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Abstract

The unique material nature (e.g. hard, brittle, heterogeneous and orthotropic) of

SiC-based Ceramic Matrix Composites (CMCs) highly affects the outcomes of machin-

ing process by inducing high thermo-mechanical loads during material removal. This can

result in severe material damage which in turn causes a reduction of the in-service life

of critical structural ceramic components (such as in aero-engines or nuclear reactors).

In this study, the phenomenon by which the material removal mechanism during drilling

influences the CMC surface integrity are discussed by characterising the fracture and de-

formation phenomena on the CMC’s constituents - i.e. SiC and Si materials. Moreover,

the strain induced to the surface, together with the changes in chemical composition

are characterised via micro Raman spectroscopy and related to the principles of residual

stresses upon cutting. This results in a novel understanding of the material removal

process that governs cutting of SiC-based CMCs while emphasising how the different

microstructure, morphology and nature of ceramics behave under the same cutting con-

ditions. This study has therefore led to a comprehension of how the microstructure of

complex hierarchical ceramic materials such as SiC/SiC CMCs is affected by a mechan-

ical cutting process and opens avenues to understand the structure damage under other

machining operations (e.g. milling, grinding).
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1. Introduction

Silicon Carbide (SiC) Ceramic Matrix Composites (CMCs) have been an important

research field within the aerospace industry in recent years. SiC matrices reinforced with

SiC fibres allow for an improved in-service behaviour, maintaining their high strength

at temperatures up to 1250◦C, an increase of about 150◦C compared to Nickel-based

superalloys. Is therefore anticipated that in high temperature structural applications

(e.g. aerospace or nuclear) where re-usability is a key factor, the SiC/SiC CMC structures

are one of the more promising groups of material candidates [1].

The SiC matrix can be manufactured/processed by three main routes [2]: pyroly-

sis of a SiC pre-ceramic precursors [3, 4], chemical vapour infiltration (CVI) [5, 6] and

melt infiltration (MI) [7]. In terms of SiC fibres, three main manufacturers found in

the market are Nippon Carbon, COI Ceramics and Ube ind, producing the trade-marks

Hi-Nicalon (Type-S), Sylramic (iBN) and Tyranno SA3 respectively, where the elemental

composition of the precursors and the maximum production temperature varies [8]. The

melt infiltration method in SiC-based CMCs has been established as a reference method

for the aerospace industry as a fully-dense matrix can be achieved [7, 9]. In these ma-

terials, a Boron Nitride (BN) or a Pyrolytic Carbon (PyC) coating is deposited around

fibres to produce an improved mechanical behaviour by creating weak interfaces which

bridge the crack propagations [10, 11]. Moreover, it has been reported in the literature

[12, 13] that in aerospace applications, where this interface can be exposed to severe

environments (due to the fibre-matrix bridging mechanism), BN coatings could improve

the corrosion resistance. Further improvements in CMC manufacturing for the aerospace

industry aimed to reduce the porosity and protecting the fibres-interface integrity during

the matrix formation. For these reasons, several CMC manufacturers added an extra

step prior to the melt infiltration process which consists of producing a SiC or Si3N4

coating by Chemical Vapor Infiltration (CVI) [7, 14], resulting in a combined CVI-MI

process for the manufacturing of SiC-based CMCs.

To characterise the manufacturing process, Raman spectroscopy has been shown to

give precise results in measuring the point-by-point strain by quantifying the peak shift

[15]. Consequently, a few authors have focused their work on characterising the CMC

forming processes by understanding the residual stresses and chemical composition of
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the reinforcement structure and the matrix [16]. Wing et al. [9, 17] reported that in a

melt infiltrated matrix (forming a SiC-Si), the Si phase suffers from compressive residual

stresses while the SiC is exposed to tensile microstresses caused by the difference in

Coefficient of Thermal Expansion (CTE) between the Si and SiC. Gouadec et al. [18]

studied the induced residual stresses in uncoated and BN coated Hi-Nicalon fibres, finding

compressive stresses in the fibres when embedded a Celsian matrix. On the other hand,

Knauf [19] reported that in a SiC/SiC CMC manufactured via CVI-MI, fibres do not

suffer any significant induced residual stress. Moreover, Knauf [20] proposed a novel

approach which characterises the residual stresses in a MI SiC matrix with B-doped Si,

which concludes that the Si regions are under compression while the SiC particles are

under tensile residual stresses.

It is therefore clear that the stressed condition in which CMCs result after the primary

manufacturing has been recently studied as a method of characterising and understand-

ing the matrix formation process. Nevertheless, the increasing demand of CMCs in high-

value and complex parts for the aerospace and nuclear industries has also created the

need for using conventional machining processes (i.e. drilling, milling, grinding) with the

aim of obtaining the final shape and/or smooth surfaces. Microstructural investigations

of the machined surface in metals such as Carbon steels [21], Nickel-based superalloys

[22, 23] or monolithic ceramics such as RB SiC [24] have been reported in the literature.

Nonetheless, when it comes to understand the material damage after a mechanical re-

moval process in difficult-to-machine SiC-based CMCs, the research background is, to

the authors knowledge, almost non-existent. The understanding of the machined surface

of CMCs from the point of view of microstructural changes is challenging due to the ini-

tial prestressed condition and different brittle-ductile nature of the various constituents.

Moreover, several specific engineered interfaces (e.g. between fibres and CVI coatings)

are created which can absorb machining energy by cracking or debonding. Ghosh et al.

[25, 26] studied the surface integrity after a scratch test in a particle ceramic ZrB2-SiC

showing that both microplasticity and microcracking are dominant mechanisms during

the process and measured tensile residual stresses in the SiC particles. However, these

studies are far from being relevant to machining. Gavalda and Axinte [27] reported, by

using the orthogonal cutting scheme, that different fracture mechanisms occur in a CMC

3



depending on the fibre orientation, however the effect on the surface integrity was not

characterised. As shown in Fig.1, in the specific case of drilling of SiC-based CMCs,

a combination of the cutting scenarios occur in a closed environment (within the hole)

where high thermomechanical loads are formed [28] and which can be very detrimental

for the machined surface. From the cutting mechanisms showed in Fig.1 it could be

commented that parallel (Fig.1a) and transverse (Fig.1b) fibres are the main fundamen-

tal scenarios to study the removal process as they represent the orthotropic directions

of the material [27]. Furthermore, in the transverse cutting scenario, the fibres need

to be fractured through their preferential axis (with higher values of translaminar than

interlaminar fracture toughness), leading to a more complex fracture and deformation

mechanisms which do not occur in the parallel fibres scenario where a simpler debonding

mechanism is the dominant removal mechanism [27].

Figure 1: Material response diagram to the drilling of orthotropic materials with a schematic of (a) fibres
placed parallel to the cutting speed (0◦) and (b) fibres placed perpendicular to the cutting speed (90◦).

In this study, an explanation of the thermomechanics by which the damage is in-

curred to the CMC structure by putting in evidence their fracture morphology, induced

strain and change in composition is presented. This is then related to the theoretical
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understanding of residual stresses upon cutting and how the different microstructures

and morphologies found within a SiC-based CMC are affected by a mechanical removal

process.

2. Experimental procedure

Because of its hard, heterogeneous, anisotropic and brittle nature, SiC/SiC materials

can be considered as one of the most difficult to machine CMCs. Drilling experiments

were performed in a CVI-MI SiC/SiC with Hi-Nicalon fibres in a woven architecture of

a 5 harness satin (5HS) using a 5 mm diamond coated twist drill. As aforementioned, to

protect the fibres and improve the mechanical and chemical performance of the CMC, a

CVI BN followed by a CVI SiC coating was employed during the manufacturing process

(as similarly explained in [19]) resulting in the morphology shown in Fig.2b. Preoptimised

cutting parameters (f = 2 mm/min and v = 3000 rpm) were used to drill the CMC which

anyway resulted in high mechanical and thermal loads, as explained in [28].

To allow for the observation of the machined surface, the drilled holes were sectioned

along the height (section A-A in Fig.2a) by abrasive waterjet cutting at reduced feed

rates to avoid any delamination. The sectioned “as-machined” samples were analysed in

cross section after polishing (red surface in Fig.2c) and without polishing (yellow surface

in Fig.2c). Furthermore, to gather the reference information from the “as-manufactured”

state of the SiC-based CMC structure, several samples of the same material were pol-

ished (Fig.2b). All the samples were ultrasonic cleaned using methanol prior to the

measurements.

2.1. Raman Spectroscopy

The Raman spectra were recorded at room temperature on a Horiba−Jobin−Yvon

LabRAM HR confocal Raman microscope equipped with a Synapse CCD detector scan-

ning area of 50 x 50 µm, using an excitation laser wavelength of 532 nm, operating at a

power of ∼ 2 mW (10%) and a 1800 lines/mm grating. The Raman shift was calibrated

using the Raleigh peak and the 520.7 cm−1 Silicon line from a Si(100) reference sample

as previously done in the literature [29].
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Figure 2: (a) Schematic of a CMC sample with a machined hole and showing (b) the microstructure of
the “as-manufactured” CVI-MI SiC/SiC and (c) the “as-machined” surfaces to allow the evaluation of
the damage induced by the machining, i.e. drilling process.

In the case of Hi-Nicalon fibres, the SiC structure contains a higher ratio of C to

Si atoms [8], resulting in a dominant Carbon Raman spectrum. It has been previously

reported [18] that degradation of Hi-Nicalon SiC fibres can be induced by the laser power,

especially for power densities higher than approximately 1 mW/µm2. In order to verify

that this was not occurring, several tests have been carried out at lower power (0.25 µW

scanning an area of 50 µm x 50 µm) and compared with the settings used for the results

stated in this work, which revealed that degradation had not occurred at higher power

densities.

As reported in the literature for Hi-Nicalon fibres [18, 30], when analysing the Raman

spectra, a Lorentzian fitting for the carbon D peak (green) and Gaussian fittings for the

carbon G (blue) and the D′ (red) peaks have been employed, as shown in Fig.3a. To

characterise the fibre-rich regions, repeated (> 10) measurements (scanning an area of

50 x 50 µm2) have been carried out on three different conditions:

(i) “Free fibres”: separately delivered free tows without being embedded in a matrix
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to measure the stress free conditions of the fibres.

(ii) “As-manufactured”: tows which were embedded in the CMC matrix and after a

polishing procedure, condition that enable the characterisation of the CVI-MI SiC

matrix formation process.

(iii) “As-machined”: tows which were embedded in the matrix and have been exposed to

the machining process condition that enable the characterisation of the mechanical

material removal process).

In the case of the SiC-Si matrix, the B-doped Si and the 6H-SiC peaks are found,

producing the spectrum shown in Fig.3b. The B-doping changes the electronic structure

of the Si producing non-symmetric peaks [31, 32] which are commonly fitted with a Fano

line shape (Eq.1) [33]:

I(ω) = I0
(q + x)2

1 + x2
where x =

ω − ω0

τ
(1)

where: I0 - arbitrary intensity factor, q - the symmetry parameter, τ - width param-

eter and ω0 - phonon wavenumber. As shown in Fig.3b, three fano-type peaks are found

in the B-doped Si at 520 cm−1 (optical phonon), 620 cm−1 (B11) and 644 cm−1 (B10).

On the other hand, the SiC particles showed the Raman spectrum typical from a 6H

polytype with free-stress peaks at 767 cm−1, 789 cm−1 and 797 cm−1 [34].

As aforementioned, residual stress information can be obtained from Raman Spec-

troscopy by addressing the peak shift. Knauf [19] presented the equations to convert

the Raman peak shift (∆ω) to hydrostatic residual stresses (∆σH) for Hi-Nicalon fibres,

6H-SiC particles and the free B-doped Si:

∆σH,Hi−Nicalon = −0.333∆ω

∆σH,SiC = −0.283∆ω

∆σH,Si = −0.266∆ω

(2)
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Figure 3: Raman spectra of (a) Hi-Nicalon SiC fibres with a Lorentzian fitting of the D peak (green)
and Gaussian fitting of the G peak (blue) and D′ peak (red) with the resultant fitting plotted in orange;
(b) SiC-Si matrix with three fano-line fitting peaks (Si) and the three Gaussian peaks (SiC).

2.2. Imaging analysis

To further understand the induced residual stresses and changes in chemical composi-

tion, qualitative information of the material removal mechanism by looking at the surface

response was done via SEM and TEM. A Field Emission Gun SEM (JEOL 7100F FEG-

SEM) was used to obtain high resolution information of the “as-manufactured” and

“as-machined” state of the CMC. Afterwards, the subsurface from the “as-machined”

samples was studied by preparing thin foils with a Focused Ion Beam (FIB) SEM (FEI

Quanta200 3D DualBeam FIB/SEM) following the cross-sectional technique and thin-

ning it up down to ≈ 150 nm, and were observed with TEM (JEOL 2100Plus) operated

at 200 kV.

3. Results and discussion

From the machining point of view, slow tool (e.g. drill) feed rates are needed for

the cutting of hard SiC-based CMCs to avoid the failure of the cutting tool [28]. This

results in considerably small values of uncut chip thickness (≈ 1 µm) compared to either

the fibre and matrix areas (≈ 200 µm), concluding that they are not simultaneously cut

and therefore enabling their independent analysis. Hence, the following sections aim at

explaining the material removal mechanism and capturing the induced damage displayed
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by (i) the fibre-rich and (ii) the matrix-rich regions.

3.1. Machining induced damage within the fibre-rich region

3.1.1. Residual stresses and chemical composition

The Raman measurements performed on “as-manufactured” CMC samples show no

statistically significant peak shift in the Carbon D peak (Fig.4a), matching previous

results found in the literature for a similar CVI-MI SiC/SiC [19]. However, after the ma-

chining (“as-machined”), the fibres suffer a decrease in the D peak wavenumber which

translates in tensile residual stresses. Using Eq.2, the hydrostatic residual stress induced

during the machining process can then be calculated, i.e. 644 ± 225 MPa. The high stan-

dard deviation obtained for the “as-machined” samples, which is considerably larger com-

pared to the “free fibres” and “as-manufactured”, could be the outcome of non-constant

thermal and mechanical loads occurring during the drilling of hard-heterogeneous mate-

rials such as SiC-based CMC [28]. The cutting phenomena behind the values of residual

stresses are combined with the surface and subsurface analysis in the next section to

provide an in-depth explanation of the material removal mechanism and surface damage.

Figure 4: Raman spectroscopy results showing (a) the peak shift comparing the “free”, “as-
manufactured” and “as-machined” fibres and (b) the residual stresses obtained with Eq.2 for the “as-
manufactured” and “as-machined” fibres, normalising the values with the average found for the “free”
fibres. Data scatter of > 10 repeated measurements on areas of 50x50 µm

The Raman spectra found for the “as-manufactured” and “as-machined” samples do

not display any significant change in terms of D/G peak ratio or bandwidth, meaning that
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the fibres do not undergo any variation in terms of microstructure (e.g. crystallite size

or amount of disorder in the C structure) nor in chemical composition (e.g. degradation

or oxidation of the C).

Based on this set of analyses, it can be concluded that the machining process induces

levels of tensile residual stress but no major changes in chemical composition are observed

in the fibre-rich region. With this quantitative understanding of how the C domains in

Hi-Nicalon fibres are strained as a result of the drilling loads, a study of the material

removal mechanism by analysing the microstructure and morphology appearing in the

“as-machined” surface is presented in the next section.

3.1.2. Understanding the material removal mechanism via microstructure evaluation of

the affected surface

After the machining, the fibre-rich region shows evidence that the dominant mate-

rial removal mechanism in drilling is brittle based, mainly with transgranular cleavage

fracture (Fig.5).

Figure 5: SEM image showing the transgranular cleavage fracture after the machining process in the
fibre-rich region. NB: the pore observed is due to the manufacturing process (e.g. infiltration).

From the principles that govern the induction of residual stresses in cutting [35], it

can be concluded that tensile residual stresses appear when the strain in the machined

surface is primarily induced by the thermal load generated by the tool-workpiece friction.

In this case it could be considered that, as brittle fracture is the dominating material

removal mechanism, the mechanical-induced plastic flow absorbed by the material is

limited and the main source of strain is of thermal nature. Fig.6 shows a simplified
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schematic of the proposed material removal mechanism suffered by the fibres: when a

thermal load is generated during cutting, the surface plastifies in compression (Fig.6a),

leading to tensile residual stresses when it cools down (Fig.6b).

Figure 6: Schematic of the material removal mechanism showing (a) the effect of having a thermal load
as a main source of material straining during cutting and (b) the resultant residual stresses found in the
machined surface and subsurface.

It has been observed that after the machining, the CVI SiC coating of the fibres

display a radial cracking (as shown in Fig.7 for two different fibres). A reason for the

formation of these cracks could initially be related to the mismatch in coefficient of

thermal expansion (CTE) between the Hi-Nicalon fibres and the CVI SiC coating. It

is well known in the literature that CTE mismatch is a big challenge in CMCs, and in

particular the case of these two materials, the CTE varies from 3.5 ppm/◦C for the SiC

Hi-Nicalon fibres to 4.5-5 ppm/◦C for the CVI SiC [19, 36]. Nevertheless, the temperature

expected during drilling of CMCs in the presence of coolant application is less than the

peak processing temperature that these materials are exposed to, which is around 1400

◦C [19]. Therefore, the origin of the radial fracture found in the CVI SiC structure

should be linked to the mechanical load applied during the machining process; however,

this radial nature of cracking will be further investigated.

To further validate the chemical analysis concluded with Raman spectroscopy and in

order to better understand how the material fractures by interpreting the microstructure

and morphology of the CVI SiC coating, a TEM study of a region including a Hi-Nicalon

fibre, a CVI BN and a CVI SiC coating is presented in Fig.8. It can be observed that,

while the Hi-Nicalon fibres show a nanocrystalline structure, the CVI SiC coating has

columnar preferential grain growth (which expands radially from the fibre surface) and
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Figure 7: Two examples of the machined surface in the fibre-rich region showing the formation of radial
cracks in the CVI SiC coating surrounding the fibres.

that the radial fracture follows this intercolumnar direction, which is the weakest fracture

plane. Hence, the specific fracture mode appearing in cutting is affected by the CVI

growing structure leading to a unique signature on the machined surface.

Electron energy loss spectroscopy (EELS) was performed in a Hi-Nicalon fibre from

the machined surface to the subsurface. The graphitic and amorphous Carbon signature

did not show any considerable change, confirming the conclusions drawn from Raman

spectroscopy using the bandwidth of the D peak and the D-G peak ratio analysis. More-

over, the EDS spectra showed that no significant increase in oxygen content is found at

the surface but only on the material that has filled the fractured area (called fractured

material in Fig.8b), concluding that in the machined surface of the fibre-rich region, no

C or SiC oxidation occurs.

Due to the orthotropic nature of long-fibre reinforced materials such as CMCs, two

main fibre orientations are faced by the cutting tool (see Fig.1). So far in this study,

only transverse fibres have been studied as their surface integrity is more challenging to

characterise (i.e. they are exposed to more complex fracture mechanisms). On the other

hand, the material removal mechanism appearing for longitudinal fibres is based on a

debonding action leading to a surface with pull or unpulled fibres and with a minority

of them begin fractured along its longitudinal axis (Fig.9).

The phenomenon characterising the material removal mechanism in the fibre-rich

region has been explained based on the tensile residual stresses and the morphology of

the fracture-dominated evidence found in the machined surface. In the next section, a
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Figure 8: TEM analysis of a region including a Hi-Nicalon fibre, a CVI BN and CVI SiC coating (a) BF
TEM image of the fracture mechanism suffered by the SiC columnar structure; (b) STEM analysis and
EDS signal showing a greater concentration of oxygen in the fractured material.

Figure 9: Three cutting mechanisms found in a single sample region when cutting longitudinal fibres
(placed parallel to the cutting direction, Fig. 1a): fractured, pull-out and unpulled fibre
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detailed explanation of the behavior presented by the matrix-rich region during machining

utilising the above procedures is presented.

3.2. Machining induced damage within the matrix-rich region

3.2.1. Residual stresses and chemical composition

Following the strategy defined by Knauf [20] to calculate the residual stresses in a

B-doped Si with a non-constant concentration, a stress free line which considers the

peak half width (as an indicator of the B concentration) and the wavenumber of the

520 cm−1 peak has been plotted with a black line in Fig.10a. It can be observed that

initially (“as-manufactured”) the Si appears slightly under compression which shows a

comparable tendency with the results from the literature [19]. However, back to back

values should not compared because in the current work a different laser wavelength

is used (532 nm in the current work instead of 515 nm [31, 19]) and this can slightly

influence the results. Nevertheless, as the main objective of this work is to enable deeper

understanding of the effect of machining on CMC structures, the values of peak shift have

been normalised by the “as-manufactured” average. It can be observed from Fig.10b that

between the “as-manufactured” and the “as-machined” samples there is a variation in

peak shift corresponding to 316 ± 117 MPa of residual stresses in compression. However,

in specific regions of the CMCs, the Raman peak shift seems to suffer a greater drop

(green squares) which is directly related to a variation in the Raman spectrum.

Analysing these zones in further detail, it is observed that only specific regions of the

Si matrix tend to suffer a transformation in the Raman spectra where a peak starts to

appear below 500 cm−1 (as shown in Fig.11a). This alteration in the Raman spectra can

be related to an amorphisation of the Si [37] that due to the high strain and temperature

applied during the machining process leads to a redeposition of melted Si on the machined

surface (see Fig.11b).

The Raman peak shift and the stress conversion of the 789 cm−1 peak found in the 6H-

SiC particles is shown in Fig.12. It can be seen that initially (“as-manufactured”) the SiC

particles are under tensile residual stresses, as presented in the literature [19]. However,

after machining a reduction in the peak shift is observed, resulting in a decrease of tensile

stresses (either inducing compressive or releasing tensile stresses). Nevertheless, the
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Figure 10: Raman spectroscopy results from the B-doped Si using (a) a stress free line in a wavenumber
vs peak half width plot and (b) peak shift (left scale) and stress variation (right scale) using Eq.2 and
normalising for the ’as-manufacturing’ average.

Figure 11: (a) Raman spectra of three different measurements of the B-doped Si: “as-manufactured”, “as-
machined” and “as-machined” amorphous; (b) SEM image of the matrix region showing some evidence
of redeposited material on the machined surface (scale 100 nm).

variation in peak shift is small and with large values of standard deviations, questioning

the statistical significance of the determined results.

The main reason for the difference in values found for the SiC could be related to

the penetration depth of the laser used for the Raman measurements. Due to the differ-

ent light absorption coefficient of each constituent of SiC-based CMCs, the penetration

depth for Si and C remains considerably smaller than 1 µm while for SiC the order of
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Figure 12: Peak shift and residual stress conversion (calculated with Eq.2) obtained for the 789 cm−1

stress-free peak appearing in the 6H-SiC Raman spectra.

magnitude is 1000 times greater (around 700 µm) [19, 38]. The higher penetration depth

presented by the SiC particles leads to a measurement where the subsurface is also anal-

ysed, adding non-affected SiC particles to the measurement and which is translated into

greater standard deviations. In their work, Ghosh et al. [26] claimed to be able to calcu-

late surface residual stresses induced by a scratch test on the SiC particles reinforcing a

ZrB2 matrix. Because of the lower concentration of SiC particles (5%), this measurement

might have been more accurate, however, in the case of a SiC/SiC, the amount of SiC

particles forming the MI-CMC matrix is considerably higher (as shown in Fig.2b) and

the measurements can then be affected.

Hence, it can be concluded that compressive residual stresses are induced to the Si

regions and specific areas might experience an amorphisation which has been associated

with a redeposition of melted Si (Fig.11) during machining. Moreover, the SiC particles

also tend to suffer an increase in peak shift which translates in compressive or release

of tensile residual stresses. Nevertheless, because of the higher laser penetration depth

in the SiC, Raman spectroscopy should not be used to quantify the results but just to

present the tendency behind the material removal process. An in-depth understanding

of the material removal mechanism and surface damage is presented in the next section.
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3.2.2. Understanding the material removal mechanism via microstructure evaluation

In contrast with the results found in the fibre-rich region, when machining the ma-

trix, the material tends to suffer a ductile behaviour with some particles being pull-out

(Fig.13), as similarly reported for the analysis of a reaction bonded SiC surface after

grinding with small uncut chip thickness [39].

Figure 13: Machined surface from a normal view showing evidence of the ductile behaviour and grains
pull-out in the SiC-Si matrix.

In this case, the removal mechanism occurring ahead of the cutting edge is based

on localised plastic deformation which induces a stress field into the material (Fig.14a).

Therefore, corroborating the compressive residual stresses found with the Raman anal-

ysis and the evidence of plastic deformation found in the machined surface, it could

be concluded that the SiC-Si machined surface is mainly generated by a mechanic in-

duced plastic strain. This conclusion is in good agreement with the principles of residual

stresses upon cutting where compressive residual stresses are found in the surface when a

mechanical-induced strain is the dominating removal mechanism. This phenomenon has

been schematically represented in Fig.14, where the material is subject to a directional

stress field in the cutting direction which compresses the surface found ahead of the

cutting edge and consequently pulls the material behind (see Fig.14a). Hence, when the

tool moves away, as the material has plasticised in a tensile state, compressive residual

stresses are found in the surface. (Fig.14b).

To further understand the material removal process, the subsurface of an area in-

cluding a 6H-SiC particles and free Si was analysed in cross section with TEM. Fig.15a
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Figure 14: Schematic of the material removal mechanism showing (a) the effect of having a mechanical
load as a main source of material straining during cutting and (b) the resultant residual stresses found
in the machined surface and subsurface.

and Fig.15b show how a ≈ 1 µm layer of the SiC-Si material is mechanically affected

by strain and fracture. The EDS analysis of the fracture site shows how the crack does

not follow the SiC-Si interfaces producing trans-particle fracture. Moreover, oxidation

of the non-oxide ceramics (i.e. SiC and Si) is just observed in the crack paths and it is

difficult to conclude if it is caused by the FIB milling process or because of infiltration of

coolant during the machining. Nevertheless, in the case of SiC/SiC CMCs, an obvious

recrystallization layer (known as white layer [23] when found in refractory metals such

as Nickel-based alloys) is not formed after the machining process.

3.3. Influence of the composition, microstructure and morphology of SiC-based materials

upon cutting

During the cutting of CVI-MI SiC/SiC CMC, three different SiC-based materials are

encountered by the cutting edge (cut at the same conditions) observing distinct material

removal mechanisms for each as follows:

• The Hi-Nicalon fibres are formed by a 3C-SiC polytype with a nanocrystalline grain

structure (grain size, dsize ≈ 10 nm) and with free turbostatic Carbon [40] (Fig.

16a). As shown in Fig.5, this structure presented a tendency of being removed by

a brittle transgranular cleavage fracture.

• The SiC particles found in the SMI matrix are formed by a 6H-SiC polytype with

a microcrystalline structure (grain size, dsize ≈ 1-2 µm, Fig.16b). These particles

tended to display a dominating ductile deformation mechanism. In some cases, the

particles were fractured and pulled out from the matrix (see Fig.13).
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Figure 15: TEM analysis of the matrix-rich region showing (a) and (b) via BF TEM the thickness of
the affected layer, (c) BF STEM of the affected region with an EDS analysis showing the concentration
of (d) Silicon, (e) Carbon and (f) Oxygen.

• The CVI SiC coating surrounding the fibres is formed by ultrafine and elongated

grains (grain size, dsize ≈ 100 nm, Fig.16c). The coating showed a tendency to

radial fracture which was related to the columnar growth of the CVI process (see

Fig.7).

It has been reported in the literature that brittle materials can undergo a ductile-to-

brittle (DTB) transition when cutting. This transition depends on the energy required

for the material to attain plastic flow (Ep) and fracture (Ef ). This can be analytically

formulated as [41]:

DTB ∝
Ep

Ef
=

σyVp

GAf
(3)

with σy - yield strength, Vp - volume of material being deformed, G - energy release

rate and Af - fractured area. Assuming that Vp and Af are proportional to the charac-

teristic length of material being removed (i.e. Vp ≈ d3 and Af ≈ d2), for a given material

the DTB transition is proportional to d, which in a cutting scenario is translated to the
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Figure 16: Effect of cutting on different SiC-based constituents of the CMC (a) Hi-Nicalon fibre contain-
ing nanocrystalline 3C-SiC and turbostatic Carbon, (b) polycrystalline 6H-SiC particles and (c) CVI
coating with a columnar structure.

uncut chip thickness (hd) [41]:

DTB ∝
σyVp

GAf
∝ hd (4)

Nevertheless, when cutting the different constituents found in the CVI-MI SiC/SiC

CMC structure, the uncut chip thickness (hd) is constant for each of them and hence the

DTB transition must come from the different material responses (i.e. intrinsic material

properties defined by the microstructure, morphology and chemical composition). From

linear elastic fracture mechanics, the fracture toughness of a material can be related to

the energy release rate as:

G ∝ Kic ∝ σ
√
πacri (5)

with Kic - fracture toughness, σ - stress and acri - critical flaw size for the the crack

to propagate. Because of the different microstructure between the SiC-based materials,

the critical flaw size varies and in crystalline ceramics this can be analytically defined as

acri = 2dsize [42]. In cutting, small values of material are interacting with the cutting
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edge - defined by the uncut chip thickness (hd) - that when drilling with a standard twist

drill can be analytically calculated as [43]:

hd = fzsinϕ =
f

v
sinϕ ≈ 1µm (6)

with fz - feed per tooth and ϕ - half of the drill point angle.

Hence, two main scenarios should be defined based on the grain size of the material

and the uncut chip thickness:

• If the grain size is small compared to the uncut chip thickness (dsize < hd) at each

instant of the cutting process several defects (defined by acri) are encountered by

the cutting edge, leading to a fracture dominated removal process.

• If the grain size is large compared to the uncut chip thickness (dsize > hd) the

cutting edge is likely to, for the majority of cutting instants, not find defects in the

structure, leading to a ductile dominated removal process.

Hence, this explains why the Hi-Nicalon fibres (dsize ≈ 10 nm) and the CVI SiC

(dsize ≈ 100 nm) tend to undergo a fracture dominated removal mechanism when drilling

with a hd ≈ 1 µm. On the other hand, the grain size of the SiC particles (dsize ≈ 1-

2 µm) is within the same magnitude as the uncut chip thickness resulting in a more

ductile removal. Furthermore, this tendency is in good agreement with the Hall-Petch

relationship [42], that by using the equations for yield stress (σy) and cleavage stress

(σc), the DTB transition could be defined as:

DTB ∝
σ0 + kyd

−1/2
size

σ0c + kcd
−1/2
size

(7)

where σ0 is the friction stress required to move dislocations and σ0c is the stress

required to start the cleavage fracture. Knowing that kc > ky [42] it can be concluded

that the DTB will have a inverse relation with the grain size - i.e. the material will tend

to suffer a brittle behaviour for small grain sizes.

Aside from the microstructure, the morphology and chemical composition can also

play an important role in the DTB transition when cutting SiC-based materials:
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• The turbostatic C found in the Hi-Nicalon fibres can be seen as a source of defects

and inclusions which decreases the tendency of the 3C-SiC grains to plastically

deform.

• The columnar growth of the CVI SiC produces an anisotropic fracture toughness

with weaker interfaces almost aligned with the cutting direction (see Fig.16c).

Thus, the microstructure, morphology and chemical composition of SiC materials

dominate the material removal process leading to different DTB transition which has

been shown of high relevance for the surface integrity.

4. Conclusions

In the present study, the microstructure of the machined surface of a long fibre re-

inforced CMC (in this study a CVI-MI SiC/SiC) has been characterised, by explaining

the material removal mechanism and by capturing the associated surface damage. The

main contributions of this work are:

• The plastic strain induced in the surface during the severe mechanical and thermal

loads generated by the cutting process has been characterised for the first time by

using Raman Spectroscopy and obtaining tensile residual stresses in the fibre-rich

areas and compressive in the matrix-rich areas. The Raman signature also allowed

an understanding of the elemental distribution within the heterogeneous structure,

concluding that some amorphous Silicon is redeposited in the surface.

• The material removal mechanism has been understood by characterisation tech-

niques (via a FEG-SEM) of the microstructure found in the affected surface. This

showed clear evidence that the fibres suffer a brittle fracture-dominated behaviour

while the matrix region suffered a plastic-dominated mechanism with some SiC

particles being pull-out (debonding mechanism).

• Using the fundamentals of residual stresses upon cutting it can be concluded that

in the fibre region, because of the dominating brittle fracture behaviour and the

tensile residual stresses measured, the main source of strain is induced via a heat

stress gradient. On the other hand, in the matrix region, the evidence of plastic
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deformation together with the compressive residual stresses conclude that the main

strain source is of mechanical nature.

• TEM analysis of the CVI SiC coating showed how its columnar structure influences

the fracture mechanism suffered during machining by a preferential intercolumnar

fracture direction. The origin of this fracture has been attributed to the mechan-

ical load, as even the CTEs mismatch, the cutting temperature reached during

a coolant-assisted machining process should be considerably lower than the peak

temperature experienced by the material during the manufacturing process (e.g.

melt infiltration or post heat treatments).

• A TEM analysis characterising both materials (i.e. Si and SiC) found in the matrix

region has been presented showing an affected (strained and fractured) layer of

around 1 µm. From the EDS analysis, the fracture has been shown to not follow

the SiC-Si interfaces.

• Different material removal mechanisms when cutting at the same conditions have

been observed for the different SiC-based materials found in the CMC structure

(i.e. Hi-Nicalon fibres, CVI coating and SiC particles). This has been analyti-

cally explained based on how the ductile to brittle transition is affected by the

microstructure and also linked to the morphology and chemical composition of

each SiC-based material.
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