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1 Introduction

The problem of skew-product dynamical systems has been investigated ex-
tensively in the literature. For the readers’ convenience we refer to the books
of C. Pötzsche [14], P.E. Kloeden and M. Rasmusen [9] and their references.
Over the past few years, the theory of linear skew-product semiflows has been
improved and used in the study of asymptotic behaviors of nonautonomous
systems, by reducing the behavior of the system to the behavior of its solu-
tion, which is modelled by a linear skew-product semiflow. This notion arises
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naturally when one considers the linearization along the invariant manifold
of a dynamical system.

The dichotomy concept plays an important role in the qualitative theory
of dynamical systems. Notable contributions in this direction have been
reported. Starting with R. J. Sacker and G. R. Sell in [20], [21], this concept
was also studied by C. Chicone and Y. Latushkin [7], N. T. Huy [10], S. N.
Chow and H. Leiva [8], Y. Latushkin, S. Montgomery-Smith and T. Raldolph
[11], Y. Latushkin and R. Schnaubelt [12], A.L. Sasu and B. Sasu [22].

In some situations, particularly in the nonautonomous setting, the concept
of uniform exponential dichotomy is too restrictive and it is important to
consider more general behaviors. From this point of view, two different di-
rections have been considered: first dealing with the so called nonuniform
dichotomies that depend on the initial times, and second one that considers
growth rates which do not imply an exponential dichotomy behavior, the so
called splitting concepts.

Regarding the first approach we can point out the works of L. Barreira and
C. Valls [2], L. Biriş and M. Megan [5], M. Megan, B. Sasu and A.L. Sasu
[15], M. Megan, C. Stoica and L. Buliga [17] and M. Megan and C. Stoica
[18]. An extension of this concept leads us to trichotomy concepts and we
can mention the works of L. Biriş and R. Retezan [6] and M. Megan, C.
Stoica and L. Buliga [16].

Regarding the second approach we can mention the paper of B. Aulbach
and J. Kalkbrenner [1] where this concept has been introduced for difference
equations. Some results concerning the above concept can be found in L.
E. Biriş, T. Ceauşu and C. L. Mihiţ [3], M. Megan and I-L. Popa [13] for
difference equations and in [19] for noninvertible evolution operators.

In this paper we will make an attempt to extend the splitting concept in a
more general setting. We consider two concepts of exponential trisplitting
for cocycles of linear operators. These concepts use two ideas of projections:
invariant and strongly invariant for the respective cocycle. We note that
the study of exponential trisplitting for discrete skew-product semiflows is
presented in [4].

Let us outline the structure of the paper. In the next section we briefly
recall the notions of cocycle over a semiflow which will be used later. We
characterize the concept of exponential trisplitting with invariant projections
in Theorem 2.1. and Theorem 2.2. and a counterexample showing that
this concept is different from the classical concept of uniform exponential
trichotomy is presented in Example 2.1. The last section deals with the
concept of exponential trisplitting with strongly invariant projections, the
characterizations are presented in Proposition 3.3 and Proposition 3.4.
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2 Cocycles over semiflows

Let us denote by X a metric space, by V a Banach space and by B(V ) the
Banach algebra of all bounded linear operators on V . The norm on V and
on B(V ) will be denoted by ‖ · ‖. Let I be the identity operator on V and we
also shall denote by R+ the set of nonnegative real numbers and Y = X×V .

Definition 2.1. A mapping S : R+ ×X → X is called a semiflow on X, if:

(s1) S(0, x) = x, for every x ∈ X;

(s2) S(t1, S(t2, x)) = S(t1 + t2, x), for all (t1, t2, x) ∈ R2
+ ×X.

Definition 2.2. A mapping C : R+×X → B(V ) is called a cocycle over the
semiflow S : R+ ×X → X on the space Y = X × V if

(c1) C(0, x)v = v, for every (x, v) ∈ Y ;

(c2) C(t1, S(t2, x))C(t2, x) = C(t1 + t2, x), for all (t1, t2, x) ∈ R2
+ ×X.

Moreover, if

(c3) there are M ≥ 1 and ω > 0 such that

‖C(t, x)v‖ ≤Meωt‖v‖, for all (t, x, v) ∈ R+ × Y,

then we say that C has an exponential growth.

The linear skew-product semiflow associated with the above cocycle is the
dynamical system π = (S,C) on Y = X × V , defined by

π : R+ × Y → Y, π(t, x, v) = (S(t, x), C(t, x)v)

Definition 2.3. A mapping P : X → B(V ) is called a family of projectors
on X if

P 2(x) = P (x), for all x ∈ X.

Definition 2.4. A family of projectors P : X → B(V ) is said to be invariant
for the cocycle C if

C(t, x)P (x) = P (S(t, x))C(t, x), for all (t, x) ∈ R+ ×X.

Definition 2.5. A family of three projectors P = {P1, P2, P3} is called or-
thogonally if P1(x) + P2(x) + P3(x) = I and Pk(x)Pj(x) = 0, for all x ∈ X
and all k, j ∈ {1, 2, 3} with k 6= j.
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Definition 2.6. The orthogonal family P = {P1, P2, P3} is invariant for C
if Pj is invariant for C, for all j ∈ {1, 2, 3}. In this case we denote by (C,P).

Definition 2.7. The pair (C,P) admits uniform exponential trisplitting if
there are N ≥ 1 and α, β, γ, δ ∈ R with α < β and γ < δ such that

(uet1) ‖C(t, x)P1(x)v‖ ≤ Neαt‖P1(x)v‖

(uet2) eβt‖P2(x)v‖ ≤ N‖C(t, x)P2(x)v‖

(uet3) eγt‖C(t, x)P3(x)v‖ ≤ N‖P3(x)v‖

(uet4) ‖P3(x)v‖ ≤ Neδt‖C(t, x)P3(x)v‖, for all (t, x, v) ∈ R+ × Y .

Remark 2.1. If α < 0 < β and γ < 0 < δ, then we say that the pair (C,P)
admits uniform exponential trichotomy.

Remark 2.2. If P3(x) = 0, for all x ∈ X, then we say that the pair (C,P)
admits uniform exponential splitting.

Remark 2.3. If P3(x) = 0, for all x ∈ X and α < 0 < β, then we say that
the pair (C,P) admits uniform exponential dichotomy.

Remark 2.4. If the pair (C,P) has uniform exponential trichotomy, then the
pair (C,P) admits uniform exponential trisplitting. The converse affirmation
is not generally true.

Example 2.1. We consider C the metric space of all continuous functions
f : R+ → R+, with the topology of uniform convergence on compact subsets
of R+. Let f ∈ C be a decreasing function with l = lim

t→+∞
f(t) > 0. Let

s ∈ R+ and fs : R+ → R+ be defined by fs(t) = f(s + t). Then X =
{fs ∈ C : s ∈ R+} is a metric space. The mapping S : R+×X → X, S(t, x) =
xt is a semiflow on X. We consider V = R3 with the norm ||(v1, v2, v3)|| =
|v1| + |v2| + |v3|. It is easy to prove that C : R+ × X → B(V ), defined by

C(t, x)v =
(
eg(t)v1, e

h(t)v2, e
g(t)v3

)
, where g(t) = πx(0)t +

t∫
0

x(s)ds, h(t) =

2πx(0)t−
t∫

0

x(s)ds is a cocycle over the semiflow S. We consider the family

of projectors P1, P2, P3 : X → B(V ) given by

P1(x)v = (v1, 0, 0), P2(x)v = (0, v2, 0), P3(x)v = (0, 0, v3).
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Then, Pj are invariant for C, for all j = 1, 2, 3. We have that

‖C(t, x)P1(x)v‖ = eg(t)|v1| = eg(t)‖P1(x)v‖,

‖C(t, x)P2(x)v‖ = eh(t)|v2| = eh(t)‖P2(x)v‖,

‖C(t, x)P3(x)v‖ = eg(t)|v3| = eg(t)‖P3(x)v‖,

for all (t, x, v) ∈ R+ × Y . Because g(t) ≤ πx(0)t+ tx(0) = (π + 1)x(0)t and
h(t) ≥ 2πx(0)t − tx(0) = (2π − 1)x(0)t, it follows that the relations (uet1)
and (uet2) hold for N = 1 and α = (π + 1)x(0) < (2π − 1)x(0) = β.
Next, we observe that

g(t)− 2πx(0)t ≤ πx(0)t+ tx(0)− 2πx(0)t = (1− π)x(0)t

and

g(t)− πx(0)t =

t∫
0

x(s)ds > lt.

It follows that the relations (uet3) and (uet4) hold for N = 1 and γ =
−2πx(0) < −πx(0) = δ. So the pair (C,P) admits uniform exponential
trisplitting. The pair (C,P) is not uniformly exponentially trichotomic. If
we assume that (C,P) is uniformly exponentially trichotomic, it follows that
there exist N ≥ 1 and α < 0 such that eg(t) ≤ Neαt, for all t ∈ R+. For
t→ +∞ we obtain a contradiction.

Proposition 2.1. The pair (C,P) has uniform exponential trisplitting if and
only if there exist N ≥ 1 and α, β, γ, δ ∈ R with α < β and γ < δ with

(uet′1) ‖C(t+ s, x)P1(x)v‖ ≤ Neαt‖C(s, x)P1(x)v‖

(uet′2) eβt‖C(s, x)P2(x)v‖ ≤ N‖C(t+ s, x)P2(x)v‖

(uet′3) eγt‖C(t+ s, x)P3(x)v‖ ≤ N‖C(s, x)P3(x)v‖

(uet′4) ‖C(s, x)P3(x)v‖ ≤ Neδt‖C(t+ s, x)P3(x)v‖,

for all (t, s) ∈ R+ and all (x, v) ∈ Y .

Proof. Necessity. It follows from Definition 2.7 for x → S(s, x) and v →
C(s, x)v.
Sufficiency. It is immediate for s = 0.

Definition 2.8. The pair (C,P) admits uniform exponential growth if there
exist N ≥ 1 and θ, ξ ∈ (0,+∞) such that
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(ueg1) ‖C(t, x)P1(x)v‖ ≤ Neθt‖P1(x)v‖

(ueg2) ‖P2(x)v‖ ≤ Neθt‖C(t, x)P2(x)v‖

(ueg3) ‖C(t, x)P3(x)v‖ ≤ Neξt‖P3(x)v‖

(ueg4) ‖P3(x)v‖ ≤ Neξt‖C(t, x)P3(x)v‖, for all (t, x, v) ∈ R+ × Y .

Proposition 2.2. The pair (C,P) has uniform exponential growth if and
only if there exist N ≥ 1 and θ, ξ ∈ (0,+∞) such that

(ueg′1) ‖C(t+ s, x)P1(x)v‖ ≤ Neθt‖C(s, x)P1(x)v‖

(ueg′2) ‖C(s, x)P2(x)v‖ ≤ Neθt‖C(t+ s, x)P2(x)v‖

(ueg′3) ‖C(t+ s, x)P3(x)v‖ ≤ Neξt‖C(s, x)P3(x)v‖

(ueg′4) ‖C(s, x)P3(x)v‖ ≤ Neξt‖C(t+ s, x)P3(x)v‖, for all (t, s) ∈ R+ and all
(x, v) ∈ Y .

Proof. Necessity. It yields from Definition 2.8 for x → S(s, x) and v →
C(s, x)v.
Sufficiency. It is immediate for s = 0.

Remark 2.5. If the pair (C,P) admits uniform exponential trisplitting then
it admits uniform exponential growth.
Indeed, if α, β, γ, δ ∈ R with α < β and γ < δ are the constants of trisplitting
then θ = max{α,−β} and ξ = max{δ,−γ} are the constants of uniform
exponential growth.

Definition 2.9. A cocycle C : R+×X → B(V ) is called strongly measurable
if for every (x, v) ∈ Y , the mapping t→ C(t, x)v is measurable.

Definition 2.10. Let C : R+×X → B(V ) be a strongly measurable cocycle.
The pair (C,P) admits uniform exponential trisplitting of Datko’s type if
there are D ≥ 1 and µ, ν, ω, η ∈ R with µ < ν and ω < η such that for all
(t, x, v) ∈ R+ × Y

(ued1)

∞∫
t

eµ(t−τ)‖C(τ, x)P1(x)v‖dτ ≤ D‖C(t, x)P1(x)v‖

(ued2)

t∫
0

eν(t−τ)‖C(τ, x)P2(x)v‖dτ ≤ D‖C(t, x)P2(x)v‖
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(ued3)

∞∫
t

eω(τ−t)‖C(τ, x)P3(x)v‖dτ ≤ D‖C(t, x)P3(x)v‖

(ued4)

t∫
0

eη(τ−t)‖C(τ, x)P3(x)v‖dτ ≤ D‖C(t, x)P3(x)v‖.

Theorem 2.1. Let C : R+ × X → B(V ) be a strongly measurable cocycle.
The pair (C,P) admits uniform exponential trisplitting if and only if (C,P)
has uniform exponential growth and admits uniform exponential trisplitting
of Datko’s type.

Proof. Necessity. We consider N ≥ 1 and α, β, γ, δ ∈ R with α < β and
γ < δ the constant in relation to which (C,P) admits uniform exponential
trisplitting. Then N ≥ 1, θ = max{α,−β} and ξ = max{δ,−γ} are the
constants in relation to which (C,P) admits uniform exponential growth.
Let µ, ν, ω, η ∈ R be such that α < µ < ν < β, ω < γ < δ < η and
(t, x, v) ∈ R+ × Y . For (uet′1)⇒ (ued1), we observe that

∞∫
t

eµ(t−τ)‖C(τ, x)P1(x)v‖dτ ≤ N

∞∫
t

eµ(t−τ)eα(τ−t)‖C(t, x)P1(x)v‖dτ =

=
N

µ− α
‖C(t, x)P1(x)v‖.

For (uet′2)⇒ (ued2), we observe that

t∫
0

eν(t−τ)‖C(τ, x)P2(x)v‖dτ ≤ N

t∫
0

eν(t−τ)e−β(t−τ)‖C(t, x)P2(x)v‖dτ =

=
N

β − ν
‖C(t, x)P2(x)v‖.

We shall prove (uet′3)⇒ (ued3).

∞∫
t

eω(τ−t)‖C(τ, x)P3(x)v‖dτ ≤ N

∞∫
t

eω(τ−t)e−γ(τ−t)‖C(t, x)P3(x)v‖dτ =

=
N

γ − ω
‖C(t, x)P3(x)v‖.
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Finally, for (uet′4)⇒ (ued4), we observe that

t∫
0

eη(τ−t)‖C(τ, x)P3(x)v‖dτ ≤ N

t∫
0

eη(τ−t)eδ(t−τ)‖C(t, x)P3(x)v‖dτ =

=
N

η − δ
‖C(t, x)P3(x)v‖.

Sufficiency. Let N ≥ 1 and θ, ξ ∈ (0,+∞) be the constants in relation
to which the pair (C,P) has uniform exponential growth and D ≥ 1 and
µ, ν, ω, η ∈ R with µ < ν and ω < η the constants in relation to which
the pair (C,P) admits uniform exponential trisplitting of Datko type. We
consider (x, v) ∈ Y . We use the conditions (ueg′1) and (ued1) to prove (uet1).
We observe that if we suppose t ≥ 1, then

e−µt‖C(t, x)P1(x)v‖ =

t∫
t−1

e−µt‖C(t, x)P1(x)v‖dτ ≤

≤ N

t∫
t−1

e−µteθ(t−τ)‖C(τ, x)P1(x)v‖dτ =

= N

t∫
t−1

e(θ−µ)(t−τ)e−µτ‖C(τ, x)P1(x)v‖dτ ≤

≤ Ne|θ−µ|
t∫

t−1

e−µτ‖C(τ, x)P1(x)v‖dτ ≤

≤ Ne|θ−µ|
+∞∫
0

e−µτ‖C(τ, x)P1(x)v‖dτ ≤ Ne|θ−µ| ·D · ‖P1(x)v‖.

If t ∈ [0, 1), then from (ueg1), it follows that

‖C(t, x)P1(x)v‖ ≤ Neθt‖P1(x)v‖ = Ne(θ−µ)teµt‖P1(x)v‖ ≤

≤ Ne|θ−µ|Deµt‖P1(x)v‖.
We use the conditions (ueg2) and (ued2) to prove (uet2). We observe that if
we suppose t ≥ 1, then

eνt‖P2(x)v‖ =

1∫
0

eνt‖P2(x)v‖dτ ≤ N

1∫
0

eνteθτ‖C(τ, x)P2(x)v‖dτ =
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= N

1∫
0

e(θ+ν)τeν(t−τ)‖C(τ, x)P2(x)v‖dτ ≤

≤ Ne|θ+ν|
1∫

0

eν(t−τ)‖C(τ, x)P2(x)v‖dτ ≤

≤ Ne|θ+ν|
t∫

0

eν(t−τ)‖C(τ, x)P2(x)v‖dτ ≤ Ne|θ+ν| ·D · ‖C(t, x)P2(x)v‖.

If t ∈ [0, 1), then from (ueg2) it follows that

eνt‖P2(x)v‖ ≤ eνtNeθt‖C(t, x)P2(x)v‖ ≤ N ·D · e|θ+ν|‖C(t, x)P2(x)v‖.

We use the conditions (ueg′3) and (ued3) to prove (uet3). Considering t ≥ 1,
we obtain

‖C(t, x)P3(x)v‖ =

t∫
t−1

‖C(t, x)P3(x)v‖dτ ≤

≤ N

t∫
t−1

eξ(t−τ)‖C(τ, x)P3(x)v‖dτ =

= Ne−ωt
t∫

t−1

e(ξ+ω)(t−τ)eωτ‖C(τ, x)P3(x)v‖dτ ≤

≤ Ne−ωte|ξ+ω|
t∫

t−1

eωτ‖C(τ, x)P3(x)v‖dτ ≤

≤ Ne−ωte|ξ+ω|
+∞∫
0

eωτ‖C(τ, x)P3(x)v‖dτ ≤ Ne−ωte|ξ+ω| ·D · ‖P3(x)v‖.

If t ∈ [0, 1), then from (ueg3) it follows that

‖C(t, x)P3(x)v‖ ≤ Neξt‖P3(x)v‖ = Ne(ξ+ω)te−ωt‖P3(x)v‖ ≤

≤ Ne|ξ+ω|e−ωtD‖P3(x)v‖.
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We use the conditions (ueg4) and (ued4) to prove (uet4). Let t ≥ 1. Then,

‖P3(x)v‖ =

1∫
0

‖P3(x)v‖dτ ≤ N

1∫
0

eξt‖C(τ, x)P3(x)v‖dτ =

= Neηt
1∫

0

e(ξ−η)τeη(τ−t)‖C(τ, x)P3(x)v‖dτ ≤

≤ Neηte|ξ−η|
1∫

0

eη(τ−t)‖C(τ, x)P3(x)v‖dτ ≤

≤ Neηte|ξ−η|
t∫

0

eη(τ−t)‖C(τ, x)P3(x)v‖dτ ≤ Neηte|ξ−η| ·D · ‖C(t, x)P3(x)v‖.

If t ∈ [0, 1), then from (ueg4) it follows that

‖P3(x)v‖ ≤ Neξt‖C(t, x)P3(x)v‖ = Ne(ξ−η)teηt‖C(t, x)P3(x)v‖ ≤
≤ Ne|ξ−η|Deηt‖C(t, x)P3(x)v‖.

Definition 2.11. Let C : R+×X → B(V ) be a strongly measurable cocycle.
We say that L = (L1, L2, L3) : R+ × Y → R3

+ is a Lyapunov function for
the pair (C,P) if there exist a, b, c, d ∈ R, a < b, c < d such that for all
(t, x, v) ∈ R+ × Y

(l1) L1(t, x, P1(x)v) +

t∫
0

e−aτ‖C(τ, x)P1(x)v‖dτ ≤ L1(0, x, P1(x)v)

(l2) L1(0, x, P2(x)v) +

t∫
0

eb(t−τ)‖C(τ, x)P2(x)v‖dτ ≤ L1(t, x, P2(x)v)

(l3) L2(t, x, P3(x)v) +

t∫
0

ecτ‖C(τ, x)P3(x)v‖dτ ≤ L2(0, x, P3(x)v)

(l4) L3(0, x, P3(x)v) +

t∫
0

ed(τ−t)‖C(τ, x)P3(x)v‖dτ ≤ L3(t, x, P3(x)v).
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Theorem 2.2. Let C : R+ × X → B(V ) be a strongly measurable cocycle.
The pair (C,P) has uniform exponential trisplitting if and only if (C,P)
has uniform exponential growth and there exists a Lyapunov function L =
(L1, L2, L3) : R+ × Y → R3

+ for (C,P) and a constant M ≥ 1 such that for
all (t, x, v) ∈ R+ × Y , the following relations are satisfied:

(l′1) L1(0, x, P1(x)v) ≤M‖P1(x)v‖

(l′2) L1(t, x, P2(x)v) ≤M‖C(t, x)P2(x)v‖

(l′3) L2(0, x, P3(x)v) ≤M‖P3(x)v‖

(l′4) L3(t, x, P3(x)v) ≤M‖C(t, x)P3(x)v‖

Proof. Necessity. We consider N ≥ 1, α, β, γ, δ ∈ R with α < β and γ < δ
and θ, ξ ∈ (0,+∞) given by Definition 2.7 and Remark 2.5. Let µ, ν, ω, η ∈ R
be with µ < ν and ω < η given in Theorem 2.1. Let (t, x, v) ∈ R+ × Y . We
define L = (L1, L2, L3) : R+ × Y → R3

+ given by

L1(t, x, v) =

+∞∫
t

e−µτ‖C(τ, x)P1(x)v‖dτ +

t∫
0

eν(t−τ)‖C(τ, x)P2(x)v‖dτ,

L2(t, x, v) =

+∞∫
t

eωτ‖C(τ, x)P3(x)v‖dτ,

L3(t, x, v) =

t∫
0

eη(τ−t)‖C(τ, x)P3(x)v‖dτ.

First, we shall prove that L is a Lyapunov function for the pair (C,P).

(l1) L1(0, x, P1(x)v) =

+∞∫
0

e−µτ‖C(τ, x)P1(x)v‖dτ =

= L1(t, x, P1(x)v) +

t∫
0

e−µτ‖C(τ, x)P1(x)v‖dτ ;

(l2) L1(0, x, P2(x)v) +

t∫
0

eν(t−τ)‖C(τ, x)P2(x)v‖dτ =
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=

t∫
0

eν(t−τ)‖C(τ, x)P2(x)v‖dτ = L1(t, x, P2(x)v);

(l3) L2(t, x, P3(x)v) +

t∫
0

eωτ‖C(τ, x)P3(x)v‖ =

=

+∞∫
t

eωτ‖C(τ, x)P3(x)v‖dτ +

t∫
0

eωτ‖C(τ, x)P3(x)v‖dτ =

=

+∞∫
0

eωτ‖C(τ, x)P3(x)v‖dτ = L2(0, x, P3(x)v);

(l4) L3(0, x, P3(x)v) +

t∫
0

eη(τ−t)‖C(τ, x)P3(x)v‖dτ = L3(t, x, P3(x)v).

Now, using Theorem 2.1, we observe that

L1(t, x, P1(x)v) +

t∫
0

e−µτ‖C(τ, x)P1(x)v‖dτ =

=

+∞∫
0

e−µτ‖C(τ, x)P1(x)v‖dτ ≤ D‖P1(x)v‖;

L1(t, x, P2(x)v) =

t∫
0

eν(t−τ)‖C(τ, x)P2(x)v‖dτ ≤ D‖C(t, x)P2(x)v‖;

L2(0, x, P3(x)v) =

+∞∫
0

eωτ‖C(τ, x)P3(x)v‖dτ ≤ D‖P3(x)v‖;

L3(t, x, P3(x)v) =

t∫
0

eη(τ−t)‖C(τ, x)P3(x)v‖dτ ≤ D‖C(t, x)P3(x)v‖.

We deduce that the conditions (l′1), (l′2), (l′3) and (l′4) hold.
Sufficiency. Using (l1), (ueg′1) and (l′1), we shall prove (uet1). Let (x, v) ∈ Y .
For t ≥ 1, we observe that

e−at‖C(t, x)P1(x)v‖ =

t∫
t−1

e−at‖C(t, x)P1(x)v‖dτ ≤
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≤ N

t∫
t−1

eθ(t−τ)e−at‖C(τ, x)P1(x)v‖dτ =

= N

t∫
t−1

e−aτe(θ−a)(t−τ)‖C(τ, x)P1(x)v‖dτ ≤

≤ Ne|θ−a|
t∫

0

e−aτ‖C(τ, x)P1(x)v‖ ≤

≤ Ne|θ−a|L1(0, x, P1(x)v) ≤ Ne|θ−a|M‖P1(x)v‖.

For t ∈ [0, 1), we have that

‖C(t, x)P1(x)v‖ ≤ Neθt‖P1(x)v‖ = Ne(θ−a)teat‖P1(x)v‖ ≤

≤ Ne|θ−a|Meat‖P1(x)v‖.

Using (l2), (ueg2) and (l′2), we shall prove (uet2). For t ≥ 1, we have that

ebt‖P2(x)v‖ =

1∫
0

ebt‖P2(x)v‖dτ ≤ N

1∫
0

ebteθτ‖C(τ, x)P2(x)v‖dτ =

= N

1∫
0

eb(t−τ)e(θ+b)τ‖C(τ, x)P2(x)v‖dτ ≤ Ne|θ+b|
1∫

0

eb(t−τ)‖C(τ, x)P2(x)v‖dτ ≤

≤ Ne|θ+b|
t∫

0

eb(t−τ)‖C(τ, x)P2(x)v‖dτ ≤

≤ Ne|θ+b|L1(t, x, P2(x)v) ≤ NMe|θ+b|‖C(t, x)P2(x)v‖.

For t ∈ [0, 1) we observe that

ebt‖P2(x)v‖ ≤ ebtNeθt‖C(t, x)P2(x)v‖ ≤ NMe|θ+b|‖C(t, x)P2(x)v‖.

Using (l3), (ueg′3) and (l′3), we shall prove (uet3). If t ≥ 1, then

‖C(t, x)P3(x)v‖ =

t∫
t−1

‖C(t, x)P3(x)v‖dτ ≤
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≤ N

t∫
t−1

eξ(t−τ)‖C(τ, x)P3(x)v‖dτ =

= Ne−ct
t∫

t−1

ecτe(c+ξ)(t−τ)‖C(τ, x)P3(x)v‖dτ ≤

≤ Ne−cte|c+ξ|
t∫

0

ecτ‖C(τ, x)P3(x)v‖dτ ≤

≤ Ne−cte|c+ξ|L2(0, x, P3(x)v) ≤MNe−cte|c+ξ|‖P3(x)v‖.

For t ∈ [0, 1), we deduce

‖C(t, x)P3(x)v‖ ≤ Neξt‖P3(x)v‖ = Ne(ξ+c)te−ct‖P3(x)v‖ ≤

≤ NMe|ξ+c|e−ct‖P3(x)v‖

Using (l4), (ueg4) and (l′4), we shall prove (uet4). For t ≥ 1, we have that

‖P3(x)v‖ =

1∫
0

‖P3(x)v‖dτ ≤ N

1∫
0

eξτ‖C(τ, x)P3(x)v‖dτ =

= N

1∫
0

ed(τ−t)e(ξ−d)τedt‖C(τ, x)P3(x)v‖dτ ≤

≤ Ne|ξ−d|edt
t∫

0

ed(τ−t)‖C(τ, x)P3(x)v‖dτ ≤

≤ Ne|ξ−d|edtL3(t, x, P3(x)v) ≤ Ne|ξ−d|edtM‖C(t, x)P3(x)v‖.

For t ∈ [0, 1), we observe that

‖P3(x)v‖ ≤ Neξt‖C(t, x)P3(x)v‖ ≤ Ne(ξ−d)tedt‖C(t, x)P3(x)v‖ ≤
≤ NMe|ξ−d|edt‖C(t, x)P3(x)v‖.
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3 Uniform exponential trisplitting with strongly in-
variant projectors

Let P = {P1, P2, P3} be an orthogonal and invariant family of projectors for
the cocycle C : R+ × X → B(V ) over the semiflow S : R+ × X → X on
Y = X × V .

Definition 3.1. We say that P = {P1, P2, P3} is a strong invariant family
of projections for the cocycle C if for all (t, x) ∈ R+ ×X the map C(t, x) is
an isomorphism from Range Pj(x) to Range Pj(S(t, x)), j = 2, 3.

Remark 3.1. If the family of projectors P = {P1, P2, P3} is strong invariant
for the cocycle C : R+ × X → B(V ) over the semiflow S : R+ × X → X,
then there exists Dj : R+ × X → B(V ) such that for all (t, x) ∈ R+ × X,
Dj(t, x) is an isomorphism from Range Pj(S(t, x)) to Range Pj(x), j = 2, 3
and

(i) C(t, x)Dj(t, x)Pj(S(t, x)) = Pj(S(t, x))

(ii) Dj(t, x)C(t, x)Pj(x) = Pj(x) = Dj(t, x)Pj(S(t, x))C(t, x)Pj(x)

(iii) Pj(x)Dj(t, x)Pj(S(t, x)) = Dj(t, x)Pj(S(t, x)), for all (t, x) ∈ R+ ×X.

Proposition 3.1. If P = {P1, P2, P3} is strong invariant for the cocycle
C : R+ ×X → B(V ), then Dj : R+ ×X → B(V ), j = 2, 3 has the property:

(iv) Dj(t+ s, x)Pj(S(t+ s, x)) = Dj(s, x)Dj(t, S(s, x))Pj(S(t+ s, x)),

for all (t, s, x) ∈ R2
+ ×X.

Proof. For all (t, s, x) ∈ R2
+ ×X, we have that

Dj(t+ s, x)Pj(S(t+ s)) = Pj(x)Dj(t+ s, x)Pj(S(t+ s, x)) =

= Dj(s, x)C(s, x)Pj(x)Dj(t+ s, x)Pj(S(t+ s, x)) =

= Dj(s, x)Pj(S(s, x))C(s, x)Dj(t+ s, x)Pj(S(t+ s, x)) =

= Dj(s, x)Dj(t, S(s, x))C(t, S(s, x))Pj(S(s, x))C(s, x)Dj(t+ s, x)

Pj(S(t+ s, x)) =

= Dj(s, x)Dj(t, S(s, x))C(t, S(s, x))C(s, x)Pj(x)D(t+ s, x)Pj(S(t+ s, x)) =

= Dj(s, x)Dj(t, S(s, x))C(t+ s, x)Pj(x)Dj(t+ s, x)Pj(S(t+ s, x)) =

= Dj(s, x)Dj(t, S(s, x))C(t+ s, x)Dj(t+ s, x)Pj(S(t+ s, x)) =

= Dj(s, x)Dj(t, S(s, x))Pj(S(t+ s, x)).
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Proposition 3.2. The pair (C,P) admits uniform a exponential growth if
and only if there exist N ≥ 1 and θ, ξ ∈ (0,+∞) such that for all (t, x, v) ∈
R+ × Y

(ueg′′1) ‖C(t, x)P1(x)v‖ ≤ Neθt‖P1(x)v‖

(ueg′′2) ‖D2(t, x)P2(S(t, x))v‖ ≤ Neθt‖P2(S(t, x))v‖

(ueg′′3) ‖C(t, x)P3(x)v‖ ≤ Neξt‖P3(x)v‖

(ueg′′4) ‖D3(t, x)P3(S(t, x))v‖ ≤ Neξt‖P3(S(t, x))v‖.

Proof. Let (t, x, v) ∈ R+× Y . We shall prove that the condition (ueg2) from
Definition 2.8 and (ueg′′2) are equivalent. We have

‖D2(t, x)P2(S(t, x))v‖ = ‖P2(x)D2(t, x)P2(S(t, x))v‖ ≤

≤ Neθt‖C(t, x)P2(x)D2(t, x)P2(S(t, x))v‖ =

= Neθt‖C(t, x)D2(t, x)P2(S(t, x))v‖ = Neθt‖P2(S(t, x))v‖ and

‖P2(x)v‖ = ‖D2(t, x)P2(S(t, x))C(t, x)v‖ ≤ Neθt‖P2(S(t, x))C(t, x)v‖ =

= Neθt‖C(t, x)P2(x)v‖.
Now, we shall prove the equivalence (ueg4)⇔ (ueg′′4). We obtain

‖D3(t, x)P3(S(t, x))v‖ = ‖P3(x)D3(t, x)P3(S(t, x))v‖ ≤

≤ Neξt‖C(t, x)P3(x)D3(t, x)P3(S(t, x))v‖ = Neξt‖P3(S(t, x))v‖ and

‖P3(x)v‖ = ‖D3(t, x)P3(S(t, x))C(t, x)v‖ ≤

≤ Neξt‖P3(S(t, x))C(t, x)v‖ = Neξt‖C(t, x)P3(x)v‖.

Proposition 3.3. Let P = {P1, P2, P3} be a strong invariant family of pro-
jectors for the cocycle C : R+×X → B(V ). Then the pair (C,P) has uniform
exponential trisplitting if and only if there exist N ≥ 1, α, β, γ, δ ∈ R with
α < β, γ < δ such that for all (t, x, v) ∈ R+ × Y

(uet′′1) ‖C(t, x)P1(x)v‖ ≤ Neαt‖P1(x)v‖

(uet′′2) eβt‖D2(t, x)P2(S(t, x))v‖ ≤ N‖P2(S(t, x))v‖

(uet′′3) eγt‖C(t, x)P3(x)v‖ ≤ N‖P3(x)v‖

(uet′′4) ‖D3(t, x)P3(S(t, x))v‖ ≤ Neδt‖P3(S(t, x))v‖,
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Proof. Let (t, x, v) ∈ R+ × Y . We prove the equivalence between (uet′′2) and
the condition (uet2) given by Definition 2.7. We have that

eβt‖P2(x)v‖ = eβt‖D2(t, x)C(t, x)P2(x)v‖ =

= eβt‖D2(t, x)P2(S(t, x))C(t, x)v‖ ≤ N‖P2(S(t, x))C(t, x)v‖ =

= N‖C(t, x)P2(x)v‖ and

eβt‖D2(t, x)P2(S(t, x))v‖ = eβt‖P2(x)D2(t, x)P2(S(t, x))v‖ ≤

≤ N‖C(t, x)D2(t, x)P2(S(t, x))v‖ = N‖P2(S(t, x))v‖.

Similarly, we obtain that the condition (uet′′4) and the condition (uet4) from
Definition 2.7 are equivalent. We have

‖P3(x)v‖ = ‖D3(t, x)C(t, x)P3(x)v‖ = ‖D3(t, x)P3(S(t, x))C(t, x)v‖ ≤
≤ Neδt‖P3(S(t, x))C(t, x)v‖ = Neδt‖C(t, x)P3(x)v‖, respectively

‖D3(t, x)P3(S(t, x))v‖ = ‖P3(x)D3(t, x)P3(S(t, x))v‖ ≤
≤ Neδt‖C(t, x)D3(t, x)P3(S(t, x))v‖ = Neδt‖P3(S(t, x))v‖.

Proposition 3.4. Let P = {P1, P2, P3} be a strong invariant family of pro-
jectors for the strongly measurable cocycle C : R+ × X → B(V ). Then the
pair (C,P) has uniform exponential trisplitting if and only if it has uniform
exponential growth and there exist D ≥ 1 and µ, ν, ω, η ∈ R with µ < ν,
ω < η such that for all (t, x, v) ∈ R+ × Y

(ued′1)

+∞∫
t

eµ(t−τ)‖C(τ, x)P1(x)v‖dτ ≤ D‖C(t, x)P1(x)v‖

(ued′2)

t∫
0

eν(t−τ)‖D2(t− τ, S(τ, x))P2(S(τ, x))v‖dτ ≤ D‖P2(S(t, x))v‖

(ued′3)

+∞∫
t

eω(τ−t)‖C(τ, x)P3(x)v‖dτ ≤ D‖C(t, x)P3(x)v‖

(ued′4)

t∫
0

eη(τ−t)‖D3(t− τ, S(τ, x))P3(S(t, x))v‖dτ ≤ D‖P3(S(t, x))v‖.
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Proof. Necessity. Let (t, x, v) ∈ R+ × Y . Using (uet′′2) from Proposition 3.3
we obtain that

eβ(t−τ)‖D2(t− τ, S(τ, x))P2(S(t− τ, S(τ, x))v‖ ≤ N‖P2(S(t− τ, S(τ, x))v‖,

which is equivalent with

eβ(t−τ)‖D2(t− τ, S(τ, x))P2(S(t, x))v‖ ≤ N‖P2(S(t, x))v‖.

We obtain that the condition (ued′2) holds.

t∫
0

eν(t−τ)‖D2(t− τ, S(τ, x))P2(S(t, x))v‖dτ ≤

≤
t∫

0

eν(t−τ)Ne−β(t−τ)‖P2(S(t, x))v‖dτ =

= N‖P2(S(t, x))v‖e(ν−β)t
t∫

0

e(β−ν)tdτ ≤ N

β − ν
‖P2(S(t, x))v‖.

Similarly, we obtain (ued′4). Using the condition (uet′′4) from Proposition 3.3,
we have that

‖D3(t− τ, S(τ, x))P3(S(t− τ, S(τ, x))v‖ ≤ Neδ(t−τ)‖P3(S(t− τ, S(τ, x))v‖,

which is equivalent with

‖D3(t− τ, S(τ, x))P3(S(t, x))v‖ ≤ Neδ(t−τ)‖P3(S(t, x))v‖.

It follows that the condition (ued′4) holds.

t∫
0

eη(τ−t)‖D3(t− τ, S(τ, x))P3(S(t, x))v‖dτ ≤

≤ N‖P3(S(t, x))v‖
t∫

0

eη(τ−t)eδ(t−τ)dτ ≤ N

η − δ
‖P3(S(t, x))v‖.

Sufficiency. Let (x, v) ∈ Y . From (ueg′′1) and (ued′1) we obtain that

‖C(t, x)P1(x)v‖ ≤ NDe|θ−µ|eµt‖P1(x)v‖.
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From (ueg′′3) and (ued′3) we obtain that

eωt‖C(t, x)P3(x)v‖ ≤ NDe|ξ+ω|‖P3(x)v‖.

We shall prove (uet′′2) from Proposition 3.3. If t ≥ 1, then we obtain that

eνt‖D2(t, x)P2(S(t, x))v‖ =

1∫
0

eνt‖D2(t, x)P2(S(t, x))v‖dτ =

=

1∫
0

eνt‖D2(t− τ + τ, x)P2(S(t− τ + τ, x))v‖dτ =

=

1∫
0

eνt‖D2(τ, x)D2(t− τ, S(τ, x))P2(S(t, x))v‖dτ =

=

1∫
0

eνt‖D2(τ, x)P2(S(τ, x))D2(t− τ, S(τ, x))P2(S(t, x))v‖dτ ≤

≤
1∫

0

eνtNeθτ‖P2(S(τ, x))D2(t− τ, S(τ, x))P2(S(t, x))v‖dτ =

= N

1∫
0

eν(t−τ)e(θ+ν)τ‖D2(t− τ, S(τ, x))P2(S(t, x))v‖dτ ≤

≤ Ne|θ+ν|
1∫

0

eν(t−τ)‖D2(t− τ, S(τ, x))P2(S(t, x))v‖dτ =

= NDe|θ+ν|‖P2(S(t, x))v‖.

For t ∈ [0, 1), we observe that

eνt‖D2(t, x)P2(S(t, x))v‖ ≤ eνtNeθt‖P2(S(t, x))v‖ = NDe|θ+ν|‖P2(S(t, x))v‖.

We shall prove (uet′′4) from Proposition 3.3. If t ≥ 1, then we have

‖D3(t, x)P3(S(t, x))v‖ =

1∫
0

‖D3(t, x)P3(S(t, x))v‖dτ =
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=

1∫
0

‖D3(τ, x)D3(t− τ, S(τ, x))P3(S(t, x))v‖dτ =

=

1∫
0

‖D3(τ, x)P3(S(τ, x))D3(t− τ, S(τ, x))P3(S(t, x))v‖dτ ≤

≤
1∫

0

Neξτ‖P3(S(τ, x))D3(t− τ, S(τ, x))P3(S(t, x))v‖dτ =

= Neηt
1∫

0

eη(τ−t)e(ξ−η)τ‖D3(t− τ, S(τ, x))P3(S(t, x))v‖dτ ≤

≤ Neηte|ξ−η|
t∫

0

eη(τ−t)‖D3(t− τ, S(τ, x))P3(S(t, x))v‖dτ ≤

≤ Neηte|ξ−η|D‖P3(S(t, x))v‖.

For t ∈ [0, 1), we observe that

‖D3(t, x)P3(S(t, x))v‖ ≤ Neξt‖P3(S(t, x))v‖ = Neηte(ξ−η)t‖P3(S(t, x))v‖ ≤

≤ Neηte|ξ−η|D‖P3(S(t, x))v‖.

From Proposition 3.3, we obtain that (C,P) has a uniform exponential trisplit-
ting.
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[19] C.L. Mihiţ, C.S. Stoica, M. Megan, On uniform exponential split-
ting for noninvertible evolution operators in Banach spaces, An. Univ.
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