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ON TYPE NUMBER OF REAL HYPERSURFACES IN $P_{n}(C)$

By

Young Jin SUH*

Introduction.

Let $P_{n}(C)$ denote an n-dimensional complex projective space with the Fubini-
Study metric of constant holomorphic sectional curvature $4c$ . Real hypersurfaces
in $P_{n}(C)$ have been studied by many differential geometers (See [2], [3], [4], [5]

and [6]).

In particular, as for a problem with respect to the typec number $t,$
$i$ . $e.$ ,

the rank of the second fundamental form of real hypersurfaces $M$ in $P_{n}(C)$ ,

R. Takagi showed in [6] that there is a point $p$ on $M$ such that $t(p)\geqq 2$ , and
M. Kimura and S. Maeda [4] gave an example of real hypersurfaces in $P_{n}(C)$

satisfying $t=2$ , which is non-complete. In this paper we shall prove

THEOREM 1. Let $M$ be a complete real hypersurface in $P_{n}(C)(n\geqq 3)$ . Then
there exists a point $p$ on $M$ such that $t(p)\geqq 3$ .

REMAPK. It is known that a certain geodesic hypersphere in $P_{2}(C)$ has a
property $t=2$ (cf. [2], [7]). Thus the assumption $n\geqq 3$ in Theorem 1 can not
be removed.

The author would like to express his sincere gratitude to Prof. R. Takagi

for his valuable suggestions and encouragement during the preparation of this
paper.

1. Preliminaries.

Let $M$ be a real hypersurface in $P_{n}(C)(n\geqq 2)$ . Let $\{e_{1}, \cdots, e_{2n}\}$ be a local
field of orthonormal frame in $P_{n}(C)$ such that, restricted to $M,$ $e_{1},$ $\cdots,$ $e_{2n-1}$ are
tangent to $M$. Denote its dual frame field by $\theta_{1},$ $\cdots$ , $\theta_{2n}$ . We use the following

convention on the range of indices unless otherwise stated; $A,$ $B,$ $\cdots$

$,$

$=1,$ $\cdots$ ,
$2n$ and $i,$ $j,$ $\cdots$

$,$

$=1,$ $\cdots$ , $2n-1$ .
The connection forms $\theta_{AB}$ are defined as the l-forms satisfying
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(1.1) $d\theta_{A}=-\sum\theta_{AB}\wedge\theta_{B}$ , $\theta_{AB}+\theta_{BA}=0$ .

Restrict the forms under consideration to $M$. Then, we set $\theta_{2n}=0$ and the
forms $\theta_{2n.i}$ can be written as

(1.2) $\phi_{i}\equiv\theta_{2n.i}=\sum h_{ij}\theta_{j}$ , $h_{ij}=h_{ji}$ .

The quadratic form $\sum h_{ij}\theta_{i}\otimes\theta_{j}$ is called the second fundamental form of $M$

with direction of $e_{2n}$ . The curvature forms $\Theta_{ij}$ of $M$ are defined by

(1.3) $\Theta_{ij}=d\theta_{ij}+\sum\theta_{ik}\wedge\theta_{kj}$ .
We denote by $J$ the complex structure of $P_{n}(C)$ , and put

$Je_{i}=\Sigma J_{ji}e_{j}+f_{i}e_{2n}$ .
Then the almost contact structure $(J_{ij}, f_{k})$ satisfies

(1.4) $\{\Sigma J_{ik}J_{kj}=f_{i}f_{j}-\delta_{ij}$

, $\Sigma f_{j}J_{ji}=0$

(1.5)
$\left\{\begin{array}{l}dJ_{ij}=\Sigma(J_{ik}\theta_{kj}-J_{jk}\theta_{ki})-f_{i}\phi_{j}+f_{j}\phi_{i},\\df_{i}=\Sigma(f_{j}\theta_{ji}-J_{ji}\phi_{j}).\end{array}\right.\sum f_{i}^{2}=1,$

$J+J_{ji}=0$ .

The equations of Gauss and Codazzi are given by

(1.6) $\Theta_{ij}=\phi_{i}\wedge\phi_{j}+c\theta_{i}\wedge\theta_{j}+c\sum(J_{ik}\prime_{jl}+J_{ij}J_{kl})\theta_{k}\wedge\theta_{l}$ ,

(1.7) $d\phi_{i}=-\sum\phi_{j}\wedge\theta_{ji}+c\Sigma(f_{i}J_{jk}+f_{j}J_{ik})\theta_{j/}\nwarrow\theta_{k}$ ,

respectively.

2. Lemmas.

Let $M$ be a real hypersurface in $P_{n}(C)$ . We choose an arbitary point $p$ in
$M$, and use the following convention on the range of indices; $a,$ $b,$

$\cdots,$ $=1,$ $\cdots$ ,

$r(p)$ and $r,$ $s,$ $\cdots,$ $=r(p)+1,$ $\cdots,$ $2n-1$ . Then we can take a field $\{e_{1}, \cdots , e_{2n}\}$

of orthonormal frame on a neighborhood of $p$ in such a way that the l-forms
$\phi_{i}$ can be written as

(2.1) $\left\{\begin{array}{l}\phi_{a}=\Sigma h_{ba}\theta_{b},\\\phi_{r}=0,\end{array}\right.$

$h_{ab}=h_{ba}$ ,

at $p$ . We call such a field $\{e_{1}, \cdots , e_{2n}\}$ to be associated with a point $p$ .
Under this notation we have

LEMMA 2.1. Assume that $J_{rs}(p)=0$ at a point $p$ on M. Then $t(p)\geqq n-1$ .
Furthermore, the equality holds if and only if $f_{a}=0$ and $J_{ab}=0$ at $p$ .
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PROOF. By (1.4) we have

(2.2) $\Sigma_{b}J_{ab}^{2}+\Sigma_{r}J_{ar}^{2}+f_{a}^{2}=1$ ,

(2.3) $\Sigma_{a}J_{ra}^{2}+f_{r}^{2}=1$ .
Summing up (2.2) on $a$ , and (2.3) on $r$ , we have

(2.4) $\Sigma_{a.b}J_{ab}^{2}+\Sigma_{a.r}J_{ar}^{2}+\Sigma_{a}f_{a}^{2}=t(p)$ ,

(2.5) $\Sigma_{a.r}J_{ar}^{2}+\Sigma_{r}f_{r}^{2}=2n-1-t(p)$ .

Substituting (2.5) into (2.4) and making use of $\Sigma_{a}f_{a}^{2}+\Sigma_{r}f_{r}^{2}=1$ , we have

$\Sigma_{a,b}J_{ab}^{2}+2\Sigma_{a}f_{a}^{2}=2(t(p)-(n-1))\geqq 0$ ,

and so our assertion follows.
This concludes the proof.

Now we consider a point $p$ where the type number $t$ attains the maximal
value, say $T$. Then there is a neighborhood $U$ of $p$ , on which the function $t$

is constant and the equation (2.1) holds.
Put $\theta_{ar}=\sum A_{arb}\theta_{b}+\Sigma B_{ars}\theta_{s}$ . Then, taking the exterior derivative of $\phi_{r}=0$

and using (1.7), we have

$\Sigma h_{ab}\theta_{b}\wedge\theta_{ar}-c\Sigma(f_{r}J_{ij}+f_{i}J_{rj})\theta_{i}\wedge\theta_{j}=0$ ,

from which we have

(2.6) $\Sigma(h_{ac}A_{crb}-h_{bc}A_{cra})-cf_{a}J_{rb}+cf_{b}J_{ra}-2cf_{\tau}J_{ab}=0$ ,

(2.7) $\Sigma h_{ab}B_{brs}-cf_{a}J_{rs}+cf_{s}J_{ra}-2cf_{r}J_{as}=0$ ,

(2.8) $f_{s}J_{rt}-f_{t}J_{rs}+2f_{r}J_{st}=0$ .
It is easy to see that (2.8) is reduced to

(2.9) $f_{r}J_{st}=0$ .
Similarly, taking the exterior derivative of $\phi_{a}=\Sigma h_{ba}\theta_{b}$ and using the equation
(1.7) of Codazzi, we have

$\Sigma_{b}\{dh_{ab}-\Sigma_{c}(h_{ac}\theta_{cb}+h_{cb}\theta_{ca}-\Sigma_{r}h_{ac}A_{crb}\theta_{r}-cf_{b}J_{ac}\theta_{c}$

$+cf_{c}J_{ab}\theta_{c}-2cf_{a}J_{bc}\theta_{c})+c\Sigma_{r}(f_{b}J_{ar}\theta_{r}-f_{r}J_{ab}\theta_{r}+2f_{a}J_{br}\theta_{r})\}\wedge\theta_{b}=0$ .

Therefore, we can put

$dh_{ab}-\Sigma_{c}(h_{ac}\theta_{cb}+h_{cb}\theta_{ca}-\Sigma_{r}h_{ac}A_{crb}\theta_{r}-cf_{b}J_{ac}\theta_{c}+cf_{c}J_{ab}\theta_{c}$

(2.10)
$-2cf_{a}J_{bc}\theta_{c})+c\Sigma_{r}(f_{b}J_{ar}\theta_{r}-f_{r}J_{ab}\theta_{r}+2f_{a}J_{br}\theta_{r})=\Sigma C_{abc}\theta_{c}$ ,

where $C_{abc}=C_{acb}=C_{bac}$ .
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Under such a situation we have

LEMMA 2.2. If $J_{rs}=0$ on $U$, then $T\geqq n$ on $U$.

PROOF. If $T<n$ , then by Lemma 2.1 we have $T=n-1$ , and $f_{a}=0$ on $U$ .
For a suitable choice of a field $\{e_{r}\}$ of orthonormal frames, if necessary, we
may set $f_{2n-1}=1$ and $f_{r}=0$ for $r=n,$ $\cdots,$ $2n-2$ . Then from (1.5) we have

$0=df_{r}=-\sum J_{ar}\phi_{a}$ .

But, since rank $J=2n-2$ , we have $\det(J_{ar})\neq 0(a=1, \cdots, n-1, r=n, \cdots, 2n-2)$ .
Thus the above equation implies $\phi_{a}=0$ , which contradicts the fact that $\det(h_{ab})$

$\neq 0$ .
This concludes the proof.

In the remainder of this section we restrict the forms under consideration
to the following open set $V_{T}$ defined by

$V_{T}=$ { $p\in M|$ J. $s(p)\neq 0,$ $t(p)=T$ },

where $J_{rs}(p)\neq 0$ means $J_{rs}(p)\neq 0$ for some $r,$ $s=T+1,$ $\cdots,$ $2n-1’$ . First from
\langle 2.9) we have $f_{r}=0$ . Thus we may set $f_{1}=1$ , and $f_{a}=0$ for $a\geqq 2$ . Hence we
have

(2.11) $J_{1a}=0$ , $J_{1r}=0$ .
Furthermore, $df_{a}=0$ and $df_{r}=0$ give

(2.12) $\theta_{1a}=\Sigma J_{ba}\phi_{b}$ ,

(2.13) $A_{1ra}=\sum h_{ab}J_{br}$ ,

(2.14) $B_{1rs}=0$ .

The equation (2.7) amounts to

(2.15) $\Sigma h_{ab}B_{brs}=cf_{a}J_{rs}$ .

LEMMA 2.3. $\det(h_{ab})=0(a, b=2, \cdots , T)$ on $V_{T}$ .

PROOF. Here indices $a,$
$b$ run from 2 to $T$ . If $\det(h_{ab})\neq 0$ , then by (2.15)

we have $B_{ars}=0$ , which together with (2.14) gives $J_{rs}=0$ . A contradiction to

the fact $J_{rs}(p)\neq 0$ on $V_{T}$ .
This concludes the proof.

3. Proof of Theorem 1.

We keep the notation in section 2. If $J_{rs}=0$ on a nonempty open set, then
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Lemma 2.2 proves Theorem 1. Therefore, we have only to consider the case
where the open set $V_{T}$ defined in section 2 is not empty.

Assume $T=2$ . Then we shall derive a contradiction. First by Lemma 2.3
we have $h_{22}=0$ .

Now we put $F=h_{12}$ . Then from (2.13) we have

\langle 3.1) $A_{1r1}=FJ_{2r}$ , $A_{1r2}=0$ .
Put $a=1$ and $b=2$ in (2.6) to get

(3.2) $FA_{2r2}-FA_{1r1}-cJ_{r2}=0$ .

Then (3.1) and (3.2) give

(3.3) $FA_{2r2}=(F^{2}-c)J_{2r}$ .
According to (2.12), we have

$\theta_{12}=0$ .

Put $a=1$ and $b=2$ in (2.10). Then, together with (3.3) we find

(3.4) $dF+(F^{2}+c)\Sigma J_{2r}\theta_{r}=\Sigma D_{12a}\theta_{a}$ ,

where we have put $D_{12a}=C_{12a}-2cJ_{2a}$ .
Let $p$ be any point of $V_{2}$ and $let\alpha$ : $I\rightarrow V_{2}$ be the maximal integral curve

of the unit dual vector field $\Sigma J_{2r}\theta_{r}$ on $V_{2}$ such that $\alpha(0)=p,$ $\Sigma_{r}J_{2r}\theta_{r}(\alpha^{\prime}(t))=1$

and $D_{12a}\theta_{a}(\alpha^{\prime}(t))=0$ , where $(O\in)I$ denotes an open interval of $R$ .
Assume that there exists $\sup I$, say $t_{0}$ . Since $M$ is complete, we have a

point $p_{0}=\lim_{0}\alpha(t)t\rightarrow t$ on $M$. We assert $F(p_{0})=Iim_{0}F(\alpha(t))=Ot\rightarrow t$ In order to prove

this assertion, it suffices to show that $t(p_{0})\leqq 1$ , because $\det(h_{ij})=-F^{2}$ by $h_{22}=0$

at $p_{0}$ . For this we assume $t(p_{0})=2$ . Thus we can consider that our frame
field $\{e_{i}\}$ is defined also on the neighborhood of $p_{0}$ . Since $p_{0}\in\overline{V}_{2},$ $J_{rs}(p_{0})=0$

for any $r,$ $s\geqq 3$ . Then by Lemma 2.1 we have $t(p_{0})\geqq n-1\geqq 3$ for $n\geqq 4$ , which
is a contradiction. For a case where $n=3$ also by using Lemma 2.1 we get
$f_{ab}=0$ and $f_{a}=0$ at $p_{0}$ for all $a,$ $b=1,2$ . This also contradicts to the fact that
$f_{1}=1$ at $p_{0}$ , which proves our assertion.

Now we shall show that $\inf I=-\infty$ . Indeed, if there exists $t_{1}=\inf I$, then
we find $Iim_{1}F(\alpha(t))=Ot\rightarrow t$ by an argument similar to the above. Thus there is a
real number $t^{\prime}$ such that $t_{1}<t^{\prime}<t_{0},$ $dF=0$ at $\alpha(t^{\prime})$ . Then (3.4) gives $J_{2r}=0$ .
From this together with $J_{1r}=0$ in (2.11) it follows that rank $J\leqq 2n-3$ , which
makes a contradiction to the fact that rank $J=2n-2$ .

Now the function $|F|$ defined on the interval $(-\infty, t_{0})$ satisfies by (3.4)
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$\frac{d|F|}{dt}=F^{2}+c$ or $\frac{1d|F|}{F^{2}+cdt}=1$ .

Solving the above differential equation, we have

$F(\alpha(t))=\sqrt{}\overline{c}\tan\sqrt{}\overline{c}(t-t_{0})$ ,

which is a contradiction, because $F(\alpha(t))$ is defined on $(-\infty, t_{0})$ but the right

hand side can not be defined at the points such that $\sqrt{}\overline{c}(t-t_{0})=(2k+1)\pi/2$ ,

where $k$ is an integer.
For a case where $\sup I=\infty$ , we can take a point $\alpha(t_{0})\in V_{2}$ such that $F(\alpha(t_{0}))$

$=F_{0}\neq 0$ for $ t_{0}<\infty$ . This case also contains the situation such that $F(\alpha(t))$ is
defined on $(-\infty, \infty)$ and $\alpha(t)$ is contained in $V_{2}$ . Using the similar method to
the above, we also get

$F(\alpha(t))=\sqrt{}\overline{c}\tan\sqrt{}\overline{c}(t-t_{0}+s_{0})$ on $(-\infty, t_{0}$]

where we have put $\sqrt{c}s_{0}=\tan^{-1}(F_{0}/\sqrt{c})$ . This also makes a contradiction as
in the above case.

It completes the proof of Theorem 1.
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