On uniform convergence of Hermite series

by ZBIGNIEW SADLOK

Abstract. It is proved in this note that almost uniform convergence of the series $\sum_{n=1}^{\infty} |a_n h_n(x)|$, where h_n are Hermite functions, is equivalent to uniform convergence of the series $\sum_{n=1}^{\infty} (1+|x|^{5/2})^{-1} |a_n h_n(x)|$ and to convergence of series $\sum_{n=1}^{\infty} n^{-1/4} |a_n|.$

1. According to [1], by Hermite functions we mean the functions

$$h_n(x) = (-1)^n \left(\sqrt{2\pi} \ n^R\right)^{-1/2} \exp\left(\frac{x^2}{4}\right) \exp\left(-\frac{x^2}{2}\right)^{(n)}$$

for $x \in \mathbb{R}$ and n = 0, 1, 2, ... The functions h_n form an orthonormal system in the space $L^2(\mathbb{R})$. Thus, by the Riesz-Fischer theorem, the series $\sum_{n=0}^{\infty} a_n h_n(x)$ is convergent in $L^2(\mathbb{R})$ iff the series $\sum_{n=0}^{\infty} a_n^2$ is convergent (see [1]).

We are going to prove that the series $\sum_{n=1}^{\infty} |a_n h_n(x)|$ is convergent almost uniformly on R iff the series $\sum_{n=1}^{\infty} n^{-1/4} |a_n|$ is convergent. More precisely, we have

THEOREM. The following conditions are equivalent:

- (i) the series $\sum_{n=1}^{\infty} n^{-1/4} |a_n|$ is convergent,
- (ii) the series $\sum_{n=1}^{\infty} (1+|x|^{5/2})^{-1} |a_n h_n(x)|$ is uniformly convergent on R,
- (iii) the series $\sum_{n=1}^{\infty} |a_n| |h_n(x)|$ is almost uniformly convergent on R,
- (iv) the series $\sum_{n=1}^{\infty} n^{-1/4} |a_n| |\cos(\beta_n x n\pi/2)|$ with $\beta_n = \sqrt{n+1/2}$ is almost uniformly convergent on \mathbf{R} .

208 Z. Sadlok

2. Before proving the theorem we give some relations needed in the sequel.

We define a sequence of numbers V_n (n = 1, 2, ...):

$$V_1 = 1, \quad V_n = \sqrt{\frac{1 \cdot 3 \cdot \dots \cdot (n-1)}{2 \cdot 4 \cdot \dots \cdot n}} \quad \text{for every } n,$$

$$V_n = \beta_n^{-1} \sqrt{\frac{3 \cdot 5 \cdot \dots \cdot n}{2 \cdot 4 \cdot \dots \cdot (n-1)}} \quad \text{with} \quad \beta_n = \sqrt{n+1/2} \quad \text{for odd } n > 1.$$

By the Wallis formula, we have

(1)
$$\lim_{n \to \infty} n^{1/4} V_n = 2^{1/4} \pi^{-1/4}.$$

Using similar arguments and calculations as in [2], p. 89, we obtain

(2)
$$h_n(x) = (2\pi)^{-1/4} V_n \cos(\beta_n x - n\pi/2) + R_n(x),$$

where

$$R_n(x) = (4\beta_n)^{-1} \int_0^x y^2 h_n(y) \sin (\beta_n(x-y)) dy.$$

By the Schwarz inequality we have

$$|R_n(x)| \le (4\beta_n)^{-1} \left(\int_0^x y^4 \, dy\right)^{1/2} \left(\int_{-\infty}^\infty h_n^2(y) \, dy\right)^{1/2}$$
$$= \left(4\sqrt{5}\beta_n\right)^{-1} |x|^{5/2} \le n^{-1/4} |x|^{5/2}$$

for all $x \in \mathbb{R}$ and almost all $n \in \mathbb{N}$.

Hence

(3)
$$|a_n h_n(x)| \leq n^{-1/4} |a_n| (1+|x|^{5/2}) \quad (x \in \mathbb{R}),$$

in view of (2) and (1).

Moreover,

(4)
$$|a_n R_n(x)| \leq \int_0^{|x|} y^2 |a_n h_n(y)| dy \leq \alpha^2 \int_0^{\alpha} |a_n h_n(y)| dy$$

for all x such that $|x| < \alpha$. Finally, identity (2) leads to the inequality

$$|(2\pi)^{-1/4} V_n \cos(\beta_n x - n\pi/2)| \le |h_n(x)| + |R_n(x)| \qquad (x \in \mathbb{R}),$$

which together with (1) yields

(5)
$$n^{-1/4} |a_n| |\cos (\beta_n x - n\pi/2)| \le C (|a_n h_n(x)| + |a_n R_n(x)|),$$

where C is an arbitrary constant greater than $\sqrt{2}$.

3. Proof of Theorem. By (3), condition (i) implies condition (ii). Implication (ii) \Rightarrow (iii) is obvious.

To prove implication (iii) \Rightarrow (iv), suppose that the series $\sum_{n=1}^{\infty} |a_n h_n(x)|$ is uniformly convergent on every interval I. Hence the series.

$$\sum_{n=1}^{\infty} \int_{I} |a_n h_n(y)| dy$$

is convergent. Hence, by (4) and (5), the series

$$\sum_{n=1}^{\infty} n^{-1/4} |a_n| |\cos(\beta_n x - n\pi/2)|$$

is uniformly convergent on every interval I, i.e., condition (iv) is fulfilled. Finally, let us assume that (iv) holds. Then the series

$$\sum_{n=1}^{\infty} (2n)^{-1/4} |a_{2n}| |\cos(\beta_{2n} x)|, \qquad \sum_{n=1}^{\infty} (2n-1)^{-1/4} |a_{2n-1}| |\sin(\beta_{2n-1} x)|$$

are uniformly convergent on every interval, in particular on intervals of the form $[0, \alpha]$, $\alpha > \pi$. Letting x = 0 in the first of the above series, we get

(6)
$$\sum_{n=1}^{\infty} (2n)^{-1/4} |a_{2n}| < \infty.$$

On the other hand, we have

(7)
$$\sum_{n=1}^{\infty} (2n-1)^{-1/4} |a_{2n-1}| \int_{0}^{\alpha} |\sin(\beta_{2n-1} x)| dx < \infty.$$

Note that

$$\int_{0}^{\alpha} |\sin(\beta_{k} x)| \ dx = \beta_{k}^{-1} \int_{0}^{a\beta_{k}} |\sin y| \ dy \geqslant 2\beta_{k}^{-1} \left[\frac{\alpha \beta_{k}}{\pi} \right] \geqslant \frac{2\alpha}{\pi} - 2\beta_{k}^{-1},$$

which results in

$$\int_{0}^{a} |\sin(\beta_{2n-1} x)| dx \geqslant \frac{2\alpha}{\pi} - 2 > 0 \quad (n = 1, 2, ...).$$

Hence

(8)
$$\sum_{n=1}^{\infty} (2n-1)^{-1/4} |a_{2n-1}| < \infty,$$

in virtue of (7).

Relations (6) and (8) mean that condition (i) is satisfied. This ends the proof of implication (iv) \Rightarrow (i) and of the whole theorem.

210 Z. Sadlok

References

- [1] P. Antosik, J. Mikusiński, R. Sikorski, Theory of distributions. The sequential approach, Elsevier-PWN, Amsterdam-Warszawa 1973.
- [2] N. N. Lebedev, Special functions and their applications, in Russian, Moskva.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 17.06.1980