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Abstract 

In this paper the following result is proved. In any total reward countable 

state Markov decision process a Markov strategy ~ exist~ which is uniformly 

* * * nearly-optimal in the following sense: v(~) ~ v - e(e+u ). Here v denotes 

the value function of the process, u* denotes the value of the process if 

all negative rewards are neglected, and e is the unit function. 
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1 • Introduc don 

Consider a Markov decision process (MDP) with countable state space Sand 

arbitrary action space A, with a a-field containing all one-point sets. If 

in state i E S action a E A is taken two things happen: a (possibly nega-

tive) immediate reward r(i,a) is earned and the system moves to a new state 

j, j E S, with probability p(i,a,j), where E. p(i,a,j) = I. The functions 
J 

r(i,a) and p(i,a,j) are assumed to be measurable in a. Three sets of stra-

tegies will be distinguished, namely the set H of all (possibly randomized 

and history dependent) strategies satisfying the usual measurability con-

ditions, the set M of all nonrandomized Markov strategies, and the set F 

of all nonrandomized stationary strategies. So FcMcII. The set of all func .... 

tions from S into A ,also called" policies, will be denoted by F as well. 

For each strategy 11' E II and eaog:initial state one may define in the usual 

way a probability measure]P. on (S x A)~ and a stochastic process 
1,11' 

{(X ,A ), n = O,l, ••• } where X denotes the state of the system at time n n n n 

and A the action chosen at time n. Expectations with respect to]P. are n 1,11' 

denoted by lE. • 
1,11' 

Now the total expected reward v(i,1I'} when the process starts in i E Sand 

strategy 11' E II is used can be defined 

(1.1) v (i , 11') : .. lE. \' r (X , A ) 
1,11' [.0 n n nil! 

whenever the expectation at the right hand side is well~efined. To guaran-

tee this the following assumption is made. 
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General convergence condition 

For alIi E S and ~ E IT 

(1.2) u(i,~) := lEo 
1,~ I 

n=O 

+ r (x ,A ) < 00 , 
n n 

r+(i,a) := max{O, r(i,a)} i E S, a EA. 

The value of the total reward MDP is defined by 

(1.3) v*(i) := sup v(i,~) • 
~EIT 

Further the value of the MDP where only the positive rewards are counted 

. * 1S denoted by u , so 

(1.4) * . u (1) = sup u(i,1T} 
1TEIT 

Van Hee [1978] proved that under the general convergence condition lone can re-

strict, pointwise, the attention to Markov strategies, i.e. 

V*(i) = sup v(i,1T). 
~EM 

In Van der Wal (19811 it is proved that if in each state i for which 

* v (i) s 0 a conserving action exists (i.e. an action a satisfying 

* * r(i,a) + ~j p(i,a,j) v (j) = v (0 1, 
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then for each E > 0 a stationary strategy exists satisfying for all i E S 

(1. 5) 

In this paper the following result will be proved. 

Theorem 1. 

For each E > 0 a Markov strategy 11' exists s'atisfying for all i E S 

0.6) 

This theorem extends Van Hee' s result in showing that there exis,t not only 

pointwise nearly-optimal Markov strategies but even uniformly nearly-opti-

mal Markov strategies. Further note that for this theorem to hold neither 

conditions on the action space nor conditions on the reward structure are 

needed. 

In Van Hee, Hordijk and Van der Wal [1977] an example is given which shows 

that a Markov strategy 11' satisfying 

* * ~ v - ~(e + Iv I} 

need not exist. 

Further it is clear from negative dynamic programming 

also a Markov strategy ~ satisfying 

* * ~ v - EU 

* (then u = O} that 
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need not exist. This suggests that the statement in Theorem 1 is fairly 

strong. 

The proof of the theorem is similar to the proof of (1.5) in Van der Wal 

[1981J. It will be given in Section 2 • 

. First we introduce a few more notations. If in an.expression the argument 

corresponding to the state is deleted, then the function on S is meant. So 

for example v* is the function with i-th coordinate v*(i}. Often these 

functions are treated as columnvectors. 

Let f be any policy then the immediate reward function ref} and the tran-

sition probability function P(f), which will be treated as a columnvector 

and a matrix respectively, are defined by 

(1.7) r(f)(i} = rei, f(i)} i e: S 

( 1.8) P(f)(i,j) = p(i, f(i),j} i,j e: S . 

Further we define the operators L(f} on suitahle suo.sets of rea,l-valued 

functions on S by 

(1.9) L(f}v = ref} + P(f)v 

Finally define S + and S by 

S := {i E: S I y* (il ~ O} 
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2. The proof of Theorem] 

Roughly the proof goes as follows. 

First choose some € > 0 and define policies f , n = 0,], ••• satisfying 
n 

(2.1) L(f )v* <e: v* - € 2-(n+1) e • 
n 

These policies constitute a.Markov strategy ~, ~ = (fO.f1, ••• ). 

Let now IT be the set of all strategies which on S- act according to ~. 

I.e.,·· if at some time n the system occupies some state i € S-, then the 

action f (i) has to be taken. Then, as will be shown, 
n 

(2.2) SUl: v('!T) 
'!Ten 

* <e: v - €e • 

So fixing nearly conserving actions on S- in the manner described above 

has not much influence on what can be gained. 

Next we construct a new MDP with state space S x T, T = {O,l, •• ,} and the 

state dependent action sets. To be more precise, the action set in the 

states (i,t), i e S-, is taken to be the singleton {ft(i)} whereas in the 

+ states (i,t), i IE. S the action set is not"estricted. Further, only 

transitions from states (i,t) to states (j,t+l) are possible, So one might 

say that time is included in the state definition. 

After some manipUlation this newly defined MDP satisfies the conditions in 

Van der Wal [1981 J, I.e., in each state where the 'Value is nonpositive 

there is a"conserving action (as the action space there is a singleton}, 

Hence, in this ~odel there exists a uniformly nearly-optimal stationary 

strategy in the sense of (1.5). This str~tegy corresponds to a Markov 
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strategy in TI for the original MDP and this strategy will satisfy (1.6) 

(for a slightly larger £). 

To start with let i= (fo,tI"") be the Markov strategy defined by (Z.I), 

and define for t = 1,2, ••• 

Further define L to be the time of the first switch from S- to S+ or vice 

versa: 

E S then inf{n ! i E S+} 
n 

for all il,iZ"" E S, and where inf 0 := ~. 

Then we need the following result: 

Lenuna 2.1 

For all i E S 

(2.3) IE t [Lt. reX ,A 1 + v* (X 1] <!: Y* (i) - £z-t 
~ ... 0 n n L 
1.,11' _ n= 

Proof: Define the following MDP characterized by 5, A, p and r,with 5 = s , 
.... 
A = A and 

(Z.4) 

p(i,a,j) 

{ 

p(i,a,j) = 

f(i,a) = r(i,a) + t 
. S+ JE 

i,j E S , 

( 0 .) Y*(J'} P 1.,a,J , i E S"'" 
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Clearly the expression at the left hand side of (2.3) is equal to the total 

expected reward for strategy ~t in the transformed MOP. Denoting all ob

jects in the transformed MOP by a hat we have (with v(~t) defined on S-

only) 

v(~t) = lim L(ft ) i:(ft +1} ••• i:(ft+nl a 
n~ 

( . * s~nce v ~ 

* -t ~ v - e:2 e. 

Next, let Ii-be the set of strategies using 1T on S-, then 

Lemma 2.2 

* su~ v(~) ~ v - 2Ee • 
~€n 

Proof: The line of proof is very similar to the one in the proof of Lemma 

3.3 in Van der Wal (198]1. 

(n) 
Let ~ , n = 1,2, ••• be a strategy satisfying 

+ 
€ S • 

o 
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Then also 

[

't-l 

lE l: 
i, 'If (n) k=O 

Now let '11'* be the strategy which on S+ uses 'II'(k) during the k-ch stay in 

S+ • , aSSUDll.ng a restart upon re-entry, and on S uses ~ ~ resetting the 

clock at a (re)entry time. 

We will show that this strategy rr* satisfies 

* * v('II' ) ~ V - 2ee - oe • 

Therefore define T to be the time of the n-th switch from S+ to S- or 
n 

00. 

vice versa, i.e. let ~ = (iO,i], ••• ) be any path in S then 'tl(~) - T(~) 

and 'tn0;;) ='t(i't - (~),iT' (~)+]"")' n ~ 2. Then, as 't ~ n, 
. n-l n-l n 

't -1 
n 

= lim lE I 
n-+«' i , 'II' * k=O 

* v(rr ) 

Now assume i E s+, then for n = 1,2, ••• 

lE . * lo,rr 
+ v*(x,[, )] = 

2n+l 

=lE 
. * 1,rr 

't -1 
2n 

L 
k=O 

reX. ,A.) + I 1P ('t
2 

< o:>,x = j) • 
K -1<. . .* n 't

2 jES+ 1,'11' n 
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;:: lE I 
· * 0 l., 'IT k== 

2:lE 
· * l.,'IT 

[ 
'[-I J * -n-l • lE t 1: r (x_ ,A.) + v (X) - 02 ;:: 

l,'fr k=O -1.<; -1.<; '[ 

· * l.,'IT 
• v'(X, )l 

2n-l' I .... 

. t 2-2n+ 1 2-2n+ 3 2-1} * ( . } ~ 2 
-e; + + ••• + >v l. -I.!-r' 

Hence v(i,'IT*} ;:: v*(i) - 0 -~ for all i € S+ • 
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Further one may show that for all i E S 

(2.5) 

Since IS > a can be chosen arbitrarily the proof is complete. 

2 
The estimates are not as sharp as possible. E.g., in (2.5) the term J€ 

can be replaced by ~ since all actions on 5- are taken T ~ 1 units of 

time later. By being more careful, and not using Lemma 2.1, one may even 

prove that 

* ~ v - ge • 

But for our purpose Lemma 2.2 is quite sufficient. 

o 

So the value of the MDP has not been affected very much by the restriction 
... 

to strategies from TI. 

Now let us extend the process with a time parameter. 50 consider the MDP 

with state space 5 x T, T = {O,l, ••• } , action space A and further 

r{(i,t),a) = r(i,a} , 

p«i,t},a,(j,t+l» = p(i,a,j} 

p«i,t),a,(j,s}} = a if s ; t+l • 

i,j € S, a E A, t € T , 

The part of this new MOP with initial states {(i,O} now corresponds to 

the original MDP. In order that a strategy for the initial states {(i,O)} 

yields a strategy in fi we restrict the action space in the states (i,t) 

with i E S to the singletons {ft(i)}. Then, as one easily verifies, 
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(cf. Lemma 2.2) 

* ( ( . ) ) * ( . ) I-t v ~,t ~ v ~ - 2 €. 

This newly defined MDP does not yet satisfy the condition that in each 

state with nonpositive value a conserving action exists, which is needed 

to be able to apply result (1.5). To have this condition satisfied the 

immediate rewards are slightly increased in the states (i,t) with i € S+. 

Define 

{ 

~ I-t 

. ~::::::::: :~ :::::::::: + 2 E 

+ 
i € S , 

Then clearly (we use tildes for objects in the MDP with rewards ;) for all 

. S+ 
~ € 

So, if v«i,t» s; a then i € S and thus the action set in state (i,t) is 

a singleton whence this action is also conserving. Thus the result in 

Van der Wal [1981] applies, stating the existence of a stationary strategy, 

g say, satisfying 

(2.6) -* -* ~v .... ou, 

where a > a is some arbitrarily chosen constant. This stationary strategy 

g corresponds to a Markov strategy '11' € IT for the original MOP, namely 
g 

the strategy 'I1'g = (gO,g1"':) with gt(i) = g«i,t». 



As we will show rr satisfies 
g 

v(rr ) 
g 

where eO depends on € and o. 

Therefore observe that 
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... 
(2.7) ~«i,O),g) ~ v(i,rr } + t 

g taO 

~nd that similarly 

(2.S) "'* * u ~ u + 4Ee • 

Also,by Lemma 2.2, 

(2.9) ~*«i,O)} ~ v*«i,O)} ~ v*(i} - 2E • 

So by subsequently using (2.7), (2.6), (2.9) and (2.8) we obtain for all 

i E S 

with eO ... max{6E + 4<SE,Q}. 

Clearly EO can be made ~rbi.trari1y small by a suitable choice of E and IS 

so the proof of Theorem 1 is complete. 
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