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Abstract. General problems associated with the design of compliant mechanisms through the topology opti-
mization technique are defined in this paper due to the lack of comprehensive definitions for these problems in
the literature. Standard design problems associated with rigid body mechanisms, i.e. function generation, path
generation and motion generation, are extended to compliant mechanisms. Functional requirements and the
associated 25 formulations in the literature are comprehensively reviewed along with their limitations. Based
on whether the output is controlled quantitatively or not, these formulations are categorized into two types:
(1) formulations for quantitative design; and (2) formulations for qualitative design. In addition, formulations
that aim to solve the point flexure problem are also discussed. Future work is identified based on the discussion
of each topic.

1 Introduction

A Compliant Mechanism (CM) is a mechanism that gains at
least part of its mobility from the deformation of its flexible
members (Howell, 2001). Figure 1 shows a compliant grip-
per, and the arrows denote the input forces which drive the
flexural hinges at A, B, C to deform, thereby causing the de-
formation at the output port D.

The Topology Optimization (TO) technique is an approach
to determine the topology as well as shape of a mechanism or
structure for desired functions using optimization techniques.
The term “topology” in the context of CMs means mate-
rial distribution such as holes and interconnecting segments
among various points of interest including points which serve
input and output forces and points on the ground object
(Ananthasuresh, 1994). For instance, different numbers of
holes in CMs mean different topologies. It is noted that differ-
ent topologies as well as shapes have different functions ac-
cording to the general knowledge framework called FCBPSS
(F: function; C: context; B: behaviour; P: principle; SS: struc-
ture/state) (Lin and Zhang, 2004). In the design of CMs,
different CMs, which can be understood as material distri-
butions, fulfill the functional requirements. Thus, designers

need to select the most appropriate one to fulfill the func-
tional requirements from those distributions or design solu-
tions in a general sense. The performances of all these solu-
tions are analyzed to see if they meet the requirements and
the one that best meets the requirements would be chosen as
the final design.

In the TO, the objective function and constraints are de-
fined to represent different design problems. Variables in the
objective function and constraints represent material distri-
butions. The Finite element model technique is applied to
calculate the response of the material distributions (solu-
tions). The solutions are further evaluated against the ob-
jective function and constraints. An optimization algorithm
is employed to update the design variables to generate new
topologies. In all, the basic idea of the TO is to determine
the material distribution in a given design domain for spec-
ified function requirements, and optimization techniques are
employed to determine the best material distribution.

Objective functions and constraints are formulated for
function requirements as metrics in the TO for the design
of CMs. In the literature, flexibility, stiffness, mechanical
efficiency (ME), mechanical advantage (MA), geometrical
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Figure 1. A compliant gripper. Courtesy of the Compliant Mecha-
nisms Research Group at Brigham Young University.

advantage (GA), weight, strength and so on, have been de-
fined as objective functions or constraints (Howell, 2001;
Saxena and Ananthasuresh, 2001; Deepak et al., 2009).
Ananthasuresh (1994) pioneered the TO of CM design with a
multi-criteria model and a spring model. In both cases, a CM
is desired to be sufficiently flexible to deform and sufficiently
stiff to bear external loads. Formulations with different com-
binations of flexibility and stiffness have been studied and
generalized, leading to CMs with a balance between flexibil-
ity and stiffness (Frecker et al., 1997; Saxena and Anantha-
suresh, 2000). These formulations are all energy-based and
originally from structural optimization which designs struc-
tures with the concepts strain energy or mutual strain energy.
Moreover, the underlying logic is that we first try to find and
borrow reasonable and feasible formulations from structural
optimization, and then define CM design problems, accord-
ingly. This, however, is precisely in the inverse order of the
design process. As a designer, one always starts with the de-
sign problem, and then tries to search for tools or techniques
(formulations in the case of the TO) to solve the problem.

Instead of formulating CM design problems with energy-
based concepts, Lau et al. (2001) implemented three for-
mulations for the design of CMs based on functional re-
quirements of mechanisms, i.e. MA, GA and ME. Luo and
Zhang (2012) designed CMs with a formulation involving
both ME and strain energy with input displacement con-
straint and dynamic response constraint. However, MA, GA
and ME are all of secondary importance in terms of the func-
tional specifications of mechanisms, and the essential func-
tional requirements for mechanism design, e.g. displacement
or force, need to be considered as the first priority.

Deepak et al. (2009) had a comparative study of five for-
mulations, i.e. stiffness-flexibility, MA, work ratio, charac-
teristic stiffness and artificial springs. Three design problems,
namely inverters, crimpers and grippers, were implemented
based on these formulations.

Wang (2009a) classified CMs into four types ac-
cording to the forms of inputs and outputs: (1)
displacement-displacement, (2) displacement-force, (3)
force-displacement, and (4) force-force. However, design
problems and formulations as defined with these attributes
are not the main streams associated with mechanism design.
To the contrary, the main streams for mechanism design are
(1) Function Generation (FG), (2) Path Generation (PG), and
(3) Motion Generation (MG). Therefore, it is necessary to
critically evaluate the literature, and define design problems
for CMs in such a way that they are treated as mechanism
design problems from the very beginning of the process.
This will provide the necessary foundation for future work
in CM design.

2 Design problems for compliant mechanisms

A mechanism is a device which can transfer or transform
force or motion (Howell, 2001). The synthesis of mecha-
nisms is to determine the topology and geometry for desired
motions (motion or force transmission) and other mechani-
cal characteristics. Kinematics and kinetics are two aspects
in respect to the synthesis. For rigid-body mechanisms, kine-
matics is the study of motion without involving any forces,
while kinetics is the study of force-motion relations. In the
design of mechanisms, desired motions are considered first,
and then the forces associated with these motions are inves-
tigated using, for example, Newton’s second law (F =ma)
to compute the forceF given the acceleration (a) and inertia
(m) of the mechanism (Norton, 2003).

In rigid body kinematics, applied forces are not consid-
ered, since the motion is governed only by the geometry, ma-
terial distribution, and input motions. For a CM, however, the
applied forces from actuators and/or the environment must be
considered, since the motion is not only governed by the ge-
ometry and mass distribution, but also by the forces (i.e. ex-
ternal forces and body forces). That is, in the case of a CM,
kinematics and kinetics merge. This implies that the design
problem, which is generally related to the input and output
ports, is always associated with both the motion and forces.

In the most general form, generalized input motions (and
forces) and output motions (and forces) are described by

XT
I =
[
xT

I θ
T
I

]
and XT

O =
[
xT

Oθ
T
O

]
(1)

PT
I =
[
f T

I τ
T
I

]
and PT

O =
[
f T

Oτ
T
O

]
(2)

where XI , XO, PI , PO denote the inputs and outputs of a
CM, i.e. vectors of input displacements, output displace-
ments, input driving forces and output loads (Fig. 2). Fur-
ther,x andθ denote the vectors of translational and rotational
displacements whilef and τ denote the vectors of forces
and moments (Wang, 2009a). Clearly, there could be CMs
with multiple inputs and multiple outputs, but without loss
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Figure 2. Inputs and outputs of a CM.

of generality, our study only focuses on CMs with a single
input and a single output.

The inputs and outputs of a CM are governed by the sys-
tem’s static equilibrium equations in a matrix form (assum-
ing that the inertia and damping are negligible).

[K ]

 XI

XO

XS

 =
 PI

PO

PS

 (3)

where[K ] is the stiffness matrix of the system andXI (PI), XO

(PO), XS (PS) are the nodal displacements (loads) of nodes in
the input port I, the output port O and the remaining region S.
The stiffness matrix is not necessarily restricted to the CM,
but could also contain the stiffness information of other com-
ponents in the system. For example, for a system consisting
of a CM, an actuator, and a work-piece, the stiffness matrix
[K ] equals[KC] + [KA ] + [KW] where [KC], [KA ], [KW] are
the global stiffness matrices of the CM, the actuator, and the
work-piece, respectively. Thus, Eq. (3) could represent a sys-
tem of CMs, actuators and work-pieces. Note thatXS andPS

are dependent onXI , PI , XO andPO so that the system equi-
librium equations can be re-written as:

[K ]

[
XI

XO

]
=

[
PI

PO

]
(4)

where [K ] is a transformation of the system matrix[K ],
andXI , PI , XO, PO are the inputs and outputs of the system
(Wang, 2009a).

The inputs and outputs of the system, i.e.XI , PI , XO and
PO, are the excitations and responses of the system governed
by Eq. (4) due to the equilibrium of the system. The design
problem for such a system is to determine the parameters so
that the system has desired responses with specified excita-
tions. The final designs can be different depending on the
design specifications. Specifications of actuators and work-
pieces have significant influence on the design so that four
design specifications, as shown in Table 1, are considered
to define design problems for CMs depending on whether
actuators/work-pieces are considered or not in the design.

In the case➀, none of actuators and work-piece is consid-
ered in the design, which means[K ] is just the stiffness of
the CM.

Table 1. Four Design Specifications of CM Design.

Without actuator With actuators

Without work-piece ➀ ➂

With work-pieces ➁ ➃

In the case➁, work-pieces are considered in the design
while no actuator is considered, that is,[K ] = [KC] + [KW].
Therefore, the interaction between the output port and the
loading object (or work piece) is considered. An example of
this would be modeling the work-piece as a one-dimensional
linear spring attached to the output port of a CM, so that[KW]
is just the global stiffness matrix of the spring in the system.

In the case➂, actuators are considered while no work-
piece is considered in the design, that is,[K ] = [KC] + [KA ].
In the literature, for example, the actuator is simplified as a
one-dimensional linear spring with an applied force.

In the case➃, both actuators and work-pieces are consid-
ered in the design, that is,[K ] = [KC]+ [KA ]+ [KW]. The in-
teractions between the CM and the actuators and work-pieces
are considered.

In what follows, design problems of CMs are defined
based on these four cases. The inputs and outputs of a CM,
i.e. XI , PI , XO andPO, are used to describe the design prob-
lems, so they are called “problem state variables”.

2.1 Case ➀

For the analysis of a CM in the Case➀, PO has to be spec-
ified. In addition, there are four problem state variables and
two governing equations for the system, as shown in Eq. (4),
so that one more problem state variable (one ofXI , PI , XO)
needs to be specified as well to solve the system.

For the design of a CM in the Case➀, the output displace-
ment is desired to achieveX∗O, i.e. XO = X∗O. In other words,
in Eq. (4), eitherXI or PI could be the known problem state
variable so that the system can be solved. It is noted that by
considering “known” there are two situations: (a) being pre-
scribed or given or (b) being a design variable to achieve a
“best” objective. The same interpretation of “known” is also
true for the case➁, ➂ and➃. With the foregoing discussion,
design Problems (DPs) can now be stated as follows:

– DPA: given XI and PO, design a CM so that itsXO

achievesX∗O.

– DPB: given PI and PO, design a CM so that itsXO

achievesX∗O.

Note that any one or two of thePI andXI could also be un-
known (unknowns) and need to be optimally determined. For
example, givenPO, design a CM and optimally determine its
correspondingXI so that itsXO can achieveX∗O. It is obvious
that, for different inputs (magnitudes or directions or loca-
tions), the results of the TO might be very different. Thus,
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considering inputs as design variables could lead to more
spaces of solutions. Optimally determining inputs does not
only mean the optimal determination of input magnitudes,
but also directions or locations. These design problems are
not listed but they can be easily extended based on the ba-
sic design problems, e.g. DPA or DPB. This treatment can
also be found in other cases and will not be mentioned again
unless necessary.

2.2 Case ➁

For the analysis of a CM in the Case➁, the output force and
output displacements are coupled by the work-piece whose
global stiffness[KW]. Therefore, one of the problem state
variablesXI , PI , XO, PO should be known to solve the system.

For the design of a CM in case the➁, eitherXO = X∗O or
PO = P∗O could be the desired output. EitherXI or PI could
be the known problem state variable so that the system can
be solved. Design problems are stated as follows:

– DPC: givenXI and [KW], design a CM so that itsXO

achievesX∗O.

– DPD: givenPI and[KW], design a CM so that itsXO

achievesX∗O.

– DPE: givenXI and [KW], design a CM so that itsPO

achievesP∗O.

– DPF: givenPI and [KW], design a CM so that itsPO

achievesP∗O.

Note that any one or two or three of thePI , XI and [KW]
could also be unknown (unknowns) and need to be optimally
determined. By optimally determining[KW], the global stiff-
ness matrix of the work-piece, we actually determine the lo-
cal stiffness matrix of the work-piece and the location of the
work-piece.

2.3 Case ➂

For the analysis of a CM in the case➂, PO due to the loading-
object has to be specified and eitherXI or PI has to be speci-
fied as well.

For the design of a CM in the Case➂, the output displace-
ment is desired to achieveX∗O. Design problems are stated as
follows:

– DPG: givenPI , PO and[KA ], design a CM so that its
XO can achieveX∗O.

– DPH: givenXI , PO and[KA ], design a CM so that its
XO can achieveX∗O.

Note that any one or two or three of thePI , XI and[KA ] could
also be unknown (unknowns) and need to be optimally deter-
mined. Be noticed that, by optimally determining[KA ], the
global stiffness matrix of the actuator, we actually determine
the local stiffness matrix of the actuator and the location of
the actuator.

2.4 Case ➃

– DPI: givenXI and[KA ] and[KW], design a CM so that
its XO can achieveX∗O.

– DPJ: givenPI and[KA ] and[KW], design a CM so that
its XO can achieveX∗O.

– DPK: givenXI and[KA ] and[KW], design a CM so that
its PO can achieveP∗O.

– DPL: givenPI and[KA ] and[KW], design a CM so that
its PO can achieveP∗O.

Note that any one or two or three or four of thePI , XI , [KA ]
and[KW] could also be unknown and need to be optimally
determined.

The above design problems are general in the sense that
they are not explicitly tied with mechanism design problems,
i.e. FG, PG and MG. Note that these three design problems
are typical for the design of rigid-body mechanisms. For the
design of CMs, they need to be modified to fit into the above-
defined general design problems from DPA to DPL.

FG for rigid-body mechanisms is defined as the correlation
of an input motion with an output motion in a mechanism
(Norton, 2003). A function generator is conceptually a black
box that, for a given value of input motion, an output value
of motion is also specified through a function which relates
input motions and output motions. For example, in a rigid
four-bar mechanism, the function shows the relationship be-
tween rotations of input link and rotations of output crank.
While it comes to CMs, the FG is the correlation of the input
with the output in the context of deformable object, which
means that not only displacements but also forces can be one
of the correlated problem state variables. For example, for a
CM for FG designed from DPB, the output displacements of
the CM are correlated with the input forces. All design prob-
lems from DPA to DPL can be extended for the design of
CMs for FG by simply considering a function between in-
puts and outputs. There are many potential applications of
CMs for FG, e.g. displacement amplifiers for PZT actuators
(Canfield and Frecker, 2000), optical modulating component
modulator (driven by comb actuators) which needs a planar
angular rotator to control different angles and to modulate the
dissimilar light (Lin and Shih, 2002).

PG is defined as the control of a point on a mechanism
such that it follows a prescribed path (Norton, 2003). The
position of this point can either be correlated to the input
motion or not. Since the point on a mechanism cannot com-
pletely follow the prescribed path, some precision points on
the path are selected so that the point on the mechanism can
approximately follow the path by going through all the pre-
cision points. Design problems of DPA, DPB, DPC, DPD,
DPG, DPH, DPI, DPJ, DPH and DPI can be extended for
the design of CMs for PG by simply considering a sequence
of different values of output displacements, i.e.XO, to rep-
resent precision points. If the correlation between inputs and
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Figure 3. Compliant-segment motion generation (Saggere and
Kota, 2001).

outputs is not required, then the inputs can be optimally de-
termined as well.

MG is defined as guiding an entire (rigid) body, which is
usually a part of a rigid floating link, through a prescribed
motion sequence, which comprises of desired positions and
orientations of the floating link. However, if the body to
be guided is compliant (flexible), its deformation should be
counted into the position changes. Thus, the task of a CM
for MG is to guide a given slender flexible segment to dif-
ferent desired configurations. That is, the given flexible seg-
ment is to be deformed into another specified definite smooth
shape while moving it from its initial configuration to an-
other specified configuration as illustrated in Fig. 3. Such a
task is called “compliant-segment motion generation” task
(Saggere and Kota, 2001). In this paper hereafter we use
“MG” to represent “compliant-segment motion generation”
for short. Thus, MG is to guide a flexible segment of a mech-
anism through a sequence of discrete prescribed configura-
tions. The configurations can either be correlated to the in-
put motion or not. By defining the configuration changes as
the output displacementsXO, design problems of DPA, DPB,
DPC, DPD, DPG, DPH, DPI, DPJ, DPH and DPI can be ex-
tended for the design of CMs for MG. If the correlation be-
tween inputs and outputs is not required, then the inputs can
be optimally determined as well.

The above discussion is applicable to both planar and spa-
tial CMs. The next section gives a critical review of the liter-
ature on the design of CMs through the TO technique.

3 Critical review of the literature

Two key aspects of CM design through the TO technique are:
(1) the working conditions or boundary conditions, particu-
larly force boundary conditions and displacement boundary
conditions; (2) the design purposes, i.e. functional require-
ments. Boundary conditions determine how a CM interacts
with its environments, i.e. the support regions, actuators and
load objects, and they determine the working conditions of
a CM, particularly force or displacement conditions at the
input port and output port of the CM (the support region
also make a great difference). The functional requirements

depend on applications, and they determine how the CM is
expected to response under given boundary conditions.

Design specifications that reveal working conditions of a
CM are defined in the previous section of the paper, and these
working conditions are reviewed in the first part of the liter-
ature review section. Functional requirements from the per-
spective of mechanism design are defined in the previous sec-
tion, and functional requirements considered in the literature
are also reviewed in the second part through discussions of
the formulations that have been built. The third part discusses
about the point-flexure problem in the TO of CMs.

3.1 Boundary conditions

Many studies have, incompletely or with some differences,
designed CMs by considering the work conditions in the de-
sign specification➀, ➁, ➂ or ➃.

Ananthasuresh (1994) specified the input forcePI and out-
put force PO in a multi-criteria model. In the model, two
loadings were considered separately. First, a CM was de-
formed to contact with a stiff work-piece under the input
forcePI . Second, as a force of resistance, the work-piece ap-
plied output forcePO to the CM; meanwhile, the input force
increased toPI +∆PI . The output displacementXO was con-
sidered only from the first loading, i.e. the input forcePI .
Although the loads described in the model were the same
with those in the DPB of the case➀, the loadings were dif-
ferent from the real situation because the output forcePO

had influence on theXO and thePO should be considered
into the calculation ofXO. Frecker et al. (1997) and Kikuchi
et al. (1998) also considered the same loadings in their de-
signs. Hetrick (1999) also used two loadings, though, in a
different way. First, the output forcePO was applied while
the input port was held fixed, then the actuator generated an
input force to actuate the input port so that the output port
moved in the desired direction. The loads described in the
model were the same with those in the DPB of the case➀,
and the calculated output deformation included the influence
from thePO. Designs based on these approaches are highly
dependent on the output forces. Moreover, the loads of a CM
are usually separated into different loading steps. This is ap-
propriate, most of the time, for the design of CMs in the lin-
ear force-deflection range, however, may not be appropriate
in the non-linear force-deflection range.

To account for the stiffness of elastic work-pieces, i.e. the
case➁, a so-called spring model have been developed (Anan-
thasuresh, 1994; Saxena and Ananthasuresh, 2000; Deepak
et al., 2009). In the model, the work-piece was modeled as a
spring of constant stiffness, i.e. given[KW]. However, most
studies have specified input force, as stated in the DPD and
DPF, but not input displacements, as stated in the DPC and
DPE. One exception is the study by Joo and Kota (2004).
They specified, at stated in the DPC and DPE, the input
displacementXI and the stiffness of the spring at the out-
put port. Huang and Lan (2006) explored the influence of
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different stiffness values of springs at output port on the opti-
mal topologies. Their research shows that the stiffness of the
spring makes a great difference to the results.

Regarding the way a CM interacts with a work-piece, Sig-
mund (1997) considered three different loading situations:
(1) the work-piece was stiff and there was no gap between
the work-piece and the output port; (2) the work-piece was
elastic and there was no gap; (3) the work-piece was elastic
and there is a gap. The first situation, in fact, is not a load-
ing case of a mechanism since there is no displacement at the
output port. In the second and third situations, the input force
PI and the[KW], the same as that in the DPD, were specified.
The third situation can be understood as the nonlinear be-
haviour of the work-piece. Saxena and Ananthasuresh (2001)
designed CMs for path generation, specifying a sequence of
input forces,PI1, PI2, etc., while two linear springs of con-
stant stiffness along two orthogonal directions were used to
model the work-pieces. This is an extension of the DPD for
the path generation problem. However, they did not consider
the coupling between the two linear springs and the nonlinear
behaviour of work-pieces.

To account for the stiffness of both the actuator and work-
piece, i.e. the same as those in the DPJ and DPL in the
case➃, Du et al. (2000) modeled a actuator as a rod ele-
ment (stiffness is[KA ]) and a forcePI ; on the other hand,
the work-piece was modeled as a linear spring (stiffness is
[KW]). Luo et al. (2005) also considered the same problem.

Pedersen et al. (2001) considered path generation, speci-
fying a sequence of input displacements,XI1, XI2, ect., while
output forces,PO1, PO2, etc., were considered at precision
points. Tai et al. (2002) also considered path generation,
specifying input displacements,XI1, XI2, ect., while the out-
put forces were specified as zeros. Both studies are the ex-
tensions of the DPA for the path generation problem. Rai et
al. (2007) considered path generation, specifying a sequence
of input forces,PI1, PI2, etc., while the output force were
specified as zeros. This is an extension of the DPB for the
path generation problem.

Regardless of the functional requirements of CMs, there is
no universal boundary condition for the design CMs in the
literature. Certainly, the loading cases➀, ➁ and➃ have been
considered, at least to some degree. However, it is important
to note that they are still incomplete and the loading case➂
has yet to be considered.

To account for the work-piece at the output of a CM, a
spring has been added to the output port to model the be-
haviour of the work-piece (Sigmund, 1997; Ananthasuresh,
1994). To account for both the actuator and the work-piece, a
spring is added to each port (Du et al., 2000; Luo et al., 2005;
Huang and Lan, 2006; Sigmund, 2002). The spring model,
which is widely accepted in the literature, captures the be-
haviour of the actuator and work-piece. However, optimal re-
sults are highly dependent on the stiffness of springs (Wang,
2009b; Luo et al., 2005) so that the optimal CMs can only

work properly with certain actuators or work-pieces which
have the same stiffness.

Translational motions or forces have been considered in
the literature, however, rotational motions or torques (Eqs. 1
and 2) have not yet while rotational inputs or outputs are
essential and common in applications, e.g. optical modulat-
ing component modulator (driven by a comb actuator). The
modulator needs a planar angular rotator to control different
angles and to modulate the dissimilar light (Lin and Shih,
2002).

Future work regarding boundary conditions lies in: (1) the
accurate modeling of work-pieces in the case of path genera-
tion and motion generation CMs; (2) the design of CMs that
are not sensitive to the stiffness of the work-piece or actu-
ators; (3) the design of CMs with variable boundary condi-
tions, e.g. input forces or support regions are design variable;
(4) the consideration of rotational inputs and outputs. (5) the
design of CMs with specified actuators and output forces, i.e.
the design specification➂.

3.2 Formulations for functional requirements

Although various functional requirements have been con-
sidered in the design of CMs (e.g. inverters, crimpers and
grippers), the design problems can be generalized into two
kinds: qualitative and quantitative design problems. In the
first group, functional requirements include maximized or
minimized mechanical/geometric advantage, work ratio, etc.,
and there is no direct quantitative control over the magni-
tudes of these performance; in the second group, the func-
tional requirements includes output displacements, geomet-
ric advantage, are required to achieve exact values instead
of just being optimized for extreme values. A variety of for-
mulations (Table 2) from either the viewpoint of structure or
mechanism design have been built to address these design
problems. Some of these formulations have been developed
to avoid the flexure-point problem, a very common problem
in most formulations.

When designing CMs for maximized or minimized char-
acteristics, F1–F14 are the most common formulations en-
countered; thus, the design problems are classified as CM
qualitative design problems. In contrast, when designing
CMs for direct quantitative control over the magnitudes of
characteristics, F15–F21 are the most common formulations
encountered; thus, these design problems are classified as
CM qualitative design problems. When designing CMs for
distributed compliance or the removal of point flexures, F22–
F27 are the most common problems encountered; certainly,
these design problems fall into either the qualitative design
of CMs or the quantitative design of CMs, but with special
attention to the generation of point flexures.
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Table 2. Formulations in the Literature.

References Functional Formulations Specified inputs/

Requirements outputs

Formulations for quantitative design of CMs

F1 (Ananthasuresh, 1994) Flexibility-stiffness Max:w1 ·MSE− (1−w1) ·SE PI andPO

F2 (Frecker et al., 1997; Huang and Lan,
2006; Deepak et al., 2009)

Flexibility-stiffness Max: MSE/SEO PI andPO

F3 (Nishiwaki et al., 2001) Flexibility-stiffness Max: MSE
w1·XO−P+w2·SEI+(1−w1−w2)·SEO PI andPO

F4 (Joo et al., 2000) Flexibility-stiffness Max: MSE
w1·SEI+(1−w1)·SEO XI andPO

F5 (Saxena and Ananthasuresh, 2000) Flexibility-stiffness Min: −η(MSE)/µ(SEI), where
∂η(XO)
∂XO
>0; ∂g(SEI)

∂SEI >0
PI and
PO = kO ·XO;

F6 (Saxena and Ananthasuresh, 1998) Flexibility-stiffness Max:outputenergy
SEI PI and

PO = kO·XO

F7 (Kota et al., 2001) Flexibility-stiffness Max:GA
SE

F8 (Ananthasuresh, 1994) Flexibility-stiffness Min: SE PI and
PO = kO·XO

F9 (Bendsoe and Sigmund, 2004) Output displacement Max:XO PI ,PI = g(XI) and
PO = f (XO)

F10 (Sigmund, 1997; Lau et al., 2001; Wang,
2009c; Deepak et al., 2009)

MA Max: MA, subjecting toXI ≤ X∗I PI and
PO = f (XO)

F11 (Lau et al., 2001) GA Max: GA, subjecting toXO ≤ X∗O PI andPO = ks·XO

F12 (Lau et al., 2001) ME Max: ME, subject toXO ≤ X∗O PI andPO = ks·XO

F13 (Hetrick, 1999; Deepak et al., 2009) ME Max: ME PI andPO

F14 (Canfield and Frecker, 2000) ME Max: ME PI andPO = ks·XO

Formulations for quantitative design of CMs

F15 (Min and Kim, 2004) GA* Min:w1·(GA∗− XO
XI

)
2
+(1−w1)(w2·

SEI+ (1−w2) ·SEO)
PI andPO

F16 (Pedersen et al., 2001) PG Min: LSE1 XI andPO

F17 (Saxena and Ananthasuresh, 2001) PG Min: LSE2 XI andPO=ks ·XO

F18 (Tai et al., 2002) PG Min: LSE3 XI andPO

F19 (Saxena, 2005) PG Min: LSE4 PI andPO

F20 (Rai et al., 2007, 2009) PG Min:
∑

wierri PI andPO

Formulations for point flexure problem

F21 (Lee, 2011) Flexibility-stiffness Max:w1 ·MSE− (1−w1)·
∑
ε2i PI andPO

F22 (Yin and Ananthasuresh, 2003) Output displacement Min:−MSE
Φ

PI andPO

F23 (Deepak et al., 2009; Rahmatalla and
Swan, 2005)

Output displacement Max:XO1,
subjecting toX∗ ≤ XI2

PI andPO = ks·XO

F24 (Cardoso and Fonseca, 2004) Flexibility-stiffness Max: SE PI andPO=ks ·XO

F25 (Deepak et al., 2009;
Chen and Wang, 2007)

GA* Max: e−(GA−GA∗)2K11K22 PI andPO

MSE: Mutual Strain Energy; SE: Strain Energy due toPI andPO, SEO: Strain Energy due to the output forcePO with the input port and the support region being fixed, SEI:
Strain Energy due to input forcePI with the output port and the support region being fixed,w1,w2, . . . ,wi : weighting factors,XO−P : the displacement of the output port
perpendicular to the desired direction, erri : Fourier coefficients errors between the desired and actual paths,εi : the strain due to input forces and output forces,Φ: the sum of
local relative rotations,XO1: output displacement when two springs of high stiffness are connected both at the input and at the output,XI2: output displacement when only a

spring of moderate stiffness is connected to the output,K11,K22: the condensed stiffness matrices, LSE1: minΦ =
2∑

j=0
α j

M∑
i=1

[∆out,i, j−∆
∗
out,i ]

2; LSE2:

Φ =
M∑

i=1
[(δXI−δX∗I )2+(δyi−δy∗i )2], LSE3:Φ = 1

M

M∑
i=1

[(δXI−δX∗I )2+(δyi−δy∗i )2]
1/2

, LSE4:Φ = (Qi−PI ) · (Qi−PI ), whereQi denotes the actual deformation of the output port for

the actuation forcesFi while PI is the desired deformation,i = 1, 2, 3,. . ., n; n is number of precision points (the un-deformed output position is not included).
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3.2.1 Formulations for qualitative design of CMs: F1–F14

Within F1–F14, F1–F8 are for the purpose of flexibility-
stiffness, while F9–F14 are for mechanical functional re-
quirements, e.g. MA, GA, etc. In F1–F8, the strain en-
ergy (SE), a concept commonly used in the structural op-
timization, is employed. Moreover, these formulations be-
come a trend to design CMs for the so-called flexibility-
stiffness purpose: (a) flexibility to undergo desired deforma-
tions (kinematic requirement); (b) Stiffness to bear external
loads (structural requirement). Hence, multi-criteria formu-
lations are built to design CMs so that the CMs are flexible
enough to deform and stiff enough to resist loads. The flexi-
bility is always formulated as Mutual Strain Energy (F1, F2,
F3, and F4) which numerically equals output deformation.
Other formulations for flexibility include a variant of MSE
(F5), or mechanical properties, e.g. output energy (F6, F8),
GA (F7). Since stiffness, on the other hand, represents the
compliance of a structure, so stiffness is formulated as SE,
which is essentially the compliance of a structure. The lower
the strain energy, the stiffer the structure. It is preferable to
formulate these criteria in the form of a ratio (F2–F5) than
to formulate them in the form of a summation (F1). With
the form of a ratio of these criteria, there is no need to select
weighting factors, and the multiple criteria have the same im-
portance in the objective function so that none of them will
appear to dominate the combined objective function.

Regarding these multi-criteria formulations (F1–F7), re-
searchers argued that if there was no structural requirement,
the optimal results tended to be infinitely flexible and con-
nections among points of interest could not be assured. How-
ever, this is not true for the following reasons: first, from
the viewpoint of the design problems of CMs, stiffness is
not even a primary requirement for a mechanism; therefore,
it is not reasonable to consider it as the primary require-
ment in formulations, e.g. output forces, output displace-
ment. Second, the reason why connections are not ensured
is that the employed optimization algorithms cannot avoid
topologically disconnected topologies. However, connected
topologies can actually be guaranteed by improving the abil-
ity of algorithms instead of considering stiffness in formu-
lations. Lu and Kota (2003) developed a representation of
load path scheme to avoid topological disconnected struc-
tures. The scheme excludes topological disconnected struc-
tures at the beginning of optimization. Zhou and Ting (2005)
introduced spanning tree theory to weed out invalid discon-
nected topologies. Third, maximizing stiffness, either explic-
itly or implicitly, leads to lumped CMs, where point flexures
appear, so that these CMs cannot be manufactured and func-
tion well in practical use. The point flexure problem is dis-
cussed further in the next section. Fourth, infinitely flexible
topologies can be avoided by considering constraints on in-
put or output displacements, stress, etc. To sum up, stiffness
should not be as important as functional requirements as a

criterion of mechanisms, e.g. output forces and output dis-
placements, in the design of CMs.

Ananthasuresh (1994) designed CMs by minimizing SE
(F8) under the case of spring model, where SE equals the
difference of input energy and energy stored in the spring.
The spring model captures the feature of the work-piece the
mechanism works with. The stiffness of the spring is chosen
depending on the stiffness of the work-piece, a hard work-
piece can be modeled as a spring with high stiffness and vice
versa. Minimizing SE is actually to find a balance of input
energy (minimizing input energy) and energy stored in the
spring (maximizing energy stored in the spring). The input
energy is determined by the input force and input displace-
ment while the energy stored in the spring is determined by
deformation of the spring (or the output displacement) and
the stiffness of the spring. Comparing with F1–F7, F8 is com-
pact and it gives more reasonable results. However, in F8, a
very careful choice of input force and stiffness of the spring
is required to get reasonable optimal topology. Both of the
input force and the stiffness of the spring need to match each
other so that neither of them dominates the value of SE. Nev-
ertheless, in the practical use of CMs, there is no much space
for designers to pick input forces and work-pieces. Further,
the output displacement is only implicitly included in the ob-
jective function while mechanisms are always designed for
explicit displacement requirements.

In F9–F14, instead of being designed for structural prop-
erties, i.e. maximized strain energy, CMs are designed purely
for mechanical functional requirements, e.g. output dis-
placement (F9), MA (F10), GA (F11) ME (F12–F14). Sig-
mund (2002) designed displacement amplifiers by maximiz-
ing the output displacement (F9). Both the actuator and
work-piece were modeled as springs. Sigmund (1997) for-
mulated MA (F10) as objective function to design CMs and
two loading conditions were considered, i.e. with gap or
without gap between the CM and the work-piece. Lau et
al. (2001) considered MA (F10), GA (F11) and ME (F12)
as objective functions, respectively. Resistance force due
to work-piece was considered using the spring model. The
properties of obtained topologies were consistent with the
employed objective functions from the viewpoint of mechan-
ical performances. By considering formulations for mechan-
ical functional requirements in the design of CMs, instead
of getting the same results with those for flexibility-stiffness
purpose, optimal topologies, whose performances are con-
sistent with the mechanical functional requirements, can be
obtained. However, there are nonlinear constraints in all the
formulations for MA and GA, which brings difficulty in al-
gorithm convergence and the results suffer from point flexure
problem (Deepak et al., 2009; Wang, 2009b).

Canfield and Frecker (2000) designed compliant displace-
ment amplifier for stack actuators by maximizing ME (F14),
which was the product of GA and MA. GA is measured
under the free displacement condition and the MA is mea-
sured under the blocked force condition, and these conditions
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Figure 4. Path with counter loads (Pedersen et al., 2001).

cannot be simultaneously obtained, the defined ME does not
exactly capture the real mechanical efficiency of the system
and it only represents a theoretical maximum (Frecker and
Canfield, 2000). Moreover, even though the spring model is
considered for the work-piece, the resistance force from the
work-piece is not included into the kinematic analysis and it
is only for the calculation of output energy which is stored in
the spring.

For formulations regarding ME, it is not necessary to add
any kinematic constraints, since ME is naturally constrained
to be less than one. From this point of view, it is more con-
venient to implement the optimization problem of the ME
formulations (F13, F14). However, it is mainly dependent on
the design problems regarding which formulation to select.

Besides the above discussion regarding these formula-
tions, several problems need to be pointed out:

First, the results are all sensitive to the output loads, i.e. the
magnitude of output forces, the stiffness of springs at the out-
put port. Second, the results suffer from point flexure prob-
lem and it is essentially common in all formulations. Third,
CMs are designed in a qualitative sense instead of a quantita-
tive sense. However, according to the discussions on DPA to
DPN, CMs are always required to generate exact magnitude
of displacements or forces. Fourth, most formulations spec-
ify input forces rather than input displacements. However,
according to the previously defined design problems (DPA-
DPN), not only forces, but also motions could be specified
as inputs of a mechanism. In addition, specifying displace-
ments as inputs have several benefits, i.e. the solutions are
less sensitive to the lower bounds of design variables. Last
but not the least, inputs could also be set design variables
instead of being specified since in the case of large deforma-
tion, specifying inputs may result in the missing of possible
optimal topologies of CMs which can generate the motion
required under the actuation of other inputs. This point also
fits to the mechanism kinematic design problem, i.e. in PG
without prescribed timing and MG without prescribed tim-
ing design problem, only the output motions are concerned.
Fifth, only translational inputs are considered in these for-
mulations, however, rotational motions or forces are not con-
sidered (Eqs. 1 and 2) while rotational inputs or outputs are
essential and common in applications, i.e. optical modulat-
ing component modulator (driven by a comb actuator) which
needs a planar angular rotator to control different angles and
to modulate the dissimilar light (Lin and Shih, 2002).

3.2.2 Formulations for quantitative design of CMs:
F15–F21

Min and Kim (2004) designed CMs for specified magnitude
of GA (F15) so that GA could be controlled directly and
quantitatively. F16–F20 are formulations to design CMs for
path generation based on the previously defined DPB or DPF.
Pedersen et al. (2001) design path-following CMs (F16) so
that the output port passes the precision points due to corre-
sponding input displacements, and it also passes the same
precision points when two separate counter loads (output
forces) are applied at each precision points. One is against
the output direction and one is perpendicular to the output
direction (Fig. 4). The input forces are constrained to upper
limits. A weighted sum of Least Square Errors (LSE), which
is the difference between the desired output displacements
and the obtained output displacement, is formulated for the
synthesis of CMs for PG.

Including the counter loads in this model makes the opti-
mal mechanism stiff enough to resist the counter loads. How-
ever the counter load in this model is selected based on the
input/output displacement and the actuator, which is not true.
In reality, the counter load is dependent on the work-piece
the mechanism works with, instead of actuators. In addition,
this model only guarantees the deformation in the desired di-
rection, the deformation in its perpendicular direction is not
concerned so that the output port may not pass through the
precision points even though the error function is very close
to zero.

Saxena and Ananthasuresh (2001) designs CMs for path
generation (F17) with a sum of least square errors (LSE2) in
a x-y coordinate system while the work-piece the CM works
with are modeled as linear springs. Precision points in the de-
sign domain are described with anx-y coordinates so that the
output port needs to traverse through points Pi of coordinates
(δX∗I , δy∗i ) with respect to its undeformed position due to in-
put forces. The work piece at the output port is modeled as
two linear springs. Here, two linear springs are added along
thex andy displacement directions at the output port to sim-
ulate the resistance along the linear path. However, like all
other models based on the spring model, the optimal results
highly depend on the stiffness of the two springs. Moreover,
the spring model cannot precisely capture the complicated
interaction between the CM and the work-piece in the case
of path generation.

Tai et al. (2002) designed path following CMs (F18) so
that the output port passed a sequence of precision points on a
path with specified input displacements and specified output
forces (output forces are specified as zero). The magnitudes
of the input displacements were given, and the forces that
needed to generate the input displacements were constrained
to an upper limit. However, the output loads were specified
as zero so that the connections cannot be guaranteed if no
other filter were employed.
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Figure 5. An optimal topology for a compliant gripper from F13
(Deepak et al., 2009).

Saxena (2005) designed path following CMs (F19) so that
the output port passed a sequence of precision points on a
path with specified input forces and specified stiffness of
spring at the output port. There were n objectives functions
for n precision points. The multiple objectives were mini-
mized simultaneously, and a set of Pareto optimal solutions
among were obtained. In these solutions, a solution that cor-
responds to the minimum of each objective existed, and the
solution of the combined summation of all the individual ob-
jective functions also existed. This idea may provide design-
ers more choices for desired solution from these Pareto op-
timal ones. But results showed that all the optimal results
could only capture the trend of the specified path, but could
not be desirably close to the specified path.

The optimal synthesis of mechanisms for path generation
commonly minimizes the sum of error functions, taking the
mean squared distance between the obtained curve and the
desired curve over a number of precision points as the struc-
tural error. The error function attempts to compare the shape,
size, orientation, and location of a desired curve with an ac-
tually obtained curve all at once thereby simultaneously lim-
iting the search space and making the search intractable.

Besides the LSE functions, Fourier Descriptors method
(Ullah and Kota, 1997) was employed to formulate the objec-
tive function (F20) for the path following CMs optimal syn-
thesis by Rai et al. (2007). The Fourier Descriptors objective
function compares purely the shape of two plane curves with-
out being affected by the location, size, or orientation dif-
ferences between curves. If the shape of the actual obtained
curve is the same as the desired one, by translating, rotating
and scaling the solution mechanism appropriately, without
changing topology of the mechanism, the solution curve can
be made to coincide with the desired curve in shape, posi-
tion, orientation and size. Apparently this may make the de-
sign non-systematic since human interruptions are required
to change the design to meet the function requirements.

We conclude that there are mainly two types of formula-
tions for the design of path-following CMs. One is the for-
mulations based on the LSE and the other is based on the
Fourier Descriptors. Although there are different forms of
LSE functions, the essence in these forms is the same, i.e.
the coordinate differences of precision points on the path.
With the LSE formulation, one can design CMs for any kinds

 

 

Figure 6. An optimal topology for a path-following CM from F16
(Pederson et al., 2001).

of output displacement requirements or any kinds of input-
output relationships. For example, one can design CMs for
linear or nonlinear input-output relationship (Pedersen et al.,
2001; Saxena and Ananthasuresh, 2001); one can also de-
sign CMs to follow linear or nonlinear paths (Pedersen et al.,
2001; Saxena, 2005). This is very essential since designers
can directly, precisely and quantitatively control the inputs
and outputs; while F1–F14 are only for the qualitative design
CMs. In contrast, with the formulations based on Fourier De-
scriptors, one can only design a CM to follow the shape of a
path; thus, this approach is only useful when the shape of a
path is the concern.

In addition, formulations for the design of path-following
CMs also have the same problems as stated as the first, sec-
ond and fifth points in previous part of this section.

3.3 Formulations for point flexure problem

A common problem in the above mentioned formulations is
the presence of point flexures, i.e. two solid elements con-
nect to each other diagonally by one node, as shown in the
circled regions in Figs. 5 and 6. Point flexures undesirable
in CMs since it is impossible to manufacture them, and re-
placements have to be employed (Yin and Ananthasuresh,
2003). Moreover, even replacements are used, they still suf-
fer high stress, which leads to yield failure, or fatigue failure.
The presence of point flexures leads to a lumped compliant
system whose compliance is concentrated on several local re-
gions as opposed to the desired one called distributed compli-
ant mechanism whose compliance is distributed evenly to the
whole body of the CM. There are methods taking efforts to
design CMs without point flexures by considering alternative
parameterization methods or filters; however, only methods
on alternative formulations are discussed in the paper.

Yin and Ananthasuresh (2003) proposed a method to re-
strain local, relative rotation with a novel that hopes to make
the local deformation uniform throughout the structure. It
is explained that the optimization algorithm tends to gen-
erate point flexures since they undergo for large displace-
ments without the cost of high strain energy, both of which
are just what are desired in the formulations. For example,
in F2, the ratio of output displacement to the strain energy
is maximized, point flexures is just the ideal component that
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can maximize the ratio. With the relative rotation being re-
strained, the formulation (F22) is able to remove point flex-
ures and give distributed compliant designs. However, this
approach only restrains the relative rotations, which actu-
ally limits the degree of lumped compliance but it does not
touch the essence of the problem, i.e. it is the formulation
that prefers to topologies with minimum strain energy in a
CM and maximum displacement at the output port, which
leads to the tendency of lumped compliance, even point
flexures. Restricting the relative rotation can only prevent
the relative rotation but it cannot change the tendency of
lumped compliance.

With the similar explanation for the point flexure problem,
Cardoso and Fonseca (2004) stated that strain energy should
not be minimized since a distributed compliant mechanism
must spend a part of the input energy in the form of strain
energy to deform. Therefore, Cardoso and Fonseca (2004)
maximized the strain energy (F25), imposing kinematic func-
tional requirements as constraints. However, enough strain
energy in the elastic body is only a necessary condition to
be a distributed CM but not a sufficient condition; therefore,
the formulation cannot ensure the removal of point flexures
in optimal topologies. In addition, the specifications of the
design should be very carefully selected, e.g. kinematic con-
straints, input force and output forces need to be selected
carefully to guarantee distributed CMs without point flex-
ures. Lastly, a CM designed from this formulation has low
ME since the stored strain energy is large inside the elastic
body.

Wang (2009a) developed F26 to eliminate point flexures,
arguing that the true optimum of the optimization problem
as posed was a rigid-body linkage with revolute joints. More
specifically, a kinematically permissible solution can gener-
ate large output displacement and has minimum strain en-
ergy; therefore, the optimization algorithm tends to generate
solutions that closely imitate a rigid-body linkage by means
of point flexures. Wang (2009a) also found three necessary
conditions on the derived input stiffness matrixK I , output
stiffness matrixKO and strucrue stiffness matrixKS from
the mechanism stiffness matrixKm which was ultimately
from the global stiffness matrix. BothK I and KO have to
be non-singular to ensure point flexure-free. For example, if
any ofK I andKO is singular, theKm is semi-definite so that
the mechanism’s structure permits an internal rigid-body dis-
placement mode which results in point flexures in the opti-
mal design. Thus, it is necessary to eliminate any rigid-body
displacement mode in the CM to avoid any point flexures by
maintainingK I andKO non-singular. These necessary con-
ditions are formulated into F26. However, the presence of
lumped compliance or point flexures cannot be completely
prevented, since it similarly restrains the rigid-body motion.
Wang (2009a) and Yin and Ananthasuresh (2003) shared
the same idea, i.e. to restrain the motion; however, they did
not change the tendency of lumped compliance. In addition,
Deepak et al. (2009) also found that when the mechanical

specification was not set properly, e.g. the desired GA was
too large, point flexures still appeared in the optimum.

Lee (2011) designed CMs with a strain based formulation.
He argued that in the conventional strain energy based for-
mulation, an element with large strain but low material den-
sity had no priority to get more material distribution even
though it was supposed to get more, which leaded to local-
ized deformation or even point flexures. Thus, a strain based
formulation (F21) was developed to eliminate this distortion
by formulating the strain rather than strain energy of each
element in the objective function. The new formulation re-
duced localized high deformation in CMs in some degree but
the presence of point flexures was still hard to be avoided in
the demonstrated examples.

The underlying reasons for the presence of point flexures
in the topological design of CMs are still in debate in the
literature, and a variety of formulations have been taken to
deal with this problem. However, most of the formulations,
though with more criteria, are still based on the conventional
formulations, which tend to generate point flexures. Thus, no
universal formulation in the literature completely avoids this
problem. Efforts must be taken to find out new formulations
which are not limited by the ideas behind conventional for-
mulations.

4 Conclusions and future work

In the literature, CMs have been mostly designed for the bal-
ance of flexibility and stiffness, and maximized MA, GA or
ME. However, design problems and formulations as defined
with these attributes are not the main streams of design prob-
lems of mechanisms, i.e. FG, PG and MG. Thus, general
Design Problems (DPA∼DPL) of CMs through the TO are
defined in this paper due to the lack of comprehensive defi-
nitions for design problems of CMs in the literature. Typical
design problems of rigid body mechanisms, i.e. FG, PG and
MG, are extended to the design problems of CMs based on
DPA∼DPL.

Boundary conditions or working conditions that have been
considered in the literature are also reviewed. The spring
model captures the behaviour of actuators or work-piece and
it has been widely accepted in the literature. However, the op-
timal results are highly dependent on the stiffness of springs
(Wang, 2009b; Luo et al., 2005) so that the optimal CMs can
only work properly with work-pieces which have the same
stiffness as the one in the design specification, while in prac-
tice a CM may interact with different work-pieces. In addi-
tion, the modeling of work-pieces or actuators needs to be
improved and rotational motions or forces need to be con-
sidered since only translational motions or forces have been
considered in the literature.

Future work regarding boundary conditions lies in: (1) the
accurate modeling of work-pieces in the case of path gen-
eration and motion generation CMs; (2) the design of CMs
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which are not sensitive to the stiffness of work-piece or actu-
ators; (3) the design of CMs with variable boundaries condi-
tions, e.g. consider input force as an design variable or sup-
port regions as an design variable, etc; (4) consider rotational
inputs and outputs; (5) the design of CMs with specified ac-
tuators and output forces, i.e. the design specification➂.

Functional requirements and the associated formulations
(F1–F25) in the literature are comprehensively reviewed
along with their limitations. Based on whether the output is
controlled quantitatively or not, the formulations can be cat-
egorized into two types: (1) formulations for quantitative de-
sign of CMs; (2) formulations for qualitative design of CMs.
In addition, formulations that aim to solve the point flexure
problem are also discussed. Formulations for the qualitative
design of CMs cannot satisfy the defined design problems
while formulations for the design of path following CMs
partly satisfy the defined design problem in some degree al-
though it is incomplete, and the improvement of the model-
ing of actuators and work-pieces is still in demand.

Lastly, an overview of the formulations for the point flex-
ure problem is presented. Most of these formulations, al-
though with more criteria, are still based on the conventional
formulations, generating point flexures in results. Thus, no
universal formulation yet in the literature ensures point
flexure-free results. New formulations, point flexure-free by
their nature, need to be developed in the future.

Table A1. List of abbreviations.

CM Compliant Mechanism
TO Topology Optimization
FCBPSS Function, Context, Behaviour,

Principle, Structure, State
ME Mechanical Efficiency
MA Mechanical Advantage
GA Geometrical Advantage
FG Function Generation
PG Path Generation
MG Motion Generation
DPA (B,C,. . .L) Design Problem A (B,C,. . .L)
F1 (2,3,. . .,25) Formulation 1 (2,3,. . .,25)
LSE Least Square Error
MSE Mutual Strain Energy
SE Strain Energy
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