ON TYPE NUMBER OF REAL HYPERSURFACES IN $\boldsymbol{P}_{n}(\boldsymbol{C})$

By
Young Jin SuH*

Introduction.

Let $P_{n}(\boldsymbol{C})$ denote an n-dimensional complex projective space with the FubiniStudy metric of constant holomorphic sectional curvature $4 c$. Real hypersurfaces in $P_{n}(\boldsymbol{C})$ have been studied by many differential geometers (See [2], [3], [4], [5] and [6]).

In particular, as for a problem with respect to the typec number t, i. e., the rank of the second fundamental form of real hypersurfaces M in $P_{n}(\boldsymbol{C})$, R. Takagi showed in [6] that there is a point p on M such that $t(p) \geqq 2$, and M. Kimura and S. Maeda [4] gave an example of real hypersurfaces in $P_{n}(\boldsymbol{C})$ satisfying $t=2$, which is non-complete. In this paper we shall prove

Theorem 1. Let M be a complete real hypersurface in $P_{n}(\boldsymbol{C})(n \geqq 3)$. Then there exists a point p on M such that $t(p) \geqq 3$.

REMAPK. It is known that a certain geodesic hypersphere in $P_{2}(\boldsymbol{C})$ has a property $t=2$ (cf. [2], [7]). Thus the assumption $n \geqq 3$ in Theorem 1 can not be removed.

The author would like to express his sincere gratitude to Prof. R. Takagi for his valuable suggestions and encouragement during the preparation of this paper.

1. Preliminaries.

Let M be a real hypersurface in $P_{n}(\boldsymbol{C})(n \geqq 2)$. Let $\left\{e_{1}, \cdots, e_{2 n}\right\}$ be a local field of orthonormal frame in $P_{n}(\boldsymbol{C})$ such that, restricted to $M, e_{1}, \cdots, e_{2 n-1}$ are tangent to M. Denote its dual frame field by $\theta_{1}, \cdots, \theta_{2 n}$. We use the following convention on the range of indices unless otherwise stated; $A, B, \cdots,=1, \cdots$, $2 n$ and $i, j, \cdots,=1, \cdots, 2 n-1$.

The connection forms $\theta_{A B}$ are defined as the 1 -forms satisfying

[^0]\[

$$
\begin{equation*}
d \theta_{A}=-\Sigma \theta_{A B} \wedge \theta_{B}, \quad \theta_{A B}+\theta_{B A}=0 \tag{1.1}
\end{equation*}
$$

\]

Restrict the forms under consideration to M. Then, we set $\theta_{2 n}=0$ and the forms $\theta_{2 n, i}$ can be written as

$$
\begin{equation*}
\phi_{i} \equiv \theta_{2 n, i}=\Sigma h_{i j} \theta_{j}, \quad h_{i j}=h_{j i} . \tag{1.2}
\end{equation*}
$$

The quadratic form $\Sigma h_{i j} \theta_{i} \otimes \theta_{j}$ is called the second fundamental form of M with direction of $e_{2 n}$. The curvature forms $\Theta_{i j}$ of M are defined by

$$
\begin{equation*}
\Theta_{i j}=d \theta_{i j}+\Sigma \theta_{i k} \wedge \theta_{k j} \tag{1.3}
\end{equation*}
$$

We denote by J the complex structure of $P_{n}(\boldsymbol{C})$, and put

$$
J e_{i}=\Sigma J_{j i} e_{j}+f_{i} e_{2 n}
$$

Then the almost contact structure ($J_{i j}, f_{k}$) satisfies

$$
\begin{gather*}
\left\{\begin{array}{l}
\Sigma J_{i k} J_{k j}=f_{i} f_{j}-\delta_{i j}, \quad \sum f_{j} J_{j i}=0 \\
\Sigma f_{i}^{2}=1, \quad J_{i j}+J_{j i}=0 .
\end{array}\right. \tag{1.4}\\
\left\{\begin{array}{l}
d J_{i j}=\Sigma\left(J_{i k} \theta_{k j}-J_{j k} \theta_{k i}\right)-f_{i} \phi_{j}+f_{j} \phi_{i}, \\
d f_{i}=\Sigma\left(f_{j} \theta_{j i}-J_{j i} \phi_{j}\right) .
\end{array}\right. \tag{1.5}
\end{gather*}
$$

The equations of Gauss and Codazzi are given by

$$
\begin{gather*}
\Theta_{i j}=\phi_{i} \wedge \phi_{j}+c \theta_{i} \wedge \theta_{j}+c \Sigma\left(J_{i k} J_{j l}+J_{i j} J_{k l}\right) \theta_{k} \wedge \theta_{l}, \tag{1.6}\\
d \phi_{i}=-\Sigma \phi_{j} \wedge \theta_{j i}+c \Sigma\left(f_{i} J_{j k}+f_{j} J_{i k}\right) \theta_{j} \wedge \theta_{k}, \tag{1.7}
\end{gather*}
$$

respectively.

2. Lemmas.

Let M be a real hypersurface in $P_{n}(\boldsymbol{C})$. We choose an arbitary point p in M, and use the following convention on the range of indices; $a, b, \cdots,=1, \cdots$, $t(p)$ and $r, s, \cdots,=t(p)+1, \cdots, 2 n-1$. Then we can take a field $\left\{e_{1}, \cdots, e_{2 n}\right\}$ of orthonormal frame on a neighborhood of p in such a way that the 1 -forms ϕ_{i} can be written as

$$
\left\{\begin{array}{l}
\phi_{a}=\sum h_{b a} \theta_{b}, \quad h_{a b}=h_{b a}, \tag{2.1}\\
\phi_{r}=0,
\end{array}\right.
$$

at p. We call such a field $\left\{e_{1}, \cdots, e_{2 n}\right\}$ to be associated with a point p.
Under this notation we have
Lemma 2.1. Assume that $J_{r s}(p)=0$ at a point p on M. Then $t(p) \geqq n-1$. Furthermore, the equality holds if and only if $f_{a}=0$ and $J_{a b}=0$ at p.

Proof. By (1.4) we have

$$
\begin{align*}
& \Sigma_{b} J_{a b}^{2}+\Sigma_{r} J_{a r}^{2}+f_{a}^{2}=1, \tag{2.2}\\
& \Sigma_{a} J_{r a}^{2}+f_{r}^{2}=1 \tag{2.3}
\end{align*}
$$

Summing up (2.2) on a, and (2.3) on r, we have

$$
\begin{align*}
& \Sigma_{a, b} J_{a b}^{2}+\Sigma_{a, r} J_{a r}^{2}+\Sigma_{a} f_{a}^{2}=t(p), \tag{2.4}\\
& \Sigma_{a, r} J_{a r}^{2}+\Sigma_{r} f_{r}^{2}=2 n-1-t(p) . \tag{2.5}
\end{align*}
$$

Substituting (2.5) into (2.4) and making use of $\Sigma_{a} f_{a}^{2}+\Sigma_{r} f_{r}^{2}=1$, we have

$$
\sum_{a, b} J_{a b}^{2}+2 \sum_{a} f_{a}^{2}=2(t(p)-(n-1)) \geqq 0,
$$

and so our assertion follows.
This concludes the proof.
Now we consider a point p where the type number t attains the maximal value, say T. Then there is a neighborhood U of p, on which the function t is constant and the equation (2.1) holds.

Put $\theta_{a r}=\sum A_{a r b} \theta_{b}+\sum B_{a r s} \theta_{s}$. Then, taking the exterior derivative of $\phi_{r}=0$ and using (1.7), we have

$$
\sum h_{a b} \theta_{b} \wedge \theta_{a r}-c \Sigma\left(f_{r} J_{i j}+f_{i} J_{r j}\right) \theta_{i} \wedge \theta_{j}=0,
$$

from which we have

$$
\begin{align*}
& \Sigma\left(h_{a c} A_{c r b}-h_{b c} A_{c r a}\right)-c f_{a} J_{r b}+c f_{b} J_{r a}-2 c f_{r} J_{a b}=0, \tag{2.6}\\
& \Sigma h_{a b} B_{b r s}-c f_{a} J_{r s}+c f_{s} J_{r a}-2 c f_{r} J_{a s}=0, \tag{2.7}\\
& f_{s} J_{r t}-f_{t} J_{r s}+2 f_{r} J_{s t}=0 . \tag{2.8}
\end{align*}
$$

It is easy to see that (2.8) is reduced to

$$
\begin{equation*}
f_{r} J_{s t}=0 . \tag{2.9}
\end{equation*}
$$

Similarly, taking the exterior derivative of $\phi_{a}=\sum h_{b a} \theta_{b}$ and using the equation (1.7) of Codazzi, we have

$$
\begin{aligned}
& \Sigma_{b}\left\{d h_{a b}-\sum_{c}\left(h_{a c} \theta_{c b}+h_{c b} \theta_{c a}-\sum_{r} h_{a c} A_{c r b} \theta_{r}-c f_{b} J_{a c} \theta_{c}\right.\right. \\
& \left.\left.\quad+c f_{c} J_{a b} \theta_{c}-2 c f_{a} J_{b c} \theta_{c}\right)+c \sum_{r}\left(f_{b} J_{a r} \theta_{r}-f_{r} J_{a b} \theta_{r}+2 f_{a} J_{b r} \theta_{r}\right)\right\} \wedge \theta_{b}=0 .
\end{aligned}
$$

Therefore, we can put

$$
\begin{align*}
& d h_{a b}-\Sigma_{c}\left(h_{a c} \theta_{c b}+h_{c b} \theta_{c a}-\Sigma_{r} h_{a c} A_{c r b} \theta_{r}-c f_{b} J_{a c} \theta_{c}+c f_{c} J_{a b} \theta_{c}\right. \tag{2.10}\\
& \left.\quad-2 c f_{a} J_{b c} \theta_{c}\right)+c \Sigma_{r}\left(f_{b} J_{a r} \theta_{r}-f_{r} J_{a b} \theta_{r}+2 f_{a} J_{b r} \theta_{r}\right)=\sum C_{a b c} \theta_{c},
\end{align*}
$$

where $C_{a b c}=C_{a c b}=C_{b a c}$.

Under such a situation we have
Lemma 2.2. If $J_{r s}=0$ on U, then $T \geqq n$ on U.
Proof. If $T<n$, then by Lemma 2.1 we have $T=n-1$, and $f_{a}=0$ on U. For a suitable choice of a field $\left\{e_{r}\right\}$ of orthonormal frames, if necessary, we may set $f_{2 n-1}=1$ and $f_{r}=0$ for $r=n, \cdots, 2 n-2$. Then from (1.5) we have

$$
0=d f_{r}=-\Sigma J_{a r} \phi_{a} .
$$

But, since rank $J=2 n-2$, we have $\operatorname{det}\left(J_{a r}\right) \neq 0(a=1, \cdots, n-1, r=n, \cdots, 2 n-2)$. Thus the above equation implies $\phi_{a}=0$, which contradicts the fact that $\operatorname{det}\left(h_{a b}\right)$ $\neq 0$.

This concludes the proof.
In the remainder of this section we restrict the forms under consideration to the following open set V_{T} defined by

$$
V_{T}=\left\{p \in M \mid J_{r s}(p) \neq 0, t(p)=T\right\},
$$

where $J_{r s}(p) \neq 0$ means " $J_{r s}(p) \neq 0$ for some $r, s=T+1, \cdots, 2 n-1$ ". First from (2.9) we have $f_{r}=0$. Thus we may set $f_{1}=1$, and $f_{a}=0$ for $a \geqq 2$. Hence we have

$$
\begin{equation*}
J_{1 a}=0, \quad J_{1 r}=0 . \tag{2.11}
\end{equation*}
$$

Furthermore, $d f_{a}=0$ and $d f_{r}=0$ give

$$
\begin{align*}
& \theta_{1 a}=\sum J_{b a} \phi_{b}, \tag{2.12}\\
& A_{1 r a}=\sum h_{a b} J_{b r}, \tag{2.13}\\
& B_{1 r s}=0 . \tag{2.14}
\end{align*}
$$

The equation (2.7) amounts to

$$
\begin{equation*}
\sum h_{a b} B_{b r s}=c f_{a} J_{r s} \tag{2.15}
\end{equation*}
$$

Lemma 2.3. $\operatorname{det}\left(h_{a b}\right)=0(a, b=2, \cdots, T)$ on V_{T}.
Proof. Here indices a, b run from 2 to T. If $\operatorname{det}\left(h_{a b}\right) \neq 0$, then by (2.15) we have $B_{\text {ars }}=0$, which together with (2.14) gives $J_{r s}=0$. A contradiction to the fact $J_{r s}(p) \neq 0$ on V_{T}.

This concludes the proof.

3. Proof of Theorem 1.

We keep the notation in section 2. If $J_{r s}=0$ on a nonempty open set, then

Lemma 2. 2 proves Theorem 1. Therefore, we have only to consider the case where the open set V_{T} defined in section 2 is not empty.

Assume $T=2$. Then we shall derive a contradiction. First by Lemma 2.3 we have $h_{22}=0$.

Now we put $F=h_{12}$. Then from (2.13) we have

$$
\begin{equation*}
A_{1 r 1}=F J_{2 r}, \quad A_{1 r 2}=0 . \tag{3.1}
\end{equation*}
$$

Put $a=1$ and $b=2$ in (2.6) to get

$$
\begin{equation*}
F A_{2 r 2}-F A_{1 r 1}-c J_{r 2}=0 . \tag{3.2}
\end{equation*}
$$

Then (3.1) and (3.2) give

$$
\begin{equation*}
F A_{2 r 2}=\left(F^{2}-c\right) J_{2 r} . \tag{3.3}
\end{equation*}
$$

According to (2.12), we have

$$
\theta_{12}=0 .
$$

Put $a=1$ and $b=2$ in (2.10). Then, together with (3.3) we find

$$
\begin{equation*}
d F+\left(F^{2}+c\right) \sum J_{2 r} \theta_{r}=\sum D_{12 a} \theta_{a}, \tag{3.4}
\end{equation*}
$$

where we have put $D_{12 a}=C_{12 a}-2 c J_{2 a}$.
Let p be any point of V_{2} and let $\alpha: I \rightarrow V_{2}$ be the maximal integral curve of the unit dual vector field $\Sigma J_{2 r} \theta_{r}$ on V_{2} such that $\alpha(0)=p, \Sigma_{r} J_{2 r} \theta_{r}\left(\alpha^{\prime}(t)\right)=1$ and $D_{12 a} \theta_{a}\left(\alpha^{\prime}(t)\right)=0$, where $(0 \in) I$ denotes an open interval of R.

Assume that there exists $\sup I$, say t_{0}. Since M is complete, we have a point $p_{0}=\lim _{t \rightarrow t_{0}} \alpha(t)$ on M. We assert $F\left(p_{0}\right)=\lim _{t \rightarrow t_{0}} F(\alpha(t))=0$. In order to prove this assertion, it suffices to show that $t\left(p_{0}\right) \leqq 1$, because $\operatorname{det}\left(h_{i j}\right)=-F^{2}$ by $h_{22}=0$ at p_{0}. For this we assume $t\left(p_{0}\right)=2$. Thus we can consider that our frame field $\left\{e_{i}\right\}$ is defined also on the neighborhood of p_{0}. Since $p_{0} \in \bar{V}_{2}, J_{r s}\left(p_{0}\right)=0$ for any $r, s \geqq 3$. Then by Lemma 2. 1 we have $t\left(p_{0}\right) \geqq n-1 \geqq 3$ for $n \geqq 4$, which is a contradiction. For a case where $n=3$ also by using Lemma 2.1 we get $J_{a b}=0$ and $f_{a}=0$ at p_{0} for all $a, b=1,2$. This also contradicts to the fact that $f_{1}=1$ at p_{0}, which proves our assertion.

Now we shall show that $\inf I=-\infty$. Indeed, if there exists $t_{1}=\inf I$, then we find $\lim _{t \rightarrow t_{1}} F(\alpha(t))=0$ by an argument similar to the above. Thus there is a real number t^{\prime} such that $t_{1}<t^{\prime}<t_{0}, d F=0$ at $\alpha\left(t^{\prime}\right)$. Then (3.4) gives $J_{2 r}=0$. From this together with $J_{1 r}=0$ in (2.11) it follows that rank $J \leqq 2 n-3$, which makes a contradiction to the fact that rank $J=2 n-2$.

Now the function $|F|$ defined on the interval $\left(-\infty, t_{0}\right)$ satisfies by (3.4)

$$
\frac{d|F|}{d t}=F^{2}+c \quad \text { or } \quad \frac{1}{F^{2}+c} \frac{d|F|}{d t}=1 .
$$

Solving the above differential equation, we have

$$
F(\alpha(t))=\sqrt{c} \tan \sqrt{c}\left(t-t_{0}\right),
$$

which is a contradiction, because $F(\alpha(t))$ is defined on ($-\infty, t_{0}$) but the right hand side can not be defined at the points such that $\sqrt{c}\left(t-t_{0}\right)=(2 k+1) \pi / 2$, where k is an integer.

For a case where $\sup I=\infty$, we can take a point $\alpha\left(t_{0}\right) \in V_{2}$ such that $F\left(\alpha\left(t_{0}\right)\right)$ $=F_{0} \neq 0$ for $t_{0}<\infty$. This case also contains the situation such that $F(\alpha(t))$ is defined on $(-\infty, \infty)$ and $\alpha(t)$ is contained in V_{2}. Using the similar method to the above, we also get

$$
F(\alpha(t))=\sqrt{c} \tan \sqrt{c}\left(t-t_{0}+s_{0}\right) \quad \text { on } \quad\left(-\infty, t_{0}\right]
$$

where we have put $\sqrt{c} s_{0}=\tan ^{-1}\left(F_{0} / \sqrt{c}\right)$. This also makes a contradiction as in the above case.

It completes the proof of Theorem 1.

References

[1] J. Berndt, Real hypersurfaces with constant principal curvature in complex hyperbolic space, J. reine angew, Math. 395 (1989), 132-141.
[2] T.E. Cecil and P.J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
[3] U-H. Ki, H. Nakagawa and Y.J. Suh, Real hypersurfaces with harmornic Weyl tensor of a complex space form, Hiroshima Math. J. 20 (1990), 93-102.
[4] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
[5] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212 (1975), 355-364.
[6] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 10 (1975), 495-506.
[7] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan, 27 (1975), 43-53.
[8] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures II, J. Math. Soc. Japan, 27 (1975), 507-516.

University of Tsukuba
Institute of Mathematics
Ibaraki, Tsukuba-shi, 305
Japan

Andong University
Department of Mathematics
Andong, 760-749, Korea

[^0]: *) Partially supported by TGRC-KOSEF. Received May 23, 1990.

