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On Unbounded Path-Loss Models: Effects of
Singularity on Wireless Network Performance

Hazer Inaltekin, Mung Chiang, H. Vincent Poor, and Stephen B. Wicker

Abstract—This paper addresses the following question: how
reliable is it to use the unbounded path-loss model G(d) = d

−α,
where α is the path-loss exponent, to model the decay of
transmitted signal power in wireless networks? G(d) is a good
approximation for the path-loss in wireless communications for
large values of d but is not valid for small values of d due
to the singularity at 0. This model is often used along with a
random uniform node distribution, even though in a group of
uniformly distributed nodes some may be arbitrarily close to
one another. The unbounded path-loss model is compared to a
more realistic bounded path-loss model, and it is shown that the
effect of the singularity on the total network interference level is
significant and cannot be disregarded when nodes are uniformly
distributed. A phase transition phenomenon occurring in the
interference behavior is analyzed in detail. Several performance
metrics are also examined by using the computed interference
distributions. In particular, the effects of the singularity at 0 on
bit error rate, packet success probability and wireless channel
capacity are analyzed.

Index Terms—Multiple-access interference, bounded path-loss
models, unbounded path-loss models, bit error rate, packet
success probability, wireless channel capacity.

I. INTRODUCTION

FOR THE purposes of mathematical tractability, it is

necessary to have simple but useable abstractions of the

wireless communication medium. An important example is

the use of the function G(d) = d−α to model the power gain

of the wireless channel between a transmitter and a receiver,

where d is the distance between the two terminals and α is

the path-loss exponent.

A key artifact of this model is the singularity at 0. Even
though the function is a reasonable approximation for wireless

channel power gain for large transmitter-receiver separation,

it becomes increasingly invalid as transmitters and receivers

move closer to one another - i.e., the far-field assumption can-

not be applied (see [1] for details on the far-field assumption).

In particular, the singularity can lead to the physically impos-

sible scenario in which the received signal power exceeds the

transmitted signal power.
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In this paper, we examine the effects of the singularity at

0 in the unbounded path-loss model on network performance
by comparing it with a bounded path-loss model when nodes

are uniformly distributed over the network domain and use an

Aloha type medium access control (MAC) protocol to gain the

channel access. We focus on the large network limit where the

number of nodes grows to infinity. We will show that a phase

transition in the behavior of the network interference occurs

at a critical value α∗ of the path-loss exponent as the network
grows to infinity.1 When α ≤ α∗, the network multiple-
access interference behaves in a similar fashion under both

bounded and unbounded path-loss models. When α > α∗,
the network multiple-access interference behavior depends on

path-loss models. In particular, the tails of the interference

probability density function (PDF) are significantly affected

by the singularity at 0 when α > α∗. The interference PDF
becomes heavy-tailed under the unbounded path-loss model.

On the other hand, it decays to zero exponentially under

general bounded path-loss models with fading and random

phase. These results hold independent of network user density,

and are summarized in Table I.

We will use the results obtained for the interference distribu-

tion to compare bounded and unbounded path-loss models for

three performance metrics: bit error rate (BER), packet success

probability, and wireless channel capacity. We analyze these

metrics as functions of the distance between a transmitter-

receiver pair. Using the unbounded path-loss model results in

significant deviations from more realistic performance figures

obtained by using a bounded path-loss model for all three met-

rics. These results indicate that unbounded path-loss models

should be used with caution in wireless communications and

networking problems.

A. Related Work

In [2], the authors gave a comprehensive analysis on the

behavior of one-dimensional shot noise by obtaining moments

and moment generating functions for the shot-noise process.

Interference modeling in wireless networks is a specific in-

stance of a shot-noise process, and similar techniques are used

to obtain the interference PDF for wireless networks in many

previous studies such as [3], [4], [5] and [6]. In all these work,

only the unbounded propagation model is considered. This

is mainly due to the analytical simplicity of the calculations

under this model.

1The expression “phase transition” is often used in the percolation theory
and random graph literature while analyzing the existence of the unique giant
connected component. In this paper, we use it to emphasize the dramatic
change in the behavior of multiple-access network interference as a function
of path-loss exponent.
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TABLE I
TABLE OF RESULTS

Model Critical Path-loss Interference Behavior Interference Behavior

Exponent (α ≤ α∗) (α > α∗)

CSIM and BPM α∗ = 4 Diverges to Infinity Converges in Distribution

Rates: r
2− α

2 for α < α∗ and log(r) for α = α∗
P {|I| > x} = o

`

e−x
´

(Theorem 1) (Theorems 2 and 4)

CSIM and UPM α∗ = 4 Diverges to Infinity Converges in Distribution

Rates: r
2− α

2 for α < α∗ and log(r) for α = α∗
P {|I| > x} = Ω

„

x
−4
α

«

(Theorem 1) (Theorems 3 and 5)

USIM and BPM α∗ = 2 Diverges to Infinity Converges in Distribution

Rates: r
1− α

2 for α < α∗ and
p

log(r) for α = α∗
P {|I| > x} = o

`

e−x
´

(Theorem 6) (Theorems 7 and 9)

USIM and UPM α∗ = 2 Diverges to Infinity Converges in Distribution

Rates: r
1− α

2 for α < α∗ and
p

log(r) for α = α∗
P {|I| > x} = Ω

„

x
−4
α

«

(Theorem 6) (Theorems 8 and 10)

Table 1. CSIM and USIM stand for Correlated Signals Interference Model and Uncorrelated Signals Interference Model, respectively. BPM
and UPM stand for Bounded Path-loss Model and Unbounded Path-loss Model, respectively. α is the path-loss exponent. r is the radius of
the network domain. I is the network multiple-access interference at the large system limit. See Section II for details.

More recent studies along this line of research are [7], [8],

[9], [10] and [11]. In [7], the authors considered the signal-to-

interference ratio for wireless ad hoc networks with randomly

distributed nodes, and obtained bounds on its distribution.

In [8], the authors analyzed the sizes and shapes of cells

in a wireless cellular code-division multiple-access (CDMA)

network by using marked Poisson processes and the shot-

noise process associated with the marked point process under

various path-loss models. The papers [9] and [10] analyzed

the effect of unbounded path-loss models on the transport

capacity of wireless networks. In [11], the authors considered

the interference and outage probability in clustered wireless ad

hoc networks for bounded and unbounded path-loss models.

Our results are closest to these latter results in that they

also obtained similar power-law decaying and exponential

decaying interference distribution results under their path-loss

models. However, our physical layer model and interference

models are different than those of [11]. In this paper, we

obtain interference signal strength PDFs and other network

parameters under both bounded and unbounded propagation

models, and analyze the effect of the singularity at 0 by

comparing them.

II. PROBLEM FORMULATION

A. Notation

As in standard notation, for any two real-valued func-

tions f and g, we write f(x) = O (g(x)) as x → ∞
if lim supx→∞

∣

∣

∣

f(x)
g(x)

∣

∣

∣
< ∞. We write f(x) = o(g(x)) as

x → ∞ if limx→∞
f(x)
g(x) = 0. We write f(x) = Ω(g(x)) as

x → ∞ if lim infx→∞
∣

∣

∣

f(x)
g(x)

∣

∣

∣ > 0. We write f(x) ∼ g(x) as

x → ∞ if limx→∞
f(x)
g(x) = 1.

We represent the set of complex numbers and the set of

real numbers by C and R, respectively. For a random variable

X , we define the Laplace transform of its distribution as

ϕX(s) = E
[

es·X], where s = θ + ı̇ıt ∈ C, θ ∈ R, t ∈ R

and ı̇ı2 = −1. We use ℜ(s) = θ to represent the real part of s.

When ϕX(s) is calculated on the imaginary line, i.e., s = ı̇ıt,

we obtain the characteristic function of X . With a slight

abuse of notation, we also represent its characteristic function

as ϕX(t) = E
[

eı̇ıt·X]. Note that characteristic functions of

Fig. 1. Physical layer model for decoding of transmitted bits.

random variables are always defined, and we use them to

obtain the network interference probability density function

in the large system limit. For calculating the decay rate of the

network interference PDF, Laplace transforms will be helpful.

For a sequence of random variables {Xn}∞n=1, Xn
i.p.→ X

means that the sequence converges to X in probability.Xn ⇒
X means that it converges to X in distribution. We say a

random variable X has a heavy-tailed distribution if P{|X | >
x} = Ω

(

x−θ
)

for some θ > 0. N (0, σ2) denotes a Gaussian
random variable with zero mean and variance σ2.

B. Physical Layer and Network Model

We consider a disk shaped network domain B(0, r) centered
at the origin 0 and having radius r ∈ R. Transmitters are

uniformly distributed over the network domain.

For the ease of mathematical exposition, network nodes

are assumed to use the binary phase shift keying (BPSK)

modulation scheme for information transmission without any

power control algorithm at the physical layer. Each transmitter

transmits with a fixed power P = Eb

Tb
, where Eb is the

transmitted signal energy per bit, and Tb is the bit duration.

The pair of signals s0(t) = −
√

2Eb

Tb
cos(2πfct) and s1(t) =

√

2Eb

Tb
cos(2πfct), for 0 ≤ t ≤ Tb, are used to transmit binary

symbols 0 and 1, respectively. At the receiver side, transmitted
signals are coherently decoded by using the basis function

φ(t) =
√

2
Tb

cos(2πfct), 0 ≤ t ≤ Tb. The physical layer

model for decoding transmitted bits is depicted in Fig. 1.
Transmitted signals are impaired by the interference coming

from other transmitters and the white noise process W (t) as
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shown in Fig. 1. Therefore, the received signal R at the de-

modulator output in Fig. 1 contains the desired signal coming

from the transmitted signal to be decoded, the noise signalW0

coming fromW (t), and the multiple-access interference signal
Ir coming from the transmitters transmitting concurrently. We

place a test receiver node at the origin, and focus on Ir at the

test receiver node. We will study the convergence properties of

Ir at the test receiver node as r grows to infinity. We represent

the limiting network multiple-access interference by I as r

grows to infinity. Let λ > 0 be the density of transmitters,
which is in units of number of nodes per unit area. We pick a

transmitter density λ > 0, and keep it constant while growing
the network size to infinity. The total number of interfering

transmitters for any given value of the network radius r is

given by ⌈λπr2⌉, where ⌈u⌉ denotes the smallest integer larger
than u ∈ R.

C. Path-loss Models

We classify path-loss models as being either bounded or

unbounded. For the unbounded path-loss model (UPM), we

focus on the signal strength decay function G1(d) = 1

d
α
2
.

Therefore, the transmitted signal power decays according to

the commonly used signal power attenuation function G(d) =
1

dα . This model is not correct for small values of d due to

a singularity at 0. However, it fairly well approximates the
signal attenuation for large values of d.

In contrast to the unbounded path-loss model, a sound prop-

agation model for characterizing signal strength attenuation

must always be a monotonically decreasing function of the

distance and be bounded by unity. In addition, received signal

power under this model must behave asymptotically as 1
dα as

d → ∞. A useful such model for the received signal strength
is G2(d) = 1

1+d
α
2
, which we will consider as our bounded

path-loss model (BPM). It is a reasonable way of improving

the inverse-power law model by removing the singularity at

0. Note that G2(0) = 1, which means that when a transmitter
and a receiver are co-located, the receiver receives exactly

what the transmitter transmits. Our results on the decay rate

of the network interference PDF will be proven for general

bounded path-loss functions.

D. Interference Models

Our interference models are similar to the models presented

in [4], [13] and [14]. As in these work, we assume that

the total network multiple-access interference is equal to

the summation of demodulated residual signals coming from

all interfering transmitters in the network. Our characteri-

zations of the decay rate of the network interference PDF

for bounded path-loss functions are developed by considering

random phases and fading coefficients. However, we assume

perfect phase synchronization and no fading while comparing

network performance metrics under the BPM and the UPM.

For notational simplicity, we present our interference models

without random phases and fading coefficients.

We consider two interference models. In the first model,

all interferers transmit the same symbols, and therefore in-

terference signals are perfectly correlated. This model is

appropriate for multiple-access interference calculations in

sensor networks since sensor readings tend to be correlated

with each other. Under this model, which we call Correlated

Signals Interference Model (CSIM), Ir can be written as

Ir =
∑⌈λπr2⌉

k=1 I
(r)
k , where I

(r)
k is the interference coming

from the kth transmitter at the demodulator output of the

receiver when the network radius is equal to r. I
(r)
k is

equal to I
(r)
k = Z

√
Eb

1+||X(r)
k

||
α
2

under the BPM, and I
(r)
k =

Z
√

Eb

||X(r)
k

||
α
2

under the UPM, where Z is a random variable

taking values ±1 with equal probabilities of 1
2 , and X

(r)
k

is a random variable representing the location of the kth

transmitter, which is uniformly distributed over B(0, r). Z = 1
(Z = −1) means that all interferers transmit the binary symbol

1 (0). When we write ||X(r)
k ||, we mean the distance of the kth

transmitter to the origin. Z and X
(r)
k ’s are independent from

one another.

CSIM contains best-case and worst-case scenarios. In the

best-case, the symbol to be decoded at the test receiver

becomes equal to the symbol transmitted by other transmitters.

The signal quality at the test receiver is enhanced by other

transmitters. In the worst-case, the symbol to be decoded at

the test receiver becomes different than the symbol transmitted

by other transmitters. In this case, the signal quality is deterio-

rated by other transmitters. The average network performance

under CSIM becomes equal to the statistical average of worst-

case and best-case scenarios.

Our second interference model is proposed to capture the

possibility that different transmitters in a wireless network may

transmit different symbols. Under the second model, which we

call Uncorrelated Signals Interference Model (USIM), individ-

ual interference signals at the demodulator output of the test

receiver are given as I
(r)
k = Zk

√
Eb

1+||X(r)
k

||
α
2

under the BPM,

and I
(r)
k = Zk

√
Eb

||X(r)
k

||
α
2
under the UPM, where the Zk’s are

independent random variables taking values ±1 with equal
probabilities of 1

2 . We assume that the Zk’s are also indepen-

dent of X
(r)
k . The total interference signal at the demodulator

output of the test receiver is equal to the summation of I
(r)
k ’s.

III. INTERFERENCE DISTRIBUTION - CORRELATED

SIGNALS INTERFERENCE MODEL

In this section, we present interference PDF calculations

under different path-loss models for CSIM. We will look at

the asymptotic distribution of Ir as r → ∞. As a result of
our analysis, we will conclude that a phase transition occurs at

the critical value of α = 4, below which network interference
behaves the same under both the UPM and BPM, and above

which it has very different characteristics under the two path-

loss models. We start with the case α ≤ 4.

A. Interference Behavior for α ≤ 4:

We first look at the interference asymptote as network size

grows to infinity when α ≤ 4. In particular, we will show
that interference goes to infinity in probability and the rate

at which it goes to infinity is r2− α
2 for α < 4 and log(r)

for α = 4. The following theorem is the central result of this

subsection. A similar result for marked Poisson processes first
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appeared in [15]. Here, we extend the results in [15] to the

case where locations of nodes are uniformly distributed as well

as providing rates of convergence of Ir to infinity.

Theorem 1: Under both the UPM and BPM, if α < 4,
Ir

r
2− α

2

i.p.→ Z 4λπ
4−α

√
Eb, and if α = 4, Ir

log(r)

i.p.→ 2Z
√

Ebλπ.

Proof: See Appendix A.

A key conclusion from Theorem 1 is that the interference

signal strength does not converge in distribution to a real

valued random variable for either of the path-loss models

when α ≤ 4. In fact, the interference magnitude goes to
infinity in probability at the same rate under both models. The

intuitive explanation for such behavior is that the interference

is determined by the number of interferers rather than the

properties of the propagation models when α ≤ 4. That is,
if α ≤ 4, interference signal strength from any individual

interferer decays at a rate smaller than O
(

r−2
)

. However,

in order to keep the density of the transmitters constant, we

increase their number at rate O(r2). Since the decay rate of the
propagation models is not fast enough, addition of the small

but relatively large number of interference signals results in

the convergence of the interference magnitude to infinity.

The results of III-B in conjunction with Theorem 1 will

prove the existence of phase transition phenomena in the

interference behavior at α = 4. In particular, it will be shown
that whenever α > 4, interference signal strength converges
in distribution as the network size grows to infinity, and

the limiting interference distribution behaves very differently

under our two path-loss models.

B. Interference Behavior for α > 4:

We will analyze the asymptotic distribution of the interfer-

ence for the case α > 4. The technique is classical in that we
will first obtain the characteristic function of the interference,

and then invert it to obtain the interference PDF.2 We give the

derivation for the BPM in Appendix B. The derivation for the

UPM is similar.

Theorem 2: The interference characteristic function under

the BPM and CSIM is given by

lim
r→∞

ϕIr
(t) = ϕI(t) = ℜ

(

exp

(−4λπ

α
E

2
α

b t
4
α C (t)

))

, (1)

where C(t) =
∫ t

√
Eb

0
(1 − exp(ı̇ıu))

„

1− u

t
√

Eb

« 4
α

−1

u
4
α

+1
du.

Proof: See Appendix B

Theorem 3: The interference characteristic function under

the UPM and CSIM is given by

lim
r→∞

ϕIr
(t) = ϕI(t)

= ℜ
(

exp

(−4λπ

α
E

2
α

b

(

11{t≥0}C + 11{t<0}C
∗) |t| 4

α

))

,(2)

where C =
∫∞
0

(1 − exp(ı̇ıu))u
−4
α

−1du, C∗ is the complex
conjugate of C.

We now describe some simulation studies that illustrate and

verify the above analytical results. We invert the characteristic

functions given above numerically to obtain the interference

2The legitimacy of this approach comes from the continuity theorem (see
[16]).

PDF. We also perform Monte Carlo simulations to obtain the

histogram of the network interference. As seen in Figs. 2 and

3, there is a very close match between the interference PDFs

obtained in these two ways.

The interference PDF under the BPM in Fig. 2 decays

exponentially, whereas its decay rate under the UPM in Fig.

3 is much slower. Decay rates of interference distributions are

given in Theorems 4 and 5. Theorem 4 characterizes the decay

rate of the interference distribution under general bounded

path-loss models, fading and random phase. We do not provide

the proof for Theorem 4 since a similar proof will be given

for USIM.

Theorem 4: Let P {|I| > x} be the probability that the

interference magnitude is greater than x > 0 under a general
bounded path-loss function GB and the CSIM. Let GB :
[0,∞) �→ (0,∞) satisfy the following properties.3

• Smoothness: GB(d) is almost everywhere differentiable,
and a non-increasing function of the distance d. More-

over, there exists a T > 0 such that its functional inverse
G−1

B is well-defined for all d ≥ T .

• Boundedness: GB(0) < ∞.
• Decay Rate: GB(d) ∼ d−

α
2 as d → ∞.

It is assumed that the phase of each interference signal is

shifted by the same amount according to a phase distribution

that is symmetric over [−π, π]. It is also assumed that the
magnitude of each interference signal is independently scaled

by a fading coefficient whose Laplace transform is well-

defined for all ℜ(s) > 0.4 Then, P {|I| > x} = o (e−x) as
x → ∞. In particular,

lim
x→∞

∣

∣

∣

∣

log (P {|I| > x})
x

∣

∣

∣

∣

= ∞.

Theorem 5: Let P{|I| > x} be the probability that the
interference magnitude is greater than x > 0 under the UPM

and CSIM. Then, P{|I| > x} = Ω
(

x
−4
α

)

as x → ∞.
Proof: See Appendix C.

IV. INTERFERENCE DISTRIBUTION - UNCORRELATED

SIGNALS INTERFERENCE MODEL

Our aim now is to extend the analysis presented in the

previous section to the second interference model (USIM).

Recall that interference signals are added constructively and

destructively with equal probability under USIM. A similar

phase transition phenomenon also occurs under USIM. This

time, the critical value for α is 2. We start with the case α ≤ 2.

A. Interference Behavior for α ≤ 2:

The main result of this subsection is that if the multiple-

access network interference is scaled with r1−α
2 for α < 2

and with
√

log(r) for α = 2, it converges in distribution to a
Gaussian random variable.

3Some examples for bounded path-loss functions satisfying these conditions

are max

“

A, d
−α
2

”

, 1

(1+d)
α
2
and 1

1+d

α
2
.

4The widely used Rayleigh, Rician and Nakagami fading models satisfy
this condition.
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Fig. 2. Interference PDF under the BPM from simulation and from numerical
inversion of the characteristic function for CSIM.

Theorem 6: Under both the UPM and BPM, if α <

2, Ir

r
1− α

2
⇒ N

(

0, 2λπEb

2−α

)

, and if α = 2, Ir√
log(r)

⇒
N (0, 2Ebλπ).

Proof: See Appendix D.

B. Interference Behavior for α > 2:

We now provide network interference characteristic func-

tions under USIM in Theorems 7 and 8 for both BPM

and UPM. The derivations of these interference characteristic

functions are similar to the derivation given in Appendix

B under CSIM for BPM. Therefore, we do not give their

derivations due to space limitations, and refer interested users

to [18]. Similar results for the UPM also appeared in [4] and

[6].

Theorem 7: The interference characteristic function under

the BPM and USIM is given by

lim
r→∞

ϕIr
(t) = ϕI(t) = exp

(

−4λπ

α
E

2
α

b C (|t|) |t| 4
α

)

, (3)

where C(t) =
∫ t

√
Eb

0
(1−cos(u))

u
4
α

+1

(

1 − u

t
√

Eb

)
4
α
−1

du.

Theorem 8: The interference characteristic function under

the UPM and USIM is given by

lim
r→∞

ϕIr
(t) = ϕI(t) = exp

(

−4λπ

α
E

2
α

b C|t| 4
α

)

, (4)

where C =
∫∞
0

(1 − cos(u))u
−4
α

−1du.

An important distinction between the characteristics of the

interference signal strength under CSIM and USIM is that as

the network size grows to infinity, it converges in distribution

for the values of α ∈ (2, 4] under USIM, whereas it diverges to
infinity under CSIM for any α ∈ (2, 4]. For example, if α = 4,
the interference PDF becomes a Cauchy distribution with

median zero under UPM for USIM. Therefore, we conclude

that positive and negative additions of interference signals

contribute additional stability to the total amount of network

interference.

Fig. 3. Interference PDF under the UPM from simulation and from numerical
inversion of the characteristic function for CSIM.

In Figs. 4 and 5, we show interference PDFs obtained

after the numerical inversion of the characteristic functions in

Theorems 7 and 8, and from Monte Carlo simulation. Again,

we observe a very close match of simulation results and the

numerical inversion. This verifies our calculations.

As we see from these figures, the interference PDF appears

to decay exponentially under BPM. On the other hand, the

decay rate of the interference is very slow under UPM. Decay

rates of multiple-access network interference distributions are

given in Theorems 9 and 10. Theorem 9 is again given for

general bounded path-loss models under fading and random

phase.

Theorem 9: Let P {|I| > x} be the probability that the

interference magnitude is greater than x > 0 under a general
bounded path-loss function GB and the USIM. Let GB :
[0,∞) �→ (0,∞) satisfy the following properties.

• Smoothness: GB(d) is almost everywhere differentiable,
and a non-increasing function of the distance d. More-

over, there exists a T > 0 such that its functional inverse
G−1

B is well-defined for all d ≥ T .

• Boundedness: GB(0) < ∞.
• Decay Rate: GB(d) ∼ d−

α
2 as d → ∞.

It is assumed that the phase of each interference signal is

independently shifted according to the same phase distribution

that is symmetric over [−π, π]. It is also assumed that the
magnitude of each interference signal is independently scaled

by a fading coefficient whose Laplace transform is well-

defined for all ℜ(s) > 0. Then, P {|I| > x} = o (e−x) as
x → ∞. In particular,

lim
x→∞

∣

∣

∣

∣

log (P {|I| > x})
x

∣

∣

∣

∣

= ∞.

Proof: See Appendix E.

Theorem 10: Let P{|I| > x} be the probability that the
interference magnitude is greater than x > 0 under UPM and

USIM. Then, P{|I| > x} = Ω
(

x
−4
α

)

as x → ∞.
Proof: See Appendix F.
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Fig. 4. Interference PDF under the BPM from simulation and from numerical
inversion of the characteristic function for USIM.

V. EFFECT ON BIT ERROR RATE, PACKET SUCCESS

PROBABILITY AND WIRELESS CHANNEL CAPACITY

In this section, we will analyze the effect of the singularity

at 0 in the UPM on various performance metrics such as steady

state BER, packet success probability and wireless channel

capacity. Our aim is to understand the consequences of using

the unbounded path-loss model on concrete metrics by using

the PDFs obtained in the previous sections.

A. Steady State Bit Error Rate

We will first analyze the steady state BER under bounded

and unbounded path-loss models. BER is an important per-

formance metric which in turn helps us to determine packet

success probability and wireless channel capacity.

We assume that a transmitted information bit is successfully

decoded if and only if the interference plus noise level at

the demodulator output of the receiver is sufficiently small

enough. Let b be a generic transmitted bit, and E(d) be the
event that b is decoded erroneously at the receiver when

transmitter-receiver separation is equal to d. Due to the

symmetry of the problem, we have P{E(d)} = 1
2P{E(d)|b =

1} + 1
2P{E(d)|b = 0} = P{E(d)|b = 1}.

Recall that transmitted bits are also impaired by the white

noise process W (t) with power spectral density N0

2 . Let W0

be the corresponding noise at the demodulator output of the

receiver coming from W (t). Then, W0 is a Gaussian random

variable with mean zero and variance N0

2 . We also assume that

interference signal reduction by A times is possible at receiver

nodes. A = 1 corresponds to the classical narrowband digital
communication, andA > 1 can be thought of as corresponding
to a broadband communication scheme such as CDMA ([20]).

As a result,

P{E(d)} =
1

2

∫ ∞

−∞
fI(x)erfc

⎛

⎝

√

EbGi(d)2

N0
+

x

A
√

N0

⎞

⎠ dx,

where fI(x) is the probability density function of the multiple-
access interference signal I coming from other terminals

transmitting concurrently and Gi, i = 1, 2, is the path-loss

Fig. 5. Interference PDF under the UPM from simulation and from numerical
inversion of the characteristic function for USIM.

function. Below, we plot the steady state BER as a function

of transmitter and receiver separation d for both high-noise

regime and low-noise regime. For the high-noise regime, we

assume that the background noise power is comparable with

the transmitted energy per bit. To this end, we set N0 = 0.5
and Eb = 1. For the low-noise regime, we assume that the
background noise power is much smaller than the transmitted

energy per bit. To this end, we set N0 = 0.01 and Eb = 1
for the low-noise regime. The shape of the BER curves

as functions of d depends on the specific selection of the

parameter A, the interference model and the path-loss model.

Below, we describe results for two different values of A under

different path-loss and interference models. It is also assumed

that α = 6 and λ = 1
π
.

Examining Fig. 6, we observe that BER approaches 0
when d goes to zero under the UPM. In fact, this is the

typical behavior of the BER under the UPM for any value

of A. The main reason for such behavior is the unrealistic

singularity of the UPM at 0. Received signal energy per bit
increases unboundedly as the transmitter-receiver separation

is made smaller and smaller, which results in the convergence

of the BER to 0 no matter how big the interference plus

noise signal strength is. Especially for dense wireless networks

where transmitters and receivers become arbitrarily close to

one another with high probability, this has far more dramatic

effects on the data transmission rate, which further leads

to very unrealistic estimates for the number of successfully

communicating transmitter-receiver pairs.

If we look at Fig. 6 again, we observe that the BER is

bounded away from 0 under the BPM since the received signal

energy per bit can be at most 1 [unit energy]. Therefore,

whenever the interference plus noise level is high enough at

the demodulator output of the receiver, the detector decodes

transmitted bits erroneously.

Similar qualitative conclusions continue to hold in other

figures as well. When the UPM is used to model the physical

layer of a wireless network, the BER is underestimated for

small values of transmitter-receiver separation. This is due

to received power being unboundedly large when transmitters
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Fig. 6. Steady state BER as a function of transmitter-receiver separation
under CSIM for the high-noise regime.

and receivers are arbitrarily close to one another. For moderate

to high values of transmitter-receiver separation, we start

to overestimate the BER under the UPM. This is because

interference signal strength PDFs are more spread to the left

and right under the UPM which results in theoretically higher

interference signal levels at receiver nodes.

For the low-noise regime where transmitted bits are mainly

impaired by multiple access interference coming from other

transmitters, it is also possible to obtain BERs close to 0
for small values of transmitter-receiver separation under the

BPM but for completely other reasons. For small values of

transmitter-receiver separation, a bit is decoded in error if

and only if the multiple access interference is high enough

when the background noise is so small compared with the

transmitted energy per bit. However, the tails of interference

PDFs decay exponentially fast under the BPM, and the area

underneath of these tails becomes negligible after high enough

interference values. Therefore, the BER becomes close to zero

under the BPM when transmitter-receiver separation is small

enough in the low-noise regime (see Fig. 7 and Fig. 9).

B. Packet Success Probability

Next, we would like to compare packet success probability

as a function of transmitter-receiver separation under different

path-loss models. We assume that digital data is encoded by

means of an error control coding technique (see [21]) into

packets of D ≥ 1 bits, and a packet fails if and only if there
are more than L, 1 ≤ L ≤ D, bit errors inside the packet.

For the purposes of calculating packet success probability, we

consider two extreme regimes of node mobility. The first one

is the fast-mobility regime where transmitter locations shuffle

sufficiently enough during the transmission of a bit that bit

errors can be assumed to be independent. The second regime

is the slow-mobility regime where nodes can be assumed to

be static over the course of a packet transmission. Note that

bit errors are dependent in the slow-mobility regime since

locations of transmitters do not change dramatically during

a bit duration.

Fig. 7. Steady state BER as a function of transmitter-receiver separation
under CSIM for the low-noise regime.

Fig. 8. Steady state BER as a function of transmitter-receiver separation
under USIM for the high-noise regime.

We start with calculating packet success probability for

the fast-mobility regime. For simplicity, we assume that the

separation between our transmitter and receiver reference

nodes is fixed at d. If it is random, one needs to average packet

success probability one more time by using the distribution of

d. Let BERi(d), i = 1, 2, denote the steady state bit error rates
calculated in V-A under different interference models when

transmitter-receiver separation is equal to d. i = 1 corresponds
to the UPM, and i = 2 corresponds to the BPM. Let S(d) be
the event that a transmitted packet is decoded successfully

at the receiver when the transmitter-receiver separation is

equal to d. Then, for different path-loss models, the packet

success probability in the fast-mobility regime is equal to

P (S(d)) =
∑L

e=0

(

D
e

)

BERi(d)e (1 − BERi(d))D−e
.

The change of packet success probability as a function of

transmitter-receiver separation in the fast-mobility regime is

depicted in Fig. 10 for Eb = 1, α = 6, λ = 1
π
and A = 5. The

results shown in Fig. 10 are forD = 100 and L = 10. To cover
as many different cases as possible, we consider the high-

noise regime for CSIM and the low-noise regime for USIM.

As we observe in Fig. 10, there is a significant difference
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Fig. 9. Steady state BER as a function of transmitter-receiver separation
under USIM for the low-noise regime.

between packet success probability curves under different

path-loss models. The UPM can overestimate or underestimate

the packet success probability substantially depending on the

specific selection of interference models and other network

parameters. The packet success probability becomes close to

1 for small values of transmitter-receiver separation under both
path-loss models as the received signal strength becomes more

dominant than the total network multiple-access interference

plus noise while decoding transmitted bits. For large values

of transmitter-receiver separation, the packet success proba-

bility becomes close to 0 under both path-loss models since
the received signal strength becomes negligibly small when

compared with the total network multiple-access interference

plus noise. For values of transmitter-receiver separation close

to 0, the UPM overestimates the packet success probability

since the received signal strength becomes arbitrarily large as

the transmitter-receiver separation goes to zero. This behavior

is more prominent for CSIM in the high-noise regime. With

increasing values of transmitter-receiver separation, the gap

between packet success probability curves decreases, and the

UPM starts to underestimate packet success probability since

the multiple-access interference signal PDF becomes heavy-

tailed under the UPM.

For USIM in the low-noise regime, BER is very close to

the zero in Fig. 9 for small values of transmitter-receiver

separation, which further results in packet success probability

being close to 1 under BPM for small values of transmitter-

receiver separation in Fig. 10.

Next, we consider the packet success probability in the

slow-mobility regime where nodes’ locations can be assumed

to be static over the course of a packet transmission. Cal-

culations for the slow-mobility regime become a little bit

trickier than the fast-mobility regime since bit errors are now

dependent due to dependencies among transmitter locations

from one bit to another bit.

We begin the slow-mobility regime calculations with CSIM.

For CSIM, slowly moving transmitters assumption translates

into the fact that the magnitude of the total network interfer-

ence |I| stays the same during a packet transmission. There-
fore, given |I| = x ≥ 0, and assuming that the background

Fig. 10. Change of packet success probability as a function of transmitter-
receiver separation in the fast-mobility regime for CSIM and USIM. D =

100, L = 10, Eb = 1, α = 6, λ =
1
π
and A = 5.

noise impairing transmitted bits is independent from bit to

bit, bit errors also become independent. Let pi,CSIM(x, d) be
the probability that a transmitted bit is decoded in error when

transmitter-receiver separation is equal to d, |I| = x and Gi,

i = 1, 2, is used to model the signal strength decay. Then,

pi,CSIM(x, d) =
1

4
erfc

⎛

⎝

√

EbGi(d)2

N0
+

x

A
√

N0

⎞

⎠

+
1

4
erfc

⎛

⎝

√

EbGi(d)2

N0
− x

A
√

N0

⎞

⎠ . (5)

Therefore,

P (S(d)||I| = x)

=

L
∑

e=0

(

D

e

)

pi,CSIM(x, d)e(1 − pi,CSIM(x, d))D−e (6)

and

P (S(d)) = 2

∫ ∞

0

P(S(d)||I| = x)fI(x)dx (7)

since the PDF of |I| is equal to the twice the positive part of
the PDF of I .

For USIM, packet success probability calculations become

harder since dealing with dependencies among bit errors does

not become as easy as in CSIM. However, given the points

of the node location process U = {Xi}∞i=1, a reasonable ap-

proximation for the multiple access interference under USIM

becomes the Gaussian noise approximation with mean zero

and variance Y = E
[

I2|U
]

for α ∈ (2, 6] since the total
interference level at the receiver is equal to the summation

of large number of small interference signals coming from

other transmitters. For larger values of α, deviations between

the Gaussian noise approximation and the actual interfer-

ence PDFs become more prominent. Such an approximation

becomes better for the BPM since all interference signals

are small, and there are no dominant terms. Note that the

variance of the Gaussian noise in this approximation is a
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Fig. 11. Approximation of multiple-access interference distribution by means of a Gaussian PDF with mean zero and variance E
ˆ

I2|U
˜

for random
realizations of network configurations U under the BPM and USIM.

random variable, and depends on the particular realization of

the network configuration U . Note also for the BPM that

Y =

∞
∑

i=1

Eb
(

1 + ||Xi||α
2

)2 . (8)

The characteristic function of Y can be obtained ex-

actly by using techniques similar to those of Sections III

and IV. However, without going through the similar and

tedious calculations, a reasonable approximation for Y is

Ỹ =
∑∞

i=1
Eb

1+||Xi||α since for values of ||Xi|| less than 1,
1 becomes the dominant term in (8), and for the values of

||Xi|| greater than 1, ||Xi||
α
2 becomes the dominant term in

(8). The characteristic function of Ỹ can be readily obtained

by replacing α
2 with α and removing the operator ℜ(·) in

Theorem 2. On the other hand, there is no need for such an

approximation for the UPM as Y =
∑∞

i=1
Eb

||Xi||−α under the

UPM, and its characteristic function can be readily obtained by

replacing α
2 with α and removing the operator ℜ(·) in Theo-

rem 3. Figures 11 and 12 show interference PDFs obtained by

means of simulations for given random network configurations

U for both the BPM and the UPM under USIM. We also plot

Gaussian approximations with random variance Y = E[I2|U ]
for the multiple-access interference PDF.5 We observe fairly

good agreement, especially for the BPM, between simulated

PDFs and Gaussian approximations in these figures.

Let Q be a Gaussian random variable with mean zero and

variance Y . Let also pi,USIM(x, d) be the probability that

5In fact, we used Ỹ instead of Y while calculating the Gaussian noise
variance for the BPM.

a transmitted bit is decoded in error when the transmitter-

receiver separation is equal to d, Y = x and Gi, i = 1, 2, is
used to model the signal strength decay. Then,

pi,USIM(x, d) = P

{

W0 +
Q

A
< −

√

EbGi(d)|Y = x

}

=
1

2
erfc

(
√

EbG
2
i (d)

N0 + 2 x
A2

)

. (9)

Therefore,

P{S(d)|Y = x}

=

L
∑

e=0

(

D

e

)

pi,USIM(x, d)e(1 − pi,USIM(x, d))D−e (10)

and

P{S(d)} =

∫ ∞

0

P{S(d)|Y = x}fY (x)dx, (11)

where fY is the probability density function of Y .

Packet success probability curves under different path-loss

and interference models are shown in Fig. 13. We set α = 4
for USIM since our Gaussian noise approximation is better

for values of α around 4. Since the conditional noise variance
coming from other interfering transmitters is divided by A2 in

(9), we set A = 2 for USIM to better understand the effect of

multiple-access interference on the packet success probability.

Qualitative conclusions similar to those in the fast-mobility

regime still continue to hold for the slow-mobility regime

based on Fig. 13.
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Fig. 12. Approximation of multiple-access interference distribution by means of a Gaussian PDF with mean zero and variance E
ˆ

I2|U
˜

for random
realizations of network configurations U under the UPM and USIM.

The distance range over which packet success probability

curves differ from each other significantly is determined

by the selection of our parameters. In particular, we have

chosen the node density such that a disk with radius 1 [unit
distance] contains on the average 1 transmitter. Therefore, if
the separation between a transmitter (Tx) and receiver (Rx)

pair is equal to 2 [units distance], there are on the average
4 interfering transmitters closer to Rx than Tx. As a result,
packet success probability curves under both path-loss models

become very close to zero and virtually the same due to these

4 close-by interfering transmitters and the background noise
when Tx-Rx separation is larger than 2 [units distance]. On the
other hand, if we decrease the node density such that each disk

with radius 1 [unit distance] contains 0.1 nodes on the average,
the range of distances over which packet success probability

curves differ from each other significantly extends to 6-7 [units
distance].

C. Channel Capacity

Finally, we analyze the information-theoretic wireless chan-

nel capacity as a function of the separation between a

transmitter-receiver pair. We model the channel between the

transmitter and the receiver as a binary symmetric channel

with the crossover probability being equal to the probability

that a transmitted bit is decoded erroneously at the receiver.

We consider both fast-mobility and slow-mobility regimes.

We start with the fast-mobility regime. Let the steady state

BERi(d), i = 1, 2, be the bit error rate calculated in V-A under
different interference models when the transmitter-receiver

separation is equal to d. i = 1 corresponds to the UPM, and
i = 2 corresponds to the BPM. Then, the wireless channel
capacity Cap(d) is equal to

Cap(d) = 1 − H (BERi(d)) , (12)

where H (BERi(d)) = −BERi(d) log(BERi(d)) −
(1 − BERi(d)) log (1 − BERi(d)) .

For the slow-mobility regime, we need to deal with the

dependencies among bit errors as it is done in V-B. For CSIM,

this is done by conditioning on the interference magnitude |I|.
By using the same definitions as in V-B, we have

Cap(d) = 1 − 2

∫ ∞

0

H (pi,CSIM(x, d)) fI(x)dx. (13)

For USIM, we eliminate dependencies by first conditioning

on the random network configuration U and then averaging

over all possible network configurations. By using the same

Gaussion noise approximation and definitions as in V-B, we

have

Cap(d) = 1 −
∫ ∞

0

H (pi,USIM(x, d)) fY (x)dx. (14)

Recall that Y = E[I2|U ], and is determined by random
realizations of the network. As we see in Figs. 14 and 15, the

deviations between channel capacity curves under bounded

and unbounded path-loss models are significant. Qualitative

conclusions similar to the ones drawn in previous sections

can also be drawn for channel capacity curves.
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Fig. 13. Change of packet success probability as a function of transmitter-
receiver separation in the slow-mobility regime for CSIM and USIM. D =

100, L = 10, Eb = 1, λ =
1
π
.

VI. CONCLUSIONS

In this paper, we have examined the effects of the singularity

in unbounded path-loss models on network performance. The

form G1(d) = d−
α
2 is used to model the decay of the

transmitted signal strength for the unbounded path-loss model,

where d is the transmitter-receiver separation and α > 0 is the
path-loss exponent. Therefore, the transmitted signal power

decays according to d−α. We have compared G1(d) with a
bounded signal strength decay function G2(d) = 1

1+d
α
2
. G2

is a monotonically decreasing function of d, it is equal to 1 at
d = 0, and it becomes asymptotically the same with G1(d) as
d → ∞. All of these properties of G2 are intuitively pleasing.

We have examined the total network interference signal

strength, showing that there is a critical value α∗ for α at

which a phase transition occurs in the behavior of the network

interference signal strength. The behavior of the network

interference signal strength is similar under the UPM and

the BPM for the values of α smaller than α∗. However, in
contrast to the case α ≤ α∗, we have observed a drastic
change in the behavior of the network interference signal

strength under different path-loss models for the values of α

greater than α∗. In particular, the interference signal strength
PDF becomes a heavy-tailed distribution under the UPM. On

the contrary, the interference signal strength PDF decays to

zero exponentially under the BPM. These results hold for any

value of the network node density λ > 0, irrespective of how
sparsely or densely populated a network is.

We have also analyzed the effects of the singularity in the

UPM for more concrete performance metrics such as bit error

rate, packet success probability and wireless channel capacity.

We have shown that using the UPM leads to significant

deviations from more realistic performance figures obtained

by using the BPM.

These results suggest that we should exercise caution when

using the classical unbounded path-loss model. The effects of

the singularity in the UPM on the network performance cannot

be ignored in many situations.

Fig. 14. Change of channel capacity as a function of transmitter-receiver
separation in the fast-mobility regime for CSIM and USIM. Eb = 1, α = 6,
λ =

1
π
and A = 5.

Fig. 15. Change of channel capacity as a function of transmitter-receiver
separation in the slow-mobility regime for CSIM and USIM. Eb = 1, λ =

1
π
.

APPENDIX A

PROOF OF THEOREM 1

The following weak law for triangular arrays from [16] will

be helpful during our calculations.

Lemma 1 (Weak Law for Triangular Arrays): For each m,

let Ym,k, 1 ≤ k ≤ m, be a set of independent random

variables. Let bm > 0 with bm → ∞, and let Ȳm,k =
Ym,k11{|Ym,k|≤bm}. Suppose that

∑m
k=1 P {|Ym,k| > bm} →

0, and 1
b2m

∑m
k=1 E

[

Ȳ 2
m,k

]

→ 0 as m → ∞. If we let
Sm = Ym,1 + . . . + Ym,m and put am =

∑m
k=1 E

[

Ȳm,k

]

,

then Sm−am

bm

i.p.→ 0.
Proof of Theorem 1: We will give the proof only for

the BPM. The proof for the UPM is very similar. Fix the

transmitter density λ > 0. Let B(0, 1) denote the disk centered
around the origin with radius 1, and let {Xk}k≥1 be a set

of independent random variables uniformly distributed over

B(0, 1). Note that rXk is equal in distribution to X
(r)
k . Then,

Ir
d
= Z

√
Eb

r
α
2

∑⌈λπr2⌉
k=1

1

r
− α

2 +||Xk||
α
2

, where
d
= means equal

in distribution. We will first consider α < 4. Put ξr,k =
1

r
− α

2 +||Xk||
α
2
, ξ̄r,k = ξr,k11{ξr,k≤r2} and Sr =

∑⌈λπr2⌉
k=1 ξr,k.

We concentrate on Sr

r2 . Observe that ξr,k ≤ r
α
2 ≤ r2, ∀r ≥ 1.
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Therefore, ξ̄r,k = ξr,k, for all r ≥ 1 and 1 ≤ k ≤ ⌈λπr2⌉. As
a result, E

[

ξ̄r,k

]

= E[ξr,k] =
∫ 1

0
2x

r
− α

2 +x
α
2

dx. Set y = x2r2

and dy = 2xr2dx. Then, E[ξr,k] = r
α
2 −2

∫ r2

0
1

1+y
α
4

dy. Now

define f(x) =
∫ x

0
1

1+y
α
4

dy and g(x) = 4
4−α

x1−α
4 . By

L’Hopital’s rule, we have limx→∞
f(x)
g(x) = 1. Thus, f(x) ∼

4
4−α

x1−α
4 as x → ∞. This implies that

∫ r2

0
1

1+y
α
4

dy ∼
4

4−α
r2− α

2 . Set ar =
∑⌈λπr2⌉

k=1 E[ξr,k]. Then, ar ∼ 4
4−α

λπr2.

We will now check the conditions for triangular arrays.

•
∑⌈λπr2⌉

k=1 P
{

ξr,k > r2
}

→ 0 as r → ∞:
P
{

ξr,k > r2
}

= P
{

||Xk||α
2 < r−2 − r−

α
2

}

= 0,
where the equality follows from the fact that r−

α
2 > r−2

when r > 1 since α < 4.
• 1

r4

∑⌈λπr2⌉
k=1 E

[

(ξ̄r,k)2
]

→ 0 as r → ∞ :

E
[

(ξ̄r,k)2
]

≤ rα−2

∫ r2

0

1

1 + y
α
4

dy ∼ 4

4 − α
r

α
2 .

Thus,
∑⌈λπr2⌉

k=1 E

[

(

ξ̄r,k

)2
]

= ⌈λπr2⌉E
[

(

ξ̄r,1

)2
]

≤
8λπ
4−α

r
α
2 +2, ∀r large enough. Since α < 4,

we have limr→∞
1
r4

∑⌈λπr2⌉
k=1 E

[

(

ξ̄r,k

)2
]

≤
limr→∞

8λπ
4−α

r
α
2 −2 = 0.

Therefore, the conditions of weak law for triangular arrays

are satisfied. We thus have Sr−ar

r2

i.p.→ 0 as r → ∞. By
observing that Ir = Z

√
Eb

r
α
2

Sr and
ar

r2 → 4λπ
4−α

as r → ∞, we
conclude that Ir

r
2− α

2

i.p.→ Z 4
√

Ebλπ
4−α

as r → ∞. For α = 4,

the same calculations are repeated with br = r2 log(r).

APPENDIX B

PROOF OF THEOREM 2

Similar to the proof of Theorem 1, let X
(r)
k

d
= rXk,

where the Xk’s are independent and uniformly distributed

over B(0, 1). Then, Ir
d
= Z

√
Eb

r
α
2

∑⌈λπr2⌉
k=1

1

r
− α

2 +||Xk||
α
2
. Let

ξr,k = 1

r
− α

2 +||Xk||−
α
2
. Note that ξr,k ∈

[

r
α
2

1+r
α
2

, r
α
2

]

. Its PDF

can be obtained as

fr(x) = 4
α

“

x−1−r
− α

2

” 4
α

−1

x2 , x ∈
[

r
α
2

1+r
α
2

, r
α
2

]

.

Let ϕr,1(t) = E
[

eı̇ıξr,1t
]

. Then, ϕr,1(t) =

4
α

∫ r
α
2

r
α
2

1+r
α
2

eı̇ıxt

“

x−1−r
− α

2

” 4
α

−1

x2 dx. Put u = xt. Then,

ϕr,1(t) = 4
α
t
∫ r

α
2 t

r
α
2

1+r
α
2

t
eı̇ıu

(

t
u
− 1

r
α
2

)
4
α
−1

u−2du.

The characteristic function of the interference Ir when the

network radius is equal to r is given by

ϕIr
(t) = E

⎡

⎣e
ı̇ıtZ

√
Eb

r
α
2

P⌈λπr2⌉
k=1

ξr,k

⎤

⎦

= ℜ

⎛

⎝

[

ϕr,1

(

t

√
Eb

r
α
2

)]⌈λπr2⌉
⎞

⎠ . (15)

Observe that

1 − ϕr,1

(

t

√
Eb

r
α
2

)

=
4

α
tE

2
α

b r−2

∫ t
√

Eb

t
√

Eb

1+r
α
2

(

1 − eı̇ıu
)

(

t

u
− 1√

Eb

)
4
α
−1

u−2du.

Therefore, after some calculus,

ϕI(t) = lim
r→∞

ϕIr
(t) = ℜ

(

exp

(

−4λπ

α
E

2
α

b C (t) t
4
α

))

, (16)

where C(t) =
∫ t

√
Eb

0
(1 − exp(ı̇ıu))

„

1− u

t
√

Eb

« 4
α

−1

u
4
α

+1
du.

APPENDIX C

PROOF OF THEOREM 5

We will use Tauberian theorems as given in [17] to prove

this theorem. A similar result also appeared in [22]. To this

end, we first calculate the Laplace transform of |I| on the
negative real line.

ϕ|I|(−s) = E

[

e−s·|I|
]

= es
α
4

4E

2
α
b

λπ

α
Γ(− 4

α), (17)

where s > 0 and Γ (·) is the Gamma function. This implies
the following relation.

∫ ∞

0

e−s·x
P {|I| > x} dx =

1 − ϕ|I|(−s)

s
.

Since
1−ϕ|I|(−s)

s
∼ −s

4
α
−1 4Γ(− 4

α )E
2
α
b

λπ

α
as s → 0, we have

P {|I| > x} ∼ λπE
2
α

b x− 4
α as x → ∞ by using the Theorem 4

of Chapter 13 in [17] and the relation Γ(z) = (z−1)Γ(z−1).

APPENDIX D

PROOF OF THEOREM 6

We use the following result from [16].

Lemma 2 (The Lindeberg-Feller Theorem): For each m,

let Ym,k, 1 ≤ k ≤ m, be independent random variables with

E [Ym,k] = 0. Suppose that
∑m

k=1 E

[

|Ym,k|2
]

→ σ2 > 0, and

∀ǫ > 0, limm→∞
∑m

k=1 E

[

|Ym,k|2 ; |Ym,k| > ǫ
]

= 0. Then,

Sm =
∑m

k=1 Ym,k ⇒ N (0, σ2) as m → ∞.
Proof of Theorem 6: We will give the proof only for the

BPM. The proof for the UPM is very similar. Fix the trans-

mitter density λ > 0. With the same definitions of the proof

of Theorem 1, we have Ir
d
=

√
Eb

r
α
2

∑⌈λπr2⌉
k=1

Zk

r
− α

2 +||Xk||
α
2
.

We will first consider α < 2. Let ξr,k = Zk

√
Eb

r
− α

2 +||Xk||
α
2

and Sr =
∑⌈λπr2⌉

k=1 ξr,k. We concentrate on
Sr

r
, and check

the conditions for the Lindeberg-Feller theorem. We only

check the first condition. The second one is automati-

cally satisfied since |ξr,k| ≤ √
Ebr

α
2 and α < 2. We

have
∑⌈λπr2⌉

k=1 E

[

∣

∣

1
r
ξr,k

∣

∣

2
]

=
2Eb⌈λπr2⌉

r2

∫ 1

0
x

“

r
− α

2 +x
α
2

”2 dx,

so we wish to analyze limr→∞
∫ 1

0
x

“

r
− α

2 +x
α
2

”2 . Note that
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x
“

r
− α

2 +x
α
2

”2 ≤ x1−α and
∫ 1

0
x1−αdx = 1

2−α
<

∞. By using the dominated convergence theorem [19],

we have limr→∞
∫ 1

0
x

(r− α
2 +x

α
2 )2

= 1
2−α

, which implies

limr→∞
∑⌈λπr2⌉

k=1 E

[

∣

∣

1
r
ξr,k

∣

∣

2
]

= 2λπEb

2−α
. Therefore, Sr

r
⇒

N
(

0, 2λπEb

2−α

)

, which implies Ir

r
2−α

2

⇒ N
(

0, 2λπEb

2−α

)

.

For α = 2, similar calculations are repeated with Sr

r
√

log(r)
.

APPENDIX E

PROOF OF THEOREM 9

We focus on the Laplace transforms on the positive real

line. Our proof depends on the following lemma.

Lemma 3: Let X be a random variable such that ϕX(s) =
E
[

esX
]

< ∞ for some s > 0. Then, P{X > x} ≤
ϕX(s)e−sx.

Proof: esx11{X>x} ≤ esX11{X>x} ≤ esX . Thus,

esxP{X > x} ≤ E
[

esX
]

. As a result, P{X > x} ≤
e−sxϕX(s).

We will show that limr→∞ ϕIr
(s) = ϕI(s) < ∞ for all

s > 0. This implies that log (P{I > x}) ≤ −sx+log (ϕI(s)).

Therefore, limx→∞
∣

∣

∣

log(P{I>x})
x

∣

∣

∣
≥ s. This concludes the

proof since s is arbitrary and I has a symmetric distribution

around 0. For the rest of the proof, we will focus on showing
limr→∞ ϕIr

(s) = ϕI(s) < ∞ for all s > 0.

When the network radius is equal to r > 0, the demodulated
interference signal coming from the kth interferer is given

by I
(r)
k = Zk cos(φk)γk

√
EbGB

(∥

∥

∥
X

(r)
k

∥

∥

∥

)

, where φk is

the random phase shift and γk is the fading coefficient for

the kth interference signal. Then, Ir =
∑⌈λπr2⌉

k=1 I
(r)
k . Let

ϕr,1(s) = E

[

es·I(r)
1

]

. Then, ϕIr
(s) = (ϕr,1(s))

⌈λπr2⌉
. We

will show that ϕr,1(s) = 1 + O(r−2) for any given s, which

implies ϕI(s) < ∞.
Let β1 = Z1 cos(φ1). Then, β1 has a symmetric distribution

on [−1, 1], which is symmetric around 0. Let p be the

distribution of β1. We can write ϕr,1(s) as follows.

ϕr,1(s) =

∫ 1

0

p(y)E
[

exp
(

s · yγ1

√

EbGB

(∥

∥

∥X
(r)
1

∥

∥

∥

))

+ exp
(

−s · yγ1

√

EbGB

(∥

∥

∥X
(r)
1

∥

∥

∥

))]

dy.

Let Y (r, y) = E

[

exp
(

s · yγ1

√
EbGB

(∥

∥

∥X
(r)
1

∥

∥

∥

))

+ exp
(

−s · yγ1

√
EbGB

(∥

∥

∥X
(r)
1

∥

∥

∥

))]

and q be the

probability distribution of γ1. Then,

Y (r, y) =
2

r2

∫ ∞

0

q(a)

∫ r

0

ρ
(

exp
(

s · ya
√

EbGB (ρ)
)

+ exp
(

−s · ya
√

EbGB (ρ)
))

dρda.

We first focus on inner integral over ρ. Let

A(r, y, a) =

∫ r

0

ρ
(

exp
(

s · ya
√

EbGB (ρ)
)

+ exp
(

−s · ya
√

EbGB (ρ)
))

dρ.

Using integration by parts with u =
exp

(

s · ya
√

EbGB (ρ)
)

+ exp
(

−s · ya
√

EbGB (ρ)
)

and

dv = ρdρ , we have

A(r, y, a) =
r2

2

(

exp
(

s · ya
√

EbGB (r)
)

+ exp
(

−s · ya
√

EbGB (r)
))

−s · ya
√

Eb

2

∫ r

0

ρ2G′
B(ρ)

(

exp
(

s · ya
√

EbGB (ρ)
)

− exp
(

−s · ya
√

EbGB (ρ)
))

dρ.

Therefore,

ϕr,1(s) =

∫ 1

0

p(y)Y (r, y)dy

=

∫ 1

0

∫ ∞

0

p(y)q(a)
(

es·ya
√

EbGB(r) + e−s·ya
√

EbGB(r)
)

dady

−s
√

Eb

r2

∫ 1

0

∫ ∞

0

∫ r

0

p(y)q(a)yaρ2G′
B(ρ)

·
(

es·ya
√

EbGB(ρ) − e−s·ya
√

EbGB(ρ)
)

dρdady.

Let

B1(r) =

∫ 1

0

∫ ∞

0

p(y)q(a)

·
(

es·ya
√

EbGB(r) + e−s·ya
√

EbGB(r)
)

dady,

and

B2(r) =
s
√

Eb

r2

∫ 1

0

∫ ∞

0

∫ r

0

p(y)q(a)yaρ2G′
B(ρ)

·
(

es·ya
√

EbGB(ρ) − e−s·ya
√

EbGB(ρ)
)

dρdady.

We first show that B1(r) = 1 + O (r−α). By using Taylor
series expansion for exponential functions, we have

B1(r)

= 1 +

∞
∑

k=1

∫ 1

0

∫ ∞

0

2p(y)q(a)

(

s · ya
√

EbGB(r)
)2k

(2k)!
dady.

Let S =
∑∞

k=1

∫ 1

0

∫∞
0

2p(y)q(a)
(s·ya

√
EbGB(r))

2k

(2k)! dady.

Then, for r large enough,

S ≤ 2

∞
∑

k=1

∫ ∞

0

q(a)

(

s · ar−
α
2

√
Eb

)2k

(2k)!
da

≤ 2r−α
E

[

exp
(

s · γ1

√

Eb

)]

< ∞.

Thus, B1(r) = 1+O(r−α). We divide B2(r) into two pieces
B3(r) and B4(r). B3(r) equals to

B3(r) =
s
√

Eb

r2

∫ 1

0

∫ ∞

0

∫ T

0

p(y)q(a)yaρ2G′
B(ρ)

·
(

es·ya
√

EbGB(ρ) − e−s·ya
√

EbGB(ρ)
)

dρdady.
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We show that B3(r) = O(r−2) as r → ∞.

|B3(r)| ≤
s
√

EbT
2

r2

∫ ∞

0

q(a)aes·a
√

EbGB(0)da

·
(

−
∫ T

0

G′
B(ρ)dρ

)

=
s · (GB(0) − GB(T ))

√
EbT

2

r2
E

[

γ1e
s·γ1

√
EbGB(0)

]

< ∞.

B4(r) equals to

B4(r) =
s
√

Eb

r2

∫ 1

0

∫ ∞

0

∫ r

T

p(y)q(a)yaρ2G′
B(ρ)

·
(

es·ya
√

EbGB(ρ) − e−s·ya
√

EbGB(ρ)
)

dρdady.

We now show that B4(r) = O(r−2) as r → ∞. Let u =
GB(ρ). Then,

|B4(r)| ≤
s · √Eb

r2

∫ 1

0

∫ ∞

0

∫ GB(T )

0

p(y)q(a)ya
(

G−1
B (u)

)2

·
(

es·ya
√

Ebu − e−s·ya
√

Ebu)
)

dudady. (18)

We need the following lemma about the behavior of G−1
B (u)

near the origin.

Lemma 4: There exists c > 0 and ǫ > 0 such that

G−1
B (u) ≤ c · u− 2

α for all u ∈ (0, ǫ).
Proof: Since GB(d) ∼ d−

α
2 as d → ∞, for any c1 >

1, we have GB(d
2
α ) ≤ c1d

−1 for all d large enough. Since

GB is a non-increasing function, G−1
B also becomes a non-

increasing function. Therefore, G−1
B

(

GB

(

d
2
α

))

= d
2
α , and

G−1
B

(

c1d
−1
)

≤ d
2
α for all d large enough. As a result, we can

find a large enough constantM > 0 such that G−1
B

(

c1d
−1
)

≤
d

2
α for all d ≥ M . Put u = c1d

−1. Then, G−1
B (u) ≤ cu− 2

α

for all u ∈
(

0, c1

M

)

, where c = c
2
α

1 .

We now divide the inner most integral in (18) into two

pieces and bound them by using Lemma 4 and α > 2 as

follows.

|B4(r)| ≤
s · √Eb

r2

∫ 1

0

∫ ∞

0

∫ ǫ

0

p(y)q(a)ya
(

G−1
B (u)

)2

·
(

es·ya
√

Ebu − e−s·ya
√

Ebu)
)

dudady

+
s · √Eb

r2

∫ 1

0

∫ ∞

0

∫ GB(T )

ǫ

p(y)q(a)ya
(

G−1
B (u)

)2

·
(

es·ya
√

Ebu − e−s·ya
√

Ebu)
)

dudady

≤ s · √Eb

r2

(

c1

∫ ∞

0

∫ ǫ

0

q(a)au− 4
α ues·aǫ

√
Ebduda

+c2

∫ ∞

0

q(a)aes·a
√

EbGB(T )da

)

=
s · √Eb

r2

(

c1E

[

γ1e
s·γ1ǫ

√
Eb

] (

ǫ
−4
α

+2
)

(−4

α
+ 2

)−1

+c2E

[

γ1e
s·γ1

√
EbGB(T )

])

< ∞,

where c2 =
(

G−1
B (ǫ)

)2
(GB(T ) − GB(ǫ)). Thus, B2(r) =

B3(r) + B4(r) = O
(

r−2
)

. This concludes the proof as

ϕr,1(s) = B1(r) − B2(r) = 1 + O(r−α) + O(r−2) =
1 + O(r−2) since α > 2.

APPENDIX F

PROOF OF THEOREM 10

We will use direct calculations by using the interfer-

ence characteristic function given in Theorem 8 to estimate

P {|I| > x} since it is hard to obtain the Laplace transform
for |I| under USIM to use Tauberian theorems in [17]. Let

C1 = 4λπ
α

E
2
α

b C, where C is given as in Theorem 8. After

some calculus with change of variables u = tx, one obtains,

P {|I| > x} = 1 − 1

π

∫ x

0

∫ ∞

−∞
e−ı̇ıtyϕI(t)dtdy

=
2

π
C1x

−4
α

∫ x·C
−α
4

1

0

∞
∑

k=1

sin(u)

u
u

4
α

(

−C1u
4
α x

−4
α

)k−1

k!
du

+
2

π
C1x

−4
α R(x),

where

R(x) =

∫ ∞

x·C
−α
4

1

∞
∑

k=1

sin(u)

u
u

4
α

(−1)k−1
(

C1u
4
α x

−4
α

)k−1

k!
du.

Observe that R(x) = o(1) as x → ∞. We need the following
lemma to conclude the proof.

Lemma 5: Let a ∈ (0, 1]. Then,

Z =

∞
∑

k=1

(−1)k−1 ak−1

k!
≥ exp(−a).

Proof: Z = 1 − a
(

1
2! − a

3!

)

− a3
(

1
4! − a

5!

)

−
a5
(

1
6! − a

7!

)

· · · . For k ≥ 2, let us compare 1
(k−1)! − a

k! with

1
k! − a

(k+1)! .
(

1
(k−1)! − a

k!

)

−
(

1
k! − a

(k+1)!

)

= k2−1−ak
(k+1)! ≥

0 for k ≥ 2. Thus, Z ≥ 1 − a
(

1
1! − a

2!

)

− a3
(

1
3! − a

4!

)

−
a5
(

1
5! − a

6!

)

· · · = e−a.

Therefore,

P {|I| > x}

≥ 2

π
C1x

−4
α

∫ x·C
−α
4

1

0

sin(u)

u
u

4
α e−C1x

−4
α u

4
α

du + o
(

x
−4
α

)

≥ Kx
−4
α , for some K > 0.
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