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ON UNIFORMLY GÂTEAUX SMOOTH NORMS
AND NORMAL STRUCTURE

MICHAL JOHANIS AND JAN RYCHTÁŘ

(Communicated by Jonathan M. Borwein)

Abstract. It is shown that every separable Banach space admits an equiva-
lent norm that is uniformly Gâteaux smooth and yet lacks asymptotic normal
structure.

A Banach space is said to have the fixed point property (FPP) if for every
nonempty bounded closed convex C ⊂ X and every nonexpansive self-mapping
T : C → C there is a fixed point of T in C. A Banach space is said to have the
weak fixed point property (w-FPP) if for every nonempty weakly compact convex
C ⊂ X there is a fixed point for every nonexpansive T : C → C. Clearly, a Banach
space has w-FPP if it has FPP. The space c0 has w-FPP but does not have FPP;
see [M]. These two notions obviously coincide in reflexive spaces.

The classical results in metric fixed point theory state that a Banach space has
w-FPP if its norm is uniformly Fréchet differentiable ([K]) or uniformly rotund
([B]). In fact, instead of uniformly rotund, it is sufficient to assume that the norm
is only uniformly rotund in every direction (URED), [Z]. It is a natural question
whether the uniform Fréchet differentiability can be weakened to uniform Gâteaux
differentiability (UG), since the notion of UG is dual (in a sense) to URED. (In fact,
UG is dual to weak∗ uniform rotundity, which is a stronger notion than URED.)

We note that in a non-separable case, a theorem of [DLT] states that for any un-
countable set Γ, the non-separable space c0(Γ) does not have FPP under any equiv-
alent renorming. But it is well known that for any set Γ, c0(Γ) has an equivalent
renorming that is simultaneously locally uniformly rotund, Fréchet differentiable
and UG; see e.g. [DGZ, II.7.8]. Thus even norms with rather good geometrical
properties do not assure FPP.

In our note we show that the usual proofs of “UF, UR or URED implies w-FPP”
cannot be adapted, since they prove the w-FPP by showing that UF, UR or URED
implies that the norm has a normal structure. We show that, in contrast, if the
norm of a Banach space is UG, it does not necessarily have a normal structure.
Even more, every separable Banach space can be equivalently renormed to have
a uniformly Gâteaux smooth norm that lacks asymptotic normal structure. This
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notion was defined by J. B. Baillon and R. Schöneberg in [BS] as a weakening of
the normal structure, which is still sufficient for w-FPP.

The norm ‖·‖ on a Banach space X is said to have asymptotic normal structure
if for every closed convex bounded set C ⊂ X with diam C > 0 and every sequence
{xn} ⊂ C satisfying limn→∞ ‖xn − xn+1‖ = 0 there exists x ∈ C such that

lim inf
n→∞

‖xn − x‖ < diam‖·‖ C.

The norm is called uniformly Gâteaux smooth if the limit

lim
t→0

‖x + th‖ − ‖x‖
t

= ‖·‖′ (x, h)

is uniform in x ∈ SX for each h ∈ SX , where SX is the unit sphere of X. It follows
that the derivative of the norm at x ∈ X \ {0}, i.e. h �→ ‖·‖′ (x, h) is an element of
X∗.

Recall that a Markushevich basis of a Banach space X is a biorthogonal system
{en; fn} ⊂ X × X∗ such that span{en} = X and {fn} separates the points of X
(i.e. for any x �= y ∈ X there is n ∈ N such that fn(x) �= fn(y)).

Theorem 1. Let X be a separable Banach space. Then there exists an equivalent
uniformly Gâteaux smooth norm lacking asymptotic normal structure.

Proof. First, we will define a norm that lacks asymptotic normal structure. It will
be done similarly as in [MS]. Let {en; fn} be a Markushevich basis of (X, ‖·‖) such
that ‖en‖ = 1 and ‖fn‖ ≤ 20 for all n ∈ N (see e.g. [LT, 1.f.4]). We put

C = {x ∈ X; ‖x‖ ≤ 2, 0 ≤ fn(x) ≤ 1 for all n ∈ N}.

This is a closed convex bounded set, 0 ∈ C and {en} ⊂ C. For an arbitrary
β ≥ diam‖·‖ C, we define a new norm

‖x‖β = max
{
‖x‖ , β sup

n∈N

|fn(x)|
}

,

which is obviously an equivalent norm on X.

Fact 2. For all n ∈ N, ‖en‖β = β and ‖fn‖∗β = 1/β.

Proof of Fact 2.

‖en‖β = max
{
‖en‖ , β sup

k∈N

|fk(en)|
}

= max{1, β} = β.

Regarding fn, we have

‖fn‖∗β ≥ fn

(
en

β

)
=

1
β

,

and, on the other hand,

‖fn‖∗β = sup

{
fn

( ∑N
k=1 akek∥∥∑N

k=1 akek

∥∥
β

)
; N ≥ n, a1, . . . , aN ∈ R

}

= sup
an �=0

an∥∥∑N
k=1 akek

∥∥
β

≤ an

βan
=

1
β

,
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where the inequality holds because, by the definition,∥∥∥∥∥
N∑

k=1

akek

∥∥∥∥∥
β

≥ βfn

(
N∑

k=1

akek

)
= βan.

�

Fact 3. diam‖·‖β
C = β.

Proof of Fact 3. First, diam‖·‖β
C ≥ ‖e1 − 0‖β = β. On the other hand, if x, y ∈ C,

then (as fn(x), fn(y) ∈ [0, 1]) |fn(x − y)| ≤ 1 and thus

‖x − y‖β = max
{
‖x − y‖ , β sup

n∈N

|fn(x − y)|
}

≤ β.

�

Now we define a norm |||·|||∗β on X∗ by a formula

(|||f |||∗β)2 = (‖f‖∗β)2 +
∞∑

n=1

1
2n

f2(en).

By a standard convexity argument (see [DGZ, Fact II.2.3]), the norm |||·|||∗β is
W∗UR. Since |||·|||∗β is weak∗-lsc, it is a dual norm. Let |||·|||β be the norm on
X that is predual to |||·|||∗β . By a standard duality argument (see [DGZ, Thm.
II.6.7]), the norm |||·|||β is uniformly Gâteaux smooth.

Fact 4. a) limn→∞|||fn|||∗β = 1/β,
b) limn→∞|||en|||β = β,

c) diam|||·|||β C = β.

Proof of Fact 4. a) Follows directly from Fact 2.
b) Since |||f |||∗β ≥ ‖f‖∗β for all f ∈ X∗, we have |||x|||β ≤ ‖x‖β for all x ∈ X and

thus |||en|||β ≤ β. On the other hand

lim inf
n→∞

|||en|||β ≥ lim inf
n→∞

fn(en)
|||fn|||∗β

= β.

c) As above, we get diam|||·|||β C ≤ diam‖·‖β
C = β. On the other hand,

diam|||·|||β C ≥ |||en|||β → β.

�

Now we are ready to prove that |||·|||β does not have asymptotic normal structure.
Indeed, we define the sequence {xn} ⊂ C by

xn =

{
(1 − j2−2k)ek + ek+1, where n = 22k + j, j = 1, . . . , 22k,

ek+1 + j2−2k−1ek+2, for n = 22k+1 + j, j = 1, . . . , 22k+1.

Clearly, xn ∈ C and
lim

n→∞
|||xn − xn+1|||β = 0.
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Choose x ∈ C. For any ε > 0 let N ∈ N and y =
∑N

l=1 alel be such that |||x−y|||β <

ε. Then, for all k > N and all n = 22k+i + j, j = 1, . . . , 22k+i, i = 0, 1,

|||x − xn|||β > |||y − xn|||β − ε ≥ fk+1(y − xn)
|||fk+1|||∗β

− ε =
1

|||fk+1|||∗β
− ε.

Thus,
β ≥ lim inf

n→∞
|||x − xn|||β ≥ β − ε,

and consequently limn→∞|||x − xn|||β = β = diam|||·|||β C. �

Remark. Note that in the proof we could take C = conv{0, en, en + en+1; n ∈ N}.
If the basis {en} is weakly null, then by Krein’s theorem C is weakly compact,
and hence we have an example of a weakly compact convex set without asymptotic
normal structure.
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[BS] J.B. Baillon and R. Schöneberg, Asymptotic normal structure and fixed points of non-
expansive mappings, Proc. Amer. Math. Soc. 81 (1981), no. 2, 257–264. MR0593469
(82c:47068)

[B] F.E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci.
U.S.A. 54 (1965), 1041–1044. MR0187120 (32:4574)

[DGZ] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces,
Monographs and Surveys in Pure and Applied Mathematics 64, Pitman, 1993. MR1211634
(94d:46012)

[DLT] P.N. Dowling, C.J. Lennard and B. Turett, Asymptotically isometric copies of c0 in Banach
spaces, J. Math. Anal. Appl. 219 (1998), 377–391. MR1606342 (98m:46023)

[K] M.A. Khamsi, Uniform smoothness implies super-normal structure property, Nonlinear
Anal. 19 (1992), 1063–1069. MR1194145 (93k:46012)

[M] B. Maurey, Points fixes des contractions sur un convexe fermé de L1, Seminaire d’Analyse
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