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Abstract. We discuss existence, uniqueness, and regularity of the solutions of a
boundary value problem in a strip, which is obtained by linearization of the equations
of the wave-resistance problem for a cylinder semisubmerged in a heavy fluid of constant
depth H and moving at uniform velocity c in the direction orthogonal to its generators.
We show that the problem has a unique solution, rapidly decreasing at infinity, for every
c > \fgHi where g is the acceleration of gravity. For c < \/gH, we prove unique solvability
provided c ^ c^, where Ck is a known sequence monotonically decreasing to zero. In this
case, the related flow has in general nontrivial oscillations at infinity downstream.

The appearance of the singular values Cfc can be interpreted in terms of a "nonreso-
nance condition" between the length of the cylinder's section and the gravitational wave
bifurcating from the free parallel flow at the same velocity c.

1. Introduction. In the present work, we conclude the analysis started in two pre-
ceding papers [1], [2], of a boundary value problem which is obtained by linearization of
the wave-resistance problem, for the steady-state motion of a semisubmerged cylinder in
an ideal, incompressible, heavy fluid.

Let us briefly recall the formulation of this problem. The cylinder is assumed to
be infinitely long and moving at a uniform speed c in the direction orthogonal to its
generators. The unperturbed fluid, which is at rest, has finite constant depth H\ the
fluid motion is assumed to be irrotational. Because of the geometry of the problem, the
flow can be completely described in the vertical plane containing the direction of the
motion. We want to find the steady two-dimensional flow generated by the cylinder's
motion. This is a boundary value problem for the Laplace equation, characterized by
the presence of a nonlinear condition (Bernoulli condition) on a free boundary (the free
surface of the fluid); moreover, the free boundary is the union of two disconnected curves
ending on the cylinder's profile at unknown points.
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Because of the above features, most of the mathematical work on the wave resistance
problem introduces some kind of linearization, which avoids the treatment of a nonlinear
condition on a free boundary. The linearization proposed in [1], [2], relies on the as-
sumption that the body is "slender", in the sense that the piercing part of the cylinder is
small compared to its length; more precisely, we assume that the cylinder's cross section
depends on a small positive parameter e in such a way that for e —> 0 it reduces to a
beam parallel to the unperturbed flow (the same kind of approximation is discussed in
[3] for a completely submerged cylinder). For e = 0, the trivial parallel flow is a solution
of the problem; by assuming that all the relevant quantities of the problem admit an
expansion in powers of e, the wave-resistance problem is linearized around the solution
at e = 0 by retaining the first order terms. In particular, the Bernoulli condition is
replaced by a linear condition on a fixed boundary. Thus, one obtains a boundary value
problem in a strip, which can be formulated either in terms of the vertical component
of the fluid's velocity field, or in terms of the velocity potential. As discussed in [1],
[2], the former statement of the problem represents an important difference between the
above linearization and other existing approaches [4]-[6], which lead to boundary value
problems for the potential function in different domains. Actually, the problem for the
velocity field, besides being simpler than the problem for the potential, has solutions
which are continuous and bounded up to the strip boundary; as was shown in [7], [8],
this is a crucial property for the proof of the solvability of the nonlinear problem (in the
case of supercritical velocities, see below). We refer to [1], [2], for the detailed description
of the two dimensional wave-resistance problem and of the linearization procedure. We
recall here the problem for the velocity field:

Let us denote by Sh the strip {(x,y) £ RJ : —H < y < 0}; we will call B =
Rx {—H} the bottom boundary Rx {0}. We denote by I the open interval (—x0, xq) x {0}
(representing the beam) and set F = {R\[—xo, xo]} x {0}. We consider the following
problem:

Problem Vu. Given a function T defined on / and a number v £ R, find v £ H}oc(Sh)
such that

Aw = 0 in Sh, (1-1)
v = T on I, (1.2)

vy — vv = 0 on F, (1-3)

v = 0 on B, (1.4)
lim v(x,y) = 0, (1.5)

X—> — 00

uniformly with respect to y £ [—//,()].

sup \v{x, y)\ < oo, (1.6)
(x,y)€SH\A

where A is any neighborhood of I.
Some comments and remarks on the above equations are in order. In the linearized

wave-resistance problem, the function v represents the vertical component of the per-
turbed velocity field; in that case, assuming that the piercing part of the cylinder is
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described by the equation y = ef(x), one has T = cf in condition (1.2) (see [1], [2]).
Similarly, (1.3) becomes the limit of the Bernoulli condition by setting

» = g/c2, (1.7)

where g is the acceleration of gravity. Finally, (1.4) indicates that the fluid bottom is
a streamline and the asymptotic conditions (1.5)—(1.6) state that the perturbed field
vanishes at infinity upstream and is bounded outside any neighborhood of the beam. We
remark that the solutions of problem Vv are locally in i/1(S'//); hence, we will necessarily
take T £ if1'2 (J) in condition (1.2), which implies (by Sobolev embedding theorems)
that the cylinder's profile must be a Holder continuous Cartesian curve. As we will show
below (see also [1], [2]) for sufficiently regular data T the velocity field is continuous up
to the strip boundary. We point out that this regularity result can not be achieved by
requiring only local finiteness of kinetic energy as in [4], [5].

A relevant parameter for the discussion of the wave resistance problem is the Froude
number Fri defined by Fr = c2/gH. We say that the motion of the cylinder is supercrit-
ical if Fr > 1 and subcritical if Fr < 1. Correspondingly, by (1.7), one has v < 1/H in
problem Vv in the case of a supercritical motion, and v > 1/H for subcritical velocities.
In the former case, we proved in reference [1] that the problem (1.1)—(1.4) is uniquely
solvable in the Sobolev space H1(Sh)', the result was extended in [2] to the subcritical
motion, provided the datum T in condition (1.2) satisfies certain linear conditions and
the parameter v in (1.3) does not belong to a discrete subset of (1 /H:+oo). In both
cases, the results follow by a suitable variational formulation of the problem (1.1)—(1.4).

In this paper, we discuss existence, uniqueness, and regularity of the solutions of
problem Pv, i.e. of (1.1)—(1.6). We rely on the results obtained in [1], [2] with the
variational approach, which are summarized in the next section. By assuming T £
H1/2(I) in (1.2), we prove in § 3 that for supercritical velocities the problem has unique
solution, which coincides with the solution in H1(Sh) found in [1]; hence, such solution
has vanishing limit also for x —► +oo. The treatment of the subcritical motion is more
delicate; in this case, with the same assumptions on T, we prove unique solvability
provided the values of v do not belong to a known discrete set, which depends on xo
and H (see § 4). In addition, the flow has in general nontrivial oscillations at infinity
downstream (the same holds for an infinite-depth fluid; see [4]). Furthermore, we give
sufficient conditions on T for the continuity of the solutions of problem Vv (both in
the supercritical and subcritical cases) up to the boundary of the strip Sh• Finally, we
discuss the relevance of our results for the solvability of the nonlinear wave resistance
problem.

2. A related variational problem. We now briefly recall some results of [1], [2]
which will be useful in subsequent sections. The weak form of (1.1)—(1.4) can be stated
in H1(Sh) equipped with the equivalent norm

IHI2 = f |Vw|2dxdy+ f \v\2dx,
■lsH Jb
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which reduces to the Dirichlet integral on any subspace of functions vanishing on B. We
denote with Hi the subspace of the functions vanishing on / US. Then, we look for
v £ H1(Sh) satisfying v\/ = T, v\b = 0, and such that

/ VnVw dxdy — v / vwdx = 0 (2-1)
^ Sh J F

for every w £ Hi
Now, if vH < 1, one readily verifies that the bilinear form at the left hand side of

(2.1) is coercive in Hi (see [1], Eq. (3.3)). Then, we have

Theorem 2.1. For every v < l/H and T £ i/1/2(/), there is a unique v satisfying (2.1)
and the boundary conditions (1.2), (1.4). Moreover, v is harmonic in Sh, smooth in the
closed strip outside any neighborhood of /, and (1.3) holds.

The details of the proof, together with further regularity results, can be found in [1],

§3.
Let us now review the results for the subcritical case. If uH > 1, the bilinear form in

(2.1) is no longer coercive in Hi; nevertheless, one can restore coercivit.y by restricting
to the subspace

V* = 6 HI(Sh); j sinh[i/0(af+ H)]w(x,y)dy = 0, for |x| > x0|, (2.2)
r 0

-H

where Uq is the positive solution of the equation

— = tanh(z/o H), (2.3)
v

see [2]. Proposition 4.1. We stress that this equation has real solutions only if vH > 1,
i.e., when the velocity is subcritical. Then, one can prove that for every v > l/H
and T 6 Hl/2{I), there is v £ H1(Sh) satisfying the boundary conditions (1.2), (1.4),
and such that (2.1) holds for every w £ V* ([2], theorem 4.4). Moreover, v is uniquely
determined if one requires the additional condition

fo
/ sinh[i/0(y + H)]v{:r, y) dy = 0, for \x\ > x0, (2.4)

J-H

([2], theorem 4.5 and Remark 4.6). However, the function v is not harmonic in general,
since Eq. (2.1) holds for w £ V* C Hi. Actually, we have the following result:

Theorem 2.2. Let v > l/H, T £ H1/2(I) and let v £ H1(Sh) be the solution of (1.2),
(1.4), (2.4), and of (2.1) for every w £ VThen, there exist real constants A+, A_, such
that

Av = [A+(S(a; - x0) + A_<5(x + x0)] sinh[f0(y + H)], (2.5)

where <5(-) is the 'Dirac delta function'. Moreover, v is smooth in the closed strip outside
any neighborhood of the set I U {(xq,y),—H < y < 0} U {(—xo,y),— H < y < 0},
and satisfies (1.3). Finally, v is uniquely determined by (1.2)—(1.4) and (2.5), and the
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following relations hold:
A — A fx°

sin(^oxo) = C(vq) / [1^(2;, 0) — vT{x)\ sin(i/oz) dx\ (2.6)
J —X 0

/x0 ]vy{x, 0) — v!F(x)\ cos(Vo£) dx, (2.7)
-X0

n,,.) ^osinh(^g)
0 sinh(i/oH) cosh(^oH) — uqH

For the proof of the above theorem we refer to [2], Theorem 4.7. Here we make
some comments and remarks on the results obtained. The uniqueness of the solution
in H1(Sh) of (1.2)—(1.4) and (2.5) implies that problem (1.1)—(1.4) has no variational
solutions for u > 1 /H, except when A+ = A_ = 0. In [2], we proved the following result:
provided the parameter i/0 in Eq. (2.3) is different from kn/2xo, k = 1,2,..., a variational
solution exists if and only if the datum T is orthogonal (in the space L2(I)) to a given
two-dimensional subspace, depending on v$, xo, and H. Clearly, such conditions impose
some restrictions on the profile of the cylinder's hull and on the values of the velocity c; if
they are fulfilled, we obtain wave-free solutions of the linearized wave-resistance problem
[2]. On the other hand, one can show that in general the subcritical flow produces
oscillations of wavenumber vo at downstream infinity (see [6], [10], and § 4 below); as we
will show in § 4, the amplitudes of the above oscillations are related to the quantities \±
defined in theorem 2.2.

3. Unique solvability in the supercritical case. In the case of supercritical ve-
locities, unique solvability of problem Vv can be easily proved by the results of the
variational problem and by the following a priori estimate of the solutions:

Proposition 3.1. Let v e HIoc(Sh) be a solution of (1.1)—(1.6), with v < 1/H. Then,
for every neighborhood A of /, v is smooth in Sh\A and the following bound holds:

sup eAtl|a:||v(x,y)| < oo, (3.1)
(x,y)ESH\si

where /ii is the first positive solution of

tan (fJ-H) = —. (3.2)

Proof. The smoothness of v up to the boundaries F and B follows by standard
regularity results for weak solutions of elliptic problems. Then, by defining Qr =
[—R, i?] x [—H, 0], we have that v is bounded in Qr\A for every R > xq- Let us now
consider the restriction of v to the domain (R, +oo) x (—H, 0). Clearly v is harmonic in
this domain and satisfies the conditions (1.3) and (1.4) on the upper and lower bound
respectively; furthermore, i>(£, ■) is smooth and bounded in [—H, 0] for every £ > R. We
will write a series expansion for v in (i?, +oo) x (-H, 0); let us fix R' > R and observe
that v is H1 in the rectangle (R, R') x (—i/, 0). Then, by (1.3), (1.4) and by standard
results on elliptic problems in polygons [9], v is uniquely determined in the rectangle by
the boundary values v(R, •) and v(R', •). On the other hand, we can solve the problem for
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v in the rectangle by separation of variables; by elementary calculations, we are reduced
to the (self-adjoint) eigenvalue problem: —ip" — flip, ip( — H) — 0, ip'(0) — vtp(0), with
/i € R and ijj smooth function on [—H, 0]. Since we have vH < 1, we get the eigenvalues

n = 1,2,..., where 0 < //j < ... < [in < ... are the positive solutions of Eq. (3.2);
then, we can write the expansion

+ 00

v(x, y) = ^ ^ane~^nX + bn sinh(//n(a; - R)) sin(nn(y + H)), (3.3)
n—1

for (x, y) € (R,R') x (—H, 0), with uniquely determined coefficients an, bn. Note that
the coefficients an depend only on v(R,, y), y 6 [—H, ()]. Since for any fixed .r the function
v(x, •) is independent of i?, i?', it follows that also the coefficients bn must be independent
of R'. On the other hand, by condition (1.6), the function

+ 00

v{R',y) = ^2^ane~'lnR + bn smh(fin(R' - R)) sin {/jn(y + H)),
n—1

is uniformly bounded in L2(—H, 0) with respect to R'; thus, we easily get the bound

M <Ce~^R\
with C independent of R'. By the arbitrariness of R', we obtain bn = 0 for every n.
Therefore, we have in (R,+ oo) x ( — HA)):

+ 00

v(x, y) = a«e~Mna: sin(Mn(y + H)), (3.4)
n—1

so that \v(x,y)\ < Ce~ttlX for x > R. Clearly, a similar conclusion holds for x < —R.
Hence, the bound (3.1) follows. □

Then, we have at once

Theorem 3.2. For every u < l/H and for every T e H1^2(I), problem is uniquely
solvable; the solution v satisfy the estimate (3.1). Moreover, if T G H3^2(I), the function
v is continuous and bounded in the closed strip Sh-

Proof. By (3.1), we have in particular that every solution of problem Vv with v < l/H
belongs to H1(Sh)- Now, unique solvability follows by theorem 2.1 of the previous
section, and regularity by proposition 3.2 of [1]. □

Remark 3.3. It is worthwhile to recall that the crucial point for the regularity of the
solutions of Vu is the behaviour of v in the neighborhood of the points (±xo,0), where
the two different boundary conditions (1.2) and (1.3) meet. In proposition 3.2 of [1], it
is shown that for T € H3/'2(I) one can write, in a neighborhood B C Sh of (.To, 0),

v(x, y) = Cr1/2 sin(0/2) + v\(x, y), (3.5)

where C is a constant, v\ £ H2(B), and r, 9 are the polar coordinates of (x,y) around
the point (xo,0), with 6 = 0 on I and 9 = 7r on F. A similar statement holds in the
neighborhood of (—Xo,0). Then, the continuity of v in B follow by Sobolev embedding
theorems. Furthermore, if (3.5) is true, one can also show that any harmonic conjugate
u of v extends to a continuous function in Sh-
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REMARK 3.4. Clearly, all of the other results proved in [1] for the variational solutions
also hold for the solutions of Vv in the supercritical case. In particular, any harmonic
conjugate u of a solution v has finite limits lim^^-too u(x,y) = c± uniformly with respect
to y; moreover, by assuming T € H3^2(I) and by suitable application of Green's theorem
(see [1], Proposition 3.3), one has the relation

i(xq, 0) — u(— xq, 0) + v J Tdx — (1 — Hv)(c+ — c_) = 0. (3.6)

The arbitrary constant in the definition of u is fixed by the limit condition
limx__00u(x,y) = 0 of the linearized wave resistance problem (see [1], Eq. (2.16)).
Then, we have c_ = 0 in (3.6) and the perturbed velocity field u — iv has finite limit, for
x —*■ -j-oo, given by

c+
(1 - Hv)

u(xo, 0) — u(—x0,0) + u J J7dx

4. The subcritical case. In this section we discuss unique solvability of problem
Vv for v > 1/H. We start by describing the asymptotic properties of the solutions.

Proposition 4.1. Let v £ Hloc(Sn) be a solution of (1.1) (1.6), with v > l/H. Then,
for every neighborhood A of /, v is smooth in Sh\A and there are real constants A, B
such that the following bound holds:

sup e'"1'*!
(x,y)eSH\A

v(x,y) - 9(x)\Asm(i'ox) + Bcos(u0x)]smh(i/0(y + H)) < oo, (4.1)

where yUi is the first positive solution of (3.2), i/q is the positive solution of (2.3), and 0
is the characteristic function of (0, +oo).

Proof. The smoothness properties of v follow as in the proof of Proposition 3.1; fur-
thermore, we can as well repeat the arguments leading to the series expansions for v in
the regions (J?, +oo) x (-H. 0) and (—oo, —R) x (—H, 0), R > x0. In this case, by solving
the eigenvalue problem, we obtain a sequence of positive eigenvalues /^, n = 1,2... as
before, and a negative eigenvalue — Uq, with uq the positive solution of (2.3); then, taking
account of the asymptotic condition (1.5), we easily get the expansions:

v(x,y) = [*4sin(fo:r) + Bcos(z/Ox)] sinh(i/0(y + H))
+ 00

+ ^ane"M":rsm(/z„(y +#)) (4.2)
71=1

for (x,y) 6 (R,+oc) x (-H, 0), and

+ OC

v(x, y) = ^2 bne+^nX sin+ H)) (4.3)
71=1

for (x,y) £ (—oo,—R) x (-H, 0). Then, the bound (4.1) follows. □
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Remark 4.2. As can be checked by taking the Fourier transform with respect to x
(see also [10], § 5), the homogeneous problem

Av = 0 in Sh,
vy — vv = 0 on R x {0},

v = 0 on B,

sup <;(.r, y)\ < oo
(x,y)eSH

has nontrivial solutions in H1oc(Sh) for u > l/H, which have the form

[Ci sin(i/0x) + C2 cos(f0x)] sinh(f0(y + H)),

with Ci, C2 arbitrary constants. We point out that the above problem is obtained by
linearization of the equations of the problem of periodic water waves [11] in a fluid with
finite depth (with no obstacles).

We now turn to unique solvability of problem T„\ our strategy for its solution relies
on the following straightforward consequence of theorem 2.2:

Proposition 4.3. Given v > l/H and T £ Hl^2(I), let v £ H1(Sh) be the solution of
(1 -2)—(1.4) and (2.5), according to theorem 2.2; furthermore, let 0 be the characteristic
function of (0,+00). Then, the function

v{x,y) = v(x,y) - — 6(x - x0) sm{u0{x - x0)) sinh[z/0(y + H)}
vo

H—-0(-(x + xo)) sin(i/0(a: + x0)) sinh[i/0(y + H)\ (4.4)
v0

satisfies the conditions (1.1)-(1.4) and (1.6) of problem Vu (with the same J- in (1.2)).
The asymptotic condition (1.5) holds only if A_ = 0. Moreover, by assuming T € H3^2(I)
in condition (1.2) the function v is continuous and bounded in the closed strip Sh,
together with any harmonic conjugate u.

Proof. By direct computation and by (2.5), the function v is harmonic in Sh and
satisfies the boundary conditions (1.2)—(1.4); furthermore, it is readily verified that v £
H}oc(Sh) and that (1.6) holds. Moreover, by recalling that every v G H1(Sh) is vanishing
for |x| —> +00, we get that (1.5) is satisfied only if A_ = 0. Finally, one can verify that
the regularity arguments quoted in remark 3.3 also apply to v, so that the proposition
follows. □

The second step is the construction of nontrivial, continuous and bounded solutions
of the homogeneous problem (1.1)—(1.4) (i.e., with T = 0 in (1.2)). To this aim, we
introduce, for every fixed v > l/H, a pair of functions vs, vc 6 H1(Sh) in the following
way (see also [2, § 4]):

Given v0 > 0 satisfying (2.3), vs 6 H1(Sh) is the solution of (1.2)-(1.4) and (2.5),
with J-{x) = sin(^ox) in condition (1.2). Similarly, v° £ H1(Sh) is the solution of
(1.2)-(l-4) and (2.5), with T(x) = cos(vox) in condition (1.2).

Remark 4.4. By the symmetry properties of the data and by the uniqueness state-
ment of theorem 2.2, we have vs(—x,y) = —vs(x,y) and vc(—x,y) = vc(x,y)\ as a con-
sequence, vs and vc satisfy (2.5) with A+ = -A_ = As and A+ = A_ = Ac respectively.
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By recalling (2.6), (2.7), we now have the relations

/x0 [fy (x, 0) — v sin(i^ox)] sin(^0x) dx, (4.5)
-x0

/xo [Vy(x, 0) — v cos(^ox)] cos(i'ox) dx. (4.6)
-xo

We also remark that the conditions for the existence of variational solutions of (1.1)-
(1.4) (in the subcritical case) mentioned at the end of § 2 are expressed in terms of the
functions Vs, v° (see [2], theorem 4.9). Furthermore, these functions are explicitly known
for special values of i^o; actually we have

v'(Xj y)=[ siuhdoH) s'mM Sinh[is0(y + H)], if |x| < x0, (4 ?)
lo if \x\ > x0,

for Vq = n7r/xo, n = 1,2,...;

vc(x,y) =y\ = [ sinhl0H) cosM sinh[i/Q(2/ + H)], if |x| < x0,
[0 if [xJ > x0,

for Vq = (n — |)7r/xo, n = 1,2,... (see [2], proposition 4.10).
Clearly, the corresponding values of As, Ac, are easily calculated:

<4'9>

Ac((n ~ 1/2)tt/x0) = (-1)"+1 (Tl-^/xo (4J0)
sinhf(n — ̂ tvH/xq)

with n = 1,2....
Now, we can define the functions with the required properties:

Proposition 4.5. For every v > l/H and vq > 0 solution of (2.3), we set

A*
^o

+6>(—(x + x0))sin(^0(x + x0))j sinh[u0{y + H)\, (4.11)

As r
vs{x,y) = vs(x,y) 0(x - x0)sin(!/0(x - x0))

L

Ac r
v°(x, y) = vc(x, y) 9(x - x0) sin(j/0(x - x0))

l

-0(-(x + x0)) sin(^0(x + x0))j sinh[i/0(j/ + H)], (4.12)

where As, A° are defined in remark 4.4. Then, the functions

Cs(x, y) = vs(x, y) - sinh^/og^ sin(^x) sinh[f0(y + H)], (4.13)

Cc(x,y) = vc(x,y) - Kinh^ H^ cos(i/0x)sinh[i/0(2/ + H)], (4.14)

solve the homogeneous problem (1.1)—(1.4), are continuous and bounded in the closed
strip SH and satisfy Cs(-x,y) = ~(s{x,y), (c(-x,y) = (c(x,y).
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Proof. By (4.11), (4.12) and by proposition 4.3, vs, vc, are harmonic and satisfy
vs(x, 0) = sin(i/o^), £>c(:r,0) = cos(^0^) together with the other boundary conditions
(1.3), (1.4); continuity and boundedness follow as well from proposition 4.3. Furthermore,
Vs, v° have the same symmetry properties as vs and vc (see remark 4.4). Then, the
proposition follows by the definitions (4.13), (4.14). □

We now show that a condition for unique solvability of problem Vu can be deduced
from propositions 4.3, 4.5. All that we need is an asymptotic formula for £s, £c as
|x| —> 00.

Corollary 4.6. Let Cc be defined by (4.13), (4.14). Then, we have the following
asymptotic representation as x —> ±oo:

(s{x,y) = [Aa sin(i/0a$ ± Bs cos^ox)] sinh[f0(y + H)] + Q(x,y), ±x > 0, (4.15)

(c{x, y) = [±AC sin(i/0x) + Bc cos(i/0x)] sinh[i/0(j/ + H)] + ££(x, y), ±x > 0, (4.16)

where Q, (q, are harmonic and rapidly decreasing as \x\ —> oo and the following relations
hold:

/ As 1 \ Xs
As — — cos(i/0x0) + -r—rj—777 ); Bs = — sin(i/0a;o); (4.17)

Vi^o smh(f(]/j)/ uq
Ac /Ac . , 1A / A 1 \

Ac = — cos(^oxo); Bc = (— sin(i/0x0) - -r-r?—tjt)- (4.18)
vo \vo sinh(foii)/

Proof. By elementary calculation from (4.11)—(4.14), we find that (4.15), (4.16) hold
for |x] > xq, with Q{x,y) = vs(x,y) and (o(x,y) — vc(x,y). On the other hand, vs, vc
are harmonic for \x\ > xq and vanish at infinity; then, we can apply the same arguments
as in proposition 4.1 and find that e^11®'|Co(x,2/)I and e^1 'x'ICoC^ v)\ are bounded, where
fix is defined as in proposition 3.1. □

We can now state the promised condition of unique solvability:

Theorem 4.7. Let v > 1 /H be given and suppose that the positive solution vq of
vq/v = tanh(^oi^) is such that

Ac(^0) sin(j/0x0) - As(i/0) cos(i/0x0) ^ siull(;" Hy (419)

where Xs, Ae are defined in remark 4.4. Then, for every T 6 7/1//2(7), problem Vv is
uniquely solvable.

Proof. We first prove uniqueness of the solution. Assume that vq is a solution of
problem Vv with T = 0; let .4o, $0 be the constants in the asymptotic formula 4.1 for
vo■ We now apply Green's formula to vq and to each of the harmonic functions (s, (c
given by (4.13), (4.14) in a bounded rectangle ( — R,R) x (-H, 0) with R > xq; then,
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letting R —>00 and taking account of corollary 4.6 we get:
ro

0 = lim
/?—>+oc

0 = lim
R—>+00

[ C{R<y)dxV0{R,y) - v0{R,y)dx(s{R,y) dy
J-H 1

= v0{AoBs - BnAs) / sinh2[i/0(i/ + H)]dy,
J-H

f \(c(R,y)dxv0{R,y) - v0{R,y)dxC(R,y)
J-H 1

/'°
= v0{A0Bc - Bo Ac - / sinh2[i/0(y + H)]dy.

J-H

Hence, we get the relations

AqBs — BqAs = AqBc — B()AC = 0,

which are equivalent to _4o = Bo = 0 if the condition

ASBC - BSAC ± 0

holds; by (4.17), (4.18), this condition is equivalent to (4.19). In this case, Vo is rapidly
decreasing as |x| —► 00, so that vq £ H1(Sh)- Thus, by the results of § 2, we have vq = 0.

We now show that the same condition (4.19) assures existence of the solution. Given
T € Hl/2(I), consider the harmonic function v defined by (4.4) and set:

va'0 = v - aC - /3Cc, (4.20)

where £■% are given by (4.13), (4.14) and a, (3 are real constants. Then, by propositions
4.3, 4.5 and by corollary 4.6, one verifies that va,/3 satisfies all the relations of problem
Vu, including the asymptotic condition (1.5), if the pair a, (3 solve the linear system:

Asa - Ac/3 = — cos(^0a;o),
^0

—Bsa + Bcp = — sin(^0a;o)- (4-21)
v0

Clearly, the condition for unique solvability of the system (4.21) is again (4.19). □
It is now crucial to check the validity of the condition (4.19) as vq varies in the

interval (0,+00); by recalling the relations (4.9), (4.10), we readily see that (4.19) fails
for vq = /c7t/2:eo, k = 1,2,.... We can prove that there are no other "singular values" of
;/(i; in fact we have:

Proposition 4.8. For every > 0 the following relation holds:

Ac(^0) sin(j/0x0) - As(i/0) cos(^o:ro) = sinh^ HJ + sin(i/0x0) cos(^0x0), (4.22)

where K(v0) < 0.

The proof is reported in the appendix, together with some additional remarks 011 the
functions uq ^ As(fo), ^0 Ac(fo).

We can now state the main result of this section:
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Corollary 4.9. For any given T e Hl'2(I), problem Vv is uniquely solvable for v >
1 /H, provided the positive solution Vq of = tanh(^o^) is different, from kir/2xo,
k = 1,2,.... Furthermore, if J- € H3^2(I), the solution is continuous and bounded in the
closed strip Sh-

Proof. The condition for unique solvability is obtained from theorem 4.7 taking ac-
count of equation (4.22); moreover, the regularity properties of the solution (4.20) in the
case T € H3^2(I) follow by propositions 4.3 and 4.5. □

The solvability of problem Vu in correspondence with the "singular values" kn/2xq of
vq remains an open problem. By the relations (4.7)-(4.14), we see that in these cases one
has Cs = 0 for k even and £c = 0 for k odd; hence, both uniqueness and existence proofs
of theorem 4.7 fail. Nevertheless, we can still get an existence result, for a particular
class of data, from proposition 4.3 and from (4.7), (4.8); let us denote by g >—> A® the
linear map which associates to each g € Hl'2(I) the real number A_ according to Eq.
(2.5) of theorem 2.2. Moreover, by recalling (4.9) and (4.10), we set \sn = As(n7r/a;o),
A£ = A°((n — 1 /2)7t/xo), n = 1,2.... Then, we have

Proposition 4.10. Let T®, T£, be the bounded linear operators on Hl!2{I) defined by

Tnd = 5 + T7 sinf—zV (4.23)
^0 /

Tn9 = g- Trcos(——(4.24)
V Xo '

Then, if vq = titt/xq and T G RanTproblem has a solution; similarly, problem Vv
has a solution for vq = (n — l/2)7r/xo and J- € RanT^.

Proof. Let Uq = rnr/xo for a given n; by linearity and by remark 4.4, if T is in the
range of the operator (4.23), we have \Z. = 0. Then, the existence of the solution follows
by proposition 4.3. A similar conclusion follows for v$ = (n — 1/2)-k/xq. □

5. Final remarks. We make some final comment on the meaning of the results
obtained in the previous sections from the point of view of the wave resistance problem.
By considering the linearization discussed in the introduction, we have found, for any
cylinder's profile that is smooth enough, a unique solution with continuous and bounded
velocity field for every value of the cylinder's velocity above the critical value \/gH;
moreover, the flow vanishes at infinity both upstream and downstream. In the case of
subcritical velocities, we have unique solvability (and regularity) if the assumptions of
corollary 4.9 hold, with solutions which (in general) oscillate at infinity downstream with
a wavenumber defined by (2.3). Thus, by recalling (1.7), we get a sequence of singular
values for the cylinder's velocity given by

' 2xo , ,knH .i1/2
°k= tanh(~2^") ' (5.1)

The sequence decreases monotonically to zero. Note that for large values
of the ratio xq/H, the highest singular value c\ of the velocity approaches the critical
value \fgH\ for xq/H « 1, the value of c\ is small compared to the critical velocity.
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We also remark that the same relation (5.1) gives the values of the critical velocities for
the existence of nontrivial water waves (in the fluid without obstacles) bifurcating from
the trivial parallel flow and with wave lengths Afc « 4xojk (see [11], chapter 71); by
recalling that the length of the beam (i.e., of the cylinder's section as e —> 0, see § 1) is
L = 2x0, we get the values 2L/k for the wave lengths at the bifurcation points c^. Thus,
the condition c ^ Cfc in the assumptions of corollary 4.9 appears as a "nonresonance
condition" between the length of the cylinder's section (in the limit e —> 0) and the
gravitational wave bifurcating from the free parallel flow at the same velocity.

The results of the present work suggest the possibility of proving the solvability of
the nonlinear problem, at least for subcritical velocities bounded away from the singular
values Cfc, by following the same strategy (hodograph transformation and implicit function
theorem) adopted in [7], [8], for the supercritical case.

Appendix. In this appendix, we prove proposition 4.8 and discuss further properties
of the functions vs, vc, and of the corresponding parameters As, Ac, defined in § 4. We
start from the relations (4.5), (4.6) which we report below:

rx o
/x0 [Vy(x, 0) - ^sin(f0:r)] sin(^0a;) dx, (A.l)

-x0

/x0 [Vy(x, 0) - v cos^oa:)] cos(vqx) dx, (A.2)
-®0

r( x = "0 sinh(^oH) 
[o) smh(voH)cosh{v0H)-u0H' [ '>

By the definition of vs, vc and by Green's theorem (see the appendix of [2]), one can
prove the following identities:

rxo

where

f Vy(x,0)sm(i'ox)dx = f |W|2dxdy — v f \vs\2dx, (A.4)
J~x 0 JsH Jf

[ Vy(x, 0) cos(i'ox)dx — j \Vvc\2dxdy — v f \vc\2dx. (A.5)
J-xo JsH Jf

Then, we can write (A.l), (A.2) in the form:

As sin(^o^o) = C(^0){ f |Vfs|2dxdy — v f \vs\2dx - v f sin2(i/0x) dxj (A.6)
JsH Jf J-x o J

Accos(i'oa;o) = C(^o){ [ \Vvc\2dxdy — v f \vc\2dx - v f cos2(vox) dx\. (A.7)
Jsh J F J—x o

Remark A.l. By the variational characterizations of vs, vc (see § 2), it follows that
they are the minimum points of the functionals at the right hand sides of (A.6), (A.7)
in the classes of the H1(Sh) functions satisfying the conditions (1.4), (2.4), and (1.2)
with T = sin^oz) and T — cos(u0x), respectively. Moreover, by the regularity of these
data and recalling proposition 4.3, it can be shown that the relation (3.5) holds for vs
and vc in the neighborhood of the points (±xo,0). In particular, the functions vs and v°
are bounded and Holder continuous (in the closed strip Sh) and the same is true for the
traces vs(±xo, •)> vc(±£o,') in the interval [—H, 0].
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Let us decompose the integrals on Sh in the above expressions as the sum of two
integrals, one extended to Q0 = (—Xq,xo) x (-H, 0), and the other to Sh/Qo- By
recalling that both vs and vc are harmonic in the above regions, we can use Green's
theorem to transform both integrals; taking account of the boundary conditions, of the
asymptotic properties and of the symmetries, we get

/ |Vu|2dxdy = I vy(x,0)v(x,0)dx
JSh/Qo ' Jf

/0 /•()Vx(xQ,y)v(x0,y)dy + / vx(-Xq , y)v(-x0, y)dy
-H J-H

r0

l-H

r-+

= v f \v(x,0)\2dx - 2 f vx(x£,y)v(x0,y)dy, (A.8)
Jf J-h

where in the above relation v denotes either vs or vc and vx(xq, ■), vx(-Xq,-) are the
traces of their x-derivatives as x —> xq from the right and x —> — xq from the left. We
recall that Vs, vc are continuous in the closed strip by remark A.l.

In order to transform the integrals on Qo, we set

vs=ws + zs, vc=wc + zc, (A.9)

where

ws(x,y) = 1 sin(^0x)sinh[t/0(y + if)];
sinh {vqH)

Wc(x,y) = —cos(is0x) sinh[z/0(y + H)}.

The functions zs, zc are harmonic in Qq and vanish for y — 0 and y = —H; further-
more, they satisfy

zs(±x0,y) = vs(±x0,y) T ^H) sinhN(y + H)]. (A.10)

zc(±x(h y) = vc(±x0, y) - sinh[i/0(j/ + H)]. (A.11)

Now, by explicit calculations as in the proof of proposition A.l of [2], we have

I \X7vs\2dxdy= [ \Vws\2dxdy + 2 [ \7wsVzsdxdy+ [ \S7zs\2dxdy
J Qq JQo JQo J Qo

= uj\ mHv,x)dx - C(°o) +2/h (A.12)

I \Vvc\2dxdy= [ \Vwc\2dxdy + 2 f S7wcVzcdxdy+ [ \S7zc\2dxdy
J Qo J Qo J Qo J Qo

= + +2 (A. 13)
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where z*(xq , •) zx(xq,-) denote the traces of zx, zx as x —> £0 from the left. By using
(A.8), (A.12), (A.13) in the equations (A.6), (A.7), we find

sin(2i/0a:o)
As siri(f0x0) + v0

2 sinh(Vo H)

— 2C(v0) / zsx(x0,y)zs(x0,y)dy- vsx(x£,y)vs(x0,y)dy , (A.14)
lJ~H J-H J

,c . sin(2i/0x0)
A cos ~ ^0 0 . w—^2smh(^o H)

f° f°
= 2C(iv0) / z°x{xQ,y)zc(x0,y)dy- vcx(x%,y)vc(x0,y)dy . (A.15)

We now write the functional at the right hand sides of (A.14), (A.15), in a form
which is suitable for proving proposition 4.8. To this aim, by recalling (2.4) and the
proof of proposition 4.1, we can write in the region (xo,+oo) x (-H, 0) the following
series expansions:

CO

vs(x,y) = sm{iy0x0)'^2asne^'J-n(x''Xo) sm[/jn(y + H)}, (A.16)
71=1

OO

vc(x, y) = cos{u0x0) ^2 <e""n(x"Io) sin[fxn(y + H)], (A.17)
n=l

where the coefficients asn, are uniquely determined by the functions vs(xq, ■), vc(xo, ■);
by the regularity properties of remark A.l and by the relation

Mn = (n + o)"77 + C(-)'2 H n
which follows from (3.2), it is not difficult to check that the above coefficients satisfy the
bound

OO

^ n2~e|an|2 < 00, (A.18)
71—1

for every e > 0, where an denotes either asn or a£. Then, the series (A.16), (A.17) are
uniformly convergent in [xo,+oo) x [—H, 0]; by recalling that vs(xo,0) = sin(foa:o) an<^
i;c(a:o,0) = cos(z/oxo), we now get the condition

OO OO

K sin{VnH) = J2an sin(t*nH) = 1. (A.19)
71=1 71=1

By (A.16), (A.17), we readily obtain
r0 00

/ v*(x£,y)vs(x0,y)dy = sm2(v0x0) V7„MnK|2, (A.20)
J-H n=1

p 0 °°
/ vcx{x£,y)vc{x0,y)dy = cos2{voxo)y2~fnij,n\acn\2, (A.21)

„=i

2 ^

-2

where
_ cos2(MraF)

ln [ vH >■
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Since /xn ~ (n + l/2)n/H and 0 < 7„ < H, we have that the series at the right hand
sides of (A.20), (A.21) are convergent by (A.18).

We want to transform in a similar way the first integrals in the square brackets of
(A.14), (A.15). By (A.9)-(A.ll), we can write in the domain Qq the series expansions

*■(*,„) = »«("») g KJH) <A'22>

z'(x,y) = cos(^„xo) £) sMnvylH), (A.23)

where the coefficients bsn, satisfy the bound (A. 18). Hence, we obtain

/0 oo
Zx(xo>y)zs(xo,y)dy = sin2(v0x0)'y]nTrcoth(nTrxo/H)\b„\2, (A.24)

H n=1

/0 OO
z^{xo,y)zc{xo,y)dy = cos2(i/0a:o) £ n7rtanh(n7T2o/-£0|&^|2. (A.25)

n=l

We finally observe that from (A. 10), (A.ll), it follows:

^ sm(mry/H) = ^an sm[fj,n(y + i/)] - » (A.26)
n=1 n=l

where an, bn stand for asn, bsn or a£, Hence, by the usual orthogonality relations we
can write

OO

bn = Tnmam + Sn, (A.27)
m=l

with uniquely determined coefficients Tnm and Sn. It is not difficult to verify that the
operator T defined by the first term at the right hand side of (A.27) is bounded in the
Hilbert space I2.

We are now prepared for the proof of proposition 4-8: Let us consider the Hilbert space
of the sequences satisfying the bound (A.18) and let A be the closed subspace
of the sequences satisfying (A. 19). Let us define the following positive functionals:

JS({«n}) = y^(7nMn|Qn|2 + TITT COth(mTX0/H)\bn\2) (A.28)
71=1

OO

JC({an}) = ^hnHn\an\2 + nn t&nh(nnx0/H)\bn |2), (A.29)
71— 1

where the sequence {&„} is given by (A.27). We note that, by (A.26) and by the orthog-
onality of sinh[i/0(y + H)} to the subspace generated by the functions sin[/irl(y + H)], the
coefficients bn can not be all zero; hence, we have

Js({an}) > Jc({an}) (A.30)

for every {a,,,} € A.
Now, from the identities (A.20), (A.21) and (A.24), (A.25), we find that the right hand

sides of (A.14),(A.15) are equal to C(i'o)sin2(i'o2:o)^s({a^}) and C(i^o)cos2(vqXo) Jc({«„})'
respectively; on the other hand, the functionals Js and Jc are strictly convex, coercive
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and lower semicontinuous (as limits of increasing sequences of continuous functionals)
and therefore they assume their minimum values at unique points 011 the subspace A.
By recalling remark A.l, the minimum points are necessarily the sequences {a®} and
{a£}, so that by (A.30) we get

J*(K}) > JC(K}). (A.31)
Let us now go back to (A.14), (A.15). If VqXq 7^ mr, n = 1,2,..., we can divide both

terms of (A.14) by sin(i/0Xo) and obtain:

As + ^ COS^0X°J, = C[yQ) sm(v0x0)Js({asn}). (A.32)
sinn(^n)

Similarly, if uqXq ̂  (n — l/2)n, n = 1,2,..., we get from (A.15)

Ac - = C{v0) cos(^o) (A.33)

Now, if vqXo 7^ kir/2, k = 1,2..., Eq. (4.22) follows by (A.32), (A.33) with K(v0) =
C(fo)[Jc({a^}) — Js({a®})]. Then, proposition 4.8 is proved by the bound (A.31) and
by recalling that (4.22) also holds for vqXq = kn/2, due to the equations (4.9), (4.10).

Remark A.2. From (A.32), (A.33), we get in particular the relations:

(-l)n+1As((n - 1/2)tt/x0) > 0, (-l)n\c{mr/x0) > 0, 71 =1,2,.... (A.34)

Moreover, it can be shown that the maps vq h-> As(^o), ^0 l—> Ac(^o) are real analytic
functions in (0,+00) ([2], corollary A.3). Then, from (4.9), (4.10) and (A.34), we find
that As(i/o) and Ac(^o) must vanish at some point in every interval (nir/xo, (n+l/2)n/xo)
and ((n — l/2)ir/xo,mr/xo), (n = 1,2,...), respectively.
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