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This article develops a model of a project as a payoff function that depends on the state
of the world and the choice of a sequence of actions. A causal mapping, which may be

incompletely known by the project team, represents the impact of possible actions on the
states of the world. An underlying probability space represents available information about
the state of the world. Interactions among actions and states of the world determine the
complexity of the payoff function. Activities are endogenous, in that they are the result of a
policy that maximizes the expected project payoff.
A key concept is the adequacy of the available information about states of the world and action

effects. We express uncertainty, ambiguity, and complexity in terms of information adequacy.
We identify three fundamental project management strategies: instructionism, learning, and
selectionism. We show that classic project management methods emphasize adequate infor-
mation and instructionism, and demonstrate how modern methods fit into the three funda-
mental strategies. The appropriate strategy is contingent on the type of uncertainty present
and the complexity of the project payoff function. Our model establishes a rigorous language
that allows the project manager to judge the adequacy of the available project information
at the outset, choose an appropriate combination of strategies, and set a supporting project
infrastructure—that is, systems for planning, coordination and incentives, and monitoring.
(Project Management; Uncertainty; Complexity; Instructionalism; Project Selection; Ambiguity )

1. Introduction
An extensive literature on project planning has devel-
oped our understanding of project task scheduling
(e.g., CPM, PERT, and GERT) and “risk management”
(sequential decision making, dynamic programming),
including work on contingency planning and the
management of project buffers. This work has given
project managers an intuitive feel for what to do in
the presence of risk factors in the environment that
are identified but whose outcome is uncertain.
There is also empirical work recommending an “iter-

ative, experimental” project management approach
when the environment is fast-changing or highly
uncertain (e.g., Eisenhardt and Tabrizi 1995, Lynn
et al. 1996). Other work proposes that multiple solu-
tions should be pursued “in parallel,” choosing the

best once their outcomes are observable (e.g., Sobek
et al. 1999).
These existing project management approaches

advocate partially conflicting approaches to the project
team, such as the need to execute planned tasks, trigger
preplanned contingencies based on unfolding events,
experiment and learn, or try out multiple solutions
simultaneously. While all of these approaches encom-
pass the idea of uncertainty, no conceptual model cur-
rently exists that enables project managers to under-
stand why different approaches exist, which one to
choose, and when. As a consequence, project failures
are numerous in practice; for example, budget and
schedule overruns, compromised performance, and
missed opportunities, (see, e.g., Morris and Hugh 1987
pp. 7–12, Tatikonda and Rosenthal 2000).
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This paper makes two contributions. First, draw-
ing on sequential decision theory, we conceptualize a
project as a project payoff function that depends on
states of the world and a chosen network of actions.
Using this conceptual model (§3), we show that ambi-
guity and complexity are the factors that explain the
coexistence of different approaches to project man-
agement. Task scheduling and risk management (con-
tingent action) represent an instructionist approach,
prespecifying and triggering actions based on signals.
This is sufficient as long as information about the
states of the world and the payoff effects of actions is
adequate. Inadequacy of information is caused either
by events or causality being unknown (ambiguity),
or by an inability to evaluate the effects of actions
because too many variables interact (complexity). We
argue that information inadequacy requires a combi-
nation of learning (the capacity to conduct new and
original planning in the middle of the project) and
selectionism (the pursuit of multiple candidate solu-
tions until the best can be identified).
To illustrate the completeness of this model we

draw parallels with the survival problem in biology,
as it involves a mathematically equivalent “project”
of producing successful offspring in an ambiguous
and complex environment. The empirical observation
that nature has, over three billion years, developed
survival strategies that correspond to instructionism,
learning, and selectionism would seem to confirm
that our model captures important principles (§5).
Second, in terms of its managerial implications

(§6), our model provides the conceptual language to
enable a project team to judge information adequacy
at the outset. This allows fundamental decisions to be
made early on concerning project management strat-
egy and, in turn, project infrastructure in terms of sys-
tems for planning, coordination and incentives, and
monitoring.

2. Literature Review
The study of task scheduling started with the devel-
opment of activity network techniques (PERT, CPM)
in the late 1950s, which allowed project managers to
identify the “critical path” for projects—even those
involving thousands of activities (Lockyer 1969). This

was extended to include project risk analysis (e.g.,
Elsner 1962, Elmaghraby 1964). In 1966, Pritsker
(1966) outlined the Graphical Evaluation and Review
Technique (GERT), a graphical Monte Carlo simu-
lation program that allowed probabilistic outcomes
and looping of tasks (Clayton and Moore 1972). With
tools such as GERT and its successor Q-GERT (Taylor
and Moore 1980, Pritsker and Sigal 1983), the notion
of identifying one critical path was replaced by a
measure of task criticality (the likelihood that a task
would find itself on the critical path). Extending this
line of work further, Carracosa et al. (1998) used the
design structure matrix framework of Steward (1981)
to incorporate partially overlapping activities—and
hence rework—into project schedule simulations.
The next step was to view tasks not as given but

as decision outcomes, utilizing the tools of sequen-
tial decisionmaking (dynamic programming, decision
trees, e.g., Marschak and Radner 1972, Brucker et al.
1999). For example, Ludwig et al. (1998) developed
dynamic policies for project scheduling where activ-
ity times are revealed gradually over the course of a
project. In project management practice, this approach
is called risk management: the identification of possible
(but uncertain) events and their impact on the project.
It aims to reduce risk, defined as “probability times
impact” (e.g., Conrow 2000), to establish as quickly as
possible the likelihood that a critical event will actu-
ally occur, and develop contingent action to counter
its impact (Cockerham 1979, Cooper and Chapman
1987, Chapman 1990, Kepner Tregoe 1992, Williams
1995, DSMC 1998). Similarly, scenario-planning tech-
niques aim to identify risks and their drivers as
broadly as possible using early warning indicators
and response scenarios (e.g., Schwartz 1991).
Where levels of risk are considered low, project

managers often deal with risk simply by includ-
ing “slack” or time-and-cost buffers in their projects
(Leach 1999). In order to prevent slack from becoming
a self-fulfilling prophecy, it has also been proposed
that the team be made collectively responsible for
maintaining the buffers (e.g., Gutierrez and Kouvelis
1991, Goldratt 1997).
Another form of slack is flexibility—the use of tech-

nologies and processes that accommodate multiple
possible outcomes of risk. For example, this can be
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done by deferring design choices or by designing a
performance level into the product that is higher than
initially thought necessary (e.g., Thomke and Reinert-
sen 1998, Bhattacharya et al. 1998).
In summary, operations research and decision the-

ory literature has concentrated on complete probabil-
ity spaces with (subjective) probabilities—that is, the
project team knows the event is possible but they do
not know whether it will happen. Existing work has
implicitly viewed it as impossible to “manage events
that cannot be foreseen” (Wideman 1992, Williams
1999).
However, the reality is that we live in an ambi-

guous and complex world. Empirical work has em-
phasized the need for iteration, or the repetition of
problem solving and testing cycles, which are ubiq-
uitous in engineering (e.g., Thomke 1998). Eisen-
hardt and Tabrizi (1995), and Iansiti and MacCormack
(1997) found that such iterative cycles are very impor-
tant in environments requiring fast time-to-market.
Research in the marketing and strategy domain has
indicated that iteration goes much further in “radi-
cal innovations” where both technology and market
are new. Such projects seem to be characterized by
a broad and flexible vision, a prototype construction
that precedes assessment and analysis, and by a need
to “probe and learn”—that is, to launch the project in
the market, learn from failures, and modify for future
attempts (Lynn et al. 1996, Veryzer 1998, O’Connor
and Veryzer 2001).
In the strategy domain, Hamel and Prahalad (1994)

observed that competition for the future takes place
in unstructured arenas where the rules of competi-
tion have yet to be written. Hence, it is not enough
to develop contingency plans around likely scenarios:
One must be willing to speculate beyond “what could
be” and develop capabilities rather than simply a plan
of what to do (Hamel and Prahalad 1994 pp. 82–108).
Similarly, the venture capital (VC) literature advo-

cates making small investments in a project vision
and a competent team of entrepreneurs, and then to
determine project continuation when “milestones” are
met that eliminate important ambiguities or knowl-
edge gaps (e.g., Bell 2000, Sahlmann 1994).
Drawing from cognitive science, artificial intelli-

gence (AI) planning techniques have also distin-
guished planning from iteration (Russell and Norvig

1995). Used to drive the functioning of artificial
agents (e.g., robots), AI planning techniques recog-
nized early on that in dynamic, uncertain environ-
ments, agents must be able to effectively manage
their plans during execution (Fikes et al. 1972). AI
planning techniques differentiate between conditional
planning—where actions may have unexpected effects
but these can be enumerated and described as part
of the action plan, and execution monitoring—where
unexpected effects are too numerous to elaborate and
therefore oblige the artificial agent to respond and
replan as the plan is executed (Warren 1976, Olawsky
and Gini 1990, Ambros-Ingerson and Steel 1988).
Agents may need to learn, so as to improve the ade-
quacy of information needed to evaluate hypothetical
activity paths, and to plan, so as to reduce the number
of uninformed—and thus inefficient—learning trails
(Weiss 2000).
Some work has proposed that multiple solutions

may have to be pursued in parallel, choosing the best
only after their effectiveness has been observed (e.g.,
Sobek et al. 1999 call this “set-based engineering;” see
also Project Management Institute Standards Commit-
tee 2000).
While existing work covers a diverse portfolio of

project management approaches, it has not provided
managers with a conceptual understanding of why so
many exist and how to choose among them. McFarlan
(1981) recognized this need in major IS projects back
in the 1970s, suggesting that uncertainty required
adapting management style to the project uncertainty
profile as measured by the dimensions of project size,
project structure, and experience with the technol-
ogy. Shenhar and Dvir (1996) proposed an important
project empirical classification scheme based on the
degree of technical uncertainty and complexity of the
project. Their constructs, however, do not hold up for
projects across different industries (Dvir et al. 1998).
Schrader et al. (1993) emphasized the difference

between uncertainty and “ambiguity” (defined as
absence of knowledge about functional variables), but
did not link them to project management approaches.
While these characterizations have all made impor-
tant contributions to project management, they coex-
ist independently and offer partially conflicting
prescriptions. No model exists that places them in a
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common context and explains which approach to use
and when. In this paper, we develop a general model
of projects that can provide such an explanation.

3. Planning and Execution
Monitoring in Projects

A project is often seen as a collection of simultane-
ous and sequential activities which together produce
an identifiable outcome of value (e.g., Morris and
Hugh 1987, Meredith and Mantel 1995, Smith and
Eppinger 1997). In its simplest form, project manage-
ment consists of planning, executing, and monitoring
these activities. In most operations research planning
methods, such as activity network approaches, activ-
ities are taken as given: The only decision required is
how best to schedule them. It is assumed that human
planners, possibly using formalized risk management
tools, will generate the “best” network of activities.1

In artificial intelligence, the term “planning” is used
for the process of determining the network of activ-
ities, while “scheduling” is used for the process of
determining the timing and allocation of resources to
these activities (Russell and Norvig 1995).
In this section, we propose a general model of

projects that takes the network of activities (includ-
ing the scheduling of these activities) as a decision
variable. Activities are chosen to maximize the project
payoff, represented by a preference function � =
���′�A�. It maps an ending state of the world, �′ ∈�,
and a network of activities, A ∈�, to a project payoff.
The ending state, �′, is itself determined by a starting
state, �∈�, and by the network of activities executed.
The mapping �×�⇒� 	M���A� denotes this causal
relationship:

�′ =M���A��

The state of the world � contains all the factors that
might influence the outcome of activities, and activ-
ities A influence the state of the world in terms of
generating a new state of the world �′. This new state
of the world could then be seen as a new starting
state, influencing a new network of activities A′ and
so on. States of the world or influence factors may

1 We purposely use the term “network of activities” to emphasize
that a project may have both simultaneous and sequential activities.

include product feature requirements, resource costs,
competitor intentions, market demographics, techno-
logical difficulty, regulatory changes, and a myriad of
“small,” uncontrollable, and unavoidable influences.
When a project team sets out to plan a project, it

must have a consistent model of the project in terms
of the possible states of the world and how they will
evolve as activities are executed. If the project team
knew for certain the complete set of influence factors,
or starting state � and the causal model M , and if
M and � were “tractable” in the sense that an opti-
mal network A∗ could be found, then the project team
could plan and execute a network of activities, A∗, so
as to optimize the project payoff for the known influ-
ence factors �:

A∗ = argmax
A∈�

��M���A��A�� (1)

Take, for example, the simple application of the Crit-
ical Path Method (CPM). The predetermined set of
activities and their precedence relations that are used
as input to the CPM constrain the set of all possible
activity networks in �. The preference function � is
simply to minimize project duration, and the causal
model M and state of the world � are determinis-
tic. The CPM is designed to deal with project com-
plexity: With the advent of the CPM, a broader set
of projects becomes tractable—that is, the activity net-
work A∗ minimizing the project duration could be
derived for projects with a large number of tasks and
precedence relationships.
In reality, the complete set of influence factors �

may not be known with certainty, and the causal
model M may be so complex that only an approxi-
mation M̂ is known to the project team. In this case,
for a fixed activity network A, the ending state, and
thus the project payoff, will be a random variable.
The project team’s possibly limited understanding of
the possible states of the world can be represented
by a probability space ���� �P�. The sigma-field �
represents the set of all events (or �-subsets), X,
whose occurrence or nonoccurrence can be antici-
pated, hence planned for, by the project team. Draw-
ing from the work of Marschak and Radner (1972), we
say that � is payoff adequate with respect to � and �,
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if for every basic event2 X ∈ � , every pair �1��2 ∈X,
and every sequence of actions A ∈ �,

���1�A�=���2�A�� (2)

That is, for a given � and �, a payoff adequate sigma
field � provides as much useful information as any
finer partition of � , thus a further refinement of �
cannot yield any improvement in the project payoff.
The � -measurable probability measure P summa-

rizes the project team’s subjective probabilities for
the different events X ∈ � . The project team’s causal
model M̂�X�A� will be based on what it knows about
possible events, and thus will map events X ∈ � and
actions A∈� to events X ′ ∈� . That is, it cannot gener-
ate “unknown” events that lie outside of � ; it simply
moves probability mass from one event to another.
We say that M̂ is transition adequate with respect to
M�� , and �, if for every event X ∈ � �� ∈ X, and
every network of actions A ∈ �,

M���A� ∈ M̂�X�A�� (3)

To summarize, a payoff adequate � implies that the
project team is aware of all possible events that might
have a significant impact on the project payoff �,
while a transition-adequate M̂ implies that the project
team’s causal model is consistent with the true causal
relationships in M . In this section, we argue that the
classic project planning methods assume a payoff ade-
quate � and a transition adequate M̂ (we will refer to
this as information adequacy).
Consider the Program Evaluation and Review Tech-

nique (PERT), which is similar to CPM but allows for
random activity durations. The set of possible activ-
ity networks is again constrained by the preselected
set of activities and their precedence relations. For
a given activity network A, the project duration is
stochastic and the preference function is now to min-
imize the expected project duration. For more com-
plicated projects, Monte Carlo simulation techniques
can be used to translate the project team’s model of
the causal relationships in M̂ and the uncertainty in X

into a payoff probability distribution for a proposed
activity network A.

2 An event X ∈ � is basic if it has no proper subset that is in � .

Both of these approaches recognize uncertainty but
still offer a fixed activity network. If the distribu-
tion around the expected project payoff is too great,
the project team may choose to build buffers into
the plan to increase the probability of achieving a
promised or agreed-upon project target (e.g., Gutier-
rez and Kouvelis 1991, Goldratt 1997).
A more sophisticated approach to dealing with

uncertainty allows for contingent action in response to
execution monitoring. In this case, the project team
monitors the project, gathering information about the
state of the world as activities are executed so as to
adjust the choice of activities as the project unfolds.
The information available to the project team at any
time t is a function of: (i) the true state of the world
at time t: �t =M���At�, where At is the network of
activities executed up to time t; and (ii) the information
structure �t that transforms the true state of the world
at time t into signals yt (Marschak and Radner 1997,
Lovejoy 1991). This is also similar to the concept of
“accessibility” in AI planning (see Russell and Norvig
1995):

yt = �t�M���At��� (4)

Given their understanding of the types of signals that
will become available over the life of the project,
the project management team develops policies as
opposed to a pre-specified set of actions. A policy � is
a “contingency plan,” a function assigning the avail-
able information and the history of past actions to cur-
rent action (e.g., Heyman and Sobel 1984 pp. 109–111).
A policy maps current information about the state of
the world and previous activities to an updated activ-
ity network At :

At = ��yt�At��

Because activities are endogenous to the model—that
is, they are strictly determined by the policy—the net-
work of activities A is uniquely determined by the
policy and the information structure as realized in y =
�y�1�y�2� � � � �. We write this as

A= ��y�� (5)

The policy identifies in advance a complete set of
actions, and the realization of the signal ‘triggers’ the
action when the team applies the policy to the signal.
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The information structure �t�M���At�� usually
costs something to obtain, call it C���, but it also has
value because the project team can, by implementing a
policy instead of a fixed activity network, increase the
expected project payoff. The value of the information
structure can be defined as:

max
�

E
[
��M̂�X���y�����y��

]−max
A

E
[
��M̂�X�A��A�

]
�

(6)

Marschak and Radner (1972 p. 52) showed, assuming
information adequacy, that the policy � is optimal
if for every signal y, ��y� maximizes the conditional
expected payoff given the signal. Thus, the optimal
policy �∗ is designed to maximize the expected project
payoff:3

�∗ = argmax
�

E
[
��M̂�X���y�����y���y]� (7)

In many real-world cases, derivation of the true opti-
mal policy is extremely difficult. Thus, project teams
often use heuristics or general rules-of-thumb to gen-
erate their policies. Consider a simple example of a
decision tree (Clemen 1996), where a signal identi-
fies a branch in the tree and the subsequent actions
to be executed, followed by further signals and so
forth. A combinatorial explosion of the many possi-
ble future signals may make planned contingencies
too complex and time consuming to generate a pri-
ori. In this case, project teams might plan for major
contingencies but may delay the development of less
important contingencies until such time as specific
signals are received. This is called execution monitoring
with replanning in the AI planning literature (Ambros-
Ingerson and Steel 1988).
Replanning, in this context, is based on the same

model of the world as full contingency planning. The
full contingency plan could have been developed in
theory, but in order to avoid excessive calculation,
the project team chose not to. Of course, with replan-
ning there are risks associated with execution moni-
toring: The complete policy is never evaluated in total
and early activities arising from an incomplete policy
might negatively affect later activities arising from the

3 The policy � also determines the (possibly random) stopping time
for the project.

replanned policy. However, because the project team
has adequate project information, they can at least
approximate what these risks might be. As we will see
in the next section, no such approximation is possible
in projects with inadequate information.

4. Learning and Selectionism
in Projects

The previous section describes an instructionalist
approach to project management: Policies are derived
—either a priori or as the project is executed—
that completely determine the activities executed in
response to signals: A = ��y�. The derivation of the
optimal policy �∗ relies on the project team’s model of
the project. But what happens when that model is not
adequate—that is, if the partition � is not payoff ade-
quate, or the mapping M̂ not transition adequate?
If � is payoff inadequate, then states of the

world exist that are not represented in � but which
have a significant influence on the project pay-
off. Engineers refer to these unknown influences as
“unknown unknowns” or “unk-unks.”4 In contrast
to the “known unknowns” discussed in §3, contin-
gencies cannot be planned for unk-unks. Engineers
feel uncomfortable about them—understandably so,
as existing decision tools do not address them.
Transition inadequacy of M̂ implies that transitions
M̂�X�A� that were thought to be impossible—that is,
no probability mass is assigned to the outcome—are
possible, or vice versa. Without an adequate transi-
tion model, one could not hope to generate an optimal
policy and is likely to find signals that are inconsis-
tent with what was planned for in the policy, leaving
the team at a loss to know what to do next.
Information inadequacy can arise from both project

ambiguity and project complexity. Ambiguity refers
to a lack of awareness of the project team about
certain states of the world or causal relationships
(Schrader et al. 1993). Project complexity means
that many different actions and states of the world
parameters interact (in � and M), so the effect of
actions is difficult to assess (e.g., Simon 1969 p. 195,
or Kauffman 1993 p. 42). In complex projects, an

4 We thank Steve Eppinger and an anonymous referee for alerting
us to the use of “unk-unks.”
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adequate representation of all the states that might
have a significant influence on the project payoff, or
of the causal relationships, may simply be beyond the
capabilities of the project team.
In either case, information inadequacy implies that

the chosen policy �∗ might not maximize the real
project payoff ��M����∗�y����∗�y��. But the project
team cannot specifically plan for this—that is, no
expectation or variance measure can be computed for
events or causalities that lie beyond the team’s under-
standing of the project. An important challenge for
a project team that is not sufficiently addressed in
the existing project management literature is deal-
ing with inadequate project information. If the project
team’s model is inadequate for developing a near-
optimal policy, they only have two choices: either to
improve their model over time through learning, or
avoid instructionism all together by adopting a selec-
tionist strategy. We describe both of these approaches
in the subsections below.

Learning
In our simple model of projects, learning comes from
signals yt = �t�M���At�� that are incompatible with
the project team’s predictions. As project teams mon-
itor their projects, they must recognize that observed
signals are incompatible with their model of the
world and be willing to change their representation
of the world either by updating the partition � or
the transition mapping M̂ . We refer to this process as
learning.
Of course, the project team does not know the

true value of the improvement in the project pay-
off from learning. Learning, unlike contingent action,
cannot be planned in advance. The project team may
have a hypothetical model of how activities might
yield signals suitable for learning. In the context of
tools such as the design of experiments or Failure
Mode and Effect Analysis (FMEA), actions are delib-
erately taken specifically to establish causal relation-
ships between actions and outcomes. In this way a
project team learns incrementally—that is, they calcu-
late an estimate of the expected net gain from past
learning and extrapolate this to the current situation.
If the result is positive in terms of an improvement to

the project payoff, then the team may refine further;
if not, they stop. This approach assumes that benefits
from further learning have predictable returns which
may not in fact be true. Alternatively, learning can
proceed opportunistically—that is, by paying attention
to new information that may arrive from the environ-
ment and recognizing when this information implies
a change of the project map.
Learning is time consuming, psychologically diffi-

cult, and often resisted (e.g., Staw and Ross 1987). The
team must actively incorporate the new information,
develop a new model, and then replan the project in
terms of a new set of activities or new policy. This
evidently requires that the team be flexible. Unlike
in contingency planning, where “flexible” actions are
predetermined and then either “triggered” by signals
or “used up” as design slack (Thomke and Reinert-
sen 1998), here the exact changes required cannot, by
definition, be anticipated. Thus, it involves a greater
level of flexibility than that required by contingency
planning.

Selectionism
Learning can be seen as an extension of the instruc-
tionist approach: The project team improves their
project model in order to improve their policy. Thus,
the team is still relying on their ability to identify an
optimal policy, albeit modified over time as the project
model evolves. Some projects, however, are not suit-
able for this approach.
For instance, the project payoff and transition

model, while known in principle, may be so complex
that they are intractable. Recent results from combina-
torial optimization show that pure optimization does
not work well for large, complex problems. Known
sophisticated optimization algorithms, such as simu-
lated annealing, tabu search, or general hill-climbing
algorithms, are outperformed by “randomized local
search”—that is, the repetitive or parallel execution
of local searches around randomly chosen initial val-
ues (e.g., Ferreira and Zerovnik 1993; Fox 1993, 1994;
Jacobson and Yücesan 1998).
Alternatively, the nature of the project may render

learning ineffective. If the environment is inaccessible,
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signals perceived by the project management team
will be too costly or not sufficiently rich to learn from.
Or, the nature of unk-unks may be such that radi-
cal changes to the project are required every time the
project team learns, which may be too costly or may
not “converge” to a global optimum within a reason-
able number of iterations.
In either case, the project team is left with a project

black—or at best dark gray—box: Neither an instruc-
tionist nor learning approach can be expected to yield
an optimal policy reasonably effectively. As the team
cannot effectively predict the project payoff, nor are
they likely to learn to predict it without unreason-
able effort, they are left with having to observe the
project payoff. Thus, the team puts forward a rea-
sonable policy �, and then observes the outcome
��M�����y�����y��. We refer to this approach as
selectionism.
The team may choose to “hedge,” pursuing mul-

tiple approaches in the hope that one will work (as
proposed by Abernathy and Rosenbloom 1968). Exam-
ples of selectionism—as opposed to optimization—
abound in management. Multiple parallel product
concepts are frequently pursued for consumer prod-
ucts (Srinivasan et al. 1997) and cars (Sobek et al. 1999).
The process of introducing multiple new products into
an unknown market and seeing which ones succeed
has been referred to as “vicarious selection” in technol-
ogy management (e.g., Leonard-Barton 1995, Veryzer
1998). Similarly, technological evolution at the level of
an economy has never been successfully planned—
history has often chosen one of several available can-
didates ex post (e.g., Mokyr 1990).
When projects are run sequentially, typically a tar-

get is set (e.g., derived from a minimum requirement
or a known lower bound), and the first to surpass the
target is taken as the global optimum (thus m is a
stopping time). When m projects are run in parallel,
the best of the actual project payoffs (observed only
ex post) is retained and taken as the available approx-
imation of the global optimum. Utilizing our notation,
we can write the project payoff under a selectionist
strategy as:

m

Max
i=1

�
(
M����i�yi����i�yi�

)
� (8)

5. Model Completeness:
Analogy with Biology

The question arises whether our model of learning
and selectionism in response to unk-unks and com-
plexity is complete and robust. We find evidence
for completeness and robustness by comparing our
results with another field of science: biology. Bio-
logical organisms have explored vast numbers of
strategies for coping with complex and uncertain
environments for over three billion years.5

The project management challenges of dealing with
uncertainty have the same structure as the “uncertain
futures problem” in biology (see Plotkin 1993 Chap-
ter 5). In our terminology, the uncertain futures prob-
lem is framed as follows: The payoff function � is
the number of copies of an organism’s genes that suc-
cessfully propagate into the next generation. Genes
provide an individual with phenotypical and behav-
ioral instructions corresponding to a policy �. This
policy is the result of the species’ history and reflects
successful actions for survival and propagation in the
face of past events in the environment � .
As the gene pool reflects experience from the past,

the genes’ policies account for stochastic environmen-
tal changes observed in the past, corresponding to
�−�� �P�. History, as reflected in the events X ∈ � ,
may not reflect every important event in the organ-
ism’s own lifetime that will significantly influence its
ability to pass on its genes—that is, � may not be
payoff adequate with respect to �. In addition, the
environment may be too complex to be adequately
responded to by the genetic instructions (especially
for simple animals)—the causal mapping M̂ encoded
in the genes is inadequate. Analogously to the com-
plexity results cited in §4, biologists have discovered
that high complexity makes “the odds for effective
rule-based operation vanishingly small” (Edelman
and Tononi 2000 p. 136).
The biological world has developed a number of

strategies to cope with this problem as listed in

5 Evolution provides an unparalleled “database” of strategies to
deal with ambiguity and complexity. Darwinian evolution has gen-
erated creative solutions in biology over three billion years (see
e.g., Simonton 1999). If biology has produced the same fundamen-
tal strategies that we find, this is evidence that there are no other
fundamental strategies.
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Figure 1 Strategies for Coping with the Uncertain Futures Problem

Avoid Uncertainty
• Reduce rate of environmental 

change per generation: mature
and propagate quickly (short life 
spans)

• Live in uninhabited and stable 
niches: e.g., animals living at 
the north pole or in some areas of 
the deep sea avoid competition 
and the need for change. 

Contingent Policies
• Continuous time regulation:

e.g., automatic temperature 
regulation, “follow the light” 
rule, “grow fur in Winter” rule. 

• Genetic “triggers”: e.g.,
gender determination by egg 
temperature in reptiles, plant
phenotype triggered by 
environment. 

Learning Devices
Acquire “new” (unforeseen by the genetic instructions) 
responses to the environment.  Examples: immune system 
remembers encounters with pathogens,  intelligence 
remembers events  in organism’s history. 
- discover new discernible patterns (new causal map  M )
- respond to new events (e.g., new predator appears).

Selectionism
“R-strategist” animals produce many 
offspring with genetic variations. 
Mutations produce new maps M.

Learning and selectionism in human 
culture

Cultural variation combined with 
learning in each culture increased 
human behavioral variability manyfold 
and enabled survival in different and 
more varied environments.

Optimization Selectionism
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Instructionism

• Variants selected by a complex 
environment (e.g., behavior of 
predators too complex for individuals 
to learn)

• Variants selected after catastrophic 
unforeseeable events (e.g., volcano 
eruption). 

Figure 1 (see Plotkin 1993 pp. 145–148). Each of these
has a parallel with the project management strategies
discussed in the previous sections.

Instructionism
One strategy is simply to avoid uncertainty by
restricting oneself to ecological niches that are simple
and change very slowly. In this case � exhibits very
little uncertainty and a good causal mapping M̂ can
be genetically encoded over a reasonable number of
generations. Here, a near-deterministic set of actions
A∗ suffices for success. Both in biology and in project
management this typically means not only a slowly
changing natural environment, but also an absence
of competition, as competition tends to increase the
speed of change. However, this strategy can be devas-
tating if there are sudden changes to the environment.
A more flexible version of instructionism, with the

ability to cope with foreseeable (in evolutionary time)
uncertainty, takes the form of contingent policies �.
For example, many species tolerate variations in their
physical state (e.g., caloric intake, body temperature)
up to a certain degree, and start taking action only
when this variation exceeds a threshold (e.g., grow-
ing fur in winter). These preprogrammed “genetic

triggers” adjust physiology or behavioral patterns in
response to signals from the environment (e.g., a plant
species whose appearance varies radically according
to the climate in which the seed is sown). As long
as history, as reflected in � , adequately describes the
significant events in the individual’s lifetime, these
policies will be effective in terms of �.

Learning
We now move to the upper left box in Figure 1, where
biological organisms have developed learning. Such
organisms can modify their policies � in response to
observed events in the environment or causal patterns
that are unanticipated by the genetic instructions. This
learning is a result of purposeful changes to repre-
sentations of � and M̂ independently of the genetic
code.
Animals that have the ability to learn can extend

their behavior beyond pre-specified triggers by per-
ceiving critical new features of their environment and
by “replanning,” modifying their behavior accord-
ingly. It is important to note that such learning
devices are metabolically costly. Thus, not all organ-
isms exhibit learning behavior—biologists estimate
that only about 5% of all species possess a learning
capability (Plotkin and Odling-Smee 1979).
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Selectionism
Certain species do not have the ability to learn, yet
have a tremendous ability to adapt to new envi-
ronments that lie outside their historical experience.
These “r-strategists” respond to uncertainty and com-
plexity by producing many offspring. As each indi-
vidual offspring “dips” into the gene pool, coming up
with variants of genetic instructions (e.g., Crow 2001),
the resulting genetic variation increases the chance
that some will survive.
Each genetic variant i corresponds to a different

policy �i, yielding a different realized payoff �. These
new policies are not the result of updates to � and
M̂—that is, they are not the result of learning. How-
ever, as the number of variants increases, the probabil-
ity that some policies reach a given survival threshold
increases. For example, bacteria with fast propagation
and high mutation rates have conquered niches that
were until recently believed to be hostile to life forms
(such as hot sulfur vents in the deep sea or cracks in
Antarctic ice).

6. Discussion and Implications
We have argued that widely used project manage-
ment approaches assume adequate information and
represent an instructionist approach to project man-
agement. Figure 2 summarizes the preceding dis-
cussion, showing that learning and selectionism go
beyond instructionism to cope with complexity and
ambiguity. The question arises: “What does this imply
for project managers?” Our model suggests that it
is of fundamental importance to first take the time
to map the project terrain. For example, if a project
with inadequate information is managed with instruc-
tionism, it will have a high probability of failure.
Two critical initial tasks for any project management
team are: (i) to clarify at the outset the adequacy of
what is known about states of the world and action
effects; and (ii) to determine whether this is due to
lack of awareness (ambiguity) or lack of understand-
ing (complexity).
The project team should concentrate on getting a

complete picture of the partition � , even if some
“regions” of �—that is, events—are quite coarse and
may need further refining as the project progresses.

Figure 2 Summary of Instructionism, Learning, and Selectionism
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Selectionism 

Instructionist Strategy
Payoff adequate F and 
decision adequate causal 
mapping M̂.

Learning Strategies

Learning: scanning for unk-
unks, then new, original 
problem solving

Selectionist Strategy

Launch multiple “candidate” 
project efforts and choose the 
one with best payoff ex post

Learning and Selectionism

• A project may be stopped 
based on favorable progress 
of another candidate

• Exchange information among 
candidates to increase 
learning: candidate projects 
become complements

Optimization 

• include buffers in plan
• plan project policy
• monitor project influence 

signals
• trigger contingent action

• Learn about unforeseen 
uncertainty (new F )

• Learn about complex causal 
effects of actions on 
payoffs ( M̂ )

• Hedge against 
unanticipated events

• Explore larger part of 
complex action space to 
find better solution

Including events of the type: “I really don’t know
where it could come from, but I have the feeling that
the regulatory environment could have a significant
impact on this project” gives an indication of possible
project unk-unks. The project team should also take
the time to understand the true complexity of tran-
sition mapping M and payoff �. Too often project
teams accept the validity of their simplified causal
model without further examination, even though it
may have been adopted simply to facilitate the gener-
ation of a project plan. It is important for the project
team to clarify whether the payoff effects of actions
can be analyzed with an acceptable effort, or whether
there are so many interrelated influences that the
expected performance of two alternative policies can-
not be compared at the outset (as is sometimes the
case for complex technical systems; see Sobek et al.
1999).
The project map then implies a combination of

three very different project management strategies,
which require different project infrastructures for plan-
ning, coordination and incentives, and monitoring—
as summarized in Figure 3.

Known Project Terrains: Instructionist Strategies
Consider the construction of a cruise ship that we
have observed in St. Nazaire. The project plan is
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Figure 3 Fundamental Project Management Strategies and Project Infrastructure

Planning Coordination
Systems and Incentives Monitoring Systems

Instructionism Critical Path Planning Critical Path Planning Critical Path Planning
• Task scheduling • Target setting • Target achievement
• Buffers (e.g., budget or • Workstructure, • Progress tracking (e.g.,
schedule “contingencies”) responsibilities % complete)

• Simulation • Coordination in hierarchy
Risk Management Risk Management Risk Management
• Risk lists • Contingent targets and • Contingent target
• Preventive actions contracts achievement (per tree
• Contingency plan (dynamic • Mutual adjustment branch)
programming, decision tree) according to events • Monitor risk realization

Learning • Overall vision • Long-term relationships • Scan for new events
• Detailed plan only for next with stakeholders, • Track assured
tasks, then high level logic • Flexible and lateral coord- achievements
based on hypotheses ination in mutal interest • Track quality of process

• Plan learning actions • Upward incentives (no used in addition to
• Provide capacity for re- punishment for failure due outcomes
planning to uncontrollable events) • Explicity evaluate what

• Incentives for good process has been learned

Selectionism • Plan multiple trial projects • “Winner” shares upside • Sharing of intermediate
• Plan performance hurdle with “Losers” (all results among projects
for the “winner” contribute, as winner (learning)

cannot be predicted) • Performance of trial
projects versus hurdle

well mastered and major risks can almost certainly be
excluded. The complexity of coordinating hundreds
of subcontractors working simultaneously and moni-
toring their work to prevent shortcomings in quality
are by far the major concerns of the project manager.
The challenges are (a) scheduling and coordinating
thousands of actors and activities, and (b) managing
variation in profits, schedules, and budgets. Simula-
tion techniques can help to assess the probability of
running against “control limits” requiring corrective
action. Project buffers (cost, schedule) may need to be
introduced to manage a project successfully. It does
not pay to build an expensive information structure to
plan and identify major contingencies, but close con-
tact with the customer is necessary to prevent unex-
pected reconfigurations.
Now consider a construction company with which

we have worked. The Ladera Ranch team moves
millions of cubic yards of dirt to provide indepen-

dent builders in Southern California with house pads,
streets, water runoff, landscaping, and utilities. Their
major objective is to plan the cuts and fills in a
way that moves dirt the shortest possible distance.
Although geological studies exist, the moisture level
and exact soil type are uncertain, which is problem-
atic because moist earth requires more excavation.
Also, moist earth takes longer to settle before it can
be built on, so the project team might opt to dry the
dirt rather than delay selling lots. Some types of soils
may require different gradients for stability. A gentler
slope means that it is more difficult to provide the
same amount of flat area for houses and streets.
The team could, in theory, handle the uncertainty

as a series of foreseen uncertainties, building a con-
tingency plan for each scenario (“If soil is moist and
type x at location y, do Plan A. If it is dry and soil
type z, do Plan B” and so on). However, in prac-
tice this rapidly becomes unfeasible because of the
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interdependent nature of cuts and fills across loca-
tions. The number of scenarios proliferates with the
number of locations considered.
Instead, the project management team applies exe-

cution monitoring and replanning, using principles
the project leader experienced first-hand in the U.S.
Marine Corps: “Every play we run,” he says, “is an
option play. I want my people to be able to make
decisions in the field without having to report back to
me every time something comes up.” The team meets
weekly to discuss whether or not the project path or
target will change and, if so, how. As an added bene-
fit, the meetings also ensure that team members don’t
pass off their mistakes as “unforeseen uncertainty.”
Thus, the management style is adapted to contingen-
cies in the planning, monitoring, and coordination
approaches.

Learning Strategies
In addition to “normal” soil variations, the Ladera
team sometimes encounters unk-unks, or truly un-
foreseen events—such as the discovery of prehistoric
Indian ruins or a rare animal or plant species—which
completely alter their operation.
In these cases, risk management techniques like

execution monitoring and replanning, are insufficient.
The challenge is to recognize these events quickly and
develop an appropriate response. Quickly “recogniz-
ing an unk-unk when I see one” requires continuous
scanning of the environment and comparing the sig-
nal with the current influence factor map. Moreover,
the team must have the will and the capacity to learn
and replan rather than just trigger preplanned contin-
gency responses. The benefits of redefining the course
of action (the policy �) or even the project objectives
(payoffs �) may outweigh the cost.
When significant unk-unks arise, a lot of time

and effort must go into managing relationships with
stakeholders and getting them to accept unplanned
changes. Stakeholders often resist change, so much of
the manager’s job is to anticipate and soften resistance
by creating flexible contracts and keeping stakehold-
ers well informed. Top management support, nego-
tiation techniques, team-building exercises, and the
project manager’s charisma can help overcome con-
flicts of interest.

The project management team at Ladera Ranch has
worked hard to share the risk with their subcontrac-
tors, recognizing that taking advantage of a supplier
today will limit their flexibility tomorrow. The rela-
tionship is characterized by trust, relieving both the
management team and the subcontractors of having
to anticipate every little event and activity. Without
such trust no subcontractor would take action until
the project team had drawn up a formal contract,
making it virtually impossible to respond flexibly to
unforeseen events. This degree of flexibility is diffi-
cult to obtain and is often unenthusiastically received.
Such resistance is understandable, given that most
top managers are more concerned with hitting estab-
lished targets than doing the best overall job possible.
However, flexibility is key to evolving projects out
of the vague assumptions characteristic of unforeseen
uncertainty.
Providing this level of project management flex-

ibility is a major managerial decision that is often
resisted. A team must be evaluated not only on tar-
gets (which may become obsolete), but on the quality
of their problem solving and their ability to pursue
new opportunities that arise during the project.
Putting in place such flexibility is costly in terms

of management attention and systems. A team needs
a tracking mechanism, the capacity and the authority
to work out responses to unexpected events or causal
patterns. A steering committee or oversight process
must be put in place with the organizational authority
to change the policy (the plan), or the target (the pay-
off). Such costly systems must be established at the
outset, and only when the initial project terrain map-
ping suggests that unforeseen events are potentially
significant. Creating this infrastructure after carefully
judging the quality of the available project informa-
tion is a major management responsibility.

Selectionist Strategies
When complexity prevents an evaluation of the causal
mapping, it is impossible to choose a best policy. The
project team may adopt a selectionist approach to
project management if it believes there is a benefit to
being able to select the best project from the pool of
trials. The pool may be produced by pursuing sev-
eral candidates in parallel, or by producing candi-
dates sequentially until the result is satisfactory. As a
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consequence, a subteam working on one alternative
cannot be judged on its candidate solution being the
winner (since that is not under the subteam’s con-
trol): To foster information sharing and motivation,
the team should be rewarded for the overall success.
In an R&D environment this means several project

teams pursuing different solutions for the same prob-
lem and retaining the one with the best outcome.
Typically, selectionism and learning are combined:
Parallel projects should share information, and once it
becomes clear that one project cannot match the result
of another, it should be discontinued.
NASA employed this strategy in the 1960s for the

development of the lunar module. Likewise, today’s
automobile companies tend to develop several con-
cepts for a new car model—all the way to complete
prototypes—to explore the complex design space
more fully before choosing the best prototype for
industrialization (e.g., Sobek et al. 1999). Sometimes
one needs to go all the way to market introduc-
tion to be able to select the best alternative. For
example, in the first half of the 1990s Japanese con-
sumer electronics companies developed and launched
multiple products to see which would succeed in
the complex consumer market—a strategy known as
“product churning” (see Stalk and Webber 1993). This
approach is consistent with recent empirical findings
that projects with a high degree of uncertainty per-
form best if they explore the solution space and iter-
ate quickly (e.g., Iansiti and MacCormack 1997, Lynn
et al. 1998, Veryzer 1998).

Framing the Project
It is important to remember that a project’s uncer-
tainty and complexity can, to some extent, be influ-
enced by how the project is framed (c.f., Schrader
et al. 1993). The initial project definition determines
the causality of actions, as defined in §3, which in
turn determines the project complexity and the payoff
adequacy of any initial partition � of the states of the
world �. For example, the use of a new—as opposed
to a proven—technology makes unforeseen events rel-
evant in the payoff function (i.e., renders the existing
partition associated with the proven technology pay-
off inadequate). Similarly, an ambitious system scope
(e.g., in the form of the number of features included)

increases project complexity. If the project terrain
implies challenges that the organization cannot mas-
ter (e.g., because the necessary structures are nonex-
istent), management may have to change the project’s
definition. Evidently the organization’s stock of expe-
rience and problem-solving capacity will determine
the levels of uncertainty, ambiguity, and complexity
that the team faces.
The right combination of instructionism, learning,

and selectionism depends on the urgency of the
project, the amount of learning that can be achieved—
either about � or about M̂ (see a simplified model
in Loch et al. 2001), the cost of multiple candidate
projects in a selectionist strategy, and the nature of
the ambiguity and complexity of the project. Precise
rules of when to use which approach are currently
unknown and we are pursuing this line of inquiry in
further work.
If independent approaches are expensive or the

urgency of getting a result is low, it may be preferable
to pursue one single approach, adapting and learning
over time. If, in contrast, learning is costly or difficult
and urgency high, one may prefer to pursue multi-
ple independent attempts, picking the best ex post.
If learning and more independent candidates exhibit
decreasing returns, one may choose to pursue several
candidates and learn in each as it progresses.
Finally, instructionism, learning, and selectionism

may be staggered in the context of a stage gate pro-
cess, as uncertainty is reduced over the course of an
R&D program (e.g., Cooper 1994, Verganti 1999).

7. Conclusion
In this article, we have conceptualized a project as
a payoff function that depends on the state of the
world and the action sequence chosen. Actions arise
endogenously as the result of decisions and influence
the states of the world through a transition function
(causal model of the world). We characterize the infor-
mation available in the project as inadequate if too little
is known about the states of the world or the causal
effects of actions on the payoff (ambiguity) or if the
effect of actions on the payoff cannot be analyzed
because too many parameters interact in the transition
or payoff function (complexity).
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Our model makes two contributions. On the the-
oretical side, it allows us to identify what clas-
sic project-planning approaches have in common.
The critical path method (CPM), stochastic networks
(GERT), and decision trees (risk management and
contingent action) assume an adequate information
structure where all possible events can be antici-
pated (although their occurrence may be stochastic).
Which of these approaches is best will depend on
the cost of information. All of them are a variant of
instructionism—the ex ante determination of actions
or policies in which preplanned actions are triggered
by signals.
Moreover, our model allows us to put a wide vari-

ety of recent project management approaches in the
context of two fundamental strategies that become
necessary when the project information is inadequate:
Learning—that is, scanning to identify unk-unks and
problem solving to modify policies; and selectionism—
pursuing multiple approaches and choosing the best
one ex post.
In terms of its second contribution, we believe that

our model is directly relevant to project managers
in practice. The model is as parsimonious as pos-
sible, while still allowing managers to distinguish
among the three fundamental project management
strategies and characterizing the reasons for choosing
them. Although the ideal types of information ade-
quacy are never clearly satisfied in practice, the ter-
minology established in the model helps managers to
characterize information adequacy at the outset and
choose a strategy and a project infrastructure accord-
ingly, including systems for planning, coordinating,
and monitoring.
The current study should be extended both on

the theoretical and the application fronts. First, more
research is needed to refine the suggested man-
agement approaches and determine when to use
which approach—a direction we are already pur-
suing. Some work has been done in organizational
theory about learning from “unusual events” that
should be taken as signals when operating under
threatened conditions. Sufficient resources are neces-
sary to be watchful, and to ensure that rare events
should be experienced “richly” (from multiple angles)

(March et al. 1991, Marcus and Nichols 1999). Com-
bining these perspectives with project management
approaches may yield fruitful insights.
Second, the theory developed in this study needs to

be tested empirically. We have begun to discuss our
insights with managers to develop robust decision
rules (see De Meyer et al. 2002). Notwithstanding, a
theoretically solid concept of project information ade-
quacy should contribute to a better use of the existing
set of tools in practice.
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