, v) ~ s(oo, bv) . 

which we obtain if 

Moreover, 

depends only on the restriction of € to and we see from the proof 

of Corollary 8.5 . 4 that if lS supported on , 

Thus, we can calculate these integrals explicitly 

USD1g equations (50) and (51) together with 8 . 6.8 . 

We shall now specialize to a particular choice of the function g . 

Let N be positive rational integer belonging to r which is prime to 

p , and consider he function g : (O/NO) ~ 0 defined by 
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1 if ~((a)) = a , 

g (a) -

o otherwise . 

We see immediately that 

ow , as ment ioned in the introduct ion , if k > J ~ 0 , 

"'-

and J , 
J 

k jd P (a) 
x Y \.l 

g 
lies In I 

00 
Because of the p-adic continuity of 

\.lp(a) , this lS sufficient to prove that 
g 

"'-

pea) and hence 
\.lg , 

liP 
t-'g , lS an 

I oo-v lued measure . The obvious consequence of this is that the numbers 

as element s of the completion of F 00 (1-1 N) 

"'-

at Em, actually lie in K 
p 

Le 
p(a) 

1-1 and 1-1
P denote the Ioo-valued measures defined by 

f ¢(x, y)d~p(a) - 1 f [ :1' _Y]dlJgP(a) LV cp - LV 

and 

I lS evident from equation (53) that these measures are independent of the 

choice of I , and that if we omit the superscript p when <p is the 

isomorphism corresponding to the identity in Gal(F IK) , 
00 



and 

THEOREM 31 (Katz) . Let 
(a) 

fJ and fJ be the Too-valued measures 

defined above -' and let h ZX ~ Z be any function which is constant on 
p p 

r 
cosets modulo p Extend h to the whole of Z by zero. Then., for 

p 

k ~ 1 and j ~ 0 -' we have the following formulae: 

r k-l j7( )d (a) x y 'l -y jJ = 
J 

and 

( ~ ~ ) - (k+ j) (21T /~I j (k-l) ! 
pm K 

P f T h f ' . 1 f 11 f h d f ' " f (a) roo. e lrst lntegra 0 ows rom tee lnltlon 0 fJ and 
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equation (53) . The remaining integrals can be determined in the same way by 

calculating the value of 2¢k-l,j,(€f) (0, ~,a) for the appropriate choice 
r 

of € . 



73 

We remark here that equation (55) plainly shows the existence of the 

power serles However , from our knowledge of the action 

of Gal(F /10 
00 

on st 
P 

it lS clear that the generator A of p chosen in 

8 . 7 . 3 lS t/J(p) , and so, with an appropriate choice of function g , it lS 
-

(i
l

,i
2

) 

T
2

) clear that the existence of the power serles G , (T
l

, lS already 

implied by equation 8 . 7 . 6 . 

Finally , VIe turn to ~he proof of Theorem 15 . Let k > 1 and 
. 

J < 0 

and let ~ E S Choose a unit Z
x 

a E 
p 

su'ch that 

Theorem 15 , it will clearly suffice to show that 

( 
k-j) I-a 

k . 
a -J f; 1 . To prove 

- (l_ak - j , (_l)jst-ko . [(k-l) ! 
. P J 

(58) 

Lc 
x 

h . : Z 
J P 

und which sa.tisfies 

aEI 
-

Z 
P 

be a function which lS constant on cosets modulo 

. 
hj(-y) - yJ mod pm for all 

m 
p 

fuw, we see from Theorem 31 that the left hand side of equation (58) lS 

equal to 

On the other hand this lS clearly congruent to 



and Theorem 31 shows that this integral is equal to 

n-k(k_l)! L (h.(K
2

(CJ))-a kh.(aK
2

(CJ))] 
p CJEGalTF IK) J J 

m 

But, 

vJdS shown lTI Corollary 14, and 

belongs to 

. 
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I ,as 
m 

It follows that the last mentioned integral is congruent to the right hand 

side of equation (58) modulo Thus equation (58) holds modulo for 

an arbitr ry choice of m , and so we must have equality. This establishes 

the asscr ion of Theorem 15 . 
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APP ENDIX 2 

A KUMMER CRITERION 

As an application of the ideas developed in this thesis, we shall 

relate the following simple arithmetic property of the curve E to p-adic 

.properties of special values of primitive Hecke L- f unctions. 

Let F be any Galois extension of K contained In KO O . We say , 

that p lS irregular for F if there lS a cyclic extension of F of 

degree p which lS unramified outside the prlmes of F lying above p , 

and which lS distinct from the composition of F and the first layer of the 

unlque Z -extension 
p 

K of K unramified outside p . 

The best result In this direction is due to Coates and Wiles [lJ who 

glve a criterion for determining whether p lS irregular for the ray class 

field of K modulo p lD terms of the p-adic properties of Hurwitz 

numbers. We shall extend their result to provide criteria for determining 

whether p is irregular for any Galois extension of K contained in 

We write L \~ , $] for the primitive Hecke L-function attached to ~ 

for ach integer k ~ 1 . Since L (~ , s) differs from L\~, s) only by 

a finite number of Euler f ctors, it follows from our earlier results that 

the numbers 

belong to K 
P 

k > 1, J > 0 , (59) 
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In order to state which of the numbers (59) determine whether p lS 

irregular for a given field F, we introduce the following notion . Let F 

be any Galois extension of K contained In KO O . We shall say that a 
, 

character X of Gal (Ko olK) belongs to F if Gal (K IF) 
~ 0 0 . 

lS contained , , 

In the kernel of X . Then , our result lS as follows . 
J 

THEOREM 32. Let F be any Galois extension of K contained in 

Ko 0 . Then the pr1.-me p 1.-S irregular for F if and only if there exist 
, -

integers k and with 0 < 
. 

< p-l ., 1 < k J J < P - -

non- trivial character belonging to F and the number 

1.-S not a unit in 0 
p 

such that 
k -j . 

XI X2 
1.-S a 

As a numerical example , consider the field K = Q(i) and the elliptic 

curve E : y2 - 4x
3 

4x If P lS a prlme congruent to 1 modulo 4 , 

and p lS a prlli!e lying above p , then the characters belonging to R 
p 

, 
-

the ray class field of K modulo p are the characters 
k -j 

for which , XI X2 
-

- o mod (p-l) and k - o mod 4 while the characters belonging to R J - -- - , , 
p 

the ray class field of K modulo p are the characters 
k -j 

for which , XI X2 

k + j ~ 0 mod 4 . Using the table in Hurwitz [5J , together with the 

formulae in Weil [13J p . 45, it is easy to calculate the fOllowing table of 

It follows from Theor m 32 that 
. 

regular for both R and R p lS 
P P 
-

when p = 5 but that \.Jhile p lS regular for R it lS irregular for , , 
p 
-

R when p - 29 Slnce 29 divides ID2~2oL(lJl20, 19) -
P 
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for the curve 
2 3 

Y = 4x - 4x 

J 

k+j 0 1 2 3 
--

4 
-1 -1 

2 . 5 
-2 -1 

2 . 3 
-2 -1 

2 . 3 
-1 -1 

2 .5 

8 22 . 3 . 5-1 23 .7-1 2 . 3-1 
2 
-1 

12 2
7

. 3
3

. 5- 1 .7.13-
1 ·· 7 2 -1 

2 . 3 .11 2
5 25 . 3-1 

16 
9 4 -1 2 -1 

2 . 3 . 5 .7 .11.17 211 3 
. 3 2

9
. 3

2
.7-

1
.19 2

10
. 3 

20 215 . 36 . 5-2.72.11 15 5 - 1 
2 . 3 .7.19 . 29 2

13
.3

3
.67 213.3 2 . 37 

r 

24 
18 6 -1 

2 . 3 . 5 .7 
3 2 

. 11 
-1 

.13 .19 
19 6 2 -1 

2 .3.7 . 23 . 389 2
17

.3
5

.11-
1

.15629 

Similarl y , p lS irregular for R when p = 37 , 389 or 15 629 , 
P 

h d ' ' d 3n-20L(",20 7) ...,...{)oo-24 L(l,,24,23) and Slnce t ese prlmes lVl e TI ~Goo ~ ,1 ,II~ G V 

~ 2noo-2 4L(", 2 4. 22: . 
/I ~G \ ~ ~ J respectl vely . 

Proof of Theorem 32. Let M denote the maximal abelian p-extension 

of F unramified outside the primes of F divid ing p , and let F denote 

the composition of F and K It can be shown that for F as In our 

theorem , Gal (M/F) lS finite , and it i s easy to deduce from this that p 

is irregular for F i f and only if Ga l(fi1/F) is non-trivial . Thus, the 

idea of our proof lS to relate the formula given in Theorem 11 of Coates and 

\~ile s L1J for the order ot Gal(M/F) to the numbers ( 59 ). 

It will be convenient to do this in two parts . The first part is to 

prove the p-adic analogue of the well known formula which gives the product 

of the regulator and the class number of an abelian extension of K In 

terms of logarithms of Robert ' s elliptic units . The p- adic logarithms of 
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these elliptic units arlse In the work of Lichtenbaum [8J as special values 

of certain Iwasawa functions which he constructs and which, as we shall 

show , are related to the functions which Katz produced interpolating the 

numbers (59) . The congruences which arise from this observation will yield 

Theorem 32 . 

For the moment, let us suppose only that F lS a finite abelian 

extension of K of degree d and conductor g " For each character X of 

Gal(FIK) , we let F denote the fixed field of the kernel of X 
X 

and we 

vIr it c for the conductor of F 
X 

If we denote by the ray class 

field of K modulo ~ , it is clear that we may regard X as a character 

of Gal(R IK) , and hence, via the reciprocity map,as a primitive character 

~ 

of the ray class modulo ~ which we shall denote by Cl (g) . 
X 

Let n 
X 

be the smallest positive rational integer in ~ and let w be the 

~ 

number of roots of unity in K which are congruent to 1 modulo !x" Let 

w and be the number of roots of unity in K and F respectively, and . 

let h denote he class number of F . Then , if <p (e) 

~ 
e E Cl (~) lS 

the invariant defined by Robert [lOJ p . 14, we have the following lemma . 

LEMMA 33. with a suitable choice of the sign of the regulator R of 

F -' 

(60) 

whc1:1e the pYlodu t on the left l.,S taken over all non- trivial characters of 

Gal(F IK) . 



Proof. This lS Theorem 3 (ii) of Robert [lOJ , if we note that the 

numbers Robert denotes by p(x / ) satisfy [r-r p(X / )]2 = 1 . 

xil 

From now on , we fix our choice of the regulator R of F 

equation (60) holds , and we shall now prove a p-adic analogue 
-

formula . We denote by C an algebraic closure of K , and 
p p 
-- -

so that 

of this 

let log 
p 
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be 

an extension of the p-adic logarithm to the whole of c 
p 

Let 6. be the 

group of values taken hy the characters of Gal(F/K) . By fixing an 

embedding of K , the algebraic closure of K , J.n C , we may regard the 
p 
-

elements of f:.. both as element s of C and of C Naturally , our results 
p 

will be independent of this choice . 

Recall that R 
g 

lS the ray class field of K modulo g , and we 

ex tend log / I 
x 

and log to R ® Z[6.J by defining 
p g 

logla ® al - a log la/ 

C1nd 

~ RX 
log a a a - a log a for a E 

p P g 
and a E Z [f:..J . 

Le ~x denote the expresslon 

obse vo h(lt if a E Grll(F/K) , then 

It follows that 

(61) 

(62) 



det[lOg <pO ] 

X Xtl,otl 

and that 

[ 0] det log <p 

E X Xtl ,otl 

80 

(63 ) 

log <p (C)) . 
p ~ 

. (64) 

Choose units e
l

, "', ed_
l 

In F which generate a subgroup of index 

W
F 

in the group of units of F so that 

d-l [ 0 ) 
R - 2 de t log e . I 

J ) otl, lsj <d 

We define the p-adic regulator of F , R by 
P 

R - det(lOgp e~l 
p J)otl,lsj<d 

(This definition fixes the slgn of R , but othervrise agrees with that used 
p 

by Coates and Wiles [lJ . ) 

Now if Co lS a fixed element of Cl(~) , lS a unit 

In R for all C E Cl(g) , and it lS clear that 
g ~ 

oreover , Slnce <PX lS fixed by Gal(R IF) , it follows that if 
g 

W denotes 

the group of roo s of unity In F , there are elements a . E Z[6J 
X,J 

and 



~ E W ® Z[6J such that 
X 

d-l 
<P -~ ne . ®a . 

X X j=l J X ,J 

Thus , if ° E Gal (F / K) , 

and so we conclude that 

and 

d-l 
° ° n ° <P -~ e . ®a ., 
X X j=l J X ,J 

( ) d-l 
- det a . ~l 1 . d · R/2 

X ,J Xt- , SJ< 

( oJ det log <p 

p X Xf-l , of-l 
- det (a .1 ~ . d • R 

X ,J - X t- l , 12J < p 
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(65) 

(66) 

But, it is easy to see that det (x(o))Xf-l,Of- l lS non-zero (see , for 

instance, Lemma 10 . 9 of Lichtenbaum [8J) , and so , Slnce R f- 0 , we conclude 

from Lemm 33 and equations (63)-(66) that we have the following p-adic 

analogue of Lemma 33 . 

TH EOREM 34 . With our choice of the 
. 

of R g&ven s&gn 
~ p 

-

n [ I x-leG) <p e G) J In w 
d-l 

log - 12 whRp/WF - ~ 

Xi-l CE ] [r, ) p gx X gx 
'X 

(67 ) 

W1Wl' the product on the left &s taken over all non-trivial characters of 

Gal(F / K) . 

Recall that if X lS any character of Gal(F/K) , we may regard X as 

a ch racter of the ray class modulo ~, and hence as a primitive Dirichlet 
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m 
character of conductor ~ . Suppose K. = P Xc , where 

~ = =x 
c 
=x 

lS prlTne to 

p . Then we may express X uniquely as the product of two primitive 

m 

Dirichlet characters Xo and Xp of conductor c and p X respectively. 
=x -

Choose a generator Y
X 

of c , and let P be the point of exact order 

on the curve E 

=x 

glven by 

The point 

P 
X 

- P 
Xo 

X 

where P = ~(~ /Y ) 
X 00 X· o 

may be regarded as a point of order 

and 

m 
p X 

on the formal group E , and so , if n denotes our chosen isomorphism of 

m 
formal groups n 

A rv 

E --+ G as usual , 
m 

r - n(p ) + 1 
-"x l X 

is a p X-th root 

of unity . We write C for the Gauss sum 
X 

m 
-m p X 

C - P X L 
X a=l 

a 
X (a)C:;; 

p X 

P 

Let E denote the triple (E, 2dx/y, n- l
) as in §6 of Lichtenbaum [8J 

and let L(E , X, p) be the function he defines in §8 . 1 . Then we have the 
X 

following theorem . 

THEOREM 35. Let d
F

/
K 

be the relative discriminant of F over 

Then r-r L(E , X, P )(1) ~ with the product taken over all non- trivial 
Xtl X 

character of Gal(F/K) ~ has the same p-adic valuation as 

phR 
p 

· r-r (l_(Nq)-l) ~ 
qlp = 

K. 
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where the product is taken over the pr~me i deal s of F lying above p and 

Nq denotes the norm to K of q . 

Proof. It lS easy to see from Corollary 9 .4 of Lichtenbaum that, if X 

lS non-trivial 

Since p 

c 
X 

5n Q 
X p 

lS prlme to 2 and 3 , and 
m 

y + 7T X 
X 

l S pr lme to gx' it 

lS clear from equations ( 57) and ( 58 ) that it wil l suffice to prove that 

r-r c (l-X(7T)/p) 
X#l X 

has the same p- adic valuation as 

m 
Now , it lS well known that 7T Xc C 

X X-I 
is a unit In C , and so the 

p 

conductor-discriminant theorem shows that 

1.--

TTc 
X#l X 

has the same p-adic 

valuation as d;/K Moreover , if H denotes the maximal abelian extension 

of K contained In F in which p is unramified , it is easy to see that 

only those characters X which belong to H contribute to TT (l-X(7T)/p) . 

X#l 

He conclude that TT (l-X(7T)/p) has the same p-adic valuation as 
X#l 

l-[H:KJ h O h 
P , W lC lS also t he same as the p- adic valuation of 

From now on we suppose, as In Theorem 32, that F lS a Galois 



extension of K contained In K 0 . 0 , 
The importance of the prevlous 

theorem can be seen from the following corollary . 

COROLLARY 36. Let F be a Galois extension of K contained in 

Then p &s regular for F if and only if the number 

IT L(E , x, P
x
] (1) -' where the product is taken over all non- trivial 

Xtl 

characteru of Gal(F/K) -' &S a unit &n C · 
p 
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Proof. R call that M denotes the maximal abelian p-extension of F 

unramified outside the prlmes of F lying above p , and that F denotes 

the composit ion of F and K Since the p-adic regulator IR lS non-
= p 

zero , it follows from Theorem 11 of Coates and Wiles [l J that Gal(M/ F) . 
lS 

finite , and that it lS trivial if and only if IT L( E, X, PX](l) lS a unit 

Xt l 

In C 
p 

But Slnce Gal (F /F) has no torsion , we conclude that p lS 

regular for F if and only if Gal(M/ F ) lS trivial , and the assertion of 

he corollary is IlOW plain . 

To conclude the proof of Theorem 32 , we need to relate the numbers (59) 

Lo the values of L(E , X, P ] 
X 

conductor f glven by 

Let p be the Dirichlet character of 

(a) - l/J((ex)]/ex , (ex, f) - 1 , (50) 

and observe that the character 
k -j 

X
I
X

2 
, when viewed as primitive Dirichlet 

character, lS glven by 

k -j k -j - k+j 
X

I
X

2 
(ex) - w (ex)w (ex)p (ex) , (70) 



where w Z
x 

lS the usual Teich-Muller character on 
p 

(and hence a 

Dirichlet character of conductor p under our identification of 0 with 
p 

z ). By the characters on the right hand side of equation (70) we mean, 
p 

of course , the associated primitive characters . 

THEORD~ 

measure 1-1 . 
~ 

37. For each integer ~ modulo 

supported on 
x2 

Z $uch that 
p 

A 

W ." there is an I - valued co 
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for all k ~ 1., j ~ 0 satisfying k+j - ~ mod W (71) 

and 

. . 
k k j k p-~(a)wJ(a) 

( -1) (k -1 ) ! (st P st coJ - ( 1-w - (ljJ ( p ) ) ljJ ( p ) / p ) I k 
aEO a 
at-o 

for all k > 3 and J $ 0 mod p-1. (72) 

Furthermore., if a E ZX -' there ~s another 
p 

Z
x 

such that 
p 

J 
k-ld (a) 

x 1-1 • -
Z ~ 

P 

A 

I - valued measure on co 

for all k > 1 such that k - ~ mod W. (73) 

Proof. Let R be a positive rational integer belonging to the 

conductor of 
-~ 

P which is prime to p . We regard 
-~ 

p as a function 



-~ 
p a INa -+ a and let W . 

-~ 
p 

be the corresponding measure defined In 

Appendix 1 . It lS easy to check that the measure defined by 

has all he required properties . Similarly , if we define 
(a) 

w· 
~ 

it lS a simple matter to verify that it satisfies equation (73). 

by 
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We re now In a position to prove the fol lowing theorem , from which we 

will be ble to deduce Theorem 32 . 

THEOREt1 38. Let X be a non-trivial character of Gal(FIK) ., and let 

and be integers modulo (p-l) such that Then 

-~ 
1 

and X = 
p 

Choose a generator of the conductor cx 

of Xo a before., and let p 
X 

be the corresponding primitive g - divi ion 
--eX 

point of E . 

primitive Cp-l) h 

L\E, X, P )Cu) -. X 

root 0 

~s an Iwasawa functionJand if a 

unity and u = l-i mod p-l ., 
1 

. 
~s a 

-y n 
X p 

, ~2 ~ 0 mod Cp-l) , 

-y n 

_X~p J ( )-u (a) 
• y x dw . , 
~l X ~l 

l-a 

~ 2 - 0 mod (p -1) . 



Proof . Since L(E, X, p) lS a continuous function, it will suffice 
X 
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to prove that if k > 3 and k - i
l 

mod (p-l) , L(E, X, P )(l-k) 
X 

lS glven 

by the formula in the theor In, Slnce this is a dense subset of 

for such k , Theorem 8.2 of Lichtenbaum [ 8J shows that 

where 

Since 

lS glven by Theorem 7 . 2 and 

- <-1)kk!(Yx/0oo)k ~ 
aEO 
at 0 

cqu tions (72) and (73) . 

Let X be a non-trivial character of 

ani J with 0 < J < p-l and 1 < k < P - -

.. . 
1-- -1-- -1--

2 1 2 -
p (a)w (0'.) 

k 
0'. 

Gal (F/K) and choose 

k . 
such that X = X X-J 

1 2 

z 
p 

But , 

integers 

Since 

L (E, X, PXJ lS an IHasawa function , L(E, X, PX)(l) lS an integer In C 
p 
-

A 

L (E, P )(l-k) (in I In fact) , and it is a unit if and only if X, co X 

unit . ow , if J - 0 - , 

and so we conclude that L(E X, PX)(l) lS a unit if and only if 

lS a unl In 0 
p 

On the other hand , if j t o , it follows from the fact that 

lS a 

k 



for all y E Z 
p 

and Theorem 38 , that L(E, X, P )(l-k) 
X 

f 
l-k j 

x y dll
k 

. 
) +J 

is a unit . lS a unit if and only if 

equation (71) that this lS the case if and only i f 

lS a unit In 0 
p 

Again , we deduce from 

These facts , together with Corollary 36 , yield Theorem 32 . 
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