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ON UNIFORMLY STRONGLY PRIME GAMMA RINGS

G.L. BOOTH AND N.J. GROENWALD

The concept of uniformly strongly prime (usp) is introduced for J^-ring, and a usp radical
T(M) is defined for a T-ring M. If M has left and right unities, then T{L)+ = T(M) =
T(R)' , where L and R denote, respectively, the left and right operator rings of M, and
T ( ) denotes the usp radical of a ring. If m, n are positive integers, then T(Mmn) =
(T(M))m n, where Mmn is the matrix i""nm-ring. T is shown to be a special radical in
the variety of -T-rings. T\ is the upper radical determined by the class of usp .T-rings of
bound 1. T C TJ , but the reverse inclusion does not hold in general. The place of r and
T\ in the hierarchy of radicals for T'-rings is shown.

1. B A S I C C O N C E P T S

Let M and F be additive abelian groups. If, for all x,y, z 6 M, -y, fi 6 F, we

have

(i) xjy G M ;

(ii) xf{ynz) = (xjy)/j,z;
(iii) xj(y + z) - xjy + xjz; x(j + n)y = xjy + x/xy; (x + y)fz = xjz +

VIz

then M is called a F-ring. If U and V are subsets of M and <f> is a subset of F, then

we define

u<f>v = {ujv: u e u, 7 G 4>, v eV}.

If A is a subgroup of M+ , and AFM C A, MFA C A, then A is an ideal of M,

denoted by A < M. Similar notation will be used for ideals of rings. If A < M,

the factor .T-rmg M/A is defined in the natural way. If P <\ M, and U, V < M,

UFV C P implies E / C P o r ^ C P , then P is called a prime ideal of M. M is a

prime F-ring if the zero ideal of M is prime. The following result is proved along the

same lines as the corresponding one for rings.

PROPOSITION 1.1. Let M be a F-ring and let P < M. Then the following are

equivalent:

(a) P is a prime ideal of M ;

(b) For all x,y £ P, xFMFy C P implies x £ P or y £ P.
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If A < M, the left annihilator of M is the set

1{A) = {x£M: xFA = 0}.

Similarly,

r(A) = {x£ M: AFx = 0}.

If A < M, and 0 ^ / < M implies / n A ^ 0, then A is called an essential

ic/eai of M, denoted by A <1- M. If M and M' are P-rings, and there exists a group
isomorphism / : M —* M' satisfying f(xjy) = f{x)yf(y), for all x, y G M, 7 € F,

then M and M' are said to be isomorphic, denoted by M = M'.

Let x G M , 7 G F. Define \x, 7]: iW —» M by [x, 7)2/ = £73/ for all y £ M.

The subring £ of end(M) consisting of all sums X^[XM 7i] i *» € M , 7; G T , is called
t

the 7ef( operator ring of M. A right operator ring R of M is defined similarly, and
consists of all sums of the form X)[7')xil> T» € F, X{ G M.

t

If A C L, A+ = {x G M : [1,7] G A for all 7 G -T}.
If B C i?, B* = {x G M : [7, x] G 5 for all 7 G T } .
If C C X, C'+' = { l £ l : I M C C } and C'*' = { r 6 JJ: Mr C C1}.

It is easily seen that all of these mappings take ideals to ideals, and preserve

intersections.

If L contains an element d such that dx = x for all x G M, then d is called a left

unity for M. It is easily seen that d is the (2-sided) unity of L in this case. Similarly,

if there exists e G R such that xe — x for all x G M, then e is called a rigiit unity for

M , and e is the unity of R in this case.

For further details of /'-rings and their operator rings, see the references.

2. UNIFORMLY STRONGLY PRIME T-RINGS

Following Olson [11], a ring R is called uniformly strongly prime (usp), if R

contains a finite subset F such that xFy = 0 implies that x = 0 or y — 0, for all

x,y G R- F is called an insulator for R. If P <J R, then P is called a usp ideal of i?

if there exists a finite subset F of R such that xFy C P implies that x G P or y G P

for all x,y £ R. It is clear that P <3 i? is usp if and only if the factor ring R/P is usp.

Moreover, usp implies strongly prime and hence prime.

In [4] the concept of a strongly prime P-ring is introduced. Several characterisations
of this concept are available. In ([4], Proposition 2.2(c)), it is shown that a P-ring M

is strongly prime if and only if, for all x £ M, there exist finite subsets F of M and <f>

and A of F such that x<f>FAy = 0 implies y = 0, for all y G M. In view of Proposition
1.1, strongly prime implies prime.
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A T-ring M will be called uniformly strongly prime (usp) if there exist finite

subsets F and A of M and F, respectively, such that xAFAy = 0 implies x = 0 or

y = 0 , for all x,y £ M.

The pair (F, A) will be called an insulator for M. It is obvious that usp implies

strongly prime for /"-rings. If P < N, then P is called usp if M and F contains finite

subsets F and A, respectively, such that x / iF/ i i / C i> implies x £ P or y £ P, for

all x,$/ G M . It is clear that, if P <i M, then P is usp if and only if M/P is a usp

-T-ring.

The following characterisation of usp .T-rings will be of use later.

LEMMA 2.1. Let M be a F-ring. Then the following are equivalent:

(a) M is usp;

(b) there exist finite subsets F of M and <f> and A of F such that x<j>FAy =

0 implies x = 0 or y = 0, for all x,y G M.

PROOF: (a) => (b) is obvious. So suppose the conditions of (b) hold. Then let
A — 4>l)A. Since x<j>FAy C xAFAy for all x,y S M, (F,A) is the required insulator
of M. I

THEOREM 2.2. Let M be a F-ring with left operator ring L. Then:
m

(a) If M has a left unity X)[^«»^«] a n c ' M is usp, then L is usp;
«=i

n
(b) If M has a right unity J ] [ e« ' e«l &n<^ L JS USP> then M is usp.

i= l

PROOF: (a) Let (F,A) be the insulator for M. Then define

Now suppose that 1,1' e L, 1^0 and iGT = 0. Then Idj £ 0 for at least one j ,

for Idi = 0, 1 < i < m implies S N M ^ J = °> whence £X)[di,5i] = 0, that is £ = 0.

Hence, for all x € M , / G F , 7 ,M 6 A,(ldj)-yffi(l'x) = 0. Since Wy ^ 0, Z'z = 0 for
all x € M , that is Z' = 0. Hence G is an insulator for L, so L is usp.

(b) Let -F be the insulator for L. Suppose that F = {Zj,...,/,.}
•U)

and that lj — ^[x«i)T*i]- Define

G = {xir. l ^ i <3{j),l£j < r } ,
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I
Let x, y £ M be such that x ^ 0 and x<f>GAy — 0. Then [a;, £j] ^ 0 for at least

one ej , otherwise ^xeiei = 0, that is x = 0. Now for all 1 ^ i ^ n, 7 6 T , we
t

have that [x, £j]F[y, 7] = 0. If follows that [y, 7] — 0 for all 7 € T. In particular,
[3/1 e«] = 0) 1 ^ i ^ n, whence ^2y£iei = 0, that is y = 0. Hence, by Lemma 2.1, M

is usp, as required.

In [11] the usp radical of a ring R, T(R) , is defined to be the intersection of its usp
ideals. Similarly, we define the usp radical of a J'-ring M, T(M) , to be the intersection
of its usp ideals.

LEMMA 2.3. ([9], Theorem 2). Let M be a F-ring with left and right unities,

and let L be the left operator ring of M. Then, if A < L, A = {A+)+>, and if B <

M, B — (B+ \ . Hence the mapping A —> A+ defines a one-to-one correspondence

between the sets of ideals of L and M .

LEMMA 2.4. ([2], Corollary 2.2). Let M be a F-ring with left operator ring L . If

A < M, then the left operator ring of the factor F-ring M/A is isomorphic to L/A+ .

LEMMA 2.5. Let M be a F-ring with left and right unities, and let L be the left

operator ring of M . Then the mapping A —> A+ defines a one-to-one correspondence

between the sets of usp ideals of L and M .

PROOF: Suppose A is a usp ideal of L. Then L/A is a usp ring, and by Lemma

2.4 the left operator ring of M/A+ is isomorphic to L/(A+) = L/A by Lemma 2.3.

Hence, by Theorem 2.2, M/A+ is an usp f-ring, hence A+ is a usp ideal of M.

Suppose now that B is a usp ideal of M. Then M/B is a usp T-ring, and the
left operator ring of M/B is isomorphic to L/B+ by Lemma 2.4. Hence, by Theorem
2.2, L/B+ is a usp ring, whence B+ is a usp ideal of L. |

The result now follows from 2.3.

THEOREM 2.6. Let M be a F-ring with left and right unities, and with left and

right operator rings L and R respectively. Then

r(L)+=r(M) = r(R)\

PROOF: T(L)+ - T(M) follows directly from Lemma 2.5. T(M) - T(R)' follows
from the right duals of the results in this section. |

REMARK: Let M be an arbitrary T-ring with left and right operator rings L and

R, respectively.
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(1) The equality T{L) = T(R)* does not hold in general. For example, let U

and V be, respectively, finite and infinite dimensional vector spaces over the same field
F. Let M = C(U, V) and F = C(V, U). Then M is a f-ring with the operations
of pointwise addition and composition of mappings. Let L and R denote the left and
right operator rings of M . It may be shown that L = C(U, U), while R is isomorphic
to the ring of finite rank operators on V . Since F is usp, L is usp (see [11], Lemma
9). Hence T(L) = 0. But R is not strongly prime (see [13], p.81), and hence not usp.
Since R is a simple ring, T(R) = R. Hence T(L) = 0+ = 0 and T(R)* = M.

(2) In ([3], Proposition 2.4) it is shown that, if 72. is an JV-radical class of rings
in the sense of Sands [14], then *R-{L) = 1Z(R)* . The above example shows that T is
not an JV-radical in the variety of rings.

LEMMA 2.7. ([5], Lemma 1.4). Let R be a ring. Then a subset P of R is a prime

ideal of R if and only if P is a prime ideal of R considered as F-ring with F = R.

LEMMA 2.8. Let R be a ring. Then a subset P of R is a usp idea/ of the ring R

if and only if P is. a usp ideal of R considered as a F-ring with F = R.

PROOF: Let P be a usp ideal of R. If P = R, clearly P is a usp ideal of the

jT-ring R. So suppose P ^ R. Let F be a finite subset of R such that xFy C P

implies x 6 P or y € P, for all x, y £ R.

Suppose xF3y C P, and x £ P. Then F2y C P, which implies y G P or F C P.

If F C P , uFv C P for all u, v e R, which is impossible, since P ^ R. Hence y € P,

and so P is a usp ideal of the P-ring R.

Let Q be a usp ideal of the T-ring R. Then, by Lemma 2.7 Q is an ideal of the

ring R. Let F, G be finite subsets of R such that xFGFy C Q implies x £ Q or

y £ Q, for all x, y 6 Q. Let H = F G F = {/5/ ': f, f £ F ,g £ G}. Then tf is finite,

and xify C P implies that x 6 P or y £ P, for all x, y £ P. Hence P is a usp ideal

of R, and the proof is complete. |

THEOREM 2.9. Let R be a. ring and let T(R) , T'(R) denote, respectively, the usp
radical of the ring R and the usp radical of R considered as a F-ring with F = R.
Then r(R) = T'{R).

PROOF: This follows directly from the definitions of T(R) , r'(R) and Lemma
2.8. |

3. MATRIX GAMMA RINGS

Let M be a f-ring, and let m, n be positive integers. Denote by Mmn and Fnm

the sets o f m x n matrices with entries from M and nxm matrices with entries from
F, respectively.
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Let (xij), (yij) £ Mmn and (7^) G Fnm . We define (zij) = {xij){-fij)(yij), where

p 9
Then Mmn is a .Tnm-ring with respect to matrix addition and the operation defined

above. If x £ M, the notation xEpq will be used to denote a matrix in Mmn with x

in the p-th row and q-th column, and zeros in all other positions. The notation fEpq,

where y £ F, will have a similar meaning. If A C M, Amn will denote the set of

m x n matrices with entries from A. If (f> C F, <f>nm is similarly defined.

THEOREM 3.1. M is a usp F-ring if and only if Mmn is a usp rnm-ring.

PROOF: Suppose M is a usp .T-ring. Let (F, A) be an insulator for M. Put

cf> = (AU{0})nm

Suppose now that (si,-), (j/t>) are nonzero elements of M m n . We will show that
(xij)(/>G<f>(yij) 9̂  0. Let xpq, y,t be nonzero entries from (xij), (yij), respectively.
Then there exist / G F and y, fi £ A such that xpqjff.iy,t ^ 0. Consider the product
(xij)(jEql)(fE11)(nEi,)(yij). The element in the p-th row and 9-th column in this
product is xpq"i{fxy,t. It follows that (G, <j>) is the required insulator for Mmn .

Conversely, suppose that Mm n is usp. Let (F, A) be the insulator for Mmn.
Let G be the set of those elements of M which are entries from some matrix in F,
and let <j> be the set of those elements of F which are entries from some matrix in
A. Suppose 0 ^ x, y G M. Then there exist (7ij), {(*ij) G A, fij £ F such that
(xEn)(jij)(fij)(fj.ij)(yEu) ^ 0. Clearly this implies that the entry in the first row and
first column of the above product is nonzero. But this entry is X711/11M11!/• It follows
that (G, <t>) is the required insulator for M. |

LEMMA 3.2. ([10], Theorem 2). Let M be a F-ring, and let m, n be positive
integers. Then a subset Q of Mmn is a prime ideal of Mmn if and only if Q — Pmn ,
for some prime ideal P of M.

LEMMA 3.3. ([8], Lemma 4). Let M be a F-ring and let I <\ M. Then (M/I)mn

is isomorphic to Mmn/Imn , for all positive integers m and n.

THEOREM 3.4. Let M be a F-ring, and let m, n be positive integers. Then
r (M m n ) = (r(M)) r a n .

PROOF: Let P be a usp ideal of M. Then M/P is a usp J'-ring, whence
Mmn/Pmn = {M/P)mn is a usp Fnm — ring, by Theorem 3.1 and Lemma 3.3. Conse-
quently, Pmn is a usp ideal of Mmn • Suppose Q is a usp ideal of Mm n • Then Q is a
prime ideal of Mmn , whence Q = Pmn for some prime ideal P of M, by Lemma 3.2.
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Hence Mmn/Q = Mmn/Pmn = {M/P)mn. But Mmn/Q is a usp fn m-ring, whence
M/P is a usp-f-ring by Theorem 3.1. Hence P is a usp ideal of M.

We have shown that a subset Q of M m n is a usp ideal of M m n if and only if
Q = Pmn for some usp ideal P of M . The result now follows directly from the
definition of T . |

4. SPECIAL RADICALS

Following Heyman and Roos [7], a class Ad of f-rings is called a special class:

(i) Ad consists of prime /"-rings.
(ii) Ad is hereditary, that is M G M , and A O M implies A € M.

(iii) Ad is essentially closed, that is M is a f-ring, A < -M, and A £ Ad,
implies M £ A4 .

If 7?. is a radical class of /"-rings, and Ad is a special class such that for any /-ring
M, TZ(M) = n{A < M : M/A £ M } , then H is the upper radical determined by the
class Ad, and is called a special radical. The general radical theory of f-rings closely
parallels that the associative rings. For details, we refer to [3].

LEMMA 4.1 . Let M be a F-ring and / < M. If P is a usp ideal of M, then

P D I is a usp ideal of I.

PROOF: Let (F, A) be the insulator of P i n M. It is easy to show that if a e I\P
is a fixed element, then (F^ A) with Fi = FAaAF is a insulator for I n P in I. |

THEOREM 4.2. The class Ad of all usp F-rings is a special class and hence r is a

special radical.

PROOF:

(i) Clearly, every element of Ad is prime,
(ii) Ad is hereditary follows from Lemma 4.1.

(iii) Let A < • M with A £ Ad . Since prime f-rings are essentially closed, we
have from ([5], Lemma 2.2), that 1{A) - r(A) = 0. Let (F,A) be the
insulator of A. For every 0 =£ a, b £ M, there exists 0 ^ Ei, X2 € A and
0 ^ a j , Q2 £ f such that xja^a ^ 0 and 602^2 7̂  0. Since xaja and
602^2 a r e nonzero elements of A we have xa.\aAFAbuiXz •£ 0. Whence
aAFAb ^ 0. Therefore, M e Ad with insulator (F, A). |

If M is a f-ring, then M is called u.s(l) prime it has an insulator of the form
({x},{f}) where x 6 M and 7 £ f.

As in Theorem 4.2 we can show that the class Adi of all us(l) prime f-rings is a
special class. The upper radical determined by this class will be denoted T\. Clearly,
for any f-ring M, r(M) C T J ( M ) . In [12] a ring R is defined to be us(l) prime if
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R has an insulator consisting of a single element. The us(l) radical of R, TJ(R) , is

the upper radical determined by the class of us(l) prime rings, which is shown in [12]

to be special. Using reasoning similar to that employed in the proof of Lemma 2.8 and

Theorem 2.9, we can prove:

THEOREM 4.3. Let R be a ring and let T^R), T[(R) denote, respectively, the

us(l)-prime radicals of the ring R and of R considered as a F-ring with F = R. Then

REMARK: For rings, usp does not, in general, imply us(l)-prime. For example,
let F be a field. It is trivial that F is it«(l)-prime (choose / = { l}) . By the ring
analogy of Theorem 3.1, the ring Fn of n x n matrices with entries from F is usp.
However, if n ^ 2, Fn is not u.s(l)-prime. Let / be any matrix in F'n. Suppose that
0 ^ a 6 fn is a singular matrix. Then af is singular, whence there exists 0 ^ b £ Fn

such that afb = 0. Since Fn is a simple ring this implies that r(Fn) = 0 while
T^Fn) = Fn . In view of Theorems 2.9 and 4.3, this implies that for a f-ring M, the
equality T(M) = Ti(M) does not hold in general.

The following radicals, inter alia, have been introduced for a /"-ring M: Jacobson
J(M) [6], Brown-McCoy B(M) [1], superprime <r{M) [5], Levitzki L(M) [6], nil
Af(M) [6], strongly prime S(M) [4]. We refer to these papers for the definitions and
properties of the radicals.

It is known ([11], Theorem 19) in the ring case that T is independent of both
the Jacobson and Brown-McCoy radicals. In view of Theorem 2.9 and its analogies
for the Jacobson and Brown-McCoy radicals ([6], Theorem 10.1 and [1], Theorem 5.1
respectively), the same is true in the J'-ring case. It follows directly from the definitions
that S{M) C T(M) C T^M) . In ([4], Corollary 3.4), it is shown that L(M) C S(M).

Recall [5] that a .T-ring M is called right-superprime if for every nonzero ideal /

of M there exists x £ I, a £ F such that if y 6 M, xay = 0 implies y =z 0. The

superprime radical cr is now the upper radical determined by the class of all superprime

/"-rings.

M is called a nil / '-ring if for all x £ M, -y £ F there exists a positive integer n

such that ( X 7 ) " E = 0:7a; . . .•yx — 0. The nil radical A/"(M) of an arbitrary /'-ring M

is the sum of all the nil ideals of M.

THEOREM 4.4. If M is any F-ring, then a(M) C Tl{N) and Af{M) C Tl(N).

PROOF: Let M be a us(l) prime T-ring with insulator ( { / } , {7}) where f £ M

and 7 £ F. Let A be any nonzero ideal of M . If 0 ^ o £ A, then ajf £ A

and if 6 £ M, affyb = 0 implies 6 = 0. Hence M is superprime and, therefore,

a(M) C T I ( M ) . Let M £ Af, that is Af(M) = M. If M £ n , then there exists a
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homomorphic image, M', of M which is u.s(l)-prime. Since M is nil, M' is also a nil F-
ring. Let ({/}, {7}) be the insulator of M'. Since f £ M' we can find a positive integer
n such that (h)nf = 0 and ( / 7 ) n ~ 7 * 0. Clearly [ ( ^ " " ^ / h M / ? ) " " 1 ] / =
0 which contradicts the choice of F as insulator. Whence M € Tj and, therefore,
Af(M)CTl(M). I

The diagram below summarises the relationships between the radicals discussed in
the paper. All inclusions are sharp, and radicals not linked are not comparable.

(M)

O(M) (M) W(M)

so(M)

T
L(M)
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