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i. Introduction

The global existence question for discrete velocity models in more than
one space dimension remains unsolved except for initial values which are small
in some semnse ([2], [6], [7]). The crucial difficulty is that we do not seem
to have the tools to obtain uniform L™-bounds in time on the local solution in
terms of the initial values (this, of course, would entail global existence of
a mild solution). The purpose of this article is to compare the situation
with the better understood one-dimensional case, spell out some crucial

differences and point out a possible way to progress.



2. Growth results for the 4-velocity Broadwell model

The initial value problem for discrete velocity models in one space

dimension,

7 i G fi = LD

fi(O,x) = fi,O(x)’ i=1,---,n

1

, NL°(R). In fact, Beale [1] and later, with

is well understood if fi,O €L
a more elegant method, Bony [3] proved that (1) admits a global, uniformly
bounded solution, and were also able to show that the asymptotic behaviour of
this solution is given by free streaming. Cabannes and Kawashima [4] obtained
the global existence via the older methods pioneered by Nishida and Mimura
[10] and Crandall and Tartar [12]. However, this method only proves global
existence, not uniform boundedness.

If fi,O € L7(R) (but ¢ Li(m)), we can use the strict hyperbolicity of
equations (1) to conclude that the solution to the Cauchy problem will still
exist globally. What the methods from [1,3,4] do not show is uniform
boundedness of this solution, though it is hard to imagine how the solution
could grow indefinitely — we expect uniform boundedness! How difficult this
problem is can be seen from the many, as yet unsuccessful attempts to solve

the one—dimensional Broadwell model
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b,z = %(vw—zz)
with periodic boundary conditions v(t,0) = w(t,0), v(t,1) = w(t,1) and
smooth data on [0,1] such that v,(0) = wy(0), vy(1) = wy(1).

This problem, as is well known, can be recast as a pure Cauchy problem

for periodic initial values. The big prize is to show that as t — «, there

is a constant a > 0 such that

lim (v(t,x), w(t,x), z(t,x)) = (a,a,a) (3)

- ®
uniformly in x, and the big hurdle to this end is the lack of global
L”bounds for the solution. Recently, M. Slemrod [11] has proved a result on
the asymptotic behaviour (more precisely, the orbital stability) of solutioms
to this initial boundary value problem, but in spite of skillful use of modern
methods (like compensated compactness), he could not prove uniform
boundedness. As a consequence, he could also not establish that the
asymptotic state is a constant vector; the method only shows that v, w and
z approach, in the weak topology, solutions to the collision—free system,

t.e. waves traveling without interaction.

1

In more than one dimension, we know that f; , € L n L® is not
3
sufficient for uniform boundedness, because these are counterexamples (see

[8]). The initial values from [8] which lead to unlimited growth of the



L®-norm of the solution are characteristic functions and therefore
discontinuous, but the geometric idea behind these examples can be applied to
prove the following type of growth result for smooth data.

Ve are concerned with the solutions of the standard 4-velocity model in

two space dimensions

0(f,f)

I

(0,+9,)F,
(0-0)Fy = Q(£,5)
(84+0,)E5 = U(£,£)
(05-0,)84 = -4(£,f)

with Q(f,f) = £,f, — £,f,.

THEOREM. For any two constants 6 > 0 and C > 0, there are continuous

initial values f. for (3), i=1,---,4, such that 0 < f.  (x,y) < ¢
1,0 1,0

for all x,y and i, but sup fi(t,x,y) > C. In addition, the
t,(x,y),1

Ll—norm of the initial values can be chosen arbitrarily small.

Proof. Consider the initial values f1 0= f = 0, and construct
b

f3,0 and f4,0 as indicated in Figure 1:



Figure 1.

(6 for y > x
f4’0(x,y) =40 for y < x—e
(linear for x—¢ <y < x
(6 for y < =x
f3,0(x,y) = 40 for y > —x+¢
linear for x ( y ¢ —=x+e¢

€ 1is a nonnegative parameter to be chosen later. Fix ¢ > 0 and suppose
that there is a constant C > 0 such that for any ¢ > 0, the solution to
(3) with these initial values will remain bounded by C. Then consider the

solution at time t at the point x =1t, y = 0: Ve have

€
+ j~ (£1f5Eqfy) (t—e+75t,—e+7)dr. (4)
0

For ¢ € [0,t—¢], f,; is constant along the (backward) characteristic

connecting (t—e;t,—e) and (0;t,-t), because fl’ f2 and f4 are all



identically zero on that characteristic. This follows from the geometric
setup: f1 and f2, being zero initially, can only become nonzero by
interaction between f3 and f4. Such interaction has until time ¢ only
occurred in the shaded region in Figure 2. C(learly, f3 and f4 do not

Figure 2.
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interact along the mentioned characteristic until ¢ =t — ¢. In particular,

fa(t—€;t,—€) = 1, and from (4) and the assumed bounds we estimate
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and similarly

' 2
f4(t;t,0) > 1 — eC”.



Choose ¢ such that 1 — C2 > %, then f3(t;t,0)-f4(t;t,0) > %. For

fz(t;t,O), we have the simple estimate

[Pa¥

¢
f(t5t,0) < £, (t—e;t+6,0) + J; f3f4(t—e+7,t+e—7,0)d7

6-02.

[PaX

Now consider the equation for f1 in mild form,

t
£1(85,0) = £ ((0,0) + fo [£4f ;5] (757,0)dr.

By the estimate from below of f,-f, and the (assumed) estimate from above on

fl-'fz by €-C ve get
f (t.t O) ) O tSEC
1lbabs zZ + . .

By choosing ¢ so small that € (3 < %, we could conclude that f1 would
grow indefinitely along the characteristic (t;t,0). This contradicts our

assumption on boundedness. The proof is complete. g

REMARK. The principle of this proof can certainly be applied to many other
discrete velocity models. For discontinuous data, the underlying geometric
idea can also be used to show that the semi-discrete velocity models suggested
by Cabannes [5] admit solutions which grow without bounds. The data
constructed above have infinite Ll—norm, but the proof is easily modified to

show that they can actually be chosen to have arbitrarily small Ll—norm.



3. Tentative steps towards growth control

The data constructed in Section 2 are, of course, very pathological. The

unlimited growth is predetermined by the fact that the integrals /' f4 0
Ly @
and ng f3,0, vhere L, and L, are the lines given by y =x and y = —x
respectively, are divergent. In [7], it was shown that if sup j. fi g 1is
L,i L

small enough, where i =1,.---,4 and L is any line parallel to L1 or L2,

then there is indeed a uniformly bounded global solutiom.

RemARK. This result is one example of a general global existence result
proved in [7]. Vhile all the examples from [7] remain of interest, Bony [2]
has recently pointed out that the conditions imposed on the initial values are
only true for the zero function (unless the admitted velocities satisfy
restrictive conditions). This flaw was removed by Bony in [2]; his method
does not use the conservation laws intrinsic to the model, but rather the

convolution structure forced into the collision terms by the flow terms.

Ve return to the 4-velocity model. It is unknown whether the solution to

the Cauchy problem even exists globally if sup j' fi o 1is finite (but
L,i 'L %

large). Our growth result shows, however, that control of mixed norms of the
above type is essential to obtain L®—control of the solution.

This is an important observation with respect to a possible
generalization of the "potential for interaction" which Bony introduced in [5]
for the one-dimensional case. For any one-dimensional discrete velocity model

with mass and momentum conservation and for which fi # fj if 14 j, let



BIE] == X ff (6¢) £5(6,%) £5(t,y) dx dy.

13Jy<x

B[f] is clearly bounded in terms of the largest x—component of the velocities

and m?x j. fi,o(x)dx, and
LBy - - 3 (¢-¢)? [ £,£.(t,%) dx.
dt i,] 1] 17]

This last identity is the key to very efficient control of the L®°-mnorm of the

solution in terms of the initial "mass" X% j~ £, O(X)dx. B[f] has become
i )

known as "potential for interaction".

Suppose we call a potential for interaction in higher dimensions any
functional of the system state which will yield L®-control of the solution.
The above growth results show that such a functional could not be bounded in
terms of the total mass. It can, at least for the 4-velocity model, at best

be bounded in terms of integrals j' f. 0
L b
Finally, we point out that the integrals j' fi 0 arise, for the
L I

4-velocity model, quite naturally from simple cancellations of the collision

terms: It is easily checked that if f,,...,f, is a solution to (3) and if

L, _(t) is any line parallel to y = x and moving with velocity (1,0) (or,
J.,T‘ 4

equivalently, with (0,1)), then

L0 (pfy () = 0. (5)
L1,+(t)



10.

Similarly, if L, _(t) 1is a line parallel to L, and moving with velocity
bl
(-1,0) or (0,1), then

2,_(t)(f2+f3) (t,) = 0.

i J
f1 + f4 and f2 + f4 also satisfy such conservation laws. These
conservations are quite clear from a mechanical point of view, given the
underlying particle model. Equivalent conservation laws exist for the
corresponding lattice gas model; as was pointed out to me at the Symposium,
this fact is known to at least some of the experts in cellular automata theory
[9].

The conservation law (5) is an example for a general principle, which we
now explain. Let LUERRRRY W R3 be the admissible velocities for a certain

discrete velocity model

ot
1
Tt Ny = 4 E1),

and suppose that M ¢ {1,---,n} is an index set such that there are real

numbers a,, i €M with

Y o, Q.(f,f) =0
iey t 1

(mass, momentum and energy conservation are special cases with
M={t,---,n}).

Now suppose that L is a linear submanifold of R3

such that the sets



11.

Li(t) = {x e B x € L + tuy}

are all identical (say L.(t) = L(t)). Then clearly

agf e "if;

fi(t,x) dx = 0. (6)
iel

(t)

It is easily checked that (5) is just a special case of (6). Ve suggest that
a potential of interaction, if it exists in 2 or 3 dimensions, would have to
involve integrals like the ones in (6) in some way, with submanifolds of
dimensions 1, 2 and 3.

If U, € R2 are linearly independent, then there is exactly one line

L through the origin such that L + tu; and L + tu, are identical for
all t:

Figure 3. p
Similarly, if uy, U, and u, € R
are linearly independent, then there
2 2 is exactly one plane P through the
|
\\\\\\\\\\\\\\ijf;;\\\\\ X origin such that p + tu; 1is the

same set for i =1, 2 and 3.
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