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As an approach to the problem of characterising and classifying Banach spaces 
in terms of their geometric structure, consideration has been given to the following 
problem: Must two given Banach spaces always be (linearly-topologically) isomor- 
phic if it is supposed that they are uniformly homeomorphic (i.e., that there is a 
non-linear bijection f between them such that f and f - 1  are uniformly continuous)? 

In the present paper it is proved that if two normed spaces are uniformly 
homeomorphic, then the finite-dimensional subspaces in any of them are imbeddable 
into the other by means of linear imbeddings T such that the numbers IJ TI[ [1T-1[[ 
have a common upper bound (Section 3). Further, for the case where the spaces are 
separable Banach spaces and one of them is a dual space, it is proved: If the uni- 
form homeomorphism is "well-behaved on finite-dimensional subspaces for large 
distances", then the two spaces are isomorphic (Section 4). 

The question of isomorphy for uniformly homeomorphic spaces has been raised 
by Bessaga [1] and Lindenstrauss [5], [61. Eotto [4] has given an affirmative answer 
in the case where one of the spaces is a Hilbert space. If a space L p (/~) is uniformly 
homeomorphic to some space Lq(v)(1 <~p<=q< co), thenp=q,  as was proved partially 
by Lindenstrauss [5], partially by Enflo [3]. Several related results have been given 
by Mankiewicz [7]--[9]. 

The methods of proof employed in [4] and [7]--[91 make use of strong derivatives 
of Lipschitz mappings in order to produce the desired linear mapping. In this paper 
we take a different approach, using averages of function-values on finite point- 
meshes. 

All spaces will be supposed to have the real number field as scalar field. 
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2. A combinatorial lemma 

Let d be a fixed positive integer. We denote by G+(m) that subset of Z d which 
consists of all d-tuples of integers x=(~l  . . . . .  ~d) with 0<=~<m (l<=i<=d). 

Lemma 1. Let m be a given positive integer, and let q be a given number such that 
0 < q < l .  Then there is a positive integer Jo such that the following statement holds: 

(S) Let j be any integer =>Jo, and let S be any subset of G+(m j) whose cardinality 
is at least qm jd. Then there is a subset of the form y+mJ'-lG+(m) (with 2<=j" <=j-1 
and with y in mJ" G+(mJ-J')) of G+(m j) such that for every element x in that subset, 

S n ( x  +G+(mJ'-l)) # O. 

Proof. To begin with we let j be a fixed integer =>4, and i an integer variable 
ranging from 2 to j -  1. We must show that i f j  is large (S) holds for some i=j' .  

Let S be a given set as in (S). For each i in the mentioned range there is a unique 
disjoint partition of G+(m j) into sets of the form x+G+(m~-~); denote by rg~ the 
collection of those disjoint sets, and by ~i the subcollection of those sets in cg~ which 
do not meet S. Then for i<=j--2 let ~i be the collection of those sets in ~i which 
are not contained in any set of ~+~.  Since the cardinality of G+(m j) is m j~, there 
must be a @J' such that the union of the sets in that collection ~j, has cardinality at 
most mJd/(j-3). Thus the number of sets in ~j, is at most 

( * ) mJd-yd+d/(j -- 3). 

By the assumption about the cardinality of S, the union of all sets in ~j,+~\~j,+l 
has cardinality at least qmJa; so the collection c~ji+ l \ ~ j ,  + 1 consists of at least qm jd-yd 
sets. Now suppose that j was initially taken larger than 2ma/q+3. Then the last- 
mentioned number of sets is strictly larger than ( . ) ,  and hence there must be a set 
y+G+(m j') in ~ , + l \ ~ j , + l  containing no set of ~j, .  I f  we now form the set 
y + m j ' - IG + (m) we easily find that this set has the properties claimed in statement (S). 

3. Uniform representability 

Theorem 1. For any two normed spaces which are uniformly homeomorphic, 
there is a number C > 0  with the property that every finite-dimensional subspace of 
one of the given spaces is imbeddable into the other by means of a linear mapping T 
such that II TI[ [I T-1I[ <= C. 

In view of the triangle inequality we easily obtain Theorem 1 from the fol- 
lowing: 
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Theorem 1A. For two normed spaces E and F, let there be given a (non-linear) 
mapping f :  E--*F which for some number b > 0  fulfils the inequality 

b -1 []x-yll  --< Ilf(x) -f(Y)[I =< b [Ix--yl[ 

whenever I [ x - y [ =  > 1. 

Then there is a number C > 0  such that every finite-dimensional subspace o f  E is imbedd- 
able into F by means of  a linear mapping T such that [] T[I II T - i l l  ---- C. 

Notation. For  the proof  of  Theorem 1A we need some definitions. Given some 
points Xl . . . . .  xa (d-->l) in a linear space and an integer m_->l, we denote by 
G(xl . . . . .  xelm) [resp. G+(x~ . . . . .  xalm)] the set of  all linear combinations ~lX~+... 
�9 ..+~axe with ~i integers, l~,[<_-m [resp. 0<_-~,<m]. 

For  a normed space E we let S(E) be the set of  all d-tuples (xl . . . . .  Xa)CE 
such that IIx,[] = 1 and dist (xi, lin (xl, . . . ,  x,_O) = 1. 

Assumptions. To begin with, we consider a given (non-linear) mapping f :  E:+F, 
where E and F are normed linear spaces, such that for some number b > 0  we have 

I l f ( x ) - f ( y ) [ - ~ b l l x - y l ]  for x , y  in E, I l x - y l l -  > _ 1. 

Further, let c > 0  be another fixed number. 

Notation. With these assumptions, let x in E and u in F" be given points. (F '  is 
the dual, or conjugate space, of/7.)  We denote by d ( x ,  u) the class of  all sets S 
in E such that whenever y is a point in S and k is any positive integer such that y + kx  
is also in S, we have 

u ( f ( y  + k x ) - f ( y ) )  ~= clIull [Ixllk. 

Lemma 2. With these assumptions, let d >- 1 be a given integer. Then there is an 
integer too(d, b/c)=mo>- 3 such that for m>-mo there is an integer jo(d, m, b/c)=jo>- I 
with this property: Let (Xl . . . . .  xa) be a d-tuple o f  S(E) and let j>-jo; suppose that 
yO in G(xl,  ..., xa[[m3J/3]), z in G(xl,  ..., xa m), and u in F" are elements for which 

u(f(yO + [m3a-t/3lz)_f(yO)) ~ 5c(mZj-1/3) Uull Ilzll. 

Then the set G(Xl . . . . .  xalm 3j) contains a subset which is of  the form 

y -  + m  J- -1G(x l  . . . .  , xa[m) 

(where 1 <-j-<=3j-1),  and which belongs to the class d ( m J - - l z ,  u). 

In the proof  of  this we shall use an elementary fact: 

Suhlemma. Let ao . . . .  , ag be a finite real number sequence such that aK-ao >- 
>--2cK and ak+~--ak~b (0--<--k<----K--I)for some given b, c>0 .  Put 

a = { k l a , - a  k>- c ( i - k )  for k ~_ i<-- K}. 

Then the cardinality of  Q is at least (c / (b-c) )K.  
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Proof  o f  Sublemma. Form the sequence m k =mink~_i~K (a i -- ci). Then mr--mo >= 
>=cK and mk+l--rnk<--b--c. Since mk+l>mk only when k in Q, we are done. 

Proof  o fLemma  2. Let rn and j be fixed integers large enough to meet the 
requirements specified later; and let y0, z, and u be given as in the statement of  the 
lemma. Denote by S the set of  those points x in G(xl  . . . .  , xdl[2maJ/3]) for which 

(T) u ( f ( x  + iz) - f ( x ) )  ~_ 2c Ilull Ilzlli 

when 0 <= i <= [m3J-2/3]. 

I f  B denotes the dosed unit ball in E, consider 

V =  G(xl  . . . .  , xa[[2m3J/3]) ca (yO + (cm3j-i/6b)B).  

Then take a set Y c  V so that for every line par.allel to z and having non-empty 
intersection with 11, the set Y has precisely one point in that intersection. The defini- 
tion of S(E) implies that [Izll =>1, so by the definition of V we must have 

u( f ( y  + (m3J-I/3)z) - f ( y ) )  >~ 4c(m~S-~/3) Ilull Ilzll, 

for all y in Y. 
Making use of  the latter estimate, for each y in Y we now apply the preceding 

Sublemma to the sequence i -~u ( f ( y+ i z ) ) .  I f  l (y)  is the set of  points y + i z  with 
0<-i<=[m3i-1/3], we then find that l ( y ) n  S contains more than (2c/b)m3j-1/6 points. 
But the definitions of  V and S(E) imply that there is also a number q, 0 < q < l ,  
which depends only on the numbers d, m, b/c, but not on j ,  and which is such that 
the union of  all the sets l(y),  with y running through Y, has at least qm 3j points. 
Summing up we find that there is a number q', 0 < q ' <  1, not depending on j, such 
that S has at least q 'm  3j points. 

In view of  this conclusion we can apply Lemma 1 of Section 2. Assuming that 
j was taken large enoagh, we thus find that G(xl . . . .  , xalm 3j) has a subset which is 
of the form 

y + maj "- 3 G+ (xx . . . . .  xa I m3), 

where 2<=j'<=j-1, and in which every point x is such that 

sca(x+G+(xl, . . . ,  # o.  

Assume that we have taken m >=2bd/c. Then the definition of $ (E) and the assump- 
tion about f imply that for every point x in the set 

y-k  maJ'-2G + (xl . . . .  , xelm2), 

the inequality (t), without factor 2, must hold whenever m ay-~<- i<=[maJ'/3]. 
This means that the mentioned set is of class a/(maJ'-2z, u). Then it must 

clearly contain a subset of the desired kind, with j - =  3 j ' - 1 .  
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Proof o f  Theorem 1A. Now let f :  E ~ F  be as in the statement of the theorem. 
Let classes ~*(x ,  u) of subsets in E be defined as the ~r u) just  before Lemma 2, 
but with the given coefficient c replaced by b/5. 

To begin with, let (xl,  ..., Xd) be a given element in S (E) and m _  -> 1 a given 
integer. Let N _  -> 1 be an integer which is fixed but chosen large enough to meet the 
requirements specified later; consider the set 

G -~ G(xl  . . . .  , xdlm3N)' 

Let zl . . . .  , z, (where n = ( 2 m +  1)d- l )  be an enumeration of the non-zero points 
in G (xl . . . . .  Xdlm). In view of theassumption f o r f a  recursive application of Lemma 2 
gives a sequence of sets G D G I D . . .  ~ Gn, which are of the form 

Gk = Yk + mZlVck)(J(k) -1) G (xl . . . . .  Xd ] m3~r(k)), 

with integers N>=N(1)~. . .~N(n)>=I and j(k)->l ,  and which belong to the classes 

r~i~k J~* ( m31v(k)(j(k)-l) zl, Ui), 

resp., for some suitable u~#0 in F' .  This is certainly possible if only N was taken 
large enough, and we may also assume that the number m a~'C"~ = M ,  say, is suitably 
large for our later purposes. (Of course, the N(k)  have to be determined in the order 
N ( n - 1 ) ,  N ( n - 2 )  . . . . .  N(1), N; but this is clearly permissible. Also notice that the 
choice of the point yO mentioned in Lemma 2 is actually without importance here.) 

With the aid of the set G, thus found, we can quickly prove: Given an ~ >0  
(to be specified shortly), there is a mapping h: G(x~, ..., xalm)--*F fulfilling the 
conditions 

(i) I l h ( x ) + h ( y ) - h ( x  + y)[I <= 8 

(ii) (10b)-ailxl[ <= IIh(x)l[ <= bllxll 

for all x and y. Namely, we define 

h(x) = (2M+ 1)-dM-J(") +1 ~ ,  (f(x" + MiC")-Ix)--f(x ')) ,  

where the summation index x'  runs through the set G,. The right-hand inequality 
of (ii) is immediate. To establish the left-hand inequality of (ii), first notice that 
for any 0 < t < l ,  by assuming M/m to be large enough we can achieve that for a 
proportion of at least t of the number of all points x' in Gn, also the point x'+MJC")-lx 
is in G. (for all fixed x). In view of this observation, the mentioned inequality follows 
from the fact proved above that G. is of class 

N~. ~ *  ( M J(n)-l zi, Ui), 
for some u~r in F' .  

To verify (i), we similarly observe that by assuming M/m to be large enough, 
we achieve this: If  we write out the defining sums of h(x), h(y),  and h(x+y) ,  and 
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then form the difference h ( x ) + h ( y ) - h ( x + y ) ,  then the number of terms which 
do not cancel out must become suitably small compared to the denominator (2M+ 1) a. 
This gives the desired inequality (in view of the right-hand inequality in the hypothesis 
of the theorem). 

By a modification of h we can obtain a mapping h - : G ( x l  . . . .  , xd[m)-+F ful- 
filling the conditions 

(i)- h- (x + y) = h-  (x) + h-  (y) 

(ii)- (20b) -1 llxl/ <-- []h- (x)ll <- 2b Ilx][ 

for all x and y. For if e was taken small enough, it will do with the definition 

h-  (~xx~ +.. .  + ~axa) = ~lh (xl) +.. .  + ~dh (Xd). 

We can now complete the proof. Let K be a given finite-dimensional subspace 
of E. Suppose that (x~, .. . ,  Xd) is a sequence of S (E) which spans K. There must 
be an integer m=>l such that if h - :  G(xx, ..., xdlm)~F is any given mapping which 
fulfils the conditions (i)- and (ii)- just stated, then its unique linear extension T: K--,-F 
must satisfy the inequalities 

(30b)-lllxl[ <= [I r (x)  [l -<_ 3b[lxll 

for all x. Since the existence of such an h -  has just been proved, the assertion fol- 
lows (with C=90b2; but cf. Section 5). 

4. An isomorphy criterion 

When there is a uniform homeomorphism which is "well-behaved on finite- 
dimensional subspaces" we can sometimes infer that the two spaces must be iso- 
morphic. To make the assertion precise, we introduce some notations. 

Notation. For a normed space E we let ~e be the set of all its finite-dimensional 
subspaces, and kge the set of all its closed subspaces of finite codimension. If  f :  E-+F 
is a mapping between two normed spaces, and if K is in ~e and L in ~F, we denote 
by fK, L: K ~ F / L  the composition o f f  with the canonical inclusion and quotient 
maps: K--,-E--,-F~F/L. 

Theorem 2. Let E and F be separable Banach spaces, and let F be the dual o f  
some Banach space. Suppose that there is a uniformly continuous surjection f :  E ~ F ,  
for some c > 0  fulfilling the conditions: 

(C) For every KE in ~e there is an L in ~e and a 20>0 such that 

[[fK.L(X)--fK, L(Y)][ ~ Cl[x--y[I when [[x--yl[ ~ Ao. 
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(D) Conversely, for every L in ~F there is a K in ~ and a ).o>0 such that for  
any x, y in F/L with Hx-yl] >=2o, there are always points x" in f ~ (x) and y" in f ~ (y) 
such that 

[Ix-yl[ --> c[Ix'-y'[I. 

Then E and F are isomorphic as Banach spaces. 

Proof(somewhat sketchy). Let there be given finite-dimensional subspaces 
K~cK2c ... in E, such that their union is dense in E. Let ul, u2 . . . .  be a sequence 
which is dense in the set of  elements of  norm one in a space to which F is dual. In 
our notation we regard the u t as functionals ui(. ) on F. 

First, by conditions (C) and (D) it can be seen that there are sequences of 
integers l<-r(1)<-r(2)<=.., and l<=s(1)<-s(2)~.. ,  such that if we take K=Kk, 
then condition (C), with c replaced by c/2, is fulfilled with L=(-qi~_,Ck ) ui-l(0); and 
if we take L = A~_k u7 ~ (0), then (D), with c replaced by c/2, is fulfilled with K =  Ks<k) �9 

Using the same reasoning as in the proof  of  Theorem 1A in the preceding 
section, we can prove that for some C > 0  there are linear mappings Tk: Kk-~F 
(k_-> 1) such that 

(i) II Zkl[ <= C. 
(ii) For  z in Kk and j>=k, we have u,(Tj(z))>=C-allzJJ for some i<=r(k). 

(iii) For  each integer k=>l, we have for each j~=s(k) that u ~ ( T j ( z ) ) > = C - ~ l l z l l  ' 

for some z ~ 0  in K~k). 
In view of  Alaoglu's theorem we can use a standard Arzel/t--Ascoli argument 

to find a point,wise weak-star convergent subsequence of Tk. The limit mapping 
thus found extends by continuity to a mapping T" E-,F.  The mapping T is clearly 
linear, and on account of  statements (i)--(iii) it is quickly checked that 11 Zll II Z-ll] <- C2,, 
and that the domain of  T -1 is the whole of F. 

5. Sharp estimates 

In the proofs of  Sections 3--4 we refrained from making the best possible 
estimates of  the norms of the linear mappings. However, by modifying the proofs 
in a way which is quite straightforward but  which would look ugly in print, it is 
obtained that in Theorem 1A we can actually get C=b2+e for any e>0.  In the 
proof  of Theorem 2 we can get II TII [I T-il l  <=b/c+e (where b is as in the Assumption 
before Lemma 2). 
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