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ON TYPE OF METRIC SPACES
BY

J. BOURGAIN, V. MILMAN AND H. WOLFSON1

ABSTRACT. Families of finite metric spaces are investigated. A notion of
metric type is introduced and it is shown that for Banach spaces it is consistent
with the standard notion of type. A theorem parallel to the Maurey-Pisier
Theorem in Local Theory is proved. Embeddings of Zp-cubes into the ¡i-cube
(Hamming cube) are discussed.

1. Introduction.
Terminology and notations.
1.1. DEFINITION. Two finite metric spaces (X,p), (Y,d) are called c-isomorphic

if there is a one-to-one map ip: X —» Y such that HV'IIlípIIV^Hlíp < c. (We recall
that H^IIlip = supx¿y(d(tp(x),ip(y))/p(x,y)).

In [G] \\ip\\ ||i/>_1|| is called the distortion of tp.
Analogous to the Banach-Mazur distance between normed spaces, we define the

Lipschitz distance between finite metric spaces as

d(X,Y)=     inf     I|VHlíp||V'-1||lip,
tp : X-+Y

where the infimum is taken over all one-to-one and onto maps tp: X —► Y.
1.2. We recall that the Banach-Mazur distance between two n-dimensional

normed spaces X,Y is defined as d(X,Y) = inf{||T|| WT'1]]: T: X -> Y is an
isomorphism}. It is known that for the finite-dimensional real Banach spaces the
Lipschitz distance coincides with the Banach-Mazur distance. (In the nontrivial
direction use the fact that for any Lipschitz map i¡> : X —» Y (dim X = dim Y < oo)
there is a point x G X such that rp and V-1 have derivatives at x and y = ip(x)
respectively.   Hence, there is a linear map T: X —► Y satisfying ||T|| ||T||_1 <
MlípII^IIlíp.)

1.3. Let Cn = {(£i,..., en)|e¿ G {0,1}} = {0,1}". (Sometimes it is more conve-
nient to use C2 = {-1,1}™. It will be clear from the context what representation
is used.)

For every pair e = (£y)"=1, e' = (£y)™=1 in C2 the Hamming metric is defined
as h(e,e') = #{¿|e¿ ^ e[}. In the case of C2 = {0,1}" this metric coincides with
the standard If metric Q3"=1 |e¿ — e¿|).

DEFINITION. Let 1 < p < oo. The metric space (C%,pp), where C% = {0,1}™
and Pp(e,e') = [£JL, \e> - ejlf/p = [^=1 \£i - e'^ for any pair e,e' G C? is
called the lp n-cube (or lp-cube).
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296 J. BOURGAIN, V. MILMAN AND H. WOLFSON

REMARK. The If n-cube will be often called the Hamming cube. We recall
that for any 1 < p < oo the lp space is the real (or complex) n-dimensional space
equipped with the norm ||(a¿)?=1||P = (£"=1 \<n\p)1/p.

1.4. We say that an infinite-dimensional Banach space A contains lp's uniformly
if for every e > 0 there exists a sequence of subspaces of A, {A„; dim Xn = n}, such
that for every n, d(Xn,lp) < 1 + e.

An infinite metric space (A, p) is said to contain lp n-cubes uniformly if for any
£ > 0 there is a sequence of subsets of A, {A„ C A; card A„ = 2"}, such that for
every n, d{(Xn, p), (C%, pp)} < 1 + e.

1.5. For any metric space (X,p) with cardinality 2™ (|A| = 2") consider a one-
to-one map ip : C2 —* X, which gives some way of ordering the elements of A by
n-dimensional binary vectors.

Consider a point e = (£y)y=i m C2. Take the opposite point on the cube
sc = (1 — £y)y=1. We define a diagonal in X as the unordered pair (tp(e);xp(ec))
and its length is

diag^e) = p(ip(£),ip(ec)).

(For the sake of convenience, we often use the same notation for a diagonal and
its length. It is clear from the context what definition is meant.)

The set of all diagonals is denoted by D. Clearly, \D\ = 2n_1. (Sometimes, it is
convenient to count every diagonal twice in order to get a one-to-one correspondence
between the diagonals and the vertices.)

An edge in A is defined for every unordered pair of points (e; e') in C2 differing
in one binary coordinate only, and its length (which we usually will call just "edge" )
is

edge^e') = p(xp(e),ip(e')).
The set of all edges is denoted by E. \E\ = n2n~1.

Two edges (ip(£i);ip(£2)) and (ip(e'f);ip(e2)) are called connected if they share
one point. (For example tp(e2) = ip(e'f).) In the sequel, when it is obvious, we do
not mention the specific ordering (map tp), which is chosen.

A path belonging to diag^(e) is a set of n connected edges, starting at ip(e) and
terminating at ip(£c).

There are, of course, different paths belonging to the same diagonal. We may
consider a path as the set of edges obtained by n consecutive changes of the co-
ordinates of e to obtain ec. The n-permutation ir, by which these coordinates are
changed, fully describes the path. Hence, we denote a path by Ee(tr).

1.6. An infinite-dimensional Banach space A is called of type p if there is a
constant C such that for any n and any sequence (x

\V-\ !/P

in A

Í1.6.1) On /_/ E C ¿ XV <c

where the summing is over all e G {—1, l}n. (See [M-P].)
The definition makes sense only for 1 < p < 2 and it is clear that if A is of type

p then there is a constant C" such that
1/2 /   n \ V2

(1.6.2) 9n Z^     Z^Ci:ri < C7V/P-1/2
<n = l

Xi
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Conversely, it is well known that (1.6.2) implies X is of type r whenever r < p.
Every Banach space A is of type 1 and the supremum of all types of X is denoted

by px-
The Maurey-Pisier Theorem [M-P] says that A contains lpx 's uniformly.
The metric analog of type p (for any p > 1) is defined as follows:
DEFINITION. Let p > 1. An (infinite) metric space (A, p) has metric type p if

there is a constant a, such that for every k and any fc-cube (defined by any map
tp : Ck —> A) the following inequality holds:

(1.6.3) fediaS2)       < afc1/*-1/2 ( J>dge2

where the summing is over all the diagonals and all the edges of the /c-cube.
The smallest constant a satisfying (1.6.3) is called the metric p-type constant

of (X,p) and is denoted ap(X). The smallest constant for a given k is denoted
ap(k; X). (When it causes no confusion we call the metric type just type.)

As usual, the metric type constant can be defined in the same way for a family
of finite metric spaces (X^,pn), where \X^\ = N (N Î oo), as the best constant
obtained simultaneously for all the spaces.

Another definition of a metric type is given in §3 (see 3.14).
Summary of results.
1.7. Recently, there has been a growing interest in understanding the similarity

between asymptotic properties of finite-dimensional normed spaces and finite metric
spaces. In a few known examples [Mar-P, G, J-L] there is a close analogy between
the results obtained for metric spaces and the previously-known results from the
Local Theory of Banach spaces, where the role of the dimension of a Banach space
is played by the logarithm of the cardinality of the finite metric space. Below, we
give more examples of these kind of results.

1.8. In §2, we show that if a metric space (A, p) has metric type no bigger than
1, then it contains If n-cubes (Hamming cubes) uniformly. This is an analog of
Pisier's result (see [PI]) for Banach spaces.

1.9. In §3 a result similar to that of §2 is shown; however the method is entirely
different (the so-called "measure concentration" phenomenon is used). The esti-
mates on the cardinality of the Hamming subcubes are improved; however, some
restriction on the original space is imposed. Another definition of metric type
influenced by Enflo's paper [E] (the so-called .E-type) is introduced and discussed.

1.10. In §4 metric spaces of type no bigger than p (1 < p < 2) are discussed. The
connection of this property with the embeddability of lp n-cubes is investigated. In
a sense, the results of §§2-4 may be viewed as a metric analog of the Maurey-Pisier
Theorem (for type).

1.11. In §5, it is shown that for Banach spaces the supremum of the metric types
equals px, the supremum of the standard types. This enables us not only to look
for results in metric spaces which are extensions of well-known results in Banach
spaces, but also gives us the opportunity to apply to Banach space theory some
nontrivial results which follow from the existence of metric type.

For example, this implies that if a Banach space A contains a sequence of subsets
{A„; |A„| = 2n} such that d(Xn, (C2,pp)) < a for some fixed a > 1 and for some
1 < p < 2, then for any e > 0, it contains a sequence of subspaces {TninTLi such

í¡ i.
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that d(Yn, lp ) < 1 + £. Another consequence is that if A is an infinite-dimensional
Banach space of type p, then for any 1 < p' < p there is a constant ap> (A) such
that for any n and any ip : C2 —» A the following inequalities hold:

■ 1/2

£ \\rp{e)-ip(-e)\\2'

< apl(X)n"v'-'/2 \ Y, £ U(ei,...,£j,...,£r
J=leeC¡

1/2

-^(£l,...,-£y,...,£n)

(Here C2" = {-1,1}".)
1.12. §6 discusses (1 + e)-isomorphic embeddings of lp fc-cubes into the If n-

cube (Hamming cube) for a suitable function n = n(/c,e) or more generally the
embedding of lp fc-cubes into /s n-cubes with s < p. A nonconstructive method
with a power type estimate (n ~ fc3) and a constructive method with a logarithmic
estimate (k ~ logn) are shown. Here, however, the similarity with the normed
space theory is not precise, because the embedding may be constructed for any
1 < s < p < oo. (In normed spaces it is true only for p < 2.)

2. Type 1 case.
2.1. Let (Ajv,pjv), |A| = N (N | oo), be a family of finite metric spaces. It is

easily verified that every such family is at least of type 1 with 1-type constant 1;
namely, for every /c-cube

(2.1.1)
-, 1/2

<fc1/2 J2 edse2
-, 1/2

Ediag2
. D

Indeed, let diag(e) be any diagonal and take the "identity path" Ee(ld). By the
triangle and Cauchy-Schwartz inequalities

(2.1.2) diag2(e)< (   ]T   edge      < k (   £  edge2
\Ec(ld) J \Ec(ld)

Summing over all the diagonals we get (2.1.1), since the edges, belonging to
identity paths of different diagonals, are all distinct.

2.2. Consider the trivial case when equality in (2.1.1) is obtained.

PROPOSITION. Let (X,p) be a metric space of cardinality 2k, such that there
exists a map tp: C2 —> X, for which equality in (2.1.1) holds. Then X is isometric
to the Ck cube with the usual l\ (Hamming) metric.

The proof is obvious. Indeed, equality in (2.1.1) means equality in (2.1.2) for
every diagonal.

For any e take the diagonal diag(e). Equality in the Cauchy-Schwartz inequality
implies that all the edges in ¿^(Id) are mutually equal.
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The same argument shows that for a given permutation it and every s all the
edges of E£(n) are mutually equal. Hence, all k2k~l edges are equal. Denote this
length by a.

Equality in the triangle inequality in (2.1.2) implies that the length of every
diagonal is ka. Take any £, e' in Ck such that the Hamming distance h(£, e') = h.
Clearly

ha = diag(e) - (k - h)a < p(ip(£),ip(£')) < ha.
2.3. Consider a family (Xjv,Pjv) of type not better than 1. We will show that

in this case there is a subset of X^ (with cardinality growing to infinity as N | oo)
which is "almost" isometric to a Hamming cube. The proofs in 2.3-2.6 are similar
to G. Pisier's proof in lineary theory (see [PI]).

First we consider a more general situation and show that for any p > 1 the
p-type constant is submultiplicative, namely:

LEMMA.   For any metric space (X,p) and any p > 1,

ap(nk; X) < ap(k; X)ap(n; X).

PROOF. Assume |A| = 2nk and let ip: C%k —► X be an ordering of A. Divide
{1,..., nk} into k consecutive n-blocks L = {(i- l)n +1,..., in}, i = 1,..., k. For
a given configuration e = (£3)jkf consider only those points obtained by changing
simultaneously values of n-blocks J¿ in e:

£w, = (e;,      othe;wise, i <.i<.a< ■••<•.<*.

Clearly, we get a fc-cube F(£;/c)(|y| = 2fe), where an edge is a pair of points
(ip(e), ip(s')), such that e and e' differ on one block Ix only and a diagonal is a pair
of points differing on all k n-blocks.

By the definition of ap(k\ X) we obtain in the cube Y(s; k)

(2.3.1) EchVm < a2(fc;A)/c2/i'-1X;edge2(F).

Consider all the different fc-cubes Y(e; k) defined above. (There are 2nk~k such
cubes.)

The edges of these cubes may be considered as diagonals of n-cubes, obtained by
changing all the coordinates on one of the n-blocks {/¿} and keeping the coordinates
of all other n-blocks constant. It is easily seen that summing (2.3.1) over all different
k cubes and applying the p-type condition on the new n-cubes results in

£diag2 < a2p(k;X)k2/p-1a2p(n;X)n2^-1Y/edge2
D E

where the sums are over all the diagonals and all the edges of the original nk-cube.
Hence, ap(nk;X) < ap(k;X)ap(n;X).    D

2.4. COROLLARY. Let 0 < a < 1, 0 < r, < 1, p > 1. If ap(n;X) > a,
then there is a constant C(a,-n) and an integer k = C(a;n) log log n such that
ap(k;X)>l-r]/k22k+1' 2

PROOF. By the previous lemma kl = n for some integer t implies ap(n;A) <
ap(k;X).  Hence, if ap(k; X) = 1 - 6k, then (1 - 8kf > a, 8k < - log a/t.  Take

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



300 J. BOURGAIN, V. MILMAN AND H. WOLFSON

t ~ -(loga/n)k22k+12; then 8k ~ n/k22k+12 and n = fc-dog"/«)'^"*12.  Hence
k ~ C(q; r/) log log n.    D

We will also need the following trivial fact.
2.5. FACT. Let 0 < 8 < 1, a¿ > 0 (i = 1,... ,n) and

in      \yl2       n

(l-^xx    <X>.\¿=i y     ¿=i
Then, for every t = 1,..., n,

< V28.at
Œ>2)1/2    >

PROOF. The result follows immediately from

E¿=iŒ»1/2    v^

2 n

E¿=i
Ea¿

£a2      XEa,2)'/2
< 2-2(1-<5) = 2¿.

2.6. THEOREM. Leí {(An,Pn)}n be a family of finite metric spaces (\Xn\ =
2n) w¿í/i type no better than 1. T/ien, /or every <5 > 0, i/iere is a k(n)-cube in
(Xn,Pn) which is (1 + 8)-isometric to (C2,h), the If k-cube and k(n) Î oo with
n j oo.

PROOF. Since (X^pn) has type no better than 1, then by definition (1.6.3) we
get

lim |logQi(n;An)| = 0
logn

Hence, for every 0 < 8 < 1 there is a subsequence {nk}kK_f such that

0 <    logQi(nfc;AnJ < 82
logn/c ~~ k22k+12 logfc'

Then we have nk > k\ where t-¿S-2fc22fe+12logai(nfc;Xnk). By 2.4

ai(fc; A„J > [Ql(nfc; AnJ]1/' ~ exp(-<52/fc22fc+12) ~ 1 - 0,

denoting 9 = 82/k22k+12. Hence, there is a /c-cube (namely, a map ip: C2 —► X„J
satisfying

1/2 / \  1/2

£diag2j       > (1 -e)y/k\T edge2)

We may normalize by taking ^2Eedge = 1. As in 2.2 assign to each diagonal
(diag(e)) the k edges of its "identity path" (.Ee(Id)). Clearly, there is some diagonal
diag(eo) satisfying

k Y,  edge2 >diag2(e0)>2-fc+1(l-Ö)2fc£edge2 = (l-ö)2fc2-fc+1.
ßo(Id) E
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We may assume £o = 0 = (0,..., 0). Then
(2.6.1)

£ edse
^Eo(Id)

= k

> diag2(0) > k (1 - 0)2 £ edge2-     J2    ed^
E E\E0(ld)

J2  edge2 - (26 - 62) £ edge2
Eo(Id) E

>fc(l-2fc+oi0)   Y,  edge2.
Eo(Id)

By 2.5 every edge in Eo(ld) satisfies

(2.6.2)
edge

(££ond)edge2)i/2      y/k
< (2fe+01Ö)1/2 <

48fc'

Hence, the k edges of Eo (Id) are almost equal. This is the first step in evaluating
all the edges of the fc-cube.

The second step is to take all other paths Eo(n) (n ^ Id) having at least one
common edge with ¿?o(Id). For each such path

V edge2 > -Jdiag2(0) > (1 - 0)22"fc+1.
Eo(ir)

As before, we obtain that an inequality similar to (2.6.2) holds for the edges of
E0(n).

Since Eo(rt) and i?o(Id) share at least one edge, it follows that the edges of
J^o(Id) and Eo(tt) (for all such 7r) are "almost equal".

In the next step paths having at least one edge, which were evaluated at a
previous step, are considered. By this process all edges are evaluated in at most
four steps.

(i) Get all the edges of Eo(ld), namely edges (ip(£f),ip(£2)), where

£i H=o,
14 = i, j > i-,j < i, £2 = í 4 = °>14 = i,

j>i+l,
j<i +1.

(ii) Get all the edges (ip(l,0,...,0), ip(£i))i>i, where £¿ has 1 in the first and iih
coordinate (i ^ 1). Such edge is obtained by a path Eo(it) passing through this edge
and sharing the edge (^(0,0,..., 0), tp(l, 0,..., 0)) with E0(ld) (ir = (1, i,...)).

(iii) Get all the edges (V>(0, ...,0), ip(£i))i>i, where e¿ is the ith unit vector.
This is achieved by a path starting with the required edge and proceeding by an
edge built in (ii). The required permutation is tt = (i, 1,...).

(iv) Any edge can be obtained by a path beginning with an edge built in (iii).
Hence, all the edges are "almost equal" and for any two edges of length a and

a' we have [a — a'\ < 8/6k.
Define a to be the length of some edge. Then for any diagonal (by (2.6.1))

k2 (l -^\   a2- k(26 - e2) < diag2 < k2 (l + 6k

i_4.<*ü<1+4..5fc       ka 6k
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A standard use of the triangle inequality shows, now, that for any £i,£2 G C2,
\1 - p(iP(£i),yJ(£2))/ah(£f,£2)[ < 8/2. Hence, UVIIlípII^IIlíp < 1+ «■      □

2.7. From the proof of 2.6 it is obvious that the following proposition holds.

PROPOSITION.   LetO < a < 1 and 8 < 0. Then there exists a constante (a; 8) >
0 depending on a > 0 and 8 > 0 only, such that every metric space (X,p) with
ai (n; X) > a contains a k-cube which is (1 + 8)-isometric to the If k-cube for some
k > C(a; 8) log log n. ( Of course, this has nontrivial sense only for n large enough.)

3. Improved estimates; "concentration of measure phenomena" ap-
proach. In this section a different approach is used to investigate the situation of
Proposition 2.7. Much better (power-type) estimates are obtained on the cardinal-
ity of a Hamming subcube. However, a restriction on the distribution of edges is
imposed.

3.1. THEOREM. Let (X,p) be a finite metric space of cardinality 2". Let
ip : C2 —* X be some ordering of X satisfying the following conditions:

(i) there is a constant 0 < 7 < 1 such that

fediag2)       > V/2 (Eedge2

(ii) there are constants 0<ß<^,a>0 such that max^ edge^ < aAn*3, where
A is the l2-average of the edges (A2 = (l/n2n)^2Eedge^).

Then, there are a constant C(a, 7) depending on a and 7 only and a subset
Y C X of cardinality 2k, k = C(a,7)n1/2"/3(logn)-1/2 such that (Y,p) is 3-y"1
isomorphic to (C2,h).

The proof of Theorem 3.1 uses the so-called "concentration of measure phenom-
ena" on some discrete spaces (see also [A-M, M-S]). We need some definitions and
known results, which are stated without proof.

3.2. In a metric space (A, p) a ¿-inflation of a subset A C X is defined to be the
set As = {x G A|3a G A, p(x, a) < 8}.

Given a metric probability space (A, p, p) and a real-valued function on it, we
denote by L¡ a Levy mean (median) of / : A —► R; namely, L¡ is a number such
that both p(A+) > \ and p(A~) > \, where A+ = {x G X: f(x) > Lf}, A~ =
{xGX: f(x)<Lf}.

3.3. DEFINITION. Let (A„,p„,/i„), n / 00, be a family of normalized metric
probability spaces (i.e. diamA„ = 1, p„(A„) = 1). It is called a "normal Levy
family" if for every 8 > 0 and An C Xn with pn(An) > \ we get pn(An)s >
1 — Cf exp(-C2<52n), where ci,C2 are some absolute constants independent of n.

We will need the fact that the family of the Hamming cubes and the family of
the n-permutations are normal Levy families.

3.4. LEMMA [H,A-M]. (C2,pn,pn), where C2 is the Hamming n-cube of
cardinality 2n, pn = n~1hn (hn-Hamming metric), and pn the standard normalized
counting measure, is a normal Levy family with Cf =\, c2 =2.

3.5. LEMMA [M]. (Sn,Pn,Pn), where Sn is the permutation group on n ele-
ments, pn(o,r) = icard{¿: o(i) ^ r(i)} for every pair of permutations o.t G Sn
and pn(A C Sn) = ^t card A, is a normal Levy family with Cf = ^, c2 = j^.

1, i
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3.6. COROLLARY. Let A„ = C2 x Sn with the product measure pn — Pn x Pn
and metric pn((s,a), (e',a')) = #{i: £(i) ^ £'(i) or o(i) ^ o-'(i)}, where pn,Pn are
as in Lemmas 3.4 and 3.5 respectively.  Then (Xn,pn,pn) is a normal Levy family
With Cf  = |, C2 = yg .

We need two more results.

3.7. LEMMA [A-M]. Let (Xn,pn,Pn) be a normal Levy family with constants
Cf, C2 and let f : Xn —> R be a measurable function with modulus of continuity u>f.
Then for every 8 > 0

Jxn
fdpn < 2cf exp(—c282n + uf(6).

Here (|/||oo = maxxGXn |/(x)|.

3.8. LEMMA (SEE THEOREM 7.8 IN [M-S]). Let (A„,p„,pn) be as in
Corollary 3.6 and let /„: An —► R satisfy for every x, y G Xn, \fn(x) — fn(y)\ <
apn(x,y) with some constant a > 0. Then

pn(\fn - Efn[ >c)< 2exp(-c2n/8a2) .

Efn is the expectation Efn = Jx  fndpn-

3.9. PROOF OF THEOREM 3.1. Define a function <p: C7£ -> R+ by ¡p(e) =
diag^, (e) for every e G C2 .

The conditions of the theorem imply

-I 1/2

[   <P2iß)^An < < An.

First evaluate

v-(fcy(£)\        KU^lLv-vie
1/2

By Lemmas 3.4 and 3.7 for every 8 > 0

/     \L,p - <p(£)\2 < exp(-282n)  (nmaxedgej   + (<5n max edge)   .

Since max£ edge < a An13 (/? < 1), we get (by calculating for 8 < 7/80«^)

1/2 1
< -7An.

^-(_/>(£)'

Hence

(3.9.1)

By the same consideration for every 8 > 0

\L,p - <p(e)\ < aAn0[8n + nexp(-2¿2n)],

-7 An < L^ < An ( 1 + -7 ) .

/'
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and it is easily seen that

/ \  1/2

(3.9.2) \lAn<  Í   <P<lf   <£>2)       <An.

Define 70 = ¿7.
3.10.  Now, we construct the subset which is isomorphic to the /i-cube.  Every

edge of the new cube will be built on s-blocks of edges of the original cube.
Let s be an integer such that s|n, and divide {1,... ,n} into k = n/s blocks of

length s each:
/, = {(i- l)s + l,...,is},        i = 1,2,...,k.

Define k functions y?¿: C2 x Sn —> R+ by <pi(£,o) = p(ip(a£),tp(aeii)), where
£ = (£i)"=i G C?, o G Sn, o-e = (eatj))J=v £h = (£/.)y=1 and

J I £i> J ¥■ *i
*'*    \i-£i,   jeli

Clearly

(3.10.1) f    í   <pi(e,a)= i   j   <pj(e,a)
JsnJe? Js„ Jc%

for every i,j = 1,..., k. Define 71 by 71 = (As)-1 /s   Jc„ <pf(£,o). By (3.9.2) and
(3.10.1)

k
(3.10.2) ioAn<  f   <P<Y,[    [   <Pi{£,<r)=liAn.

Jc- i=1 Jsn Je?

Hence 71 > 70. Define Ef = Js   jc„ <pi(e,cr) and

Bi(6) = {(£,0): \¡pl(£,o) - Ef\< 8As}    for some 8 > 0.

By Lemma 3.8

,WW)>l-2exp(-8(n'^;e)>

>l-2exp(-    6V8Q2nl+2/3

and

P ^nßi(^>l-2fcexp(-gj^)

Notice that for t = 1,..., Ä; and for every (e, o) G f)i=l P>i(8) we have

(3.10.3) A(7i -8)s<<pi(£,o) < yl(7i +8)s.

3.11. Now, we apply the same procedure to pairs of blocks Iz, Ij (i ^ j).
Consider the functions ipij(£,o) = p(ip(o~s),ip(o£/¿u/y)) {hj = li- •• >&! * ¥" j) and
define £2,72 by E2 = ¡Sn ¡cn <pia(£,o), 72 = (2As)~1E2.
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Clearly, E2 = fs  fcn <pij(e,o~) for every i ^ j. Hence

Js„ Ja
7oAn < /     /    ip(£,a) < yE2 = ^2An

and 72 > 70- On the other hand 71 > 72, since 2Ef > E2.
Define for i ^ j the sets

Bij{6) = {(£,0): \<Pi,j(£,a) - E2\ < 28As}.
By Lemma 3.8

(2<5s)2
p(Bhj(6))>l-2exp(K-8a2nl+2ß

*.(n^w)^-»Q-p(-s^)
and for every (e, a) G fli^y ^ij(8) we have

2A(72 - 6)s < <pi,j(£,o) < 2A(72 + 8)s.
3.12. We proceed in a similar way and for every t (t = 1,...,k) we define

functions

<Pi,,...,it(£,0-) = p(((J£),1p(tT£IlU...u/t)), (l<ti <*2< ••■ < it < k),

constants 7t, expectations Et and "almost constancy" sets B¿li...)i4 such that

(3.12.1) Et= f    [   <plu...<lt(£,o) = lttAs.
JSn JC™

For every (e,rj) 6 ni<<1<-.«t<fc -Bii.it we have

(3.12.2) tA(lt-8)s < <Piu...,it(£,o-) < tA(lt+8)s
and

(3.12.3) Kn^,.^^-<")-p(-3^
As in 3.11, it is easy to show that

(3.12.4) 70 < 7t < 7t-i < • • • < 72 < 7i < 1-

Assume that we have found an s such that B = Pli=i[0 ^¿1 ,...,it], k = [n/s], is
not empty.

Then there exists a pair (£,a) G B, which means that there are a binary vector
£ = (£1,..., e„) and an n-permutation o G Sn such that taking k blocks

h = (e<r[(t-l)s+l]i • • • ,£a(is)), (Í = 1, ••• ,k),

and defining "new edges" to be pairs of binary vectors, which are different exactly
on one of the blocks /j, gives us an fc-cube, which is 7 = (71 -I- 8)(^k - ¿>)-1
isomorphic to the lk (Hamming) cube.

Hence, in order to finish the proof we have to calculate 7 and s. By (3.12.4) and
by the definition of 70

7 < (1 + ¿)(Í7 - S)'1 < 37-1    if 0 < 8 < 7(6 + 27)-1.
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In order to get p(B) > 0 it is enough to assume (see (3.12.3))

»£Ö-p(-Ä)<>-
Define a = exp(-(¿s)2/8a2n1+2ß). Then (3.12.5) implies

(3.12.6) È(kt)at2<lr     (a<1)'

and (3.12.6) is trivially satisfied if ka < |, which implies

G)eXp(-8o£iw) <V        S-C'(a,7)nV^(logn)V2

and k = [n/s] = C(a, 7)n1/2~/3/v/log n.    D
3.13. An obvious consequence of Theorem 3.1 is the following

THEOREM. Let (X,p) satisfy the conditions of Theorem 3.1. T/ien for every
n > 0 i/iere ¿s a constant C(a, 7, n) and a subset Y c X of cardinality 2k, where k =
C(a, 7,77)[n1/2-^(logn)-i/2]log(i-H,/2)/log3-r' such that rY> p) ¡s (1 + v)-isometnc
to the If Hamming cube.

PROOF. By 3.12 (X,p) is Co-isomorphic to the If m-cube, where Co =
(71 + 8)(-im - 6)-1 < 37^1 and m = C(a,-f)n1/2~ß logn^1/2. Recall that -)t
is an increasing sequence (70 < 7m < • • • < 71 < 1). Now

hi+S)(lm-8)-1 = (1i+8)(1Vm + 8)-i(1Vm + 8)(lm-8)-1.
Hence,

(i) (l^/m + ô)ilm — 8)_1 < \fC~o~ and then there is an y'm subset of (A, p) which
is v/ürj-isomorphic to the If m-cube, or

(ii) (71 + ¿)(7nm + ¿)_1 < \fCo- In this case define Cf = (71 + ¿)(7v^T - 8)~l
and £ = (71+¿)(79 — 62)-1. There is a v'm subset of (A, p) which is Ci-isomorphic
to the If i^m-cube and a simple calculation shows C\ < y/C~o + 2£8.

Applying the last argument t times we get a k = m2     subcube, which is Ct-
isomorphic to the h fc-cube. (The sequence (Cy)y=1 satisfies 1 < Cy+i < y/Cj+2£8

and hence Ct < Cq ' + 4£<5.)
In order to get the required result it is enough to have 4£<5 < n/2 (which can

be obtained in proof of Theorem 3.1) and Cq < 1 + n/2 which implies 2_t ~
log(l + n/2)(logCo)_1- Hence, there is a constant C(a,-¡,n) such that there is
a k = C(Q,7,r/)[n1/2-/3logn-1/2]1°s(1+ï'/2»log3'>_1^1 subcube of (X,p) which is
(1 4- ??)-isometric to the If /c-cube.    D

3.14. In [E] P. Enflo investigated a property of metric spaces which he called
p-roundness and which suggests the following definition of metric type, in analogy
with (1.6.1).

DEFINITION. Let p > 1. An (infinite) metric space (A, p) has .E-type p if
there is a constant a such that for every k and every fc-cube (defined by any map
iP:Ck^X)

(\ i/p / \ i/p
£diag?;j       < ai £ edge*)       ,
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where the summing is over all the diagonals and all the edges of the fc-cube.
The smallest a satisfying (3.14.1) is called the p E-type constant of (A, p) and

denoted ap(A). The smallest constant for a given fc is denoted ap(fc; A).
From a proof similar to that of 2.3 it is obvious that ap(nk; X) < ap(k;X)ap(n;X).
3.15. Following the lines of the proof of Theorem 3.1, where A is defined as

A = (l/n2")^Eedge (which only simplifies the proof), we get the following

THEOREM. Let (X,p) be a finite metric space (\X\) = 2n. Let xp: C$ -> X be
some ordering of X satisfying the following conditions:

(i) there is a constant 0 < 7 < 1 such that X^D^iag^ — 1 IZßedge^,
(ii) there are constants 0 < ß < ^, a > 0 such that max£ edge^, < aAn0, where

A is the If-average of the edges (A = (l/n2n) J2Eedge^).
Then there is a constant C(a,i) and a subset Y C X of cardinality k =

C(a,7)n1/2~/3 such that (Y,p) is "¿i-1 -isomorphic to (C2,h).

Of course, an analog of 3.13 is also true. It can be shown that in this situation
the restriction on the distributions of edges (see (ii)) is essential. Take for example
the case where 7=1 and equality in (i) holds. Then it is easily shown that A is a
cube satisfying

(a) for any diagonal diag^(e) and any path Ee(n) diag(e) = YIea-k) edge,
(b) all the edges obtained by changing the ¿th coordinate of any £ are equal;

namely, there are only n lengths ei,..., en and edge^,(£, e') = Y17=ie»l£* _ £iI f°r
any e = (£¿), d — (efA of Hamming distance 1. (We may say that "opposite" edges
are equal and A is a "brick".)

In this example, if e¿ = ql (q > 1) we cannot find a subset isomorphic to the
Hamming cube, hence some kind of restriction on the distribution of edges is crucial.

In Theorem 3.1 this restriction seems to us nonessential and Theorem 2.6 sup-
ports this assumption.

4. The type-p case. The main result of this section is the type-p analog of
Theorem 3.1.

4.1. THEOREM. Let (X,p) be a finite metric space of cardinality 2n and of
type p with type-p constant ap for some 1 < p < 2. Let tp: C2 —> A be a map
satisfying the following two conditions:

(i) there is a constant 0 < 7 < 1 such that

(£diag2)       > 70p„VP-i/> (£edge2

(ii) there are constants 0 < ß < - - \, a > 0 such that

maxedge^ < a An0,    where A2 = —— ̂2 edge^.
E

Then there is a constant C(ap,a,~i) and a subset Y C X of cardinality 2k,
k = C(ap,a,7)n1~1'/2"/3p(logn)~p/2 such that (Y,p) is 4a27~1 -isomorphic to the
lp k-cube.

PROOF. The proof is analogous to the proof of Theorem 3.1.
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Define a function ip: C2 —> R+ by tp(e) = diag^(£) for every £ G C2.  By the
conditions of the theorem

1/2

7apAn1/p <

As in 3.9 we can show that

(4.1.1)

L<P2{¿) < apAnl/p.

1/2(\   l/¿

j    p2\       <apAn^'p.

Now, as in 3.10, divide {l,...,n} into s blocks /, and define the fc = [n/s]
functions ipt : C2 x Sn —> R+ ■

This time the constant 71 is defined by

71 = (apAs i/pyif    f
Jsn Jc

<Pi(£,o-)

If n1/2 maxE edge < nl/2+0aA < ^7iapAs1//p, then we can show as in 3.9 that

(4.1.2) //Jsn Jc:
<Pi(£,o)

1/2

< -nar,As1/p.

(4.1.3)

/    /   <PÎ(e,v)
Jsn Jc%

By applying the p-type condition on s-blocks we get

(aplA)2n2/p < f    f y(£,o)<a2pk2^1 f    /"   ¿^(e,,)

= a2pk2'Pls Jcyi(e,o-)< (|7iOp^1/p)2a^2/p,

where the last inequality follows from (4.1.2). Hence 71 > 2~f/3ap.
Define Ef = J j ipf(e,a) and sets

Bi(6) = {(£,ct): \<pl(£,o) - Ef\ < 8apAs1/p}    for some 8 > 0.

As in 3.10 p(Bz(8)) > 1 - 2exp(-<52a2s2/p/8a2n1+2/J) and

( k \ (    82a2s2/p \^QSi(¿)j>l-2fcexP^-^ÍWJ.

For every (£,a) G f]i=1 Bi(8) we have

(4.1.4) (7! - 8)apAs1/p < tpfa a) < (71 + 8)apAsx'p.
Now proceed as in 3.11 and define for pairs of blocks U, I3(i ^ j) the functions

<Pi,j(e,6), E2 = fs^fcnfi.2^,0-) = 72apA(2s)1/p. As in (4.1.3) we get 72 >
2~i/3ap. On the other hand

ll2apA(2sY'p]2 <¡    f   <pl2(£,o)<¡    f   22/p-1a2p[v2f(£,o) + <p2(£,o))
J J       JsnJc% Js„Jc2

= 22/pa2pJs  J   ^2f(£,o) < 22'pa2p (J^As1'^ '
Hence 71 > 2^2/3ap.
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The sets

satisfy
Bt,j(8) = {(e,a): \<pid{e,a) -E2\ < 8apA(2s)l'p}

82a2p(2s)2/p\plp\Bltj(8)\ >l-2Qexpi- 8a2nl+2/3

and for every (£,o) G fli^y Bi,j(8) we get

(72 - 6)Aap(2s)1'p < <Pi,j(£,(T) < (72 + 8)Aap(2s)l'p.

Proceeding in a similar way we define for every t, t = 1,... ,k, functions <Pilt...,it,
constants 7t, "almost constancy" sets ¿?¿,,...,¿t such that the following hold:

(i) Et = ¡Sn /c? ipiu...M(£,o) = 7tapA(is)1/p,
(ii) 1 > 7t > 27/3ap for every t and 7tl > (2/3ap)7Í2 for every t2 > tf.
(iii) for every 1 < if < i2 < ■ ■ ■ < it < k,

(7t - 8)Aav(ts)l'p < plu...M(£,o) < (lt+S)Aap(ts)Vp,

(iv) for every (e,a) G ri(n,...,it) Biu...,it,

*(n*.,)^-<îH-s^).
Now we want to find an s such that B = f]t=i(C\(ii,...,it) ^*i.-,n) ^s n°t empty

and the condition in (4.1.2) is satisfied.
Define a = exp(-f52a2s2/p/8a2n1+2'3). If s^p > (4a/7ap)n1/2+/3 and

é ©»-<,,

then there is a pair (£,rj) G B such that the fc-cube based on this pair is 7 <
(maxi<j<fc7¿ -I- 8) (mini<j<fc7¿ - ¿)_1-isomorphic to the standard lp fc-cube. By
(Ü)

|a71+¿<9a2+47 ^

S"*    "        1 "6ûp
Hence, there is a constant C7(ap, 0,7) such that s = [C(ap, a,7)(n1+2/3logn)p/2]
satisfies all the conditions above and

fc ~ - ~ C(ap,a,1)n1-p/2-0p(logn)-p/2.    D

5. Relation between standard and metric type.
5.1. In this section, we show that the notion of metric type is essentially an

extension to metric spaces of the standard notion of type on Banach spaces.
It is obvious that a Banach space which has metric type 1 < p < 2 has also type

p. Here we show that the supremum of types of a Banach space cannot exceed the
supremum of metric types (Theorem 5.2). A number of consequences follow from
this conclusion. (See Corollaries 5.9-5.10.)

The methods used in the proof of Theorem 5.2 are based on [P2l.
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5.2. In this section, it is more convenient for us to consider the binary fc-cube as
C% = {-l,l}k.

Let (A, || • ||) be an infinite-dimensional Banach space of metric type p with type
constants ap(k; X). Then for any ip: Ck —> A, diag^(£) = \\ip(£) - ip{-£)\\ and an
edge differing on the jth coordinate is

edge(£,£') = ||^(£i,...,£y,...,£fe) - V(£i,...,-£y,...,£fc)|| d= \\Ajip(£)\\.
Hence, the metric type condition is

(5.2.1)
1/2 ( \  ^/^

ljck H(e) -iP(-£)\[2dA      < av(k;X)k^-i'2 J ¿^ ||A^(£)||2d£

THEOREM. Let px be the supremum of types of X and suppose px > 1- Then
limfc_oo ap(k;X) = 0 whenever p < px-

5.3. PROOF. Let Clj(j = l,...,fc) denote arbitrary probability spaces (not
necessarily { — 1,1}). For any fc and ip: fi = Qi x ■ ■ • x fîfe —> X define ßp(k) as the
smallest ß > 0 fulfilling

(  k )1/2

u - Em2 < ßk^-v2 \y,u - Ej[

(E-- is the conditional expectation with respect to the fj-algebra generated by
{uii}i¿j\ namely, the averaging is on the jth. coordinate.)

Since vj(£) - Ej[ip{e)] = \&jH(£)} we get

(|||^(£)-^(-£)||2d£) < 2||^-i;^]||2

ig/
>k"p-"2{yi[\^(£)\\2d£\

Hence, ßp(k) > ^ap(k; A). By a method similar to the one used in 2.3 and using
the fact that fiy were arbitrary we get the submultiplicativity property ßp(k ■ I) <
ßp(k)ßP(l). _ _

Now, fix p < px and assume limap(fc;A) > 0. Then lim/3p(fc) > 0 and by
submultiplicativity ßp(k) > 1 for each fc.

5.4. Let r > 0 be a (small) positive number. There are arbitrary large integers
fc satisfying
(5.4.1) /?P(fci)<(l + r)/3p(fc)    iffc/2<fci<fc.

Suppose this statement is false. Fix some fc and a large fc. Negation of (5.4.1)
gives a decreasing sequence k > kf > k2 > ■ ■ ■ > kj > fcy+i > • • • > fc such
that  ßp(kj+f)   >   (1 + r)ßp(kj)  and  k] + l   >   fc,/2.     This implies  ßp(k)   <
(1 + t)~ioskk    ßp(k) which is a contradiction.
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Now fix fc satisfying (5.4.1) and choose ip: fii x ... x fifc —► A with

1/2

\\ip - e[ip}\\2 ~ ßp(k)kiip-ii2 { y, u - 2
jn-j.,2

3=1

5.5. Define L2(Qi, R) to be all the ¿2-functions a: fi¿ —► i?, which are orthogonal
to the constant functions (i.e. / a = 0). Any function /: fi = fii x • • • x fit —> X
has a generalized Walsh expansion / = fo + fi H-1- /fc, where /y = X^^y waxa,
A c {1,..., fc}, xA G X, wA e span{n¿GA o¡¿|a¿ G L^(üi} R)}.

Since px > 1, X is AT convex. By [P2] St = Yi^=i[Ej + e~V ~ Ej)\ defines a
holomorphic semigroup on L2(X) and, hence, there is a constant C\ = Cf(X) such
that

(5.5.1) ||/il|2<C7il|/||2    for each j.

5.6. Fix 8 = 8(Cf) > 0. Consider independent {0, l}-valued random variables
£i ty), ■ • •, CfcM of mean 8 and define the operator

fc

i=i

(which means the averaging is performed over j's satisfying ij(v) = 0).
Let ip = ipo + ipi + ■ ■ ■ + ipk be the Walsh expansion of ip. Then

/ n(i/)[ip] dv = i/>o + 8ipf H-+ ¿Vfc-

By (5.5.1) and the fact that E[ipi) = 0 for i > 0 we get

«lhM|2> I/ttHM-^iI -Yí(Cf8YU-E[ip}[[2,
WJ Il2      J=2

(5.6.1) ,
«11^112 > iiv>-^Mii2-y nv> -e{m.M=i}[^]ii2d^

-o(i)||^-£?[^]||3l

where 8 is chosen as <5 < Cf2.
5.7. We now estimate / \\ip - Etj^i^-f^ip^dv. Take some v and define

A-ty) = Ol^jM = 1} and A(v) = {j\£j(i/) = 0}. Consider ip as a function of these
variables wy with j G A(u). By definition of ßp(n) we may write

H - EMv ¿ <
L^i\j^A(v)) -

"I 2

x   ¿   \\ip-E-
jeAtu)

*-E^m 2(l/p-l/2)

¿2(wib'6A(i/))-
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Integrate, now, in wy for j G A(u).

H- eam[ip}\\2 < ßp{k-Y,^^))[k-J2^^1/
i1/2

x|X>-£yMI

Proceed by integrating both sides of the last inequality in v.   First estimate the
right side:

l/p-1/2

< //^(a-E^-m)2^   {/[*-E&m
by the Cauchy-Schwartz inequality. Moreover, since 0 < 2(1 - 5) < 1, we get

2(l/p-l/2) Ï X/2
aV ;

^P     2-

{/[fc-E&M
2(l/p-l/2) <m -{y (fc-E^w

=[(i-¿)fc]2(i/p-1/2)

aV
2(l/p-l/2)

and
fc

/ h (* - E £»)]2 ^ = E [^p(fc - *)i2 p (E & =i)
J i=0

<x:^(fc-z)]2p(E^^-)+(^2/^(Ee.
¿=0 \    / V

'>2

since /3p(fc) < fc1/9 (± + ± = 1) by definition of /3. Using (5.4.1) and the fact that'«     p
-^E £j> f ) is a tail of a normal distribution we get

/ [ßP (k - E &("))] 2 ^ < (1 + ^)2 l^p(fc)]2 + k2/qe-ck

for some constant c = c(<5) and provided 8 < \. Collecting estimations

f\\ip-EA(v)[ip}\\2dv

<(! + 2t)(1 - ô)1/p-1/2/3p(fc)fc1/p-V2 | ¿ ^ _ £-.[^||2

1/2

^(l-c^/îp^fc1^-1/2^^-^

J'=l

2
1/2

J = l

^(l-cp6)||V>-£MI|2
for some constant cp and for r and ^ chosen as in 5.4.
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5.8. Substitute (5.7.1) and (5.6.1) to obtain

¿IhMh > CpS\\rl) - E[tp\h - o(8)\\iP - E[iP}\\2.
Hence

k

E(^i
3=1

E[iP\)

(5.8.1)

= ||^i||2>Cp||^-^]||a

^Cpßp(k)kxlp-il2\J2\\iP-Ep]\\l
1/2

3=1

k 1/2

>cpßp(k)kilp-i'2 l^E^iP]- E[iP}\\2

where E^.[ip] — E[ip] are independent L2(Q,X) functions. Choose p < pi < Px-
Then, using the (standard) type condition on Z<2(X) (recall that L2(X) has the
same type constant as X) we get

J2(E^[iP]-E[iP})
3 = 1

<2 I E^ÄM-SM)j=i
d£

i/Pi

<2TP1(X) \J2\\E0Jj[iP}-E[iP}[[Pi
7 = 1

1/2

<2Tp1(X)k^-i'2\Y^\\E^[iP\-E[iP\\\
7 = 1

which contradicts (5.8.1) for large fc.

5.9. COROLLARY,   (i) A Banach space X contains Hamming cubes C2  uni-
formly iff it contains If's uniformly.

(ii) // a Banach space X contains uniformly lp n-cubes for some 1 < p < 2 then
it contains lp 's uniformly.

5.10. COROLLARY.   // a Banach space X is of (standard) type p then for any
p' < p, there is a constant ap' (X) such that for any n and any map ip : C2 —► X:

) 1/2 („ ï xl2

£ \\iP(£) - iP(-£)\\2 < ap,(X)n"p'^2 \ ¿ J2 W^mP
eec; j=ieec?

REMARK. After this text was typed, we were informed that G. Pisier gave
another proof of Theorem 5.2 His argument is substantially simpler. The proof
given above has, however, the advantage of giving power-type estimations on the
size, when passing from nonlinear to linear. (Some questions are still not fully
clarified at this moment and deserve further investigation.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



314 J. BOURGAIN, V. MILMAN AND H. WOLFSON

6. Embeddings of /p-cubes.
6.1. In this section the problem of almost-isometric embedding of lp cubes into

la cubes for 1 < s < p < oo is considered.
We show that for any £ > 0 and any s,p as above there is a constant A(s,p, e)

such that the l^ cube contains an (1 + £)-isomorphic copy of the lk cube, where
N < X(s,p, £)fc3. (We recall that in the linear theory lp can be embedded into If
for 1 < p < 2 only.)  The proof uses results [J-S, J-L] obtained by probabilistic
methods which prove only the existence of a "good" embedding.

In the second part of this section we show a constructive embedding of any lk
cube in a /^ cube; however, as often happens in such cases, the estimate on the
dimensions is fc ~ log N.

6.2. We start with the following
REMARK. If there is an (1 + e) embedding of the lk cube into the If cube for

some p > 1, then for any s, t > 1 satisfying s = pt there is an (1 + e)1/* embedding
of the lk cube into the l^ cube.

PROOF. Let {yi}2-öl be the points of an (1 + e) embedding of the lp fc-cube
into the If A-cube. Hence there is some constant M > 0 such that

IV
(6.2.1) ^Vij-Vkj^-Mhfrk)1'*    for every ¿,fc = 0,1,... ,2fc - 1.

j=i
Here yx = (j/¿,y)yLi and h(i, fc) is the Hamming distance between i and fc consid-

ered as binary vectors.
Since in the left side of (6.2.1) we are summing only 0's and l's which remain

unchanged by taking power t, we get the conclusion by taking power i_1 on both
sides.    D

6.3. PROPOSITION. Let £ > 0 and suppose 1 < p < 2. Then there exists
a constant X = \(p,e) such that for any positive integer k there is an integer
N < X(p, £)fc2+1/p and the h N-cube contains an (1 + £)-isometric copy of the
lp k-cube.

PROOF. Let (C?2,pP) be the lp-cube. By the [J-S] result there is a con-
stant A'(p,e) such that (C2,pp) can be (1 + |)-isomorphically embedded into
/", where n = A'(p, £)fc. Hence, it can be (1 + £)-isomorphically embedded into
C™ = {(zi)?=1\zi G {0,1,... ,í — 1}}, t = \\kl/pn] + \, equipped with the/i-metric.
This set is isometric to a subset of C2 ¿i-cube, where N = (t — l)n = \(p, £)fc2+1/p
for a constant A(p, e) independent of fc. (For the infinite-dimensional variant of the
last consideration see [Ox, p. 44].)

6.4. A result similar to Proposition 6.3 can be obtained for 2 < p < oo also.
Indeed, let 2J < p < 2J + 1 for some integer j > 1. By applying Remark 6.2 and
Proposition 6.3 j times we can (1 + £)-embed the lk-cube into the l2  cube, with

W< A(p,£)fc3J.
By [J-L] 2k points in l2 can be (1 + £)-embedded into l2 with n proportional to

fc. As in Proposition 6.3 the points can now be (1 + £)-embedded into If A-cube
with N proportional to fc2-5.

6.5. If p = oo, then the 2k points of the l^ fc-cube are isometrically embedded
into the l2 n-cube with n = 2k, by mapping them onto the unit binary vectors
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of the l2 n-cube.   Now, as above, we can (1 + £)-embed the former set into the
If A-cube with N proportional to fc2.

6.6. Summarizing 6.3-6.5 and applying Remark 6.2 we obtain

THEOREM. Let £ > 0 and 1 < s < p < oo. Then there is a constant A(p, s,e)
such that for any integer fc there is an integer N < A(p, s,£)fc3 such that the lp k-
cube can be (1 + £) -embedded into the ls N-cube.

6.7. Since the embedding in Theorem 6.6 is nonconstructive we add an example
of a constructive embedding, which gives, however, a bad estimate on N. By
Remark 6.2 it is enough to show an embedding of the lp fc-cube for some p > 1 into
the If A-cube.

6.8. Consider the 2fcx2fc zero-one Walsh matrix Z = (zíj) = ({i,j)), where i,j =
0,1,..., 2fc -1 and (i, j) is the modulo 2 scalar product of the binary representations
(as fc-dimensional vectors) of the indices i,j.

The j th column of Z is repeated nj times (the nj 's are calculated later) and a
new 2kxN(N = £)y=o  nj) matrix is obtained. Let y¿ = (j/tjOyLn » = 0,..., 2fc-l,
be the rows of this matrix.

Consider Y = {yi}2=öl with the ¿i-metric. If Y (in the natural order) was
isometric to the lp fc-cube, then there was a constant M > 0 such that the following
system of equations would hold:

N

(6.8.1) Yl IWiJ - «¡«I = Mh(if,i2Y'p    for every iui2 = 0,..., 2k = 1.
3 = 1

The system (6.8.1) can be obviously reduced to

jv
(6.8.2) Ew.i = M/l(*'.0)1/p,        • = 1,..., 2* - 1,

3 = 1

or in our notations
2fc-l

(6.8.3) Y, nJziJ =Mh(i,0)1/p,        i=l,...,2k-1.
3=0

Existence of a (positive) integer solution {n¿}2=Q l to (6.8.3) would imply that Y
is isometric to the lp fc-cube. We will find a positive real-valued solution of (6.8.3),
and by a small perturbation we will pas to a (positive) integer "£-solution". Since
the perturbation of an equation will be kept less than eM, we will get a (1 4- e)
isomorphic set.

6.9. Let W = {wl3}f-J0 = {(-1)<^>} be the standard 2k x 2k Walsh matrix, J
the matrix with all its entries 1 and define two vectors x = (xj)2^1 = (M_1ny),

b = (k)2^1 = (h(0,i)Vp). Then (6.8.3) becomes

(6.9.1) \(J-W)x = b.
Multiply both sides by W:

(6.9.2) (WJ - 2kI)x = 2Wb.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



316 J. BOURGAIN, V. MILMAN AND H. WOLFSON

Since the entries of the first row of W J equal 2fc and all other entries are 0 we
obtain

2fc-l_    _ns^2k-
(6.9.3) ^J=1    3 ~¿^=o2fc£?:71*y = 2£2:ö^

-2kxt = 2 glô1 ^-b,,        i = 1,..., 2* - 1.
The system is consistent and its solution is

2fc-l fc
(6.9.4) x, = -2-fc+1 J] ^y6y = -2~k+1 Y<k,il1/p,        i = l,...,2k-l,

3=0 1=1
where azi = J2j wij and summation is extended over those indices j having Ham-
ming weight I in their binary representation. Denote by \j\ the Hamming weight of
j and define

Pi,i = {0<j<2k-l\[j\ = l,(3,i)=0}
and

A^ = {0<j<2fc-l| \j\ = l,(j,t) = l}.
Then a^ = |P¿i¡| - \Nit¡\ and it is easily verified that a¿_; are the coefficients of

the following generating function

(6.9.5) (l-flNvl + O^'^E*.'*'-
i

6.10. We have to show that {x¿} (see (6.9.4)) are positive. The following calcu-
lation is due to M. Dubiner.

Consider the generating function (6.9.5) /(£) = (1 - £)M(1 + £)fc~N = T,iahitl
and substitute 2 = In £. Then

/(e*) = (1 - ez)^(l + e*)fc-l*l = Y*,i¿'■
i

It is well known (see for example [F-S, p. 350]) that

(6.10.1) / eww-{a+l) dw = 27re'/r(a + 1),
Jc

w = \w\el7r

w — \w\e  i7r

where C is the contour around the branch point 0 with the branch cut along the
negative real axis.

Hence, substituting w = zl we obtain

(6.10.2) í elzz-{a+1) dz= Í ew(jY'     *' l'1 dw = la2m/T(a + 1).

Hence in order to evaluate ^2¡laai^ it is enough to evaluate

(l-ez)%(l + ez)k-W
I=(2ni)-lY(a+l) [

Jc
— dz

c z"^1

r(a+l) f    <ir« _   iTO,  r (l-e-")l'l(l + e-")*-N
2tt¿     [ J7o u°+1

r(a + l)   .          f00 (1 - e~uffl + e~u)k^\   ,
--amiral--—.-du.
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Since 0 < a = ^ < 1, I is always negative and it is easy to show thatp

(6.10.3) / < -r(a + 1)^^ • JUnfc^)"^1).
7T        Le¿

Hence for every i = 1,... ,2fc - 1, x¿ > C(p)2-fc+1(lnfc)-(1/p+1) for a constant
C(p) > 0.

6.11.  Take M > max{£-12fc-1,C,(p)-12fc-1(mfc)1+1/p} and define at = Mi,.
By (6.9.4) and (6.10.3) 1< a¿ < 2Mfc. Define

m = [di], [ai - [a¿]| < 1/2,
[ai] + 1,    otherwise.

Clearly, 1 < n¿ < 2Mfc + 1. Substituting n¿ in (6.8.3) every equation is perturbed
at most by 2fc_1 < eM. Hence Y C (C2 ,h) with N = £ nx is (1 + £)-isomorphic
to the /p fc-cube and N < k22k max(l,C(p)-1(lnfc)1/p+1) or fc ~ log A.
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