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ON UNIQUENESS AND COMPUTATION OF THE1

DECOMPOSITION OF A TENSOR INTO MULTILINEAR2

RANK-(1, Lr, Lr) TERMS∗3

IGNAT DOMANOV†
AND LIEVEN DE LATHAUWER†4

Abstract. Canonical Polyadic Decomposition (CPD) represents a third-order tensor as the5
minimal sum of rank-1 terms. Because of its uniqueness properties the CPD has found many concrete6
applications in telecommunication, array processing, machine learning, etc. On the other hand, in7
several applications the rank-1 constraint on the terms is too restrictive. A multilinear rank-(M,N,L)8
constraint (where a rank-1 term is the special case for which M = N = L = 1) could be more realistic,9
while it still yields a decomposition with attractive uniqueness properties.10

In this paper we focus on the decomposition of a tensor T into a sum of multilinear rank-11
(1, Lr, Lr) terms, r = 1, . . . , R. This particular decomposition type has already found applications in12
wireless communication, chemometrics and the blind signal separation of signals that can be modelled13
as exponential polynomials and rational functions. We find conditions on the terms which guarantee14
that the decomposition is unique and can be computed by means of the eigenvalue decomposition15
of a matrix even in the cases where none of the factor matrices has full column rank. We consider16
both the case where the decomposition is exact and the case where the decomposition holds only17
approximately. We show that in both cases the number of the terms R and their “sizes” L1, . . . , LR18
do not have to be known a priori and can be estimated as well. The conditions for uniqueness are19
easy to verify, especially for terms that can be considered “generic”. In particular, we obtain the20
following two generalizations of a well known result on generic uniqueness of the CPD (i.e., the case21
L1 = · · · = LR = 1): we show that the multilinear rank-(1, Lr, Lr) decomposition of an I × J × K22
tensor is generically unique if i) L1 = · · · = LR =: L and R ≤ min((J − L)(K − L), I) or if ii)23 ∑

LR ≤ min((I − 1)(J − 1),K) and J ≥ max(Li + Lj).24

Key words. multilinear algebra, third-order tensor, block term decomposition, multilinear rank,25
signal separation, factor analysis, eigenvalue decomposition, uniqueness26

AMS subject classifications. 15A23, 15A6927

1. Introduction.28

1.1. Terminology and problem setting. Throughout the paper F denotes29

the field of real or complex numbers.30

By definition, a tensor T = (tijk) ∈ F
I×J×K is multiLinear rank-(1, L, L) (ML31

rank-(1, L, L)) if it equals the outer product of a nonzero vector a ∈ F
I and a rank-L32

matrix E = (eij) ∈ F
J×K : T = a ◦ E, which means that tijk = aiejk for all values33

of indices. If it is only known that the rank of E is bounded by L, then we say that34

T = a ◦E is ML rank at most (1, L, L) and write “T is max ML rank-(1, L, L) ”.35

In this paper we study the decomposition of T ∈ F
I×J×K into a sum of such terms36
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2 I. DOMANOV AND L. DE LATHAUWER

of max ML rank-(1, Lr, Lr)
1:37

(1.1) T =
R∑

r=1

ar ◦Er, ar ∈ F
I \ {0}, Er ∈ F

J×K , rEr
≤ Lr,38

where 0 denotes the zero vector and rEr
denotes the rank of Er. If exactly rEr

= Lr39

for all r, then we call (1.1) “the decomposition of T into a sum of ‘ML rank-(1, Lr, Lr)40

terms” or, briefly, its “ML rank-(1, Lr, Lr) decomposition”.41

In this paper we study the uniqueness and computation of (1.1). For uniqueness42

we use the following basic definition.43

Definition 1.1. Let L1, . . . , LR be fixed positive integers. The decomposition of44

T into a sum of max ML rank-(1, Lr, Lr) terms is unique if for any two decompositions45

of the form (1.1) one can be obtained from another by a permutation of summands.46

Thus, the uniqueness is not affected by the trivial ambiguities in (1.1): permutation47

of the max ML rank-(1, Lr, Lr) terms and (nonzero) scaling/counterscaling λar and48

λ−1Er. Definition 1.1 implies that if the decomposition is unique, then it is necessarily49

minimal, that is, if (1.1) holds with rEr
= Lr, then a decomposition of the form (1.1)50

with smaller Lr does not exist, in particular, a decomposition with smaller number51

of terms does not exist.52

We will not only investigate the “global” uniqueness of decomposition (1.1) but
also particular instances of “partial” uniqueness. Let us call the matrix

A = [a1 . . . aR]

the first factor matrix of the decomposition of T into a sum of max ML rank-(1, Lr, Lr)53

terms. For uniqueness of A, we will resort to the following definition.54

Definition 1.2. Let L1, . . . , LR be fixed positive integers. The first factor matrix55

of the decomposition of T into a sum of max ML rank-(1, Lr, Lr) terms is unique if56

for any two decompositions of the form (1.1) their first factor matrices coincide up to57

column permutation and (nonzero) scaling.58

It follows from Definition 1.2 that if T admits a decomposition of the form (1.1) with59

fewer than R terms, then the first factor matrix is not unique. On the other hand, as60

a preview of one result, Example 2.15 will illustrate that the first factor matrix may61

be unique without the overall ML rank decomposition being unique.62

Definitions 1.1 and 1.2 concern deterministic forms of uniqueness. We will also63

develop generic uniqueness results. To make the rank constraints rEr
≤ Lr in (1.1)64

easier to handle and to present the definition of generic uniqueness, we factorize Er65

as BrC
T
r , where the matrices Br ∈ F

J×Lr and Cr ∈ F
K×Lr are rank at most Lr.66

Thus, (1.1) can be rewritten as67

(1.2)
T =

R∑

r=1

ar ◦ (BrC
T
r ),

ar ∈ F
I \ {0}, Br ∈ F

J×Lr , Cr ∈ F
K×Lr , rBr

≤ Lr, rCr
≤ Lr, r = 1, . . . , R.

68

1The results of this paper can also be applied for the decomposition into a sum of max ML
rank-(Lr, 1, Lr) (resp. -(Lr, Lr, 1)) terms by switching the first and second (resp. third) dimensions
of T .
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DECOMPOSITION OF A TENSOR INTO MULTILINEAR RANK-(1, Lr, Lr) TERMS 3

Throughout the paper, we set69

B = [B1 . . . BR] ∈ F
J×
∑

Lr , Br = [b1,r . . . bLr,r] = (bjl,r)
J,Lr

j,l=170

C = [C1 . . . CR] ∈ F
K×

∑
Lr , Cr = [c1,r . . . cLr,r] = (ckl,r)

K,Lr

k,l=1.71
72

We call the matrices B and C the second and third factor matrix of T , respectively.73

Decomposition (1.2) can then be represented in matrix form as74

T(1) := [vec(H1) . . . vec(HI)] = [vec(E1) . . . vec(ER)]A
T ,(1.3)75

T(2) := [H1 . . . HI ]
T = [a1 ⊗C1 . . . aR ⊗CR]B

T =

R∑

r=1

ar ⊗ET
r ,(1.4)76

T(3) := [HT
1 . . . HT

I ]
T = [a1 ⊗B1 . . . aR ⊗BR]C

T =

R∑

r=1

ar ⊗Er,(1.5)77

78

where H1, . . . ,HI ∈ F
J×K denote the horizontal slices of T , Hi := (tijk)

J,K
j,k=1, vec(Hi)79

denotes the JK × 1 column vector obtained by stacking the columns of the matrix80

Hi on top of one another, and “⊗” denotes the Kronecker product. The matrices81

T(1) ∈ F
JK×I , T(2) ∈ F

IK×J , and T(3) ∈ F
IJ×K are called the matrix unfoldings282

of T . One can easily verify that T is ML rank-(1, L, L) if and only if rT(1)
= 1 and83

rT(2)
= rT(3)

= L.84

We have now what we need to formally define generic uniqueness.85

Definition 1.3. Let L1, . . . , LR be fixed positive integers and let µ be a mea-
sure on F

I×R × F
J×
∑

Lr × F
K×

∑
Lr that is absolutely continuous with respect to the

Lebesgue measure. The decomposition of an I × J ×K tensor into a sum of max ML
rank-(1, Lr, Lr) terms is generically unique if

µ{(A,B,C) : decomposition (1.2) is not unique} = 0.

Thus, if the entries of the matrices A, B, and C are randomly sampled from an86

absolutely continuous distribution, then generic uniqueness means uniqueness that87

holds with probability one.88

If L1 = · · · = LR = 1, then the minimal decomposition of the form (1.1) is known89

as the Canonical Polyadic Decomposition (CPD) (aka CANDECOMP/PARAFAC).90

Because of their uniqueness properties both CPD and decomposition into a sum of max91

ML rank-(1, Lr, Lr) terms have found many concrete applications in telecommunica-92

tion, array processing, machine learning, etc. [25, 9, 10, 31]. For the decomposition93

into a sum of max ML rank-(1, Lr, Lr) terms we mention in particular applications in94

wireless communication [14], chemometrics [4] and blind signal separation of signals95

that can be modeled as exponential polynomials [13] and rational functions [15]. Some96

advantages of a blind separation method that relies on decomposition of the form (1.1)97

over the methods that rely on PCA, ICA, and CPD are discussed in [9, 31]. As a98

matter of fact, it is a profound advantage of the tensor setting over the common99

vector/matrix setting that data components do not need to be rank-1 to admit a100

unique recovery, i.e., terms such as the ones in (1.1) allow us to model more general101

contributions to observed data. It is also worth noting that if R ≤ I, then (1.1) can102

2Some papers, e.g., [25], define the matrix unfoldings as the transposed matrices TT
(1)

, TT
(2)

, and

TT
(3)

.

This manuscript is for review purposes only.



4 I. DOMANOV AND L. DE LATHAUWER

reformulated as a problem of finding a basis consisting of low-rank matrices, namely103

the basis {E1, . . . ,ER} of the matrix subspace spanned by the horizontal slices of T ,104

span{H1, . . . ,HI} [28].105

In this paper we find conditions on the factor matrices which guarantee that the106

decomposition of a tensor into a sum of max ML rank-(1, Lr, Lr) terms is unique (in107

the deterministic or in the generic sense). We also derive conditions under which,108

perhaps surprisingly, the decomposition can essentially be computed by means of109

a matrix eigenvalue decomposition (EVD). This will be possible even in cases where110

none of the factor matrices has full column rank. The main results are formulated111

in Theorems 2.5, 2.6, 2.13, 2.16 and 2.17 below. Table 1.1 summarizes known and112

new3 results for generic decompositions. By way of comparison, the known results113

guarantee that the decomposition of an 8 × 8 × 50 tensor into a sum of R − 1 ML114

rank-(1, 1, 1) terms and one ML rank-(1, 2, 2) term is generically unique up to R ≤ 8115

(row 3) and can be computed by means of EVD up to R ≤ 7 (rows 1 and 2), while116

the results obtained in the paper imply that generic uniqueness holds up to R ≤ 48117

(row 8) and that computation is possible up to R ≤ 39 (row 6).118

A final word of caution is in order. It may happen that a tensor admits more119

than one decomposition into a sum of max ML rank-(1, Lr, Lr) terms among which120

only one is exactly ML rank-(1, Lr, Lr) (see Example 2.8 below). In this case one can121

thus say that the ML rank-(1, Lr, Lr) decomposition of the tensor is unique. In this122

paper however, we will always present conditions for uniqueness of the decomposition123

into a sum of max ML rank-(1, Lr, Lr) terms. It is clear that such conditions imply124

also uniqueness of the (exactly) ML rank-(1, Lr, Lr) decomposition.125

Throughout the paper O, I, and In denote the zero matrix, the identity matrix,126

and the specific identity matrix of size n × n, respectively; Null (·) denotes the null127

space of a matrix; “T ”, “H ”, and “†” denote the transpose, hermitian transpose, and128

pseudo-inverse, respectively. We will also use the shorthand notations
∑

Lr,
∑

dr,129

and minLr for
R∑

r=1
Lr,

R∑
r=1

dr, and min
1≤r≤R

Lr, respectively.130

All numerical experiments in the paper were performed in MATLAB R2018b. To131

make the results reproducible, the random number generator was initialized using the132

built-in function rng(’default’) (the Mersenne Twister with seed 0).133

1.2. Organization of the paper. In subsection 1.3 we remind known results134

on the decomposition into a sum of max ML rank-(1, Lr, Lr) terms (subsection 1.3.1)135

and introduce auxiliary results on uniqueness and computation of the special case of136

the (approximate) symmetric joint block diagonalization problem (subsection 1.3.2).137

The results of subsection 1.3.2 are essential for understanding the algorithm for com-138

putation of the decomposition into a sum of max ML rank-(1, Lr, Lr) terms (Algo-139

rithm 2.1). The reader who is interested only in results on uniqueness, and not in the140

computation of the decomposition, can safely skip subsection 1.3.2. The main results141

of the paper are presented in section 2: subsections 2.1 to 2.4 are preparatory and142

contain, respectively, necessary conditions for uniqueness, explanation of the key idea143

behind our derivation, some technical notations, and a technical convention that facil-144

itates the presentation; the actual main results are formulated in subsection 2.5 and145

subsection 2.6 (see Table 1.1(b)). To make the paper easier to follow some technical146

notations were moved to a dedicated section 3. For the same reason, long proofs we147

moved to a dedicated section 4 and appendixes. We conclude the paper in section 5.148

3One of the new results, namely, the part of statement 4) in Theorem 2.13 that relies on the as-
sumption I ≥ R, is not mentioned in the table because its presentation requires additional notations.

This manuscript is for review purposes only.



DECOMPOSITION OF A TENSOR INTO MULTILINEAR RANK-(1, Lr, Lr) TERMS 5

Table 1.1

Known and some of the new bounds on R and L1, . . . , LR under which the decomposition of
an I × J × K tensor into a sum of max ML rank-(1, Lr, Lr) terms is generically unique, where
min(I, J,K,R) ≥ 2. Additional bounds can be obtained by switching J and K in rows 2, 5, 6, and
8. The boxed line in each cell with bounds indicates which factor matrices are required to have full
column rank (f.c.r). (Since we are in the generic setting, full column rank of the first, second, and
third factor matrix is equivalent to I ≥ R, J ≥

∑
Lr, and K ≥

∑
Lr, respectively.) The check mark

in the “λ”-column indicates that the result on uniqueness comes with an EVD based algorithm. The
bounds in rows 4 and 6 hold upon verification that a particular matrix has full column rank. For
row 4 no exceptions have been reported. We have verified the bounds in row 6 for max(I, J) ≤ 5.
For the case where not all Lr are identical we found three exceptions in which the matrix does not
have full column rank; for the case L1 = · · · = LR = L we haven’t found exceptions. (For more
details on the bounds in row 6 see Appendix A). The bounds in row 8 imply that generic uniqueness
does hold for two of three exceptions.

(a) Known bounds (subsection 1.3.1)

# ref L1 ≤ · · · ≤ LR L1 = · · · = LR =: L λ

1 [12] J ≥
∑

Lr, K ≥
∑

Lr J ≥ RL, K ≥ RL X

2 [21]
I≥R, J ≥

∑
Lr

K ≥ LR + 1

I≥R, J ≥ RL

K ≥ L+ 1
X

3 [12]

I≥R

J ≥ Lp + · · ·+ LR and
K ≥ Lq + · · ·+ LR,

I≥R

min(⌊ J
L
⌋, R)+min(⌊K

L
⌋, R) ≥ R+2,

where ⌊x⌋ denotes the greatest
integer less than or equal to x

4 [32] not applicable

(upon verification)

I ≥ R

CL+1
J CL+1

K ≥ CL+1
R+L −R

X

(b) New bounds (subsection 2.6)

# ref L1 ≤ · · · ≤ LR L1 = · · · = LR =: L λ

5
Theorem

2.12

no f.c.r. assumptions

K ≥ L2 + · · ·+ LR + 1 and
J ≥ Lmin(I,R)−1 + · · ·+ LR

no f.c.r. assumptions

K ≥ (R− 1)L+ 1 and
J ≥ (R−min(R, I)+ 2)L

X

6

Theorem
2.13 4)

(upon verification)

K ≥
∑

Lr

J ≥ LR−1 + LR and
C2

IC
2
J ≥

∑
r1<r2

Lr1Lr2

(upon verification)

K ≥ RL

J ≥ 2L and
C2

IC
2
J ≥ C2

RL
2

X

verification
mechanism
is explained

in
Appendix A

exceptions for
max(I, J) ≤ 5:
3 tuples
(I, J,R, L1, . . . , LR) with
L1 = . . . , LR−1 = 1,
LR = 4, J = 5, and (I,R) ∈
{(2, 3), (4, 9), (5, 12)}

there are no exceptions
for max(I, J) ≤ 5

7
Theorem

2.16
not applicable

I≥R

(J − L)(K − L) ≥ R

8
Theorem

2.17

K ≥
∑

Lr

J ≥ LR−1 + LR and
(I − 1)(J − 1) ≥

∑
Lr

K ≥ RL

J ≥ 2L and
(I − 1)(J − 1) ≥ RL

This manuscript is for review purposes only.



6 I. DOMANOV AND L. DE LATHAUWER

1.3. Previous results.149

1.3.1. Results on decomposition into a sum of max ML rank-(1, Lr, Lr)150

terms. In the following two theorems it is assumed that at least two factor matrices151

have full column rank. The first result is well-known. Its proof is essentially obtained152

by picking two generic mixtures of slices of T and computing their generalized EVD.153

The values L1, . . . , LR need not be known in advance and can be found as multiplicities154

of the eigenvalues.155

Theorem 1.4. [12, Theorem 4.1] Let T admit decomposition (1.2). Assume that156

any two columns of A are linearly independent and that the matrices B and C have157

full column rank. Then the decomposition of T into a sum of max ML rank-(1, Lr, Lr)158

terms is unique and can be computed by means of EVD. Moreover, any decomposition159

of T into a sum of R̂ terms of max ML rank-(1, L̂r̂, L̂r̂) for which
R̂∑

r̂=1

L̂r̂ =
R∑

r=1
Lr160

should necessarily coincide with decomposition (1.2).161

Theorem 1.5. [21, Corollary 1.4] Let T admit ML rank-(1, Lr, Lr) decomposi-162

tion (1.2) and let at least one of the following assumptions hold:163

a) A and B have full column rank and r[Ci Cj ] ≥ max(Li, Lj) + 1 for all 1 ≤164

i < j ≤ R;165

b) A and C have full column rank and r[Bi Bj ] ≥ max(Li, Lj) + 1 for all 1 ≤166

i < j ≤ R.167

Then the decomposition of T into a sum of max ML rank-(1, Lr, Lr) terms is unique168

and can be computed by means of EVD.169

The uniqueness and computation of the decomposition into a sum of max ML170

rank-(1, Lr, Lr) terms, where L1 = · · · = LR := L, was also studied in [32, Subsection171

5.2] and [29]. We do not reproduce the results from [32] (resp. [29]) here because this172

would require many specific notations. We just mention that one of the assumptions173

in [32] (resp. [29]) is that the first factor matrix (resp. the second or third factor174

matrix) has full column rank and another assumption implies that the dimensions175

of T satisfy the inequality CL+1
min(J,RL)C

L+1
min(K,RL) ≥ CL+1

R+L − R (resp. the inequality176

C2
min(I,R)C

2
min(J,K,LR) ≥ C2

RL
2), where Ck

n denotes the binomial coefficient177

Ck
n :=

n!

k!(n− k)!
.178

To present the next result we need the definitions of k-rank of a matrix (“k” refers to179

J.B. Kruskal) and k′-rank of a block matrix.180

Definition 1.6. The k-rank of the matrix A = [a1 . . . aR] is the largest number181

kA such that any kA columns of A are linearly independent.182

Definition 1.7. [12, Definition 3.2] The k′-rank of the matrix B = [B1 . . . BR]183

is the largest number k′B such that any set {Bi} of k′B blocks of B yields a set of184

linearly independent columns.185

In the following theorem none of the factor matrices is required to have full column186

rank.187

Theorem 1.8. [12, Lemma 4.2] Let T admit ML rank-(1, Lr, Lr) decomposition188

(1.2) with L1 = · · · = LR. Assume that189

kA + k′B + k′C ≥ 2R+ 2.190

This manuscript is for review purposes only.



DECOMPOSITION OF A TENSOR INTO MULTILINEAR RANK-(1, Lr, Lr) TERMS 7

Then the first factor matrix in the max ML rank-(1, Lr, Lr) decomposition of T is191

unique. If additionally, rA = R, then the overall max ML rank-(1, Lr, Lr) decompo-192

sition of T is unique.193

In the following theorem we summarize the known results on generic uniqueness of194

the decomposition into a sum of max ML rank-(1, Lr, Lr) terms. Statements 1), 2)-3),195

and 4) are just generic counterparts of Theorem 1.4, Theorem 1.5, and Theorem 1.8,196

respectively. Some of the statements have also appeared in [12, 21, 37, 38].197

Theorem 1.9. Let L1 ≤ · · · ≤ LR. Then each of the following conditions implies198

that the decomposition of an I ×J ×K tensor into a sum of max ML rank-(1, Lr, Lr)199

terms is generically unique:200

1) I ≥ 2, J ≥
∑

Lr, and K ≥
∑

Lr;201

2) I ≥ R, J ≥
∑

Lr, and K ≥ LR + 1;202

3) I ≥ R, J ≥ LR + 1, and K ≥
∑

Lr;203

4) I ≥ R and k′B,gen + k′C,gen ≥ R+ 2, where204

k′B,gen := max{p : LR−p+1 + · · ·+ LR ≤ J},

k′C,gen := max{q : LR−q+1 + · · ·+ LR ≤ K}.
205

1.3.2. An auxiliary result on symmetric joint block diagonalization206

problem. In subsection 2.5 we will establish a link between decomposition (1.1)207

and a special case of the Symmetric Joint Block Diagonalization (S-JBD) problem208

introduced in this subsection. In particular, we will show in subsection 2.5 that209

uniqueness and computation of the first factor matrix in (1.1) follow from uniqueness210

and computation of a solution of the S-JBD problem. We will consider both the cases211

where decomposition (1.1) is exact and the case where the decomposition holds only212

approximately. In the latter case, decomposition (1.1) is just fitted to the given tensor213

T . Thus, in this subsection, we also consider both the cases where the S-JBD is exact214

and the case where the S-JBD holds approximately.215

Exact S-JBD. Let V1, . . . ,VQ be K×K symmetric matrices that can be jointly216

block diagonalized as217

(1.6)
Vq = NDqN

T , N = [N1 . . . NR], Nr ∈ F
K×dr ,

Dq = blockdiag(D1,q, . . . ,DR,q), Dr,q = DT
r,q ∈ F

dr×dr , q = 1, . . . , Q,
218

where d1, . . . , dR, Q are positive integers, and blockdiag(D1,q, . . . ,DR,q) denotes a219

block-diagonal matrix with the matrices D1,q, . . . ,DR,q on the diagonal. It is worth220

noting that the columns of N are not required to be orthogonal and that we deal with221

the non-hermitian transpose in (1.6) even if F = C. Let Π be a
∑

dr ×
∑

dr permu-222

tation matrix such that NΠ admits the same block partitioning as N and let D be a223

nonsingular symmetric block diagonal matrix whose diagonal blocks have dimensions224

d1, . . . , dR. Then obviously V1, . . . ,VQ can also be jointly block diagonalized as225

Vq = (NDΠ)(ΠTD−1DqD
−TΠ)(NDΠ)T =: ÑD̃qÑ

T , q = 1, . . . , Q.226

We say that the solution of the S-JBD problem (1.6) is unique, if for any two solutions

Vq = NDqN
T = ÑD̃qÑ

T , q = 1, . . . , Q

there exist matrices D and Π such that

Ñ = NDΠ, D̃q = ΠTD−1DqD
−TΠ, q = 1, . . . , Q.
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Thus, if the solution of (1.6) is unique, then the number of blocks R in (1.6) is minimal227

and the column spaces of N1, . . . ,NR (as well as their dimensions d1, . . . , dR) can be228

identified up to permutation. For a thorough study of JBD we refer to [5] and the229

references therein.230

In subsection 2.5 we will rework (1.2) into a problem of the form (1.6). In the case231

d1 = · · · = dR = 1 the S-JBD problem (1.6) is reduced to a special case of the classical232

symmetric joint diagonalization (S-JD) problem (a.k.a. simultaneous diagonalization233

by congruence), where “special” means that the number of matrices Q equals the size234

R of the diagonal matrices. It is well known and can easily be derived from [24,235

Theorem 4.5.17] that if there exists a rank-R linear combination of V1, . . . ,VQ, then236

the solution of S-JD is unique and can be computed by means of (simultaneous) EVD.237

The following theorem states that a similar result also holds for S-JBD problem (1.6).238

Theorem 1.10. Let Q := C2
d1+1 + · · · + C2

dR+1, min(d1, . . . , dR) ≥ 2 and let239

V1, . . . ,VQ be K ×K symmetric matrices that can be jointly block diagonalized as in240

(1.6). Assume that241

a) N has full column rank;242

b) the matrices D1, . . . ,DQ are linearly independent.243

Then the solution of S-JBD problem (1.6) is unique and can be computed by means244

of (simultaneous) EVD4.245

Proof. Let λ1, . . . , λQ ∈ F be generic. Since Q is equal to the dimension of the246

subspace of all
∑

dr ×
∑

dr symmetric block diagonal matrices, the block diagonal247

matrix
∑

λqDq in
∑

λqVq = N(
∑

λqDq)N
T is also generic. Thus, replacing each248

equation in (1.6) by a (known) generic linear combination of all equations, we can249

assume without loss of generality (w.l.o.g.) that the matrices Dq are generic. By250

[21, Theorem 1.10], the solution of the obtained S-JBD problem is unique and can be251

computed by means of (simultaneous) EVD if we have at least 3 equations, which is252

the case since Q ≥ C2
2+1 = 3.253

The algebraic procedure related to Theorem 1.10 is summarized in Algorithm 1.1254

(see [5, Subsection 2.3] and [21, Algorithm 1 and Theorem 1.10]), where we assume255

w.l.o.g. that K =
∑

dr. The value R and the matrices U1, . . . ,UR in step 1 can be256

computed as follows. Vectorizing the matrix equation O = UVq −VqU
T , we obtain257

that 0 = (VT
q ⊗ I) vec(U)− (I⊗Vq) vec(U

T ) = (VT
q ⊗ I− (I⊗Vq)P) vec(U), where258

P denotes the K2 ×K2 permutation matrix that transforms the vectorized form of a259

K×K matrix into the vectorized form of its transpose. Let M denote the K2Q×K2260

matrix formed by the rows of VT
q ⊗ I − (I ⊗ Vq)P, q = 1, . . . , Q. Then we obtain261

R = dimNull (M) and choose U1, . . . ,UR such that vec(U1), . . . vec(UR) form a basis262

of Null (M).263

It is worth noting that the computations in steps 1 and 2 can be simplified as264

follows. From the proof of Theorem 1.10 it follows that the matrices V1, . . . ,VQ in265

step 1 can be replaced by three generic linear combinations. It was also proved in [5]266

that the simultaneous EVD in step 2 can be replaced by the EVD of a single matrix267

Z, namely, a generic linear combination of U1, . . . ,UR. Then the values d1, . . . , dR268

can be computed as the multiplicities of R (distinct) eigenvalues of Z.269

Approximate S-JBD. Optimization based schemes for the approximate S-JBD270

problem are discussed in the recent paper [6] (see also [5, 21, 35] and references271

therein). The authors of [5] proposed a variant of Algorithm 1.1 in which the null272

4The simultaneous EVD problem consists of finding a similarity transform that reduces a set of
(commuting) matrices to diagonal form.
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Algorithm 1.1 Computation of S-JBD problem (1.6) under the conditions in Theo-
rem 1.10
Input: K × K symmetric matrices V1, . . . ,VQ with the property that there exist

matrices N and D1, . . . ,DQ such that V1, . . . ,VQ can be factorized as in (1.6),
the assumptions in Theorem 1.10 hold and K =

∑
dr

1: Find R and the matrices U1, . . . ,UR that form a basis of the subspace
{U ∈ F

K×K : UVq = VqU
T , q = 1, . . . , Q}

2: Find N and the values d1, . . . , dR from the simultaneous EVD
Ur = N blockdiag(λ1rId1

, . . . , λRrIdR
)N−1, r = 1, . . . , R

3: For each q = 1, . . . , Q compute Dq = N−1VqN
−T

Output: Matrices N, D1, . . . ,DQ and the values R, d1, . . . , dR such that (1.6) holds

space of M in step 1 is replaced5 by the subspace spanned by the R̃ ≤ R smallest right273

singular vectors of M, vec(U1), . . . , vec(UR̃), and the simultaneous EVD problem274

in step 2 is replaced by the EVD of single matrix Z, where Z is a generic linear275

combination of U1, . . . ,UR̃. The block-diagonal matrices Dq in step 3 can be found276

without explicitly computing the inverse of N by solving the linear set of equations277

NDqN
T = Vq in the least squares sense. Although the simultaneous EVD in step278

2 is replaced by the EVD of a single matrix Z, the experiments in [5] show that the279

proposed variant of Algorithm 1.1 may outperform optimization based algorithms. On280

the other hand, it is clear that the loss of “diversity” when replacing the R̃ matrices in281

step 2 by a single generic linear combination may result in a poor estimate of N and282

also in a wrong detection of d1, . . . , dR (cf. also the discussion for CPD in [2]). That283

is why in this paper we will use the following (still simple but more robust) procedure284

to compute an approximate solution of the simultaneous EVD in step 2. (Note that285

the simultaneous EVD is (obviously) a new concept by itself, for which no dedicated286

numerical algorithms are available yet and their derivation is outside the scope of this287

paper.) First, we stack the matrices U1, . . . ,UR̃ into an R̃ × K × K tensor U and288

interpret the simultaneous EVD in step 2 as a structured decomposition of U into a289

sum of ML rank-(1, 1, 1) terms (i.e., just rank-1 terms):290

(1.7) U =
K∑

k=1

ak ◦ (bkc
T
k ) or Ur = C diag(ar1, . . . , arK)BT , r = 1, . . . , R̃,291

where BT = PTN−1, C = NP (implying that B = C−T ),292

(1.8) diag(ar1, . . . , arK) = PT blockdiag(λ1rId1
, . . . , λRrIdR

)P, r = 1, . . . , R̃.293

and P is an arbitrary permutation matrix. If P = IK , then, by (1.8),294

(1.9) a1 = · · · = ad1 = [λ11 . . . λ1R̃]
T ,ad1+1 = · · · = ad1+d2 = [λ21 . . . λ2R̃]

T , . . .295

If P is not the identity, then the vectors a1, . . . ,aK can be permuted such that (1.9)296

holds. It can easily be shown that, in the exact case, decomposition (1.7) is minimal,297

that is, (1.7) is a CPD of U , and that the constraint B = C−T holds for any solution298

of (1.7).299

5In noisy cases, the exact null space of M is always one-dimensional and spanned by the vectorized
identity matrix.
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There exist many optimization based algorithms that can compute the CPD of U300

in the least squares sense (see, for instance, [36]). Recall from Footnote 5 that, also301

in the noisy case, UR̃ can be taken equal to a scalar multiple of the identity matrix.302

This actually allows us to enforce the constraint B = C−T by setting UR̃ = ωIK ,303

where ω is a weight coefficient chosen by the user. Finally, clustering the K vectors304

ak ∈ F
R̃ into R clusters (modulo sign and scaling) we obtain the values d1, . . . , dR as305

the sizes of clusters and also the permutation matrix P. Then we set N = CPT .306

2. Our contribution. Before stating the main results (subsections 2.5 and 2.6),307

we present necessary conditions for uniqueness (subsection 2.1), explain the key idea308

behind our derivation (subsection 2.2), introduce some notations (subsection 2.3) and309

a convention (subsection 2.4).310

2.1. Necessary conditions for uniqueness. Let T ∈ F
I×J×K admit the ML311

rank-(1, Lr, Lr) decomposition (1.1). It was shown in [13, Theorem 2.4] that if the312

decomposition of T into a sum of max ML rank-(1, Lr, Lr) terms is unique, then A313

does not have proportional columns (trivial) and the following condition holds:314

for every vector w ∈ F
R that has at least two nonzero entries,

the rank of the matrix

R∑

r=1

wrEr is greater than max
{r:wr 6=0}

Lr.
(2.1)315

In the following theorem we generalize well-known necessary conditions for uniqueness316

of the CPD (see [16] and references therein) to the decomposition into a sum of max317

ML rank-(1, Lr, Lr) terms. The condition in statement 1) is more restrictive than318

(2.1) but is easier to check.319

Theorem 2.1. Let T ∈ F
I×J×K admit the ML rank-(1, Lr, Lr) decomposition320

(1.2), i.e., rBr
= rCr

= Lr for all r. If the decomposition of T into a sum of max321

ML rank-(1, Lr, Lr) terms is unique, then the following statements hold:322

1) the matrix [vec(E1) . . . vec(ER)] has full column rank, where Er := BrC
T
r323

for all r;324

2) the matrix [a1 ⊗B1 . . . aR ⊗BR] has full column rank;325

3) the matrix [a1 ⊗C1 . . . aR ⊗CR] has full column rank.326

Proof. The three statements come from the three matrix representations (1.3),327

(1.5), and (1.4). The details of the proof are given in Appendix B.328

2.2. The key idea. Let T ∈ F
I×J×K admit the ML rank-(1, Lr, Lr) decomposi-329

tion (1.1), and let T1, . . . ,TK ∈ F
I×J denote the frontal slices of T , Tk := (tijk)

I,J
i,j=1.330

It is clear that331

(2.2) f1T1 + · · ·+ fKTK =

K∑

k=1

fk

R∑

r=1

are
T
k,r =

R∑

r=1

ar

K∑

k=1

eTk,rfk =

R∑

r=1

ar(Erf)
T ,332

where ek,r denotes the kth column of Er. Thus, if f belongs to the null space of333

all but one of the matrices E1, ...,ER , then f1T1 + · · · + fKTK is rank-1 and its334

column space is spanned by a column of A. We will make assumptions on A and335

E1, . . . ,ER that guarantee that the identity f1T1 + · · · + fKTK = zyT holds if and336

only if z is proportional to a column of A and f belongs to the null space of all337
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matrices E1, . . . ,ER but one:338

f1T1 + · · ·+ fKTK = zyT ⇔ ∃r such that z = car, Zrf = 0 and Erf 6= 0,(2.3)339

where Zr := [ET
1 . . . ET

r−1 ET
r+1 . . . ET

R]
T .340341

In our algorithm we use T to construct a C2
IC

2
J × K2 matrix R2(T ) such that the342

following equivalence holds true:343

(2.4) f ∈ F
K is a solution of R2(T )(f ⊗ f) = 0 ⇔ rf1T1+···+fKTK

≤ 1.344

By (2.2)–(2.4), the set of all solutions of345

(2.5) R2(T )(f ⊗ f) = 0346

is the union of the subspaces Null (Z1) , . . . ,Null (ZR) and any nonzero solution of347

(2.5) gives us a column of A. We establish a link between (2.5) and S-JBD prob-348

lem (1.6). By solving the S-JBD problem we will be able to find the subspaces349

Null (Z1) , . . . , Null (ZR) and the entire factor matrix A, which will then be used to350

recover the overall decomposition.351

2.3. Construction of the matrix R2(T ) and its submatrix Q2(T ). In this352

subsection we present the explicit construction of the matrix R2(T ) in (2.4). In fact,353

the construction follows directly from (2.4). It is clear that354

(2.6) rf1T1+···+fKTK
≤ 1 ⇔ all 2× 2 minors of f1T1 + · · ·+ fKTK are zero.355

Since there are C2
IC

2
J minors and since each minor is a weighted sum of K2 monomials356

fifj , 1 ≤ i, j ≤ K, the condition in the RHS of (2.6) can be rewritten as R2(T )(f ⊗357

f) = 0, where R2(T ) is a C2
IC

2
J × K2 matrix whose entries are the second degree358

polynomials in the entries of T . Variants of the following explicit construction of359

R2(T ) can be found in [11, 18, 32].360

Definition 2.2. The361

(2.7)
(
(i1 + C2

i2−1 − 1)C2
J + j1 + C2

j2−1, (k2 − 1)K + k1
)
-th362

entry of the C2
IC

2
J ×K2 matrix R2(T ) equals363

(2.8) ti1j1k1
ti2j2k2

+ ti1j1k2
ti2j2k1

− ti1j2k1
ti2j1k2

− ti1j2k2
ti2j1k1

,364

where
1 ≤ i1 < i2 ≤ I, 1 ≤ j1 < j2 ≤ J, 1 ≤ k1, k2 ≤ K.

Since the expression in (2.8) is invariant under the permutation (k1, k2) → (k2, k1),365

the ((k2−1)K+k1)-th column of the matrix R2(T ) coincides with its ((k1−1)K+k2)-366

th column. In other words, the rows of R2(T ) are vectorized K × K symmetric367

matrices, implying that C2
K−1 columns of R2(T ) are repeated twice. Hence R2(T ) is368

of the form369

(2.9) R2(T ) = Q2(T )PT
K ,370

where Q2(T ) holds the C2
K+1 unique columns of R2(T ) and PT

K ∈ F
C2

K+1×K2

is a371

binary (0/1) matrix with exactly one element equal to “1” per column. Formally,372

Q2(T ) is defined as follows.373
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Definition 2.3. Q2(T ) denotes the C2
IC

2
J × C2

K+1 submatrix of R2(T ) formed374

by the columns with indices (k2 − 1)K + k1, where 1 ≤ k1 ≤ k2 ≤ K.375

It can be easily checked that (2.9) holds for PK defined by376

(2.10) (PK)(k1−1)K+k2,j =

{
1, if j = min(k1, k2) + C2

max(k1,k2)
,

0, otherwise,
377

where 1 ≤ k1, k2 ≤ K.378

In our algorithm we will work with the smaller matrix Q2(T ) while in the theo-379

retical development we will use R2(T ). More specifically, a vector f ∈ F
K is a solution380

of (2.5) if and only if f ⊗ f belongs to the intersection of the null space of R2(T ) and381

the subspace of vectorized K ×K symmetric matrices,382

(2.11)
vec (FK×K

sym ) := {vec(M) : M ∈ F
K×K , M = MT }, dim(vec (FK×K

sym )) = C2
K+1.383

By (2.9), the intersection can actually be recovered from the null space of Q2(T ) as384

(2.12) Null (R2(T )) ∩ vec (FK×K
sym ) = PK(PT

KPK)−1 Null (Q2(T )) .385

It is worth noting that the matrix D := PK(PT
KPK)−1 in (2.12) has the following386

simple form387

(2.13) (D)(k1−1)K+k2,j =





1, if j = k1 + C2
k1

and k1 = k2,
1
2 , if j = min(k1, k2) + C2

max(k1,k2)
and k1 6= k2,

0, otherwise.

388

2.4. Convention rT(3)
= K. The results of this paper rely on equivalence (2.3),389

which does not hold if the frontal slices T1, . . . ,TK of the tensor T are linearly390

dependent. One can easily verify that T(3) = [vec(T1) . . . vec(TK)], implying that391

linear independence of T1, . . . ,TK is equivalent to full column rank of T(3), i.e., to392

the condition rT(3)
= K.393

Thus, to apply the results of the paper for tensors with rT(3)
< K, one should first

“compress” T to an I×J × K̃ tensor T̃ such that rT̃(3)
= K̃. Such a compression can,

for instance, be done by taking T̃ with T̃(3) equal to the “U” factor in the compact
SVD of T(3) = USVH . In this case, by (1.5),

T̃(3) := U = T(3)VS−1 = [a1 ⊗B1 . . . aR ⊗BR](S
−1VTC)T ,

implying that T̃ and T share the first two factor matrices and that the slices of T̃ are394

obtained from linear mixtures of the I × J matrix slices of T . If the decomposition395

of T̃ into a sum of max ML rank-(1, Lr, Lr) terms is unique, then, by statement 2) of396

Theorem 2.1, the matrix [a1⊗B1 . . . aR⊗BR] has full column rank. Thus, when the397

matrices A and B are obtained from T̃ , the remaining matrix C can be found from398

(1.5) as C =
(
[a1 ⊗B1 . . . aR ⊗BR]

†T(3)

)T
. For future reference, we summarize399

the above discussion in statement 1) of the following theorem. Statement 2) is the400

generic version of statement 1) and can be proved in a similar way.401

Theorem 2.4.402

1) Let T be an I × J × K tensor and let T̃ be an I × J × K̃ tensor formed403

by K̃ linearly independent mixtures of the I × J matrix slices of T . If the404
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decomposition of T̃ into a sum of max ML rank-(1, Lr, Lr) terms i) is unique405

or, moreover, ii) is unique and can be computed by means of (simultaneous)406

EVD, then the same holds true for T .407

2) If the decomposition of an I × J × K̃ tensor into a sum of max ML rank-408

(1, Lr, Lr) terms i) is generically unique or, moreover, ii) is generically unique409

and can generically be computed by means of (simultaneous) EVD, then the410

same holds true for tensors with dimensions I × J ×K, where K ≥ K̃.411

Thus, in the cases where the assumption rT(3)
= K (resp. the assumptions412

IJ ≥
∑

Lr ≥ K) allows us to simplify the presentation, namely, in Theorems 2.5413

and 2.6 (resp. in Theorem 2.13), we will assume w.l.o.g. that rT(3)
= K (resp.414 ∑

Lr ≥ K).415

2.5. Main uniqueness results and algorithm. In subsection 2.5.1 we present416

results on uniqueness and computation of the exact ML rank-(1, Lr, Lr) decomposition417

(1.1). In subsection 2.5.2 we explain how to compute an approximate solution in the418

case where the decomposition is not exact. In subsection 2.5.3 we illustrate our results419

by examples.420

2.5.1. Exact ML rank-(1, Lr, Lr) decomposition. In the following theorem421

both assumptions (2.14), (2.15) need to hold, and at least one of the assumptions422

(2.16) and (2.17). In statement 4) of Lemma 3.1 below we will show that (2.16)423

actually implies (2.17).424

By itself, Theorem 2.5 can be used to show uniqueness of a decomposition, but425

not only that. As we will explain later, the theorem comes with an algorithm for the426

actual computation of the decomposition (namely, Algorithm 2.1). In this respect,427

another comment is in order. If one wishes to use Theorem 2.5 to show uniqueness,428

and if one wishes to do so via (2.16), then there is no need to construct the matrix429

Q2(T ) in (2.17). On the other hand, Theorem 2.5 comes with Algorithm 2.1 for the430

actual computation of the decomposition. In this algorithm we work via the null space431

of Q2(T ) (and not just its dimension as in (2.17)), i.e., matrix Q2(T ) is constructed,432

also in cases where the uniqueness by itself follows from (2.16).433

Theorem 2.5. Let T ∈ F
I×J×K admit the ML rank-(1, Lr, Lr) decomposition434

(1.1), i.e., rEr
= Lr for all r. Assume that435

rT(3)
= K and(2.14)436

dr := dimNull (Zr) ≥ 1, r = 1, . . . , R,(2.15)437438

where T(3) is defined in (1.5) and Zr := [ET
1 . . . ET

r−1 ET
r+1 . . . ET

R]
T . Assume also439

that440

kA ≥ 2 and rank of F := [Er1 Er2 . . . ErR−rA+2
] is Lr1 + · · ·+ LrR−rA+2

for all 1 ≤ r1 < · · · < rR−rA+2 ≤ R
(2.16)441

442
or443

dimNull (Q2(T )) =

R∑

r=1

C2
dr+1 =: Q,(2.17)444

445

where Q2(T ) is constructed by Definition 2.3. Consider the following conditions:446

a) K ≥
∑

Lr −minLr + 1 and kA ≥ 2;447

b) the matrix A has full column rank, i.e., rA = R;448
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c) kA = rA < R, assumption (2.16) holds and449

(2.18)
rank of G := [ET

r1
ET

r2
. . . ET

rR−rA+2
] is Lr1 + · · ·+ LrR−rA+2

for all 1 ≤ r1 < · · · < rR−rA+2 ≤ R;
450

d) the matrix [ET
1 . . . ET

R]
T has maximum possible rank, namely,

∑
Lr;451

e) the inequality452

C2
K+1 −Q > −L̃1L̃2 +

∑

1≤r1<r2≤R

Lr1Lr2453

holds, where L̃1 and L̃2 denote the two smallest values in {L1, . . . , LR}.454

The following statements hold.455

1) The matrix A in the ML rank-(1, Lr, Lr) decomposition (1.1) can be computed456

by means of (simultaneous) EVD up to column permutation and scaling.457

2) If either condition b) or condition c) holds, then the overall ML rank-458

(1, Lr, Lr) decomposition (1.1) can be computed by means of (simultaneous)459

EVD.460

3) If condition a) holds, then any decomposition of T into a sum of max ML461

rank-(1, Lr, Lr) terms has R nonzero terms and its first factor matrix can be462

chosen as AP, where every column of P ∈ F
R×R contains precisely a single463

1 with zeros everywhere else.464

4) If conditions a) and e) hold, then the first factor matrix of the decomposition465

of T into a sum of max ML rank-(1, Lr, Lr) terms is unique and can be466

computed by means of (simultaneous) EVD.467

5) If conditions a) and b) hold, or conditions a) and c) hold, or condition d)468

holds, then the decomposition of T into a sum of max ML rank-(1, Lr, Lr)469

terms is unique and can be computed by means of (simultaneous) EVD.470

Proof. See section 4.471

We make the following comments on the assumptions, conditions, and statements472

in Theorem 2.5.473

1) Statement 1) says that A can be computed by means of EVD. On the other474

hand, statement 4) says that the first factor matrix is unique and can be computed by475

means of EVD, under a more restrictive condition. A similar observation can be made476

for the computation of the entire decomposition in statements 2) and 3), respectively.477

What we mean is the following. All assumptions and conditions in Theorem 2.5, ex-478

cept (2.14), are formulated in terms of a specific ML rank-(1, Lr, Lr) decomposition479

of T , namely, in terms of the matrices A and E1, . . . ,ER. There is a subtlety in the480

sense that T may admit alternative decompositions for which the assumptions (2.15)481

and (2.17) and conditions b) and c) do not all hold and which cannot necessarily be482

(partially) found by means of EVD. The more restrictive conditions in statements 4)483

and 5) exclude the existence of such alternative decompositions. Statement 3) is a484

“transition statement” in which the alternatives for the first factor matrix are re-485

stricted. Thus, statements 1) and 2) are mainly meant to cover cases where the first486

factor matrix and the overall decomposition, respectively, are not unique in the sense487

that there may be alternatives for which the assumptions/conditions do not hold. See488

Example 2.8 below for an illustration.489

2) The matrix P in statement 3) is a column selection matrix, possibly with490

repeated columns. Thus, statement 3) says that the first factor matrix of any de-491

composition of T into a sum of max ML rank-(1, Lr, Lr) terms can be obtained by492
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selecting columns of A, where column repetition is allowed but the total number of493

columns should be equal to R.494

3) The assumptions in Theorem 1.4, Theorem 1.5, and Theorem 1.8 are symmetric495

with respect to the last two dimensions while the assumptions and conditions in496

Theorem 2.5 are not. To get another set of conditions on uniqueness and computation497

one can just permute the last two dimensions of T .498

4) As in Theorem 1.4 and Theorem 1.5, the number of ML rank-(1, Lr, Lr) terms499

and the values of Lr are not required to be known in advance; they are found by the500

algorithm.501

5) Assumption (2.17) means that we require the subspace dimNull (Q2(T )) to502

have the minimal possible dimension (see statement 3) of Lemma 3.1 below).503

6) It can be shown that Statement 5) is a criterion that is “effective” in the sense504

of [8].505

Instead of the matrices A and E1, . . . ,ER, Theorem 2.5 can also be given in506

terms of the factor matrices A, B, and C (cf. Theorems 1.4, 1.5 and 1.8). Namely,507

substituting Er = BrC
T
r and T =

∑
ar ◦ (BrC

T
r ), in the expressions for Zr, F, G,508

[ET
1 . . . ET

R]
T and Q2(T ), respectively, we obtain the following result.509

Theorem 2.6. Let T ∈ F
I×J×K admit the ML rank-(1, Lr, Lr) decomposition510

(1.2), i.e., rBr
= rCr

= Lr for all r. Assume that511

the matrix [a1 ⊗B1 . . . aR ⊗BR]C
T has full column rank and(2.19)512

dr := dimNull (Zr,C) ≥ 1, r = 1, . . . , R,(2.20)513514

where Zr,C := [C1 . . . Cr−1 Cr+1 . . . CR]
T . Assume also that515

kA ≥ 2 and k′B ≥ R− rA + 2(2.21)516517

or6518

dimNull
(
Φ(A,B)S2(C)T

)
=

R∑

r=1

C2
dr+1 =: Q,(2.22)519

520

where the matrices Φ(A,B) and S2(C) are defined in (3.2) and (3.3) below7. Con-521

sider the following conditions:522

a) K ≥
∑

Lr −minLr + 1 and kA ≥ 2;523

b) the matrix A has full column rank, i.e., rA = R;524

c) kA = rA < R, (2.21) holds and k′C ≥ R− rA + 2;525

d) K =
R∑

r=1
Lr (implying that C is K ×K nonsingular and that dr = Lr for all526

r);527

e) the inequality528

C2
K+1 −Q > −L̃1L̃2 +

∑

1≤r1<r2≤R

Lr1Lr2529

holds, where L̃1 and L̃2 denote the two smallest values in {L1, . . . , LR}.530

Then statements 1) to 5) in Theorem 2.5 hold.531

6In statement 4) of Lemma 3.1 below we show that (2.21) implies (2.22).
7The definitions of Φ(A,B) and S2(C) require additional notations and are postponed to section 3

for the sake of readability. Here we just mention that each entry of Φ(A,B) is a product of a 2× 2
minor of A and a 2×2 minor of B and that each entry of S2(C) is of the form ci1j1ci2j2 +ci1j2ci2j1 .
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16 I. DOMANOV AND L. DE LATHAUWER

Proof. The proof is given in Appendix B.532

Statement 5) in Theorem 2.6/Theorem 2.5 allows us to trade full column rank of the533

factor matrices B and C for a higher k-rank of A than in Theorem 1.4. In particular534

the following result can be used in cases where none of the factor matrices has full535

column rank.536

Corollary 2.7. Let T ∈ F
I×J×K admit the ML rank-(1, Lr, Lr) decomposition537

(1.2), i.e., rBr
= rCr

= Lr for all r. Assume that538

(2.23) rC ≥
∑

Lr −minLr + 1, k′B ≥ R− rA + 2 and kA ≥ 2.539

Then the decomposition of T into a sum of max ML rank-(1, Lr, Lr) terms is unique540

and can be computed by means of (simultaneous) EVD if541

(2.24) either rA = R or kA = rA < R and k′C ≥ R− rA + 2.542

Proof. The proof is given in Appendix B.543

The algebraic procedure that will result from Theorem 2.5 (or Theorem 2.6) is544

summarized in Algorithm 2.1. In this subsection we explain how Algorithm 2.1 com-545

putes the exact ML rank-(1, Lr, Lr) decomposition (1.1). In subsection 2.5.2 we will546

explain how the steps in Algorithm 2.1 can be modified to compute an approximate547

ML rank-(1, Lr, Lr) decomposition of T .548

In Phase I we recover the first factor matrix. In steps 1 − 3 we compute a549

basis v1, . . . ,vQ of the subspace Null (R2(T )) ∩ vec (FK×K
sym ). The computation re-550

lies on identity (2.12): we construct the smaller matrix Q2(T ), compute a basis of551

Null (Q2(T )) and map it to a basis of Null (R2(T )) ∩ vec (FK×K
sym ). In steps 4 and 5552

we construct S-JBD problem (1.6) and solve it by Algorithm 1.1.553

It will be proved (see proof of the first statement of Theorem 2.5) that submatrix554

Nr ∈ F
K×dr of the matrix N = [N1 . . . NR] computed in step 5 holds a basis555

of Null (Zr), r = 1, . . . , R. In addition, it can be easily verified that Null (Zr) =556

Null (Zr,C), so we have that557

(2.25) NT
r [C1 . . . Cr−1 Cr+1 . . . CR] = O, r = 1, . . . , R.558

In step 6 we use (2.25) to compute the columns of A: since by (2.25) and (1.5),559

[NT
r H

T
1 . . . NT

r H
T
I ] =NT

r T
T
(3) = NT

r C[a1 ⊗B1 . . . aR ⊗BR]
T =

NT
r Cr(a

T
r ⊗BT

r ) = (1⊗NT
r Cr)(a

T
r ⊗BT

r ) =

aTr ⊗ (NT
r CrB

T
r ) = aTr ⊗ (NT

r E
T
r ), r = 1, . . . , R,

(2.26)560

it follows that561

(2.27) [vec(NT
r H

T
1 ) . . . vec(NT

r H
T
I )] = vec(NT

r E
T
r )a

T
r , r = 1, . . . , R,562

implying that ar is the vector that generates the row space of only right singular563

vector of [vec(NT
r H

T
1 ) . . . vec(NT

r H
T
I )] that corresponds to a nonzero singular value.564

In Phase II we recover the overall decomposition. Since, by Theorem 2.5 (or565

Theorem 2.6), the computation is possible if at least one of the conditions d), b), or566

c) holds, we consider three cases.567

Case 1: condition d) in Theorem 2.6 implies that C is a K × K nonsingular
matrix and that K =

∑
dr =

∑
Lr. Since the K ×

∑
dr matrix N computed in step

5 has full column rank, it follows that N is also K ×K nonsingular. Since, by (2.25),

NTC = [N1 . . .NR]
T [C1 . . . CR] = blockdiag(NT

1 C1, . . . ,N
T
RCR),
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Algorithm 2.1 Computation of ML rank-(1, Lr, Lr) decomposition (1.1) under var-
ious conditions expressed in Theorem 2.5

Input: tensor T ∈ F
I×J×K admitting decomposition (1.1)

Phase I (computation of A)
1: Construct the C2

IC
2
J -by-C2

K+1 matrix Q2(T ) as in Definition 2.3

2: Find gq ∈ F
C2

K+1 , q = 1, . . . , Q that form a basis of Null (Q2(T )), where Q =
C2

d1+1 + · · ·+ C2
dR+1

3: Compute vq := Dgq ∈ F
K2

, q = 1, . . . , Q, where D is defined in (2.13)
4: For each q = 1, . . . , Q reshape vq into the K ×K symmetric matrix Vq

5: Compute N and the values R, d1, . . . , dR in S-JBD problem (1.6) by Algorithm 1.1

6: For each r = 1, . . . , R take ar equal to the vector that generates the row space of
[vec(NT

r H
T
1 ) . . . vec(NT

r H
T
I )], where Hi := (tijk)

J,K
j,k=1

Phase II (computation of the overall decomposition under one of the conditions
d), b), or c))
Case 1: condition d) in Theorem 2.5 holds

7: For each r = 1, . . . , R compute the vector that generates the column space of
[vec(NT

r H
T
1 ) . . . vec(NT

r H
T
I )] and reshape it into the matrix Br

8: Compute C from the set of linear equations
T(3) = [a1 ⊗B1 . . . aR ⊗BR]C

T

9: For each r = 1, . . . , R set Er = BrC
T
r

Case 2: condition b) in Theorem 2.5 holds
10: Compute E1, . . . ,ER by solving the set of linear equations

T(1) = [vec(E1) . . . vec(ER)]A
T

Case 3: condition c) in Theorem 2.5 holds
11: Choose (possibly overlapping) subsets Ω1, . . . ,ΩM ⊂ {1, . . . , R} such that

card(Ω1) = · · · = card(ΩM ) = R− rA + 2 and {1, . . . , R} = Ω1 ∪ · · · ∪ ΩM

12: for each m = 1, . . . ,M do
13: Find linearly independent vectors h1,h2 ∈ F

I that belong to the column
space of A and satisfy

aTr h1 = aTr h2 = 0 for all r ∈ {1, . . . , R} \ Ωm

14: Compute the 2× J ×K tensor Q(m) with Q
(m)
(1) = T(1)[h1 h2]

15: Compute the ML rank-(1, Lr, Lr) decomposition of Q(m) by the EVD
in Theorem 1.4:

Q(m) =
∑

r∈Ωm

âr ◦ Êr (the vectors âr are a by-product)

16: end for
17: Compute x from the linear equation

[a1 ⊗ vec(Ê1) . . . ar ⊗ vec(ÊR)]x = vec(T(1))

18: For each r = 1, . . . , R set Er = xrÊr

Output: Matrices A ∈ F
I×R, E1, . . . ,ER ∈ F

J×K such that (1.1) holds
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18 I. DOMANOV AND L. DE LATHAUWER

we have that C = N−T blockdiag(NT
1 C1, . . . ,N

T
RCR). Since C and N are nonsingu-568

lar, the matrices NT
r Cr ∈ F

Lr×Lr are also nonsingular. To compute B1, . . . ,BR we569

use identity (2.27). In step 7 we compute vec(NT
r E

T
r ) as the vector that generates570

the column space of the left singular vector of [vec(NT
r H

T
1 ) . . . vec(NT

r H
T
I )] corre-571

sponding to the only nonzero singular value. In addition, (NT
r E

T
r )

T = Br(N
T
r Cr)

T572

by definition of Er. W.l.o.g. we set Br equal to (NT
r E

T
r )

T , as the nonsingular factor573

(NT
r Cr)

T can be compensated for in the factor C. As such, in step 8 we finally recover574

C from (1.5).575

It is worth noting that the vectors ar in step 6 and the matrices Br in step 7576

can be computed simultaneously. Indeed, by (2.27), Br and ar, can be found from577

vec(Br)a
T
r = [vec(NT

r H
T
1 ) . . . vec(NT

r H
T
I )].578

Case 2: condition b) implies that A has full column rank. Hence, by (1.3),579

[vec(E1) . . . vec(ER)] = T(1)(A
T )†.580

Case 3: We assume that condition c) holds. In steps 11 − 18 we use the matrix581

A estimated in Phase I and the tensor T to recover the matrices E1, . . . ,ER. There582

exist CR−rA+2
R subsets of {1, . . . , R} of cardinality R − rA + 2. In principle, one can583

choose any M of them that cover the set {1, . . . , R}. (One can, for instance, choose584

M = ⌈ R
R−rA+2⌉ and set Ωm = {(m − 1)(R − rA + 2) + 1, . . . ,m(R − rA + 2)} for585

m = 1, . . . ,M − 1 and ΩM = {rA − 1, . . . , R}, where ⌈x⌉ denotes the least integer586

greater than or equal to x.) To explain steps 12 − 16 we assume for simplicity that,587

in step 11, Ω1 = {1, . . . , R − rA + 2}. In steps 13 and 14 we project out the last588

rA − 2 terms in the ML rank-(1, Lr, Lr) decomposition of T . It can be shown that589

the tensor Q(1) constructed in step 14 admits the ML rank-(1, Lr, Lr) decomposition590

Q(1) =
R−rA+2∑

r=1
âr ◦ Êr, where âr = [h1 h2]

Tar ∈ F
2 and Êr is proportional to Er,591

r = 1, . . . , R−rA+2. By condition c), Q(1) satisfies the assumptions in Theorem 1.4.592

Thus, the ML rank-(1, Lr, Lr) decomposition Q(1) is unique and can be computed593

by means of (simultaneous) EVD. The remaining matrices ER−rA+3, . . . ,ER can be594

estimated up to scaling factors in a similar way by choosing other subsets Ωm. In step595

17 we use (1.3) to compute the scaling factors x1, . . . , xR such that T =
R∑

r=1
ar◦(xrÊr).596

One may wonder what to do if several of conditions b), c) or d) hold together.597

Conditions b) and c) are mutually exclusive. If conditions b) and d) hold, then598

uniqueness and computation follow already from Theorem 1.5. Indeed, conditions b)599

and d) in Theorem 2.6 imply that the matrices A and C have full column rank,600

and, by Corollary 3.2, assumption (2.22) is more restrictive than the assumption601

r[Bi Bj ] ≥ max(Li, Lj) + 1 for all 1 ≤ i < j ≤ R. It is less clear if Algorithm 2.1602

can further be simplified if conditions c) and d) hold together. Since the computation603

in Case 1 consists basically of step 8 (it was explained above that step 7 can be604

integrated into step 6) we give priority to Case 1 over the more cumbersome Case 3605

when conditions c) and d) hold together.606

The number of ML rank-(1, Lr, Lr) terms R and their “sizes” L1, . . . , LR do not607

have to be known a priori as they are found in Phase 1 and Phase 2, respectively.608

Namely, Algorithm 1.1 in step 5 estimates R as the number of blocks of N and609

estimates dr as the number of columns in the rth block. If condition d) in Theorem 2.5610

holds, then we set Lr := dr. If condition b) or c) in Theorem 2.5 holds, then we just611

set Lr = rEr
.612

It is worth noting that if condition c) in Theorem 2.5 holds and if the sets Ωm613

in step 11 are chosen in a particular way, then the “sizes” r
Êr

= Lr of the ML rank-614

This manuscript is for review purposes only.



DECOMPOSITION OF A TENSOR INTO MULTILINEAR RANK-(1, Lr, Lr) TERMS 19

(1, Lr, Lr) terms of the tensors Q(m), constructed in step 14, can be computed by615

solving an overdetermined system of linear equations. That is, the values L1, . . . , LR616

can be found without executing step 15. Indeed, one can easily verify that condition c)617

in Theorem 2.5 implies that the equalities618

(2.28)
∑

r∈Ωm

r
Êr

= r
Q

(m)

(2)

= r
Q

(m)

(3)

619

hold for any Ωm, m = 1, . . . ,M . If M has the maximum possible value, i.e., M =620

CR−rA+2
R , then the M identities in (2.28) can be rewritten as the system of linear621

equations Ãx̃ = b̃, where Ã is a binary (0/1) M × R matrix such that none of the622

rows are proportional and each row of Ã has exactly R − rA + 2 ones. The vectors623

x̃ and b̃ consist of the values r
Êr

, 1 ≤ r ≤ R and r
Q

(m)

(2)

, 1 ≤ m ≤ M , respectively.624

One can easily verify that Ã has full column rank, i.e., the unique solution of (2.28)625

yields the values L1, . . . , LR.626

Algorithm 2.1 should be seen as an algebraic computational proof-of-concept. It627

opens a new line of research of numerical aspects and strategies; the development of628

such dedicated numerical strategies is out of the scope of this paper.629

In the given form, the computational cost of Algorithm 2.1 is dominated by steps630

1, 2, and 5. Since each entry of the C2
IC

2
J -by-C2

K+1 matrix Q2(T ) is of the form (2.8),631

step 1 requires at most 7C2
IC

2
JC

2
K+1 flops, i.e. 4 multiplications and 3 additions per632

entry (note that no distinction between complex and real data is made). The cost of633

finding a basis g1, . . . ,gQ via the SVD is of order 6C2
IC

2
J(C

2
K+1)

2 + 20(C2
K+1)

3 when634

the SVD is implemented via the R-SVD method [22]. The cost of step 5 is domi-635

nated by step 1 in Algorithm 1.1. This cost is of order 6(K2Q)2(K2)2 + 20(K2)3 =636

(6Q2 + 20)K6 (cost of the SVD of a K2Q × K2 matrix8). Thus, the total com-637

putational cost of Algorithm 2.1 is of order O(I2J2K4 + K6). Paper [32, Section638

S.1] explains an indirect technique to reduce the total cost of the steps 1 and 2 to639

O(max(IJ2K2, J2K4)). In this case, the total computational cost of Algorithm 2.1640

will be of order O(max(IJ2K2 +K6, J2K4 +K6)).641

2.5.2. Approximate ML rank-(1, Lr, Lr) decomposition. Now we discuss642

noisy variants of the steps in Algorithm 2.1. We consider two scenarios.643

I. In the exact case the matrix Q2(T ) has exactly Q nonzero singular values, the644

matrices Vq obtained in step 6 are at most rank-
∑

dr and the matrix M constructed645

in subsection 1.3.2 has exactly R nonzero singular values. In the first scenario we646

assume that the perturbation of the tensor is “small enough” to recover the correct647

values of Q, R and d1, . . . , dR in Phase I. In this case we proceed as follows. In step 2648

we set gq equal to the qth smallest right singular vector of Q2(T ). In step 5 we use the649

noisy variant of Algorithm 1.1 (see the end of subsection 1.3.2) which gives us R and650

the values d1, . . . , dR. In steps 6 and 7 we choose ar and Br such that vec(Br)a
T
r is the651

best rank-1 approximation of the matrix [vec(NT
r H

T
1 ) . . . vec(NT

r H
T
I )]. After steps652

10 and 18 we replace the matrices E1, . . . ,ER by their truncated SVDs. Assuming653

the values of d1, . . . , dR computed in step 5 are correct, the truncation ranks can654

8Recall that the vectorized matrices U1, . . . ,UR in step 1 of Algorithm 1.1 can be found from
the SVD of the K2Q×K2 matrix M formed by the rows of VT

q ⊗ I− (I⊗Vq)P, q = 1, . . . , Q, where

P denotes the K2 ×K2 permutation matrix that transforms the vectorized form of a K ×K matrix
into the vectorized form of its transpose.
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generically be determined as655

(2.29) Lr = dr +
K −

∑
dr

R− 1
, r = 1, . . . , R.656

Indeed, if the matrices Z1,C, . . . ,ZR,C have full column rank, then, by (2.20), dr =657

K −
R∑

k=1

Lk + Lr. Hence
∑

dr = RK − R
R∑

k=1

Lk +
R∑

k=1

Lk, implying that
R∑

k=1

Lk =658

RK−
∑

dr

R−1 . Thus, Lr = dr −K+
R∑

k=1

Lk = dr −K+ RK−
∑

dr

R−1 = dr +
K−

∑
dr

R−1 . In steps659

8, 10, and 17 we solve the linear systems in the least squares sense.660

An approximate ML rank-(1, Lr, Lr) decomposition of the tensor Q(m) in step 15661

can be computed in the least squares sense using optimization based techniques. In662

this case the values L1, . . . , LR should be known in advance. They can be estimated663

as follows. First the values r
Q

(m)

(2)

and r
Q

(m)

(3)

in (2.28) should be replaced by their664

numerical ranks (with respect to some threshold). Then the system of linear equa-665

tions (2.28) should be solved in the least squares sense, subject to positive integer666

constraints on r
Êr

= Lr.667

II. In the second scenario we assume that the perturbation of the tensor is not
“small enough” to guess the values of Q, R and d1, . . . , dR in Phase 1. We explain
how we proceed if (only) the values of R and

∑
Lr are known. Since, generically,

dr = K −
R∑

k=1

Lk + Lr, we obtain that
∑

dr = RK − (R − 1)
∑

Lr. In step 2, we

replace Q by its lower bound

Qmin := argmin
∑

d̂r=
∑

dr

(
C2

d̂1+1
+ · · ·+ C2

d̂R+1

)
.

In the first scenario, the matrix N was estimated as the third factor matrix in CPD668

(1.7) and the partition of N into blocks N1, . . . ,NR (and, in particular, the values669

of d1, . . . , dR) was obtained by clustering the columns of the first factor matrix in670

the CPD. In the second scenario, we compute only matrix N in step 5, without671

estimating the values of d1, . . . , dR. Since, by (2.26), T(3)Nr = ar ⊗ (ErNr), it672

follows that T(3)N coincides up to permutation of columns with the matrix [a1 ⊗673

(E1N1) . . . aR ⊗ (ERNR)]. So, clustering the columns of T(3)N into R clusters674

(modulo sign and scaling) we obtain the values d1, . . . , dR as the sizes of clusters and675

the columns of A as their centers. The noisy variants of the remaining steps are the676

same as in the first scenario.677

2.5.3. Examples.678

Example 2.8. In this example we illustrate how to apply statement 2) of Theo-679

rem 2.5 for the computation of a decomposition that is not unique but does satisfy680

(2.15). Let R ≥ 2. We consider an R× (R+2)× (R+2) tensor T generated by (1.2)681

in which682

A = [a1 . . . aR],683

B = [b1 b2 b3 b1 b2 b4 b5 . . .b3R−2], and C = [c1 c2 c3 c1 c2 c4 . . . c1 c2 cR+2],684685

where the entries of a1, . . . ,aR, b1, . . . ,b3R−2, and c1, . . . , cR+2 are independently686

drawn from the standard normal distribution N(0, 1). Thus, T is a sum of R ML687
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rank-(1, 3, 3) terms (i.e., L1 = · · · = LR = 3):688

T =

R∑

r=1

ar ◦Er, where

E1 = [b1 b2 b3][c1 c2 c3]
T , E2 = [b1 b2 b4][c1 c2 c4]

T , and

Er = [b3r−4 b3r−3 b3r−2][c1 c2 cr+2]
T for r ≥ 3.

(2.30)689

Nonuniqueness. Let us show that the decomposition of T into a sum of max690

ML rank-(1, 3, 3) terms is not unique. Let T2 equal the sum of the first two ML691

rank-(1, Lr, Lr) terms:692

(2.31) T2 = a1 ◦ (b1c
T
1 + b2c

T
2 + b3c

T
3 ) + a2 ◦ (b1c

T
1 + b2c

T
2 + b4c

T
4 ).693

It can be proved that T2 admits exactly three decompositions into a sum of max ML694

rank-(1, Lr, Lr) terms, namely (2.31) itself and the decompositions695

T2 = a1 ◦ (b3c
T
3 − b4c

T
4 ) + (a1 + a2) ◦ (b1c

T
1 + b2c

T
2 + b4c

T
4 ) =

(a1 + a2) ◦ (b1c
T
1 + b2c

T
2 + b3c

T
3 )− a2 ◦ (b3c

T
3 − b4c

T
4 ).

(2.32)696

Since T2 admits three decompositions it follows that T admits at least three decom-697

positions for R ≥ 2. In other words, the decomposition of T into a sum of max ML698

rank-(1, Lr, Lr) terms is not unique.699

Computation for R ≥ 3. Now we show that, by statement 2) of Theorem 2.5,700

decomposition (2.30) can be computed by means of (simultaneous) EVD, at least701

for R = 3, . . . , 20 (which are the values of R we have tested). First we show that702

assumptions (2.14), (2.15), (2.17), and condition b) hold. Assumption (2.14) and703

condition b) are trivial. The values of d1, . . . , dR in (2.15) can be computed by (2.20),704

which easily gives d1 = · · · = dR = 1. It can also be verified that Q2(T ) is a705

C2
RC

2
R+2 × C2

R+3 matrix and that (at least for R = 3, . . . , 20) dimNull (Q2(T )) =706

R =
∑

C2
dr+1, i.e., (2.17) holds as well. (To compute the null space we used the707

MATLAB built-in function null.)708

Let us now illustrate how Algorithm 2.1 recovers the matrices A, E1, . . . ,ER.
As has been mentioned before, since the matrix N computed in step 5 consists of
the blocks N1 ∈ F

K×d1 , . . . ,NR ∈ F
K×dR which hold, respectively, bases of the

subspaces Null (Z1) = Null (Z1,C) , . . . ,Null (ZR) = Null (ZR,C), it follows that (2.25)
holds. Since d1 = · · · = dR = 1, the S-JBD problem in step 5 is actually a symmetric
joint diagonalization problem. Thus, in step 5, we obtain an (R + 2) × R matrix
N = [n1 . . . nR] and (2.25) takes the following form :

nT
r [c1 c2 c3 . . . c1 c2 cr+1 c1 c2 cr+3 . . . c1 c2 cR+2] = 0, r = 1, . . . , R.

Then in step 6 we compute ar, by (2.27), i.e., as the vector that generates the row
space of only right singular vector of [H1nr . . . HInr] :

[H1nr . . . HInr] = [vec(nT
r H

T
1 ) . . . vec(nT

r H
T
I )] = vec(nT

r E
T
r )a

T
r = (Ernr)a

T
r .

Finally, in step 12 we reshape the columns of T(1)(A
T )† into the matrices E1 and E2.709

It is worth noting that none of the three decompositions of T2 can be computed by710

Theorem 2.5 while for R = 3, . . . , 20 decomposition (2.30) of T , involving additional711

terms, can be computed by Theorem 2.5. Let us explain. First, one can easily verify712
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that the third matrix unfolding of T2 ∈ F
R×(R+2)×(R+2) is rank-4, so, as it was713

explained in subsection 2.4, for investigating properties of T2, we can w.l.o.g. focus714

on T2 ∈ F
R×(R+2)×4. It can be verified that Q2(T2) is a C2

RC
2
R+2 × 10 matrix, that715

dimNull (Q2(T2)) = 5, and that for all decompositions in (2.31) and (2.32) we have716

(d1, d2) ∈ {(1, 1), (2, 1), (1, 2)}. Thus, C2
d1+1 + C2

d2+1 ≤ 4 < 5 = dimNull (Q2(T2)),717

implying that assumption (2.17) does not hold.718

To explain why (2.17) does hold for T while it does not hold for T2, we refer to719

equivalence (2.3). From (2.2) and (2.30) it follows that720

721

(2.33) f1T1 + · · ·+ fR+2TR+2 =

(
(a1 + a2)b

T
1 +

R∑

r=3

arb
T
3r−4

)
fT c1+722

(
(a1 + a2)b

T
2 +

R∑

r=3

arb
T
3r−3

)
fT c2 + (a1b

T
3 )f

T c3 + (a2b
T
4 )f

T c4+723

R∑

r=3

(arb
T
3r−2)f

T cr+2.724

725

Above, we have numerically verified that dimNull (Q2(T )) = R =
∑

C2
dr+1, which726

guarantees that (2.3) holds for T , i.e., f1T1 + · · · + fR+2TR+2 is rank-1 if and only727

if f belongs to the null spaces of all matrices [c1 c2 c3]
T , . . . , [c1 c2 cR+3]

T but one.728

On the other hand, in the case of T2, one can easily find a counterexample to the729

implication “⇒” in (2.3). Indeed, for T2 the linear combination in the LHS of (2.33)730

of the frontal slices of T2 can be rewritten as the RHS without the terms under the731

summation signs. Then the implication “⇒” in (2.3) does not hold for a vector f such732

that cT3 f = · · · = cTR+2f = 0 but |cT1 f |+ |cT2 f | 6= 0.733

Example 2.9. We consider a 3 × J × 15 tensor generated by (1.2) in which the734

entries of A, B, and C are independently drawn from the standard normal distri-735

bution N(0, 1) and L1 = L2 = L3 = 2, L4 = L5 = 3, and L6 = 4. Thus, T is a736

sum of R = 6 terms. For J ≥ 9, one can easily check that dr = Lr − 1 and that737

(2.14) and condition a) in Theorem 2.5 hold. We illustrate statements 4) and 5) of738

Theorem 2.5 by considering J in the sets {9, 10, 11, 12, 13} and {14, 15}, respectively.739

1. Let J ∈ {9, . . . , 12, 13}. Computations indicate that for J = 9 the null740

space of the 108 × 120 matrix Q2(T ) has dimension 15. (To compute the741

null space we used the MATLAB built-in function null.) Since
∑

C2
dr+1 =742

C2
2 + C2

2 + C2
2 + C2

3 + C2
3 + C2

4 = 15, it follows that (2.17) holds. It is clear743

that (2.17) will also hold for J > 9. Since744

C2
K+1 −Q = 105 > 101 = −L̃1L̃2 +

∑

1≤r1<r2≤R

Lr1Lr2 ,745

it follows that condition e) also holds. Hence, by statement 4) of Theorem 2.5,746

the first factor matrix of T is unique and can be computed in Phase I of747

Algorithm 2.1.748

2. Let J ∈ {14, 15}. Then condition c) in Theorem 2.5 holds. Hence, by state-749

ment 5) of Theorem 2.5, the overall decomposition is unique and can be750

computed by Algorithm 2.1. In step 11 we can, for instance, set M = 2751

and choose Ω1 = {1, 2, 3, 4, 5} and Ω2 = {1, 2, 3, 4, 6}. In this case the loop752

in steps 12 − 16 is executed twice which yields matrices Ê1, . . . , Ê4, Ê5 and753
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matrices α1Ê1, . . . , α4Ê4, Ê6, respectively, where α1, . . . , α4 are nonzero val-754

ues. The computed matrices Ê1, . . . , Ê6 necessarily coincide with the matrices755

E1, . . . ,E6 in decomposition (1.1) up to permutation of indices and scaling756

factors. Note that neither R nor L1, . . . , LR should be known a priori.757

In the following two examples we assume that the decomposition in (1.1) is per-758

turbed with a random additive term. The examples demonstrate the computation of759

the approximate ML rank-(1, Lr, Lr) decomposition (1.1).760

Example 2.10. In this example we illustrate the computation of L1, . . . , LR and761

the computation of the approximate ML rank-(1, Lr, Lr) decomposition assuming762

that the exact decomposition satisfies condition b) in Theorem 2.5 (i.e., Case 2 in763

Algorithm 2.1).764

First we consider the case where the decomposition is exact. We consider a 3×8×8765

tensor generated by (1.2) in which the entries of A, B, and C are independently766

drawn from the standard normal distribution N(0, 1) and L1 = 2, L2 = 3, L3 = 4.767

Thus, T is a sum of R = 3 terms. It can be numerically verified that d1 = 1,768

d2 = 2, d3 = 3 and that the null space of the 84 × 36 matrix Q2(T ) has dimension769

10 = C2
d1+1 + C2

d2+1 + C2
d3+1. Hence, by statement 5) of Theorem 2.5, the overall770

decomposition is unique and can be computed by Algorithm 2.1 (Case 2). Note that if771

the third dimension is decreased by 1, then condition a) in Theorem 2.5 does not hold.772

It can also be shown that if the first dimension is decreased by 1, then assumption773

(2.17) in Theorem 2.5 does not hold.774

Now we consider a noisy variant. Since the problem is already challenging we775

exclude to some extent random tensors that may pose additional numerical difficulties9776

by limiting the condition numbers of the matrix unfoldings T(1) and T(3). More777

concretely, we select 100 random tensors with max(cond(T(1)), cond(T(3))) ≤ 10,778

where cond(·) denotes the condition number of a matrix, i.e., the ratio of the largest779

and smallest singular value. We estimate the ML rank values and the factor matrices780

from T+cN , where N is a perturbation tensor and c controls the signal-to-noise level.781

The entries of N are independently drawn from the standard normal distribution782

N(0, 1) and the following Signal-to-Noise Ratio (SNR) measure is used: SNR [dB] =783

10 log(‖T ‖2F /c
2‖N‖2F ), where ‖ · ‖F denotes the Frobenius norm of a tensor. To784

compute the decomposition of T + cN we use the noisy version of Algorithm 2.1785

explained in subsection 2.5.2 (the second scenario). We assume that R = 3 and786 ∑
Lr = 9 are known. Since we are in a generic setting,

∑
dr = RK− (R−1)

∑
Lr =787

6. Assuming that d1 ≤ d2 ≤ d3, this implies that the triplet (d1, d2, d3) coincides788

with one of the triplets (1, 1, 4), (1, 2, 3), (2, 2, 2). The respective values for C2
d1+1 +789

C2
d2+1 + C2

d3+1 are 8, 10, and 9. Consequently, in our computations we replace Q by790

Qmin = min(8, 10, 9) = 8.791

The matrix A and the values of d1, d2, and d3 are estimated as in subsection 2.5.2792

(the second scenario). The matrix N in the simultaneous EVD in step 2 of Algo-793

rithm 1.1 was found in two ways: i) from the EVD of a single generic linear com-794

bination of U1, . . . ,UR and ii) by computing CPD (1.7). Since we are in a generic795

setting, the values of L1, L2, and L3 can be found from the values of d1, d2, and d3796

by (2.29). This means that if L1 ≤ L2 ≤ L3, then the triplet (L1, L2, L3) necessar-797

ily coincides with one of the triplets (2, 2, 5), (2, 3, 4), (3, 3, 3). Table 2.1 shows the798

frequencies with which each triplet occurs as a function of the SNR. To measure the799

9Note that, if the first or third matrix unfolding has a large condition number, we are approaching,
as explained above, a situation in which the conditions in Theorem 2.5 and hence the working
assumptions in Algorithm 2.1 are not satisfied.
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performance we compute the relative error on the estimates of the first factor matrix800

A and on the estimates of the matrix formed by the vectorised multilinear terms,801

[a1⊗ vec(E1) . . . aR ⊗ vec(ER)]. (We compensate for scaling and permutation ambi-802

guities.) The results are shown in Figure 2.1. Note that the accuracy of the estimates803

is of about the same order as the accuracy of the given tensors.

Table 2.1

Frequencies with which the ML rank values have been estimated correctly (second row) or in-
correctly (first and third row) (see Example 2.10)

L1, L2, L3
SNR (dB)

15 20 25 30 35 40 45 50

2, 2, 5 21 12 8 - - - - -
2, 3, 4 63 79 89 96 100 99 100 100
3, 3, 3 16 9 3 4 - 1 - -

804
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Fig. 2.1. Mean (#) and median (�) curves for the relative errors on the first factor matrix A

(left plot) and the matrix formed by the vectorized ML terms [a1⊗vec(E1) . . . aR⊗vec(ER)] (right
plot). The dashed and solid line correspond to the version of Algorithm 1.1 where the solution N

of the simultaneous EVD in step 2 is obtained from the EVD of a single generic linear combination
and from the CPD (1.7), respectively (see Example 2.10).

Example 2.11. In this example we illustrate the computation of L1, . . . , LR and805

the computation of the approximate ML rank-(1, Lr, Lr) decomposition assuming806

that the exact decomposition satisfies condition d) in Theorem 2.5 (i.e., Case 1 in807

Algorithm 2.1).808

We consider a 3 × 9 × 10 tensor generated by (1.2) in which the entries of A,809

B, and C are independently drawn from the standard normal distribution N(0, 1)810

and L1 = 1, L2 = 2, L3 = 3, and L4 = 4. Thus, T is a sum of R = 4 terms. We811

find numerically that d1 = 1, d2 = 2, d3 = 3, d4 = 4 and that the null space of the812

216×55 matrix Q2(T ) has dimension 20 = C2
d1+1+C2

d2+1+C2
d3+1+C2

d4+1. Hence, by813

statement 5) of Theorem 2.5, the overall decomposition is unique and can be computed814

by Algorithm 2.1 (Case 1). It can be shown that in this example we are again in a815

bordering case with respect to working assumptions in Algorithm 2.1, i.e., if the first816

or third dimension is decreased by 1, then the decomposition cannot be computed817

by Algorithm 2.1. As in Example 2.10, we use the noisy version of Algorithm 2.1818
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explained in subsection 2.5.2 (the second scenario). We assume that R = 4 and819 ∑
Lr = 10 are known. Since we are in a generic setting,

∑
dr = RK−(R−1)

∑
Lr =820

10. One can easily verify that there exist exactly 9 tuples (d1, d2, d3, d4) such that821

d1 ≤ d2 ≤ d3 ≤ d4 and
∑

dr = 10. Since K =
∑

Lr we have that Lr = dr. The822

possible tuples (L1, L2, L3, L4) (= (d1, d2, d3, d4)) are shown in the first column of823

Table 2.2. The respective 9 values for C2
d1+1 + C2

d2+1 + C2
d3+1 + C2

d4+1 are 31, 26,824

23, 22, 22, 20, 19, 19 and 18. Consequently, in our computations we replace Q by825

Qmin = 18. The matrix N was found in two ways: i) from the EVD of a single generic826

linear combination of U1, . . . ,UR and ii) by computing CPD (1.7). In the latter case827

the last frontal slice of U in (1.7), i.e., the matrix UR, was replaced by ωUR with828

ω = 2 (see explanation at the end of subsection 1.3.2). The results are shown in829

Table 2.2 and Figure 2.2. Again, despite the difficulty of the problem the accuracy of830

the estimates is of about the same order as the accuracy of the given tensors.831

Table 2.2

Frequencies with which the ML rank values have been estimated correctly (sixth row) or incor-
rectly (remaining rows) (see Example 2.11)

L1, L2, L3, L4
SNR (dB)

15 20 25 30 35 40 45 50

1, 1, 1, 7 1 - - - - - - -
1, 1, 2, 6 5 1 - - - - - -
1, 1, 3, 5 8 2 2 - - - - -
1, 1, 4, 4 4 4 1 3 - 1 - -
1, 2, 2, 5 13 10 5 - - - - -
1, 2, 3, 4 54 73 88 96 100 99 100 100
1, 3, 3, 3 6 3 2 - - - - -
2, 2, 2, 4 3 2 2 - - - - -
2, 2, 3, 3 6 5 - 1 - - - -
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Fig. 2.2. Mean (#) and median (�) curves for the relative errors on the first factor matrix A

(left plot) and the matrix formed by the vectorized ML terms [a1⊗vec(E1) . . . aR⊗vec(ER)] (right
plot). The dashed and solid line correspond to the version of Algorithm 1.1 where the solution N

of the simultaneous EVD in step 2 is obtained from the EVD of a single generic linear combination
and from the CPD (1.7), respectively (see Example 2.11).
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2.6. Results for generic decompositions. The main results of this subsec-832

tion are summarized in Table 1.1(b). The results in subsection 2.6.1 are generic833

counterparts of Corollary 2.7 and Theorem 2.5 and therefore are sufficient for generic834

uniqueness and guarantee that a generic decomposition can be computed by means835

of EVD. In subsection 2.6.2 we discuss a necessary condition for generic uniqueness836

that is more restrictive than generic versions of the conditions in Theorem 2.1 at837

least for F = C. In subsection 2.6.3 we present two results on generic uniqueness838

of decompositions with a factor matrix that has full column rank. These results are839

generalizations of Strassen’s result on generic uniqueness of the CPD. The conditions840

are very mild are and easy to verify but they do not imply an algorithm.841

2.6.1. Generic counterparts of the results from subsection 2.5.1. The842

first two results of this subsection are the generic counterparts of Corollary 2.7 and843

Theorem 2.5 (or Theorem 2.6). To simplify the presentation and w.l.o.g. we assume844

that L1 ≤ · · · ≤ LR. It is clear that the assumptions J ≥ Lmin(I,R)−1 + · · ·+ LR and845

I ≥ 2 in Theorem 2.12 are, respectively, the generic version of the assumption k′B ≥846

R−rA+2 and kA ≥ 2 in (2.23). The generic version of the condition k′C ≥ R−rA+2847

in (2.24) coincides with K ≥ Lmin(I,R)−1 + · · · + LR, which always holds because of848

the assumption K ≥ L2 + · · · + LR + 1 in (2.34). Hence, in the generic setting, the849

conditions in (2.24) can be dropped. Thus, we have the following result.850

Theorem 2.12. Let L1 ≤ · · · ≤ LR ≤ min(J,K) and let T ∈ F
I×J×K admit851

decomposition (1.2), where the entries of the matrices A ∈ F
I×R, B ∈ F

J×
∑

Lr ,852

and C ∈ F
K×

∑
Lr are randomly sampled from an absolutely continuous distribution.853

Assume that854

K ≥ L2 + · · ·+ LR + 1,(2.34)855

J ≥ Lmin(I,R)−1 + · · ·+ LR, and I ≥ 2.(2.35)856857

Then the decomposition of T into a sum of max ML rank-(1, Lr, Lr) terms is unique858

and can be computed by means of (simultaneous) EVD.859

In the following theorem, assumptions (2.36), (2.37), (2.38), conditions (2.39)–(2.41)860

and statements 1) to 4) correspond, respectively, to assumptions (2.14), (2.15), (2.17),861

conditions e), b), d) and statements 1), 3), 4), 5) in Theorem 2.5. The convention862

L1 ≤ · · · ≤ LR implies that d1 := K −
R∑

k=1

Lk + L1 ≤ · · · ≤ dR := K −
R∑

k=1

Lk + LR.863

Thus, the R constraints in (2.15) are replaced by the single constraint d1 ≥ 1 in864

(2.37), which moreover coincides with condition a) in Theorem 2.5. Hence, in a865

generic setting, statement 2) in Theorem 2.5 becomes the part of statement 5) that866

relies on condition a). That is why the following result contains fewer statements than867

Theorem 2.5.868

Theorem 2.13. Let L1 ≤ · · · ≤ LR ≤ min(J,K) and let T ∈ F
I×J×K admit869

decomposition (1.2), where the entries of the matrices A ∈ F
I×R, B ∈ F

J×
∑

Lr ,870

and C ∈ F
K×

∑
Lr are randomly sampled from an absolutely continuous distribution.871
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Assume that10872

IJ ≥
R∑

r=1

Lr ≥ K,(2.36)873

d1 := K −
R∑

r=1

Lr + L1 ≥ 1,(2.37)874

875

and that there exist vectors ãr ∈ F
I , and matrices B̃r ∈ F

J×Lr , C̃r ∈ F
K×Lr such876

that877

(2.38) dimNull
(
Q2(T̃ )

)
=

R∑

r=1

C2
dr+1,878

where T̃ =
∑

ãr ◦ (B̃rC̃
T
r ) and dr := K −

R∑
k=1

Lk + Lr, r = 1, . . . , R. The following879

statements hold generically.880

1) The matrix A in (1.2) can be computed by means of (simultaneous) EVD.881

2) Any decomposition of T into a sum of max ML rank-(1, Lr, Lr) terms has R882

nonzero terms and its first factor matrix is equal to AP, where every column883

of P ∈ F
R×R contains precisely a single 1 with zeros everywhere else.884

3) If885

(2.39) K ≥ −
1

2
−

√
1

4
+

2L1L2

R− 1
+

R∑

r=1

Lr,886

then the first factor matrix of the decomposition of T into a sum of max ML887

rank-(1, Lr, Lr) terms is unique.888

4) The decomposition of T into a sum of max ML rank-(1, Lr, Lr) terms is889

unique and can be computed by means of (simultaneous) EVD if any of the890

following two conditions holds:891

I ≥ R,(2.40)892

K =
R∑

r=1

Lr.(2.41)893

894

Proof. The proof is given in Appendix B.895

To verify the uniqueness and EVD-based computability of a generic decomposition896

in the case I ≥ R, one can use Theorem 2.12 (i.e., verify the assumptions K−
∑

Lr+897

L1 ≥ 1 and J ≥ Lmin(I,R)−1 + · · · + LR = LR−1 + LR) or Theorem 2.13 (i.e., verify898

the assumptions IJ ≥
∑

Lr, K−
∑

Lr+L1 ≥ 1, and (2.38)). Let us briefly comment899

on these two options. From statement 4) of Lemma 3.1 below, it follows that for900

I ≥ R, the assumptions in Theorem 2.13 are at least as relaxed as the assumptions901

10The inequality
∑

Lr ≥ K in (2.36) is added for notational purposes; it simplifies the formulation
of (2.37) and (2.38). By statement 2) of Theorem 2.4, uniqueness and computation of a generic
decomposition of an I × J × K tensor with K ≥

∑
Lr follow from uniqueness and computation of

a generic decomposition of an I × J ×
∑

Lr tensor. In other words, the assumption
∑

Lr ≥ K

in (2.36) is not a constraint: if K ≥
∑

Lr, then the assumptions and conditions in Theorem 2.13
should be verified for K =

∑
Lr.
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in Theorem 2.12. On one hand, the assumption J ≥ LR−1 + LR in Theorem 2.12 is902

easy to verify; on the other hand, it can be more restrictive than assumption (2.38)903

in Theorem 2.13. For instance, it can be verified that uniqueness and EVD-based904

computability of a generic decomposition of a 3× 6× 8 tensor into a sum of max ML905

rank-(1, Lr, Lr) terms with L1 = L2 = 3 and L3 = 4 follow from Theorem 2.13 but906

do not follow from Theorem 2.12 (indeed, 6 = J ≥ LR−1+LR = 3+4 does not hold).907

We now explain how to verify assumption (2.38).908

In the proof of Theorem 2.13 we explain that if assumption (2.38) holds for one909

triplet of matrices Ã, B̃, and C̃, then (2.38) holds also for a generic triplet. The910

other way around, it suffices to verify (2.38) for a generic triplet, where some care911

needs to be taken that the algebraic situation is not obfuscated by numerical effects.912

Hence one possibility to verify (2.38) is to randomly select matrices Ã, B̃, and C̃,913

construct Q2(T̃ ) and estimate its rank numerically. Because of the rounding errors914

such computations cannot be considered as a formal proof of (2.38), unless it is clear915

that the rounding did not affect the rank of Q2(T̃ ). To have a formal proof of (2.38)916

one can chose matrices Ã, B̃, and C̃ such that the entries of Q2(T̃ ) are integers and,917

possibly, such that Q2(T̃ ) is sparse, so the identity in (2.38) becomes easy to prove.918

Both possibilities are illustrated in the upcoming Example 2.14. Another possibility919

to have a formal proof of (2.38) is to perform all computations over a finite field.920

This approach is explained in Appendix A. Note that both approaches can be quite921

expensive and may require a third-party implementation.922

Example 2.14. Let T be 3×3×5 tensor generated by (1.2) in which the entries of923

A, B, and C are independently drawn from the standard normal distribution N(0, 1)924

and L1 = L2 = L3 = 1, L4 = 2. To prove that the decomposition of T into a925

sum of max ML rank-(1, Lr, Lr) terms is unique and can be computed by means of926

(simultaneous) EVD we verify assumptions (2.36), (2.37), (2.38) and condition (2.41)927

in Theorem 2.13. Assumptions (2.36), (2.37) and condition (2.41) obviously hold. Let928

us now illustrate two possibilities to verify (2.38).929

I. The matrices Ã, B̃, and C̃ are generic. For 5 randomly generated triplets930

(Ã, B̃, C̃) in Example 2.14, we have obtained that the condition number of the 9× 15931

matrix Q2(T̃ ) took values 223.12, 75.46, 681.37, 2832.9, and 147.65 which clearly932

suggests that Q2(T̃ ) is a full-rank matrix (i.e., rQ2(T̃ ) = 9). Hence, by the rank-933

nullity theorem, dimNull
(
Q2(T̃ )

)
= 15 − 9 = 6. Since (2.41) holds, it follows that934

dr = K −
R∑

k=1

Lk + Lr = Lr, implying that C2
d1+1 + · · ·+ C2

d4+1 = 1 + 1 + 1 + 3 = 6.935

Thus, assumption (2.38) holds if we can trust our impression that Q2(T̃ ) has full rank936

generically.937

II. The matrices Ã, B̃, and C̃ have integer entries. We set

Ã =



1 0 0 1
0 1 0 1
0 0 1 1


 , B̃ =



1 1 1 0 0
1 2 0 1 0
1 3 0 0 1


 , C̃ = I5
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and compute T̃ =
∑

ãr ◦ (B̃rC̃
T
r ). It can be easily verified that

Q2(T̃ ) =




0 1 0 1 0 0 0 −1 0 0 0 0 0 0 0
0 2 0 0 1 0 0 0 −1 0 0 0 0 0 0
0 1 0 −1 1 0 0 3 −2 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 −1 0 0 0 0
0 0 −1 0 1 0 0 0 0 0 0 −1 0 0 0
0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 1 0 0 −1 0 0 0 0
0 0 0 0 0 0 −3 0 1 0 0 −1 0 0 0
0 0 0 0 0 0 0 −3 2 0 0 0 0 0 0




and that the nine nonzero columns of Q2(T̃ ) are linearly independent. Hence, again,938

by the rank-nullity theorem, dimNull
(
Q2(T̃ )

)
= 15 − 9 = 6. Thus, assumption939

(2.38) holds with certainty. Note that the matrix Q2(T̃ ) is sparse and the identity in940

(2.38) is easy to prove because we paid attention to the choice of the entries of A, B,941

and C.942

It is worth noting that the decomposition of a 3 × 3 × 5 tensor into a sum of943

5 generic rank-1 terms is not unique. More precisely, it is known that such tensors944

admit exactly six decompositions [34]. Our example demonstrates that if two of the945

rank-1 terms are forced to share the same vector in the first mode, and hence together946

form an ML rank-(1, 2, 2) term, then the decomposition becomes unique.947

2.6.2. Necessary condition for generic uniqueness. The necessity of the948

conditions949

(2.42) R ≤ JK,
∑

Lr ≤ IJ,
∑

Lr ≤ IK950

follows trivially from Theorem 2.1. Next, counting the number of parameters on each951

side of (1.1), one would expect that uniqueness does not hold if the LHS of (1.1)952

contains fewer parameters than the RHS:953

(2.43) IJK < S :=

R∑

r=1

(I − 1 + (J +K − Lr)Lr),954

where the value S is an upper bound on the number of parameters needed to parame-955

terize11 a sum of R generic ML rank-(1, Lr, Lr) terms in the LHS of (1.1) and IJK is956

equal to the dimension of the space of I × J ×K tensors. In fact it is known [37] and957

follows from the fiber dimension theorem [30, Theorem 3.7, p. 78] that the reverse of958

inequality (2.43), that is959

(2.44) S =

R∑

r=1

(I − 1 + (J +K − Lr)Lr) ≤ IJK,960

is necessary for generic uniqueness if F = C. It can be verified that condition (2.44)961

is more restrictive than (2.42) and, thus, is more interesting at least for F = C.962

11The number of parameters can be computed as follows. Using, for instance, the LDU factor-

ization we obtain that a generic J × K rank-Lr matrix involves (JLr −
Lr(Lr+1)

2
) + Lr + (KLr −

Lr(Lr+1)
2

) = (J + K − Lr)Lr parameters, where we obviously assume that maxLr ≤ min(J,K).
Hence, the rth term in (1.1) can be parameterized with I − 1 + (J +K − Lr)Lr parameters.

This manuscript is for review purposes only.



30 I. DOMANOV AND L. DE LATHAUWER

Recall that for L1 = · · · = LR = 1 the minimal decomposition of form (1.2)963

corresponds to CPD. It has been shown in [7] that, for CPD, the condition S <964

IJK ≤ 15000 is also sufficient for generic uniqueness, with a few known exceptions.965

The following example demonstrates that for the decomposition into a sum of max ML966

rank-(1, Lr, Lr) terms the bound is S < IJK not sufficient. However, in the example967

the first factor matrix is generically unique, i.e., the decomposition is generically968

partially unique.969

Example 2.15. We consider a 2 × 8 × 7 tensor generated as the sum of three970

random ML rank-(1, 3, 3) tensors. More precisely, the tensors are generated by (1.2)971

in which the entries of A, B, and C are independently drawn from the standard972

normal distribution N(0, 1). Since S = 3(2− 1+ (8+ 7− 3)3) = 111 and IJK = 112,973

the inequality S < IJK holds. In this example first we show that tensors generated in974

this way admit infinitely many decompositions, namely, we show that there exists at975

least a two-parameter family of decompositions. Second, we prove generic uniqueness976

of the first factor matrix.977

Nonuniqueness of the generic decomposition. Let T admit decomposition978

(1.2) with generic factor matrices A, B, and C. Then the matrices U := [a2 a3] ∈979

F
2×2, V := [b2 . . . b9] ∈ F

8×8, and W := [c1 . . . c5 c7 c8] ∈ F
7×7 are nonsingular.980

Let T̂ denote a tensor such that T̂(3) = (U−1 ⊗V−1)T(3)W
−T . Then, by (1.5), T̂981

admits the decomposition of the form (1.2), where A, B, and C are replaced by982

U−1A =

[
d1 1 0
d2 0 1

]
, V−1B = [f I8], and W−1C = [e1 e2 e3 e4 e5 g e6 e7 h],983

984

respectively. It is clear that a decomposition of T̂ with factor matrices Â, B̂, and985

Ĉ generates a decomposition of T with factor matrices UÂ, VB̂, and WĈ. In986

particular, if the decomposition of T̂ is not unique, then the decomposition of T is987

not unique either. Below we present a procedure to construct a two-parameter family988

of decompositions of T̂ . First we choose parameters p1, p2 ∈ F and compute the values989

α, β, γ, and δ:990

α = (f1g2 − g1 + f2g3)p1 + (f1h2 − h1 + f2h3)p2 + 1,991

β = (f3g4 − f5 + f4g5)d1p1 + (f3h4 + f4h5)d1p2,992

γ = (f6g6 + f7g7)d2p1 + (f6h6 − f8 + f7h7)d2p2,993

δ = β + α− γα.994995

Second, if α and δ are nonzero, we also compute the values:996

τ1 = −p1γ/δ, τ2 = −p2β/δ, τ3 = (p2 + τ2)/α, τ4 = ατ1 − p1,997

q1 = h1τ3 + g1τ1 + 1, q2 = h1τ2 + g1τ4 + 1, r1 = h2τ3 + g2τ1, r2 = h2τ2 + g2τ4,998

s1 = h3τ3 + g3τ1, s2 = h3τ2 + g3τ4,999

t = h4p2/δ, u = h5p2/δ, v = −g6p1/δ, w = −g7p1/δ.10001001
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Third, we construct matrices Ẽ1 , Ẽ2 , and Ẽ3 as1002

Ẽ1 :=




f1 1 0 0 0 0 0
f2 0 1 0 0 0 0
f3q1 f3r1 f3s1 f3t f3u f3v f3w
f4q1 f4r1 f4s1 f4t f4u f4v f4w
f5q1 f5r1 f5s1 f5t f5u f5v f5w
f6q2 f6r2 f6s2 f6tα f6uα f6vα f6wα
f7q2 f7r2 f7s2 f7tα f7uα f7vα f7wα
f8q2 f8r2 f8s2 f8tα f8uα f8vα f8wα




,1003

Ẽ2 := Ĥ1 − d1Ẽ1, Ẽ3 := Ĥ2 − d2Ẽ1,(2.45)10041005

where Ĥ1 ∈ F
8×7 and Ĥ2 ∈ F

8×7 denote the horizontal slices of T̂ . The identities in1006

(2.45) mean that T̂ =

[
d1
d2

]
◦ Ẽ1+

[
1
0

]
◦ Ẽ2+

[
0
1

]
◦ Ẽ3, i.e., T̂ admits a two-parameter1007

family of decompositions, as indicated above. By symbolic computations in MATLAB1008

we have also verified that all 4× 4 minors of Ẽ1, Ẽ2, and Ẽ3 are identically zero, that1009

is Ẽ1, Ẽ2, and Ẽ3 are at most rank-3 matrices.1010

Generic uniqueness of the first factor matrix.1011

Let T̃ :=
∑

ãr ◦ (B̃rC̃
T
r ) with1012

Ã =

[
1 1 0
1 0 1

]
, B̃1C̃

T
1 = [e5 + e7 e1 e2 0 0 0 0],1013

B̃2C̃
T
2 = [0 0 e5 e3 e4 e5 e5], B̃3C̃

T
3 = [e8 0 e8 0 e8 e6 e7],10141015

where e1, . . . , e8 denote the vectors of the canonical basis of F8.1016

Generic uniqueness of the first factor matrix follows from statement 3) of The-1017

orem 2.13. Indeed, (2.36), (2.37), and (2.39) are trivial: 7 = K < IJ = 16,1018

K −
∑

Lr + minLr = 7 − 9 + 3 = 1, 7 = K ≥ − 1
2 −

√
1
4 + 2L1L2

R−1 +
R∑

r=1
Lr =1019

− 1
2 −

√
1
4 + 9+9 ≈ 5.5. Condition (2.38) can be verified exactly, i.e., without round-1020

off errors for the specific Ã, B̃, and C̃ given above. (For this particular choice of1021

T̃ , the 28 × 28 matrix Q2(T̃ ) is sparse and its nonzero entries belong to the set1022

{−2,−1, 0, 1, 2}). Moreover, the first factor matrix can be computed in Phase I of1023

Algorithm 2.1. Since dr = K − (
∑R

p=1 Lp − Lr) = 7− (9− 3) = 1, it follows that the1024

S-JBD in step 5 reduces to joint diagonalization.1025

2.6.3. Strassen type results: decompositions with a factor matrix that1026

has full column rank. In this subsection we narrow the investigation of generic1027

uniqueness to the situation where one of the factor matrices has full column rank. Put1028

the other way around, we generalize the famous Strassen result for generic uniqueness1029

of the CPD for situations in which a factor matrix has full column rank to the de-1030

composition into a sum of max ML rank-(1, Lr, Lr) terms. While CPD is symmetric1031

in A, B and C, in the decomposition into a sum of ML rank-(1, Lr, Lr) terms factor1032

matrix A plays a role that is different from the role of B and C. Consequently, we will1033

consider two cases. In the first case we assume that R ≤ I, i.e., that the first factor1034

matrix has full column rank (see Theorem 2.16). In the second case we assume that1035 ∑
Lr ≤ K, i.e., that the third factor matrix has full column rank (see Theorem 2.17).1036

The result for
∑

Lr ≤ J , i.e., for the case where the second factor matrix has full1037

column rank then follows from Theorem 2.17 by symmetry.1038
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First factor matrix has full column rank. First we recall the corresponding result1039

for the CPD. One can easily verify that if L1 = · · · = LR = 1 and R ≤ I, then the1040

bound S ≤ IJK in (2.44) is equivalent to R ≤ (J −1)(K−1)+1. In [3] it was shown1041

that generically for R = (J − 1)(K− 1)+1 and R ≤ I a tensor admits more than one1042

decomposition. Hence, if R ≤ I and F = C, for generic uniqueness of the CPD it is1043

necessary to have that1044

(2.46) R ≤ (J − 1)(K − 1).1045

If R ≤ I and F = R, then, in general, condition (2.46) is not necessary for generic1046

uniqueness of CPD [1]. On the other hand, it is well-known [33] (see also [19, Corollary1047

1.7], [3] and references therein) that if R ≤ I, then condition (2.46) is sufficient for1048

generic uniqueness of the CPD for both F = R and F = C. Thus, under the assumption1049

R ≤ I, condition (2.46) is sufficient if F = R and condition (2.46) is necessary and1050

sufficient if F = C. The following theorem generalizes this “Strassen-type” CPD result1051

for the decomposition into a sum of ML rank-(1, L, L) terms. (One can easily verify1052

that if R ≤ I, then the condition R ≤ (J − L)(K − L) in (2.47) is equivalent to the1053

bound S < IJK in (2.44)).1054

Theorem 2.16. Let T admit decomposition (1.2), where

L1 = · · · = LR =: L ≤ min(J,K), R ≤ I

and the entries of the matrices A, B, and C are randomly sampled from an absolutely1055

continuous distribution. For both F = R or F = C, if1056

(2.47) R ≤ (J − L)(K − L),1057

then the decomposition of T into a sum of max ML rank-(1, Lr, Lr) terms is unique.1058

If F = C and R ≥ (J − L)(K − L) + 2, then the decomposition of T into a sum of1059

max ML rank-(1, Lr, Lr) terms is not unique.121060

Proof. The proof is given in Appendix C.1061

Second or third factor matrix has full column rank. Permuting I, J and K in the1062

Strassen condition (2.46), we have that generic uniqueness of the CPD holds if1063

(2.48) R ≤ (I − 1)(J − 1) and R ≤ K.1064

While Theorem 2.16 extended CPD condition (2.46), the following theorem generalizes1065

(2.48) for the decomposition into a sum of max ML rank-(1, Lr, Lr) terms.1066

Theorem 2.17. Let L1 ≤ · · · ≤ LR ≤ min(J,K) and let T admit decomposition1067

(1.2), where the entries of the matrices A, B, and C are randomly sampled from an1068

absolutely continuous distribution. If1069

(2.49) 2 ≤ I, LR−1 + LR ≤ J,

R∑

r=1

Lr ≤ (I − 1)(J − 1), and
R∑

r=1

Lr ≤ K,1070

then the decomposition of T into a sum of max ML rank-(1, Lr, Lr) terms is unique.1071

Proof. The proof is given in Appendix H.1072

12The remaining case F = C, R ≤ I, and R ≥ (J − L)(K − L) + 1 requires further investigation.
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Recall that if F = C, then condition (2.47) in Theorem 2.16 is both necessary and1073

sufficient for generic uniqueness. Apparently, condition
R∑

r=1
Lr ≤ (I − 1)(J − 1) in1074

Theorem 2.17 is only sufficient. Indeed, one can easily verify that if
∑

Lr ≤ K, then1075

the necessary bound S ≤ IJK in (2.44) is equivalent to
∑

Lr ≤ (I − 1)(J − 1) +1076

(I − 1)
∑

Lr−R∑
Lr

+
∑

L2
r∑

Lr
. Thus, the gap between the necessary bound S ≤ IJK in1077

(2.44) and the sufficient bound
∑

Lr ≤ (I − 1)(J − 1) in Theorem 2.17 is equal to1078

(I − 1)
∑

Lr−R∑
Lr

+
∑

L2
r∑

Lr
.1079

2.7. Constrained decompositions. In many applications the factor matrices1080

A, B, and/or C in decomposition (1.2) are subject to constraints like non-negativity1081

[4], partial symmetry [27], Vandermonde structure of columns [26], etc.1082

In this subsection we briefly explain how the results from previous sections can1083

be applied to constrained decompositions.1084

It is clear that Theorem 2.5 can be applied as is. Indeed, if, for instance, assump-1085

tions (2.14)–(2.16) and conditions a) and b) in Theorem 2.5 hold for a constrained1086

decomposition of T , then, by statement 5), the decomposition of T into a sum of1087

max ML rank-(1, Lr, Lr) terms is unique and can be computed by means of (simul-1088

taneous) EVD. This result also implies that Algorithm 2.1 will find the constrained1089

decomposition.1090

Now we discuss variants for generic uniqueness. We assume that the factor ma-
trices in the constrained decomposition depend analytically on some complex or real
parameters, which is the case in all instances above. More specifically, we assume
that the entries of A(z), B(z), and C(z) are analytic functions of z ∈ F

n and that
the matrix functions A(z), B(z), C(z) are known. One can define generic uniqueness
of a constrained decomposition similar to the unconstrained case: the decomposition
of an I × J ×K tensor into a sum of constrained max ML rank-(1, Lr, Lr) terms is
generically unique if

µn{z : decomposition T =

R∑

r=1

ar(z) ◦ (Br(z)Cr(z)
T ) is not unique} = 0,

where µn denotes a measure on F
n that is absolutely continuous with respect to1091

the Lebesgue measure. It is clear that Definition 1.3 corresponds to the case n =1092

IR+ J
∑

Lr +K
∑

Lr. Note that depending on structure of the factor matrices, the1093

bounds in the statements of Theorems 2.16 and 2.17 may not hold or can be further1094

improved. Also, Theorems 2.12 and 2.13 cannot be used as is; instead one should1095

verify that the conditions of Theorem 2.5 hold for generic z. Note that, because of1096

the analytical dependency of the factor matrices on z, it is sufficient to verify the1097

assumptions and conditions in Theorem 2.5 for a single triplet of constrained factor1098

matrices.1099

Example 2.18. In the decomposition considered in [26], B and C are Vander-1100

monde structured matrices, namely,1101

bp = [1 exp(jC1zp) . . . (exp(jC1zp)
J−1)]T , p = 1, . . . , s1102

cq = [1 exp(jC2 sin(zs+q)) . . . exp(jC2 sin(zs+q))
K−1]T , q = 1, . . . , s,11031104

where C1 and C2 are known real values, s :=
∑

Lr, and z1, . . . , z2s are unknown real1105

values. No structure is assumed on A, so it can parameterized with IR parameters1106
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z2s+1, . . . , z2s+IR which we will also assume real. Thus, the overall constrained de-1107

composition can be parameterized with n = 2s + IR real parameters. W.l.o.g. we1108

assume that L1 ≤ · · · ≤ LR. We claim that if1109

(2.50) IJ ≥
R∑

r=1

Lr, K ≥ L2 + · · ·+ LR + 1, R≥I ≥ 3, J ≥ LI−1 + · · ·+ LR,1110

then the constrained decomposition is generically unique. Indeed, generically the1111

matrices B and C have maximal k′-rank and the matrix A has maximal k-rank.1112

The assumptions in (2.50) just express the fact that assumptions (2.14)–(2.16) and1113

conditions a) and c) in Theorem 2.5 hold generically. Thus, the generic uniqueness of1114

the constrained decomposition follows from statement 5) of Theorem 2.5.1115

3. Expression of R2(T ) and Q2(T) in terms of A, B, and C. In this1116

section we explain construction of the matrices Φ(A,B) and S2(C) that have appeared1117

in Theorem 2.6. The results of this section will also be used later in the proof of1118

statement 4) of Theorem 2.5.1119

Let x,y ∈ F
n. Then x ∧ y denotes a C2

n × 1 vector formed by all 2 × 2 minors1120

of [x y] and x · y denotes a C2
n+1 × 1 vector formed by all 2× 2 permanents of [x y].1121

More specifically,1122

the (n1 + C2
n2−1)-th entry of x ∧ y equals xn1

yn2
− xn2

yn1
, 1 ≤ n1 < n2 ≤ n,1123

the (n1 + C2
n2
)-th entry of x · y equals xn1yn2 + xn2yn1 , 1 ≤ n1 ≤ n2 ≤ n.11241125

It can easily be verified that x ∧ y and x · y coincide with the vectorized strictly1126

upper triangular part of xyT − yxT and with the vectorized upper triangular part of1127

xyT + yxT , respectively.1128

We extend the definitions of “ ∧ ” and “ · ” to matrices as follows. If Br1 ∈ F
J×Lr11129

and Br2 ∈ F
J×Lr2 are submatrices of B, then Br1 ∧ Br2 is the C2

J × Lr1Lr2 matrix1130

that has columns bl1,r1 ∧ bl2,r2 , where 1 ≤ l1 ≤ Lr1 and 1 ≤ l2 ≤ Lr2 , i.e.,1131

Br1 ∧Br2 := [b1,r1 ∧ b1,r2 . . .b1,r1 ∧ bL2,r2 . . . bL1,r1 ∧ b1,r2 . . .bL1,r1 ∧ bL2,r2 ].1132

If Cr1 ∈ F
K×Lr1 and Cr2 ∈ F

K×Lr1 are submatrices of C, then Cr1 · Cr2 is the
C2

K+1 × Lr1Lr2 matrix that has columns cl1,r1 · cl2,r2 , where 1 ≤ l1 ≤ Lr1 and
1 ≤ l2 ≤ Lr2 , i.e.,

Cr1 ·Cr2 := [c1,r1 · c1,r2 . . . c1,r1 · cL2,r2 . . . cL1,r1 · c1,r2 . . . cL1,r1 · cL2,r2 ].

Let Pn denote the n2 × C2
n+1 matrix defined on all vectors of the form x · y by1133

(3.1) Pn(x · y) = x⊗ y + y ⊗ x1134

and extended by linearity. It can be easily checked that for n = K the matrix Pn can1135

be constructed as in (2.10), so PT
n is a column selection matrix.1136

Lemma 3.1. Let T admit decomposition (1.2), rC = K, and let the values dr1137

be defined in (2.20). Define the C2
IC

2
J ×

∑
r1<r2

Lr1Lr2 matrix Φ(A,B) and C2
K+1 ×1138

∑
r1<r2

Lr1Lr2 matrix S2(C) as1139

Φ(A,B) := [(a1 ∧ a2)⊗ (B1 ∧B2) . . . (aR−1 ∧ aR)⊗ (BR−1 ∧BR)] ,(3.2)1140

S2(C) := [C1 ·C2 . . . CR−1 ·CR].(3.3)11411142

Then1143
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1) Q2(T ) = Φ(A,B)S2(C)T ;1144

2) R2(T ) = Φ(A,B)S2(C)TPT
K , where PK is defined as in (3.1);1145

3) dimNull (Q2(T )) ≥ dimNull
(
S2(C)T

)
=
∑

C2
dr+1;1146

4) if rA + k′B ≥ R + 2 and kA ≥ 2, then the matrix Φ(A,B) has full column1147

rank and dimNull
(
Φ(A,B)S2(C)T

)
=
∑

C2
dr+1, i.e., (2.21) implies (2.22);1148

similarly, (2.16) implies (2.17);1149

5) If Φ(A,B) has full column rank, then [a1 ⊗ B1 . . . aR ⊗ BR] also has full1150

column rank;1151

6) If Φ(A,B) has full column rank, then k′B ≥ 2.1152

Proof. The proofs of statements 1), 2) and 6) follow from the construction of the1153

matrices Q2(T ), Φ(A,B), S2(C) and are therefore grouped in Appendix D. The proof1154

of statement 3) consists of several steps and is given in a dedicated Appendix E. The1155

proofs of statements 4) and 5) rely on Lemma F.1, which contains auxiliary results on1156

compound matrices. Lemma F.1 and statements 4), 5) are proved in Appendix F.1157

Corollary 3.2. Let T ∈ F
I×J×K admit the ML rank-(1, Lr, Lr) decomposition1158

(1.2). Let also the matrices A and C have full column rank and assumptions (2.19),1159

(2.20), and (2.22) in Theorem 2.6 hold. Then the matrices [Bi Bj ] have full column1160

rank for all 1 ≤ i < j ≤ R. In particular, assumption b) in Theorem 1.5 holds.1161

Proof. The proof is given in Appendix D.1162

4. Proof of Theorem 2.5 . We will need the following two lemmas.1163

Lemma 4.1. Let T ∈ F
I×J×K admit the ML rank-(1, Lr, Lr) decomposition (1.1).

Assume that conditions (2.14) and (2.15) hold. Let Nr be a K × dr matrix whose
columns form a basis of Null (Zr) and let Mr be a d2r ×C2

dr+1 matrix whose columns

form a basis of the subspace vec (Fdr×dr
sym ) (see (2.11)), r = 1, . . . , R. By definition, set

N := [N1 . . . NR], W := [(N1 ⊗N1)M1 . . . (NR ⊗NR)MR].

The following statements hold.1164

1) The K ×
∑

dr matrix N has full column rank.1165

2) The K2×Q matrix W has full column rank, where Q = C2
d1+1+ · · ·+C2

dR+1.1166

3) The matrices E1, . . . ,ER are linearly independent.1167

Proof. The proof is given in Appendix G.1168

Lemma 4.2. Let T ∈ F
I×J×K admit the ML rank-(1, Lr, Lr) decomposition (1.1)1169

in which the matrices E1, . . . ,ER are linearly independent and such that either con-1170

dition b) or condition c) in Theorem 2.5 holds. Then the following statements hold.1171

1) If the matrix A is known, then the matrices E1, . . . ,ER can be computed by1172

means of EVD.1173

2) Any decomposition of T of the form1174

T =

R̃∑

r=1

ãr ◦ Ẽr, ãr is a column of A, Ẽr ∈ F
J×K , 1 ≤ rẼr

≤ Lr, R̃ ≤ R1175

coincides with decomposition (1.1).1176

Proof. The proof is given in Appendix G.1177

Proof of Theorem 2.5. Proof of statement 1). Let T1, . . . ,TK denote the frontal1178

slices of T , Tk := (tijk)
I,J
i,j=1 and let Nr be a K × dr matrix whose columns form a1179
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basis of Null (Zr). If f = Nrx for some nonzero x ∈ F
dr , then1180

f1T1 + · · ·+ fKTK =

K∑

k=1

fk

R∑

q=1

aqe
T
k,q =

R∑

q=1

aq

K∑

k=1

eTk,qfk =

R∑

q=1

aq(Eqf)
T =

R∑

q=1

aq(EqNrx)
T = ar(ErNrx)

T ,

(4.1)1181

where ek,q denotes the kth column of Eq. Thus,1182

(4.2) rf1T1+···+fKTK
≤ 1 for all f = Nrx, where x ∈ F

dr , r = 1, . . . , R.1183

In subsection 2.3 we have explained that the condition rf1T1+···+fKTK
≤ 1 is equiv-

alent to the condition R2(T )(f ⊗ f) = 0, where the matrix R2(T ) is constructed in
Definition 2.2, i.e., that equality (2.4) holds. Hence from (4.2), (2.4) and the identity

R2(T )(f ⊗ f) = R2(T )((Nrx)⊗ (Nrx)) = R2(T )(Nr ⊗Nr)(x⊗ x),

it follows that1184

(4.3) R2(T )(Nr ⊗Nr)(x⊗ x) = 0, for all x ∈ F
dr and r = 1, . . . , R.1185

Since
vec (Fdr×dr

sym ) = span{x⊗ x : x ∈ F
dr},

it follows that (4.3) is equivalent to1186

R2(T )(Nr ⊗Nr)mr = 0, for all mr ∈ vec (Fdr×dr
sym ) and r = 1, . . . , R.1187

In other words,1188

(4.4) R2(T )(Nr ⊗Nr)Mr = O, r = 1, . . . , R,1189

where Mr is a d2r × C2
dr+1 matrix whose columns form a basis of vec (Fdr×dr

sym ). By1190

statement 2) of Lemma 4.1 and (4.4), R2(T )W = O. Since the columns of W belong1191

to vec (FK×K
sym ), it follows that1192

(4.5) column space of W ⊆ Null (R2(T )) ∩ vec (FK×K
sym ).1193

By statement 2) of Lemma 4.1, the column space of W has dimension Q. On the1194

other hand, from (2.12) and (2.17) it follows that the dimension of Null (R2(T )) ∩1195

vec (FK×K
sym ) is also Q. Hence, by (4.5),1196

(4.6) column space of W = Null (R2(T )) ∩ vec (FK×K
sym ).1197

Let v1, . . . ,vQ be a basis of Null (R2(T )) ∩ vec (FK×K
sym ). Then there exists a nonsin-1198

gular Q×Q matrix M such that1199

1200

(4.7) [v1 . . . vQ] = WM = [(N1 ⊗N1)M1 . . . (NR ⊗NR)MR]M =1201

[N1 ⊗N1 . . . NR ⊗NR] blockdiag(M1, . . . ,MR)M =: [N1 ⊗N1 . . . NR ⊗NR]M̃,12021203

where
M̃ = blockdiag(M1, . . . ,MR)M ∈ F

∑
d2
r×Q.
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Let
Dq := blockdiag(D1,q, . . . ,DR,q) ∈ F

∑
qr×

∑
qr ,

where the blocks D1,q, . . . ,DR,q are defined as



vec(D1,q)

...
vec(DR,q)


 = the q-th column of M̃

and let Vq denote the K × K matrix such that vq = vec(Vq), q = 1, . . . , Q. Thus,1204

we can rewrite (4.7) as1205

(4.8) Vq = [N1 . . . NR]Dq[N1 . . . NR]
T = NDqN

T , q = 1, . . . , Q.1206

Since V1, . . . ,VQ are symmetric and since, by statement 1) of Lemma 4.1, the ma-1207

trix N has full column rank, it follows easily that the matrices D1, . . . ,DQ are also1208

symmetric. Besides, since V1, . . . ,VQ are linearly independent, the same holds for1209

D1, . . . ,DQ. Thus, (4.8) is the S-JBD problem of the form (1.6). By Theorem 1.10,1210

the solution of (4.8) is unique and can be computed by means of (simultaneous) EVD.1211

Now we can use the matrices Nr to recover the columns of A. Recall that the matrix1212

Nr holds a basis of Null (Zr), so we can repeat the derivation in (2.25)–(2.27) and1213

obtain that the column ar is proportional to the right singular vector of the matrix1214

[vec(NT
r H

T
1 ) . . . vec(NT

r H
T
1 )] corresponding to the only nonzero singular value.1215

Proof of statement 2). By statement 3) of Lemma 4.1, the matrices E1, . . . ,ER1216

are linearly independent and, by statement 1), we can assume that the matrix A is1217

known. Thus, the result follows from statement 1) of Lemma 4.2.1218

Proof of statement 3). We assume that T admits an alternative decomposition1219

of the form (1.1):1220

T =

R̃∑

r=1

ãr ◦ Ẽr, ãr ∈ F
I \ {0}, Ẽr ∈ F

J×K , 1 ≤ rẼr
≤ Lr,1221

in which we obviously assume that R̃ ≤ R. First we show that R̃ = R. From1222

condition a) and (2.14) it follows that1223

(4.9)

R∑

k=1

Lk − min
1≤k≤R

Lk + 1 ≤ K = rT(3)
≤

R̃∑

k=1

rẼk
≤

R̃∑

k=1

Lk.1224

Assuming that R̃ < R, we obtain, by (4.9), the contradiction

LR = LR +

R̃∑

k=1

Lk −
R̃∑

k=1

Lk ≤
R∑

k=1

Lk −
R̃∑

k=1

Lk ≤ min
1≤k≤R

Lk − 1 < LR.

Thus R̃ = R.1225

Now we prove that each ãr is proportional to a column of A. By definition, set

d̃r := dimNull
(
Z̃r

)
, where Z̃r := [ẼT

1 . . . ẼT
r−1 ẼT

r+1 . . . ẼT
R]

T , r = 1, . . . , R.

Since rZ̃r
≤ min(

∑
Lr −minLr,K), it follows from condition a) that d̃r ≥ 1. Let Ñr1226

be a K × d̃r matrix whose columns form a basis of Null
(
Z̃r

)
. If f = Ñrx for some1227
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nonzero x ∈ F
d̃r , then we obtain (see (4.1)) that1228

f1T1 + · · ·+ fKTK = ãr(ẼrÑrx)
T , r = 1, . . . , R.1229

By (2.14), the linear combination f1T1 + · · · + fKTK is not zero for any f1, . . . , fK1230

such that f 6= 0. Hence, for any column ãr there exist f1, . . . , fK such that the column1231

space of the linear combination f1T1+ · · ·+fKTK is one-dimensional and is spanned1232

by ãr. Thus, to prove that each ãr is proportional to a column of A, it is sufficient1233

to show that the following implication holds:1234

(4.10) f1T1 + · · ·+ fKTK = zyT ⇒ there exists r such that z = car.1235

If rf1T1+···+fKTK
= 1, then, by (2.4), R2(T )(f⊗f) = 0. Hence, by (4.6), f⊗f belongs1236

to the column space of the matrix W. Hence, there exists a block diagonal matrix1237

D such that ffT = NDNT . Since, by statement 1) of Lemma 4.1, N has full column1238

rank, the matrix D contains exactly one nonzero block and its rank is one. In other1239

words, f belongs to the null space of Nr for some r = 1, . . . , R. Hence implication1240

(4.10) follows from (4.1).1241

Proof of statement 4). Let Ã, B̃, and C̃ denote the factor matrices of an al-1242

ternative decomposition of T into a sum of max ML rank-(1, Lr, Lr) terms. By1243

statement 3), it is sufficient to show that Ã does not have repeated columns. We1244

argue by contradiction. If ãi = ãj for some i 6= j, then ãi ∧ ãj = 0. Hence,1245

the matrix Φ(Ã, B̃) defined in (3.2), has at least LiLj zero columns, implying that1246

rΦ(Ã,B̃) ≤
∑

1≤r1<r2≤R

Lr1Lr2 − LiLj . Hence, by statement 1) of Lemma 3.1,1247

1248

(4.11) rQ2(T ) = rΦ(Ã,B̃)S2(C̃)T ≤ rΦ(Ã,B̃) ≤1249
∑

1≤r1<r2≤R

Lr1Lr2 − LiLj ≤
∑

1≤r1<r2≤R

Lr1Lr2 − L̃1L̃2.1250

1251

On the other hand, from the rank-nullity theorem and condition e) it follows that

rQ2(T ) = C2
K+1 −Q >

∑

1≤r1<r2≤R

Lr1Lr2 − L̃1L̃2,

which is a contradiction with (4.11).1252

Proof of statement 5). If conditions a) and b) hold or conditions a) and c) hold,1253

then the result follows from statement 3) and Lemma 4.2.1254

Let condition d) hold. Then the matrices C and N are square nonsingular and,
by (2.25), CTN = blockdiag(CT

1 N1, . . . ,C
T
RNR). Hence

C = N−T blockdiag(NT
1 C1, . . . ,N

T
RCR)

in which the matrices NT
r Cr ∈ F

Lr×Lr are also nonsingular. Thus, w.l.o.g. we can1255

set C = N−T . Finally, by (1.4), the matrix B can be uniquely recovered from the1256

set of linear equations [a1 ⊗ C1 . . . aR ⊗ CR]B
T = T(2). We can also avoid the1257

computation of N−T and proceed as in steps 8 − 9 of Algorithm 2.1 (for details we1258

refer to “Case 1” after Theorem 2.6).1259

To prove the uniqueness it is sufficient to show that assumptions (2.14), (2.15),1260

and (2.17) and condition d) hold for any decomposition of T into a sum of max1261

ML rank-(1, Lr, Lr) terms. Assume that T admits an alternative decomposition with1262
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factor matrices Ã = [ã1 . . . ãR̃], B̃ = [B̃1 . . . B̃R̃], and C̃ = [C̃1 . . . C̃R̃], where1263

R̃ ≤ R, the matrices B̃r ∈ F
J×L̃r and C̃r ∈ F

K×L̃r have full column rank, and1264

L̃r ≤ Lr for 1 ≤ r ≤ R̃. Then, by (1.5),1265

(4.12) T(3) = [a1 ⊗B1 . . . aR ⊗BR]C
T = [ã1 ⊗ B̃1 . . . ãR̃ ⊗ B̃R̃]C̃

T .1266

Since rT(3)
= K and C is K×K nonsingular, it readily follows from (4.12) that R̃ = R,1267

that L̃r = Lr for all r and that C̃ is K×K nonsingular. Hence, the values d1, . . . , dR1268

in (2.20) and the values d1, . . . , dR computed for the alternative decomposition are1269

equal to L1, . . . , LR, respectively. Thus, assumptions (2.14), (2.15), and (2.17) and1270

condition d) hold for the alternative decomposition.1271

5. Conclusion. In this paper we have studied the decomposition of a third-order1272

tensor into a sum of ML rank-(1, Lr, Lr) terms. We have obtained conditions for1273

uniqueness of the first factor matrix and for uniqueness of the overall decomposition.1274

We have also presented an algorithm that computes the decomposition, estimates the1275

number of ML rank-(1, Lr, Lr) terms R and their “sizes” L1, . . . , LR. All steps of the1276

algorithm rely on conventional linear algebra. In the case where the decomposition1277

is not exact, a noisy version of the algorithm can compute an approximate ML rank-1278

(1, Lr, Lr) decomposition. In our examples the accuracy of the estimates was of about1279

the same order as the accuracy of the tensor.1280

The ML rank-(1, Lr, Lr) decomposition takes an intermediate place between the1281

little studied decomposition into a sum of ML rank-(Mr, Nr, Lr) terms and the well1282

studied CPD (the special case where Mr = Nr = Lr = 1). Namely, the ML rank-1283

(1, Lr, Lr) decomposition is the special case where Mr = 1 and Nr = Lr. The results1284

in this paper may be used as stepping stones towards a better understanding of the1285

ML rank-(Mr, Nr, Lr) decomposition.1286

Acknowledgments. The authors would like to thank Yang Qi (The University1287
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Appendix A. On testing (2.38) over a finite field. In this appendix we1289

explain how to verify assumption (2.38) over a finite field. We also explain how to1290

test whether the decomposition of an I × J ×K tensor into a sum of max ML rank-1291

(1, Lr, Lr) terms is generically unique under the assumptions in row 6 of Table 1.1.1292

We rely on an idea proposed in [7]. The idea is to generate random integer1293

matrices Ãr, B̃r, C̃r and then to perform all computations over a finite field GF (pk),1294

where p is prime. Obviously, if (2.38) holds for Ãr, B̃r and C̃r considered over1295

GF (pk), then it will necessarily hold for Ãr, B̃r and C̃r considered over F
13. On the1296

other hand, if (2.38) does not hold for Ãr, B̃r, C̃r over GF (pk), then no conclusion1297

can be drawn. In this case one can try to repeat the computations for other random1298

integer matrices Ãr, B̃r, C̃r or increment k, or choose another prime p. If (2.38) does1299

not hold for several such trials, this can be an indication that (2.38) does not hold for1300

any Ãr, B̃r and C̃r. Note that, by the rank-nullity theorem, the computation of the1301

null space can be reduced to the computation of the rank. Although the computation1302

of the rank over the finite field is more expensive than the numerical estimation of1303

the rank, it has the advantage that the dimension in (2.38) is computed exactly, i.e.,1304

without roundoff errors.1305

13In the proof of Theorem 2.13 we have explained that this will in turn apply that (2.38) holds
over F for generic Ãr, B̃r, C̃r.
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Now we explain how to test whether the bounds in row 6 of Table 1.1 guaran-1306

tee generic uniqueness of the decomposition. By Lemma 3.1, Q2(T̃ ) can be factor-1307

ized as Q2(T̃ ) = Φ(Ã, B̃)S2(C̃), where Φ(Ã, B̃) is an C2
IC

2
J ×

∑
r1<r2

Lr1Lr2 matrix1308

and S2(C̃) is an C2
K+1 ×

∑
r1<r2

Lr1Lr2 matrix. Also, by statement 3) of Lemma 3.1,1309

dimNull
(
S2(C̃)T

)
=
∑

C2
dr+1 for generic C̃. It is clear now that if Φ(Ã, B̃) has full1310

column rank, then (2.38) holds for Ã, B̃ and generic C̃.1311

We claim that the assumptions C2
IC

2
J ≥

∑
r1<r2

Lr1Lr2 and J ≥ LR−1 + LR in1312

row 6 of Table 1.1 are necessary for Φ(Ã, B̃) to have full column rank. Indeed, the1313

former expresses the fact that the number of columns of Φ(Ã, B̃) does not exceed the1314

number of its rows. The latter means that k′
B̃

≥ 2 holds for generic B̃, which, by1315

statement 6) of Lemma 3.1, is necessary for full column rank of Φ(Ã, B̃). To verify1316

that Φ(Ã, B̃) has full column rank for some Ã and B̃ we performed computations1317

over GF (215) as explained above. The computations were done in MATLAB R2018b,1318

where Ã and B̃ were generated using the built-in function gf (Galois field arrays)1319

and the rank of Φ(Ã, B̃) was computed with the built-in function rank. We limited1320

ourselves to the cases where min(I, J) ≥ 2 and max(I, J) ≤ 5. Together with the1321

assumptions J ≥ LR−1 + LR and C2
IC

2
J ≥

∑
r1<r2

Lr1Lr2 we ended up with 435 tuples1322

(I, J,R, L1, . . . , LR). The matrix Φ(Ã, B̃) did not have full column rank in three1323

cases: (I, R) ∈ {(2, 3), (4, 9), (5, 12)}, J = 5, L1 = . . . , LR−1 = 1, and LR = 4.1324

To show that in the remaining 432 cases generic uniqueness and computation1325

follow from statement 4) of Theorem 2.13, we need to verify assumptions (2.36),(2.37)1326

and condition (2.41). The assumption
∑

Lr = K in row 6 of Table 1.1 coincides with1327

condition (2.41) and implies assumption (2.37). From statement 5) of Lemma 3.11328

it follows that [ã1 ⊗ B̃1 . . . ãR ⊗ B̃R] has full column rank, and in particular, that1329

IJ ≥
∑

Lr. Hence, since
∑

Lr = K, we obtain that assumption (2.36) also holds.1330

Appendix B. Proofs of Theorems 2.1, 2.6, Corollary 2.7 and Theo-1331

rem 2.13.1332

Proof of Theorem 2.1. Proof of statement 1). Assume to the contrary that the
matrix [vec(E1) . . . vec(ER)] does not have full column rank. Then the matrices
E1, . . . ,ER are linearly dependent. We assume w.l.o.g. that E1 = α2E2+ · · ·+αRER.
Then T admits a decomposition into a sum of R− 1 terms:

T =

R∑

r=1

ar ◦Er = a1 ◦ (
R∑

r=2

αrEr) +

R∑

r=2

ar ◦Er =

R∑

r=2

(αra1 + ar) ◦Er,

which is a contradiction.1333

Proof of statement 2). Assume to the contrary that the matrix [a1⊗B1 . . . aR⊗
BR] does not have full column rank. Then there exists f = [fT1 . . . fTR ]T ∈ F

∑
Lr \{0}

such that
∑

(ar ⊗Br)fr = 0. We assume w.l.o.g. that the first entry of f is nonzero
and partition f1, B1, and C1 as

f =

[
f1
f̄1

]
, B1 = [b1 B̄1], C1 = [c1 C̄1].
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Since
∑

(ar ⊗Br)fr = 0, it follows that1334

1335

(B.1) a1 ⊗ b1 = −
1

f1

[
(a1 ⊗ B̄1)f̄1 +

R∑

r=2

(ar ⊗Br)fr

]
=1336

−
1

f1

[
a1 ⊗ (B̄1f̄1) +

R∑

r=2

ar ⊗ (Brfr)

]
.1337

1338

Hence, by (1.5) and (B.1),1339

1340

T(3) =
R∑

r=1

(ar ⊗Br)C
T
r = (a1 ⊗ b1)c

T
1 + (a1 ⊗ B̄1)C̄

T
1 +

R∑

r=2

(ar ⊗Br)C
T
r =1341

−
1

f1

[
a1 ⊗ (B̄1f̄1) +

R∑

r=2

ar ⊗ (Brfr)

]
cT1 + (a1 ⊗ B̄1)C̄

T
1 +

R∑

r=2

(ar ⊗Br)C
T
r =1342

a1 ⊗

[
−

1

f1
B̄1f̄1c

T
1 + B̄1C̄

T
1

]
+

R∑

r=2

ar ⊗

[
−

1

f1
Brfrc

T
1 +BrC

T
r

]
=:

R∑

r=1

ar ⊗ Ẽr,1343

1344

where rẼ1
≤ rB̄1

= L1 − 1 and rẼr
≤ rBr

= Lr for r ≥ 2. Thus, T admits an1345

alternative decomposition into a sum of max ML rank-(1, Lr, Lr) terms T =
∑

ar◦Ẽr1346

with rẼ1
< rE1 and rẼr

≤ rEr
for r ≥ 2. This contradiction completes the proof.1347

Proof of statement 3). The proof is similar to the proof of statement 2) .1348

Proof of Theorem 2.6. By (1.5), assumption (2.19) is equivalent to assumption1349

(2.14). Substituting Er = BrC
T
r in the expressions for Zr, F, G, and [ET

1 . . . ET
R]

T ,1350

we obtain that1351

Zr = blockdiag(B1, . . . ,Br−1,Br+1, . . . ,BR)[C1 . . . Cr−1 Cr+1 . . . CR]
T ,1352

F = [Br1 Br2 . . . BrR−rA+2
] blockdiag(CT

r1
,CT

r2
, . . . ,CT

rR−rA+2
),1353

G = [Cr1 Cr2 . . . CrR−rA+2
] blockdiag(BT

r1
,BT

r2
, . . . ,BT

rR−rA+2
),1354

[ET
1 . . . ET

R]
T = blockdiag(B1, . . . ,BR)C

T .13551356

Since the matrices Br and Cr have full column rank, it follows that1357

dr = dimNull (Zr) = dimNull
(
[C1 . . . Cr−1 Cr+1 . . . CR]

T
)
= dimNull (Zr,C) ,

(B.2)

13581359

that (2.16) and (2.18) are equivalent to (2.21) and k′C ≥ R − rA + 2, respectively,1360

and that condition d) in Theorem 2.5 is equivalent to rCT =
∑

Lr. Since, by (2.14)1361

and (1.5), K = rT(3)
≤ rCT ≤ K, it follows that rC = rCT = K =

∑
Lr. Hence C1362

is a nonsingular K ×K matrix. This in turn, by (B.2), implies that dr = Lr. Thus,1363

condition d) in Theorem 2.5 is equivalent to condition d) in Theorem 2.6.1364

Proof of Corollary 2.7. We consider two cases rC = K and rC < K.1365

i) Let rC = K. Together the assumptions in (2.23) and conditions in (2.24) imply1366

that assumption (2.21) and condition a) in Theorem 2.6 hold. In turn, condition a)1367

implies that assumption (2.20) holds. The two conditions in (2.24) coincide with con-1368

dition b) and condition c) in Theorem 2.6, respectively. Thus, to apply statement 5)1369

in Theorem 2.6 it only remains to verify that assumption (2.19) holds. Since rC = K,1370
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it is sufficient to prove that the matrix [a1 ⊗B1 . . . aR ⊗BR] has full column rank.1371

This follows from statements 4) and 5) of Lemma 3.1.1372

ii) If rC < K, then the result follows from i) and statement 1) of Theorem 2.4.1373

Proof of Theorem 2.13. We show that statements 1) to 4) in Theorem 2.13 cor-1374

respond, respectively, to statements 1), 3), 4), and 5) in Theorem 2.5. One can easily1375

check that assumptions (2.36), (2.37), and conditions (2.40), (2.41) in Theorem 2.131376

are, respectively, the generic versions of assumptions (2.14), (2.15) and conditions b),1377

d) in Theorem 2.5. Hence, to prove statements 1), 2), and 4), it is sufficient to show1378

that assumption (2.38) implies that (2.17) holds generically. To prove statement 3)1379

we should additionally show that (2.39) implies that condition e) holds generically.1380

1) We show that assumption (2.38) implies that (2.17) holds generically. We will1381

make use of [17, Lemma 6.3] which states the following: if the entries of a matrix F(x)1382

depend analytically on x ∈ F
n and if F(x0) has full column rank for at least one x0,1383

then F(x) has full column rank for generic x. Let the vectors x and x0 be formed by1384

the entries of A, B, C and Ã, B̃, and C̃ respectively. We construct F(x) as follows.1385

By Lemma 3.1, each entry of Q2(T ) is a polynomial in x. By the rank-nullity theorem1386

and assumption (2.38),1387

(B.3) rQ2(T̃ ) = C2
K+1 −

R∑

r=1

C2
K−(L1+···+Lr−1+Lr+1+···+LR)+1 =: P,1388

implying that P columns of Q2(T̃ ) are linearly independent. We define F(x) as1389

the submatrix formed by the corresponding columns14 of Q2(T ). Then (B.3) im-1390

plies that F(x0) has full column rank. Now, by [17, Lemma 6.3], F(x) has full1391

column rank for generic x. Hence rQ2(T ) ≥ P . Hence, by the rank-nullity theorem,1392

dimNull (Q2(T )) = C2
K+1 − rQ2(T ) ≤ C2

K+1 − P =
R∑

r=1
C2

dr+1. On the other hand,1393

since, by statement 3) of Lemma 3.1, dimNull (Q2(T )) ≥
R∑

r=1
C2

dr+1 we obtain that1394

(2.17) in Theorem 2.5 holds.1395

2) We show that assumption (2.39) implies that condition e) holds generically.1396

Let S =
∑

Lr. Then dr = K −
R∑

k=1

Lk + Lr = K − S + Lr. Since L1 ≤ · · · ≤ LR, the1397

inequality in condition e) takes the form1398

(B.4) C2
K+1 −

R∑

r=1

C2
K−S+Lr+1 >

∑

1≤r1<r2≤R

Lr1Lr2 − L1L2 =
S2 −

∑
L2
r

2
− L1L2.1399

Using simple algebraic manipulations one can rewrite (B.4) as1400

(B.5) K2 +K(1− 2S) + S2 − S −
2L1L2

R− 1
< 0.1401

One can easily check that K is a solution of (B.5) if and only if

S −
1

2
−

√
1

4
+

2L1L2

R− 1
< K < S −

1

2
+

√
1

4
+

2L1L2

R− 1
,

implying that (2.39) is a generic version of condition e).1402

14The column selection depends only on the fixed x0.
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Appendix C. Proof of Theorem 2.16. First we recall a result on the generic1403

uniqueness of the decomposition of a matrix into rank-1 terms that admit a particular1404

structure [20]. Let p1, . . . , pN be known polynomials in l variables and let Y ∈ F
I×N1405

admit a decomposition of the form1406

(C.1) Y =
R∑

r=1

ar[p1(zr) . . . pN (zr)], ar ∈ F
I , zr ∈ F

l, r = 1, . . . , R.1407

Decomposition (C.1) can be interpreted as a matrix factorization Y = APT that is1408

structured in the sense that the columns of P are in1409

(C.2) V := {[p1(z) . . . pN (z)]N : z ∈ F
l} ⊂ F

N .1410

We say that the decomposition is unique if any two decompositions of the form (C.1)
are the same up to permutation of summands. We say that the decomposition into a
sum of structured rank-1 matrices is generically unique if

µ{(a1, . . . ,aR, z1, . . . , zR) : decomposition (C.1) is not unique} = 0,

where µ denotes a measure on F
(I+l)R that is absolutely continuous with respect to1411

the Lebesgue measure. We will need the following result.1412

Theorem C.1. (a corollary of [20, Theorem 1]) Assume that1413

a) R ≤ I;1414

b) dim span{V } ≥ N̂ ;1415

c) the set V is invariant under complex scaling, i.e., λV = V for all λ ∈ C;1416

d) the dimension of the Zariski closure of V is less than or equal to l̂;1417

e) R ≤ N̂ − l̂.1418

Then decomposition (C.1) is generically unique.1419

Proof of Theorem 2.16. (i) First we rewrite (1.2) in the form of the structured
matrix decomposition (C.1). In step (ii) we will apply Theorem C.1 to (C.1). By
(1.3), decomposition (1.2) can be rewritten as

Y := TT
(1) = A[vec(B1C

T
1 ) . . . vec(BRC

T
R)]

T =: APT .

So, the columns of P are of the form

vec([b1 . . . bL][c1 . . . cL]
T ) = c1 ⊗ b1 + · · ·+ cL ⊗ bL =: [p1(z) . . . pN (z)]T ,

where
z = [bT

1 . . . bT
L cT1 . . . cTL]

T , l = JL+KL, N = JK.

Hence the set V in (C.2) consists of vectorized J ×K matrices whose rank does not1420

exceed L.1421

(ii) Now we check assumptions a) to e) in Theorem C.1. Assumption a) holds by1422

(2.47). Since V contains, in particular, all vectorized rank-1 matrices, it spans the1423

entire F
N . Hence we can choose N̂ = N = JK in assumption b). Assumption c) is1424

trivial. It is well-known that the set V is an algebraic variety of dimension (J +K −1425

L)L, so assumption d) holds for l̂ = (J +K − L)L. Finally, assumption e) holds by1426

(2.47): R ≤ (J − L)(K − L) = JK − (J +K − L)L = N̂ − l̂.1427

Appendix D. Proofs of statements 1), 2) and 6) of Lemma 3.1 and1428

proof of Corollary 3.2.1429
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Proofs of statements 1), 2) and 6) of Lemma 3.1. 1) Since T =
R∑

r=1
ar ◦ (BrC

T
r ),1430

it follows that tijk =
R∑

r=1
air

Lr∑
l=1

bjl,rckl,r. Hence1431

(D.1) ti1j1k1ti2j2k2 =

R∑

r1=1

R∑

r2=1

ai1r1ai2r2

Lr1∑

l1=1

Lr2∑

l2=1

bj1l1,r1bj2l2,r2ck1l1,r1ck2l2,r2 .1432

By Definition 2.3, the entry of Q2(T ) with the index in (2.7) is equal to (2.8), where1433

1 ≤ i1 < i2 ≤ I, 1 ≤ j1 < j2 ≤ J , and 1 ≤ k1 ≤ k2 ≤ K. Applying (D.1) to each term1434

in (2.8) and making simple algebraic manipulations we obtain that the expression in1435

(2.8) is equal to1436

∑

1≤r1<r1≤R

[
(ai1r1ai2r2 − ai2r1ai1r2)×1437

Lr1∑

l1=1

Lr2∑

l2=1

(bj1l1,r1bj2l2,r2 − bj2l1,r1bj1l2,r2)(ck1l1,r1ck2l2,r2 + ck2l1,r1ck1l2,r2)
]
=1438

∑

1≤r1<r1≤R

(ar1 ∧ ar2)i1+C2
i2−1

Lr1∑

l1=1

Lr2∑

l2=1

(bl1,r1 ∧ bl2,r2)j1+C2
j2−1

(cl1,r1 · cl2,r2)k1+C2
k2

,1439

1440

which, by the definition of Φ(A,B) and S2(C), is the entry of Φ(A,B)S2(C)T with1441

the index in (2.7).1442

2) follows from the identity R2(T ) = Q2(T )PT
K and 1).1443

6) We assume that Φ(A,B) has full column rank. It is sufficient to prove that1444

the identities h = Br1f1 = Br1f2 are valid only for h = 0. From the definition of the1445

operation “ ∧ ” it follows that (Br1 ∧Br2)(f1 ⊗ f2) = (Br1f1) ∧ (Br2f2) = h ∧ h = 0.1446

Hence [(ar1 ∧ ar2)⊗ (Br1 ∧Br2)] (f1 ⊗ f2) = (ar1 ∧ ar2)⊗ [(Br1 ∧Br2)(f1 ⊗ f2)] = 0.1447

Now, since (ar1 ∧ar2)⊗ (Br1 ∧Br2) is formed by the columns of the full column rank1448

matrix Φ(A,B), it follows that f1 ⊗ f2 = 0, which easily implies that h = 0.1449

Proof of Corollary 3.2. W.l.o.g. we assume that i = 1 and j = 2. Since C has1450

full column rank, and, by (2.19), CT has full column rank, it follows that C is K×K1451

nonsingular and that K =
∑

Lr. This readily implies that dr = Lr for all r. From1452

the rank-nullity theorem and (2.22) it follows that1453

1454

rΦ(A,B) ≥ rΦ(A,B)S2(C)T = C2
K+1 − dimNull

(
Φ(A,B)S2(C)T

)
=1455

C2∑
Lr+1 −

∑
C2

Lr+1 =
∑

r1<r2

Lr1Lr2 .1456

1457

Since Φ(A,B) is a C2
K+1×

∑
r1<r2

Lr1Lr2 matrix, it follows that Φ(A,B) has full column1458

rank. In particular, the submatrix (a1∧a2)⊗(B1∧B2) has full column rank, implying1459

that the same holds true for the matrix B1 ∧B2. Assume that [B1 B2][f
T
1 fT2 ]T = 01460

for some f1 ∈ F
L1 and f2 ∈ F

L2 . Then B2f2 = −B1f1. One can easily verify that1461

(B1 ∧ B2)(f1 ⊗ f2) = B1f1 ∧ B2f2 = −B1f1 ∧ B1f1 = 0. Hence f1 ⊗ f2 = 0. Thus,1462

f1 = 0 or f2 = 0, implying that B1f1 = 0 or B2f2 = 0. Since B1 and B2 have full1463

column rank and B2f2 = −B1f1, it follows that both f1 and f2 are the zero vectors.1464

Hence the matrix [B1 B2] has full column rank.1465
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Appendix E. Proof of statement 3) of Lemma 3.1.1466

Proofs of statement 3) of Lemma 3.1. The inequality in statement 3) follows im-1467

mediately from statement 1). We prove the identity dimNull
(
S2(C)T

)
=
∑

C2
dr+1.1468

Throughout the proof, col(·) denotes the column space of a matrix.1469

Obviously, dimNull
(
S2(C)T

)
= dimNull

(
S2(C)H

)
. Since vec (FK×K

sym ) is the1470

orthogonal sum of the subspaces Null
(
S2(C)H

)
and col(S2(C)), it is sufficient to1471

show that there exists a subspace S such that1472

vec (FK×K
sym ) = span{S, col(S2(C))},(E.1)1473

S ∩ col(S2(C)) = {0},(E.2)1474

dimS =
∑

C2
dr+1.(E.3)1475

1476

We explicitly construct a possible S and show that (E.1)–(E.3) hold.1477

(i) Construction of S. Since rC = K and dimNull (Zr,C) = dr, it follows that1478

rZT
r,C

= rZr,C
= K−dr. Let Wr = col(ZT

r,C)∩col(Cr) and let Vr denote the orthogonal1479

complement of Wr in col(Cr). Then1480

dimWr =dim col(ZT
r,C) + dim col(Cr)

− dim col([C1 . . .Cr−1 Cr+1 . . . CR Cr]) = K − dr + Lr −K = Lr − dr,

dimVr =dim col(Cr)− dimWr = Lr − (Lr − dr) = dr.

1481

Let Vr ∈ F
K×dr be a matrix whose columns form a basis of Vr. We set

S = col([V1 ·V1 . . . VR ·VR]).

(ii) Proof of (E.1). Let Wr ∈ F
K×(Lr−dr) be a matrix whose columns form a1482

basis of Wr. Since rC = K and col(Cr) = col([Vr Wr]), it follows that1483

vec (FK×K
sym ) = col([C ·C]) = span{col(Cr1 ·Cr2) : 1 ≤ r1, r2 ≤ R}

=span{col(S2(C)), col(Cr ·Cr) : 1 ≤ r ≤ R}

=span{col(S2(C)), col(Vr ·Vr), col(Vr ·Wr), col(Wr ·Wr) : 1 ≤ r ≤ R}

=span{col(S2(C)), S, col(Vr ·Wr), col(Wr ·Wr) : 1 ≤ r ≤ R}.

(E.4)1484

From the construction of Wr, Vr and S2(C) it follows that1485

(E.5) span{col(Vr ·Wr), col(Wr ·Wr)} ⊆ col(Cr ·Z
T
r,C) ⊆ col(S2(C)), 1 ≤ r ≤ R.1486

Now, (E.1) follows from (E.4) and (E.5).1487

(iii) Proof of (E.2). From the construction of Vr it follows that1488

(E.6) col(Vr) is orthogonal to col(C1), . . . , col(Cr−1), col(Cr+1), . . . , col(CR).1489

Let PK be defined as in (3.1). Then1490

col(PK(Vr ·Vr)) = span{xr ⊗ yr + yr ⊗ xr : xr,yr ∈ Vr},(E.7)1491

col(PK(Cr1 ·Cr2)) = span{xr1 ⊗ yr2 + yr2 ⊗ xr1 : xr1 ∈ col(Cr1),yr2 ∈ col(Cr2)}.14921493

It now easily follows from (E.6) that

col(PK(Vr ·Vr)) is orthogonal to col(PK(Cr1 ·Cr2)), 1 ≤ r ≤ R, 1 ≤ r1 < r2 ≤ R.
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Hence PKS is orthogonal to PK col(S2(C)). Since PK is a bijective linear map from1494

F
C2

K+1 to vec (FK×K
sym ), it follows that the subspaces S and col(S2(C)) are linearly1495

independent, that is, (E.2) holds.1496

(iii) Proof of (E.3). Since PK is a bijective linear map, it is sufficient to prove1497

that dimPKS =
∑

C2
dr+1. From the construction of Vr it follows that col(Vr1) is1498

orthogonal to col(Vr2) for r1 6= r2. Hence, by (E.7), col(PK(Vr1 ·Vr1)) is orthogonal1499

to col(PK(Vr2 ·Vr2)) for r1 6= r2. Since PKS = span{col(PK(Vr ·Vr)) : 1 ≤ r ≤ R},1500

it follows that PKS is the orthogonal sum of the subspaces col(PK(Vr ·Vr)). Hence1501

dimPKS =
∑

dim col(PK(Vr ·Vr)). To prove that dim col(PK(Vr ·Vr)) = C2
dr+11502

we show that the C2
dr+1 columns vi⊗vj +vj ⊗vi, 1 ≤ i ≤ j ≤ dr of PK(Vr ·Vr) are1503

linearly independent, where v1, . . . ,vdr
denote the columns of Vr. Indeed, assume1504

that there exist values λij , 1 ≤ i ≤ j ≤ dr such that 0 =
∑

1≤i≤j≤dr

λij(vi⊗vj+vj⊗vi).1505

Then1506

0 =
∑

1≤i≤dr

vi ⊗
∑

i≤j≤dr

λijvj +
∑

1≤j≤dr

vj ⊗
∑

1≤i≤j

λijvi

=
∑

1≤i≤dr

vi ⊗


 ∑

i<j≤dr

λijvj +
∑

1≤j<i

λjivj + 2λiivii


 .

(E.8)1507

Since the vectors v1, . . . ,vdr
are linearly independent, it follows from (E.8) that λij =1508

0 for all values of indices.1509

Appendix F. Proof of statements 4) and 5) of Lemma 3.1. By definition,1510

set1511

C2(A) := [a1 ∧ a2 . . . aR−1 ∧ aR] ∈ F
C2

I×C2
R ,(F.1)1512

C′
2(B) := [B1 ∧B2 . . . BR−1 ∧BR] ∈ F

C2
J×

∑
r1<r2

Lr1
Lr2

.(F.2)15131514

The matrix C2(A) is called the second compound matrix of A. We will need the1515

following properties of C2(·) and C′
2(·).1516

Lemma F.1. Let Y be a matrix such that C2(Y), and C′
2(YB) are defined. Then1517

the following statements hold.1518

1) If A has full column rank, then C2(A) also has full column rank;1519

2) C2(A
T ) = C2(A)T ;1520

3) C2(Y)C2(B) = C2(YB) (Binet-Cauchy formula);1521

4) C2(Y)C′
2(B) = C′

2(YB).1522

Proof. Statements 1) to 3) are classical properties of the compound matrices1523

(see, for instance, [24, pp. 21–22]). Statement 4) follows from statement 3). Indeed,1524

from the definition of C2(B) and C′
2(B) it follows that there exists a column selection1525

matrix P such that C′
2(B) = C2(B)P. Moreover, for any matrix Y such that C2(Y),1526

and C′
2(YB) are defined, the identity C′

2(YB) = C2(YB)P holds with the same P.1527

Hence, by statement 3), C2(Y) · C′
2(B) = C2(Y) · C2(B)P = C2(YB)P = C′

2(YB).1528

Proof of statement 4) of Lemma 3.1. First we prove that condition (2.21) implies1529

that Φ(A,B) has full column rank. In the case k′B = 2, we have rA = R. Hence, by1530

statement 1) of Lemma F.1 the C2
I × C2

R matrix C2(A) has full column rank. The1531

fact that k′B = 2 further implies that [Br1 Br2 ] has full column rank for all r1 ≤ r2.1532

Hence, by statement 1) of Lemma F.1, the matrix C2([Br1 Br2 ]) also has full column1533

This manuscript is for review purposes only.



DECOMPOSITION OF A TENSOR INTO MULTILINEAR RANK-(1, Lr, Lr) TERMS 47

rank. Since Br1 ∧Br2 is formed by columns of C2([Br1 Br2 ]), it also has full column1534

rank. One can easily prove that full column rank of C2(A) and the matrices Br1∧Br2 ,1535

r1 ≤ r2 implies full column rank of Φ(A,B).1536

We now consider the case k′B > 2.1537

(i) Suppose that Φ(A,B)f = 0 for some (
∑

r1<r2

Lr1Lr2) × 1 vector f . We1538

represent f as f = [fT1,2 . . . fTR−1,R]
T , where fr1,r2 ∈ F

Lr1
Lr2 . Then Φ(A,B)f = 0 is1539

equivalent to1540

(F.3)
∑

r1<r2

(ar1 ∧ ar2)⊗ (Br1 ∧Br2)fr1,r2 = 0.1541

We can further rewrite (F.3) in matrix form as1542

O =
∑

r1<r2

(Br1 ∧Br2)fr1,r2(ar1 ∧ ar2)
T

= C′
2(B) blockdiag(f1,2, . . . , fR−1,R)C2(A)T .

(F.4)1543

(ii) Let us for now assume that the last rA columns of A are linearly inde-
pendent. We show that fk′

B
−1,k′

B
= 0. Let us set

s1 := L1 + · · ·+ Lk′

B
−2, s2 := Lk′

B
−1 + Lk′

B
, s3 := Lk′

B
+1 + · · ·+ LR.

By definition of k′B, the matrix X :=
[
B1 . . . BkB

]
has full column rank. Hence,1544

X†X = Is1+s2 , where X† denotes the Moore–Penrose pseudo-inverse of X. Denoting1545

Y := [Os2×s1 Is2 ]X
†, we have1546

YB =[Os2×s1 Is2 ]X
†[X Bk′

B
+1 . . . BR]

=[Os2×s1 Is2 ][Is1+s2 ⊞(s1+s2)×s3 ] = [Os2×s1 Is2 ⊞s2×s3 ]

=

[
Os2×L1 . . . Os2×Lk′

B
−2

[
ILk′

B
−1

OLk′

B

×Lk′

B
−1

] [
OLk′

B
−1×Lk′

B

ILk′

B

]
⊞s2×s3

]
,

1547

where ⊞p×q denotes a p×q matrix that is not further specified. From the definition of1548

the matrix C′
2(·) it follows that C′

2(YB) consists of (R−1)+(R−2)+ · · ·+(R−k′B+2)1549

zero blocks followed by the nonzero block G :=

[
ILk′

B
−1

OLk′

B

×Lk′

B
−1

]
∧

[
OLk′

B
−1×Lk′

B

ILk′

B

]
1550

and some other blocks. One can easily verify that G is formed by distinct columns1551

of the C2
s2

× C2
s2

identity matrix, implying that G has full column rank. Multiplying1552

(F.4) by C2(Y), applying statement 4) of Lemma F.1 and taking into account that1553

the first (R− 1) + (R− 2) + · · ·+ (R− k′B + 2) blocks of C′
2(YB) are zero, we obtain1554

O = C2(Y)O = C2(Y)C′
2(B) blockdiag(f1,2, . . . , fR−1,R)C2(A)T

= C′
2(YB) blockdiag(f1,2, . . . , fR−1,R)C2(A)T

= [G⊞ . . . ⊞] blockdiag(fk′

B
−1,k′

B
, . . . , fR−1,R)[ak′

B
−1 ∧ ak′

B
. . . aR−1 ∧ aR]

T ,

(F.5)

1555

where ⊞ denotes a block of the matrix C′
2(YB). From the definition of C2(·) it follows

that [ak′

B
−1∧ak′

B
. . . aR−1∧aR] = C2([ak′

B
−1 . . . aR]). Since the last rA columns of A

are linearly independent and rA ≥ R−k′B+2 it follows that the vectors ak′

B
−1, . . . ,aR
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are also linearly independent. Hence, by Lemma F.1 the matrix C2([ak′

B
−1 . . . aR])

has full column rank. Hence (F.5) is equivalent to

O = [G⊞ . . . ⊞] blockdiag(fk′

B
−1,k′

B
, . . . , fR−1,R),

implying that Gfk′

B
−1,k′

B
= 0. Since G has full column rank, it follows that fk′

B
−1,k′

B
=1556

0.1557

(iii) We show that fr1,r2 = 0 for all 1 ≤ r1 < r2 ≤ R. Since kA ≥ 2, the1558

vectors ar1 ,ar2 are linearly independent. Let us extend two vectors ar1 ,ar2 to a basis1559

of range(A) by adding rA−2 linearly independent columns of A. It is clear that there1560

exists an R×R permutation matrix Π such that the last rA columns of AΠ coincide1561

with the chosen basis. Moreover, since k′B − 1 ≥ R − rA + 1 we can choose Π such1562

that the (k′B − 1)th and k′Bth columns of AΠ are equal to ar1 and ar2 , respectively.1563

We can now reason as under (ii) for AΠ and BΠ to obtain that fr1,r2 = 0.1564

(iv) From (iii) we immediately obtain that f = 0. Hence, Φ(A,B) has full1565

column rank.1566

Now we prove that (2.16) implies (2.17). Substituting Er = BrC
T
r in the expres-1567

sions for F, we obtain that F = [Br1 Br2 . . . BrR−rA+2
] blockdiag(CT

r1
,CT

r2
, . . . ,1568

CT
rR−rA+2

), implying that r[Br1
Br2

... BrR−rA+2
] ≥ rF. Hence, by (2.16), k′B ≥1569

R− rA + 2. Since kA ≥ 2, the result follows from the first part of statement 4).1570

Proof of statement 5) of Lemma 3.1. Assume that (a1⊗B1)f1+· · ·+(aR⊗BR)fR1571

= 0 for some vectors fr ∈ F
Lr . It is sufficient to prove that all vectors fr are zero.1572

We rewrite the identity (a1 ⊗ B1)f1 + · · · + (aR ⊗ BR)fR = 0 in the matrix form1573

[a1 . . . aR][B1f1 . . . BRfR]
T = O. Then from statements 2) and 3) of Lemma F.11574

and from the definition of the second compound matrix it follows that1575

C2(O) = C2([a1 . . . aR][B1f1 . . . BRfR]
T ) = C2([a1 . . . aR])C2([B1f1 . . . BRfR])

T

=
∑

1≤r1<r2≤R

(ar1 ∧ ar2) (Br1fr1 ∧Br2fr2)
T

=
∑

1≤r1<r2≤R

(ar1 ∧ ar2) ((Br1 ∧Br2)(fr1 ⊗ fr2))
T
,

1576

which can be rewritten in vectorized form as 0 = Φ(A,B)[(f1⊗f2)
T . . . (fR−1⊗fR)

T ]T .1577

Since the matrix Φ(A,B) has full column rank, it follows easily that at least R − 11578

of the vectors f1, . . . , fR are zero. We assume w.l.o.g. that the last R − 1 vectors are1579

zero. Then 0 = (a1 ⊗B1)f1, which implies that f1 is also zero.1580

Appendix G. Proofs of Lemmas 4.1 and 4.2.1581

Proof of Lemma 4.1. 1) Assume that Nf = 0, where f = [fT1 . . . fTR ]T and fr ∈
F
dr . Then, by construction of Nr,

0 = CTNf = blockdiag(CT
1 N1, . . . ,C

T
RNR)f = [(CT

1 N1f1)
T . . . (CT

RNRfR)
T ]T ,

implying that CT
r Nrfr = 0 for r = 1, . . . , R. Hence,1582

(G.1) CT (Nrfr) = (0, . . . ,0,CT
r Nrfr,0, . . . ,0) = 0, r = 1, . . . , R.1583

By (1.5) and (2.14), CT has full column rank. Since Nr also has full column rank, it1584

follows from (G.1) that fr = 0 for r = 1, . . . , R. Hence we must have f = 0. Thus the1585

matrix N has full column rank.1586
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2) It follows from statement 1) that [N1 ⊗ N1 . . . NR ⊗ NR] has full column1587

rank. Obviously, blockdiag(M1, . . . ,MR) has full column rank. Since W = [N1 ⊗1588

N1 . . . NR ⊗NR] blockdiag(M1, . . . ,MR), it also has full column rank.1589

3) Since, by (2.14), rT(3)
= K and, by (1.5), T(3) = [a1⊗IJ . . . aR⊗IJ ][E

T
1 . . . ET

R]
T ,1590

it follows that the JR × K matrix [ET
1 . . . ET

R]
T has full column rank. Hence for1591

any r the columns of [ET
1 . . . ET

R]
TNr = [O . . .O (ErNr)

T O . . . O]T are nonzero.1592

Assume that O = α1E1 + · · · + αRER for some α1, . . . , αR ∈ F. Then for any r,1593

O = (α1E1 + · · · + αRER)Nr = αrErNr. Since ErNr is not the zero matrix, it1594

follows that αr = 0. Thus, the matrices E1, . . . ,ER are linearly independent.1595

Proof of Lemma 4.2. By (1.3),1596

(G.2) T(1) = [vec(E1) . . . vec(ER)]A
T = [vec(Ẽ1) . . . vec(ẼR̃)]Ã

T ,1597

where Ã = [ã1 . . . ãR̃].1598

Case 1: condition b) holds. Then, A has full column rank. Hence, by (G.2),1599

[vec(E1) . . . vec(ER)] = [vec(Ẽ1) . . . vec(ẼR̃)](A
†Ã)T .1600

Since any column of Ã is a column of A, each column of A†Ã contains at most one1601

nonzero entry. Since E1, . . . ,ER are nonzero matrices, it follows that the columns1602

of (A†Ã)T ∈ F
R̃×R are also nonzero, which is possible only if R̃ = R and Ã = AP1603

for some R × R permutation matrix P. Hence, by (G.2), [vec(E1) . . . vec(ER)] =1604

[vec(Ẽ1) . . . vec(ẼR̃)]P
T . Thus, the decompositions coincide up to permutation of1605

summands. It is also clear that the matrices E1, . . . ,ER can be computed by solving1606

the system of linear equations [vec(E1) . . . vec(ER)]A
T = T(1).1607

Case 2: condition c) holds. To prove statement 1) it is sufficient to show that the1608

matrices E1, . . . ,ER can be computed by EVD up to scaling. Indeed, if Er = xrÊr1609

and the matrices Êr are known, then, by (1.3), the scaling factors xr can be found as1610

from the linear equation [a1 ⊗ vec(Ê1) . . . ar ⊗ vec(ÊR)][x1 . . . xr]
T = vec(T(1)).1611

We choose arbitrary integers r1, . . . , rR−rA+2 such that 1 ≤ r1 < · · · < rR−rA+2 ≤1612

R and show that the matrices Er1 , . . . ,ErR−rA+2
can be computed by EVD up to1613

scaling. We set1614

(G.3) Ω = {r1, . . . , rR−rA+2} and {p1, . . . , prA−2} = {1, . . . , R} \ Ω.1615

Since kA = rA, it follows that the intersection of the null space of the (rA − 2) × I1616

matrix [ap1
. . . aprA−2

]T and the column space of A is two-dimensional. Let the1617

intersection be spanned by the vectors hΩ,1,hΩ,2 ∈ F
I , where here and later in the1618

proof the subindex “Ω” indicates that a quantity depends on r1, . . . , rR−rA+2. Then1619

again, since kA = rA, it follows that1620

(G.4) any two columns of

[
hT
Ω,1ar1 . . . hT

Ω,1arR−rA+2

hT
Ω,2ar1 . . . hT

Ω,2arR−rA+2

]
are linearly independent.1621

Let QΩ denote the 2 × J × K tensor such that QΩ(1) = T(1)[hΩ,1 hΩ,2]. Then, by1622

(1.3),1623

(G.5)

QΩ =

R∑

r=1

[
hT
Ω,1ar

hT
Ω,2ar

]
◦Er =

R−rA+2∑

k=1

[
hT
Ω,1ark

hT
Ω,2ark

]
◦Erk =

R−rA+2∑

k=1

[
hT
Ω,1ark

hT
Ω,2ark

]
◦ (BrkC

T
rk
),1624
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where Brk ∈ F
J×Lrk and Crk ∈ F

K×Lrk denote full column rank matrices such that1625

Erk = BrkC
T
rk

. Since condition c) in Theorem 2.5 is equivalent to condition c) in1626

Theorem 2.6, it follows that k′B ≥ R− rA + 2 and k′C ≥ R− rA + 2. Hence,1627

(G.6) [Br1 . . . BrR−rA+2
] and [Cr1 . . . CrR−rA+2

] have full column rank.1628

Hence, by Theorem 1.4, the decomposition of QΩ into a sum of max ML rank-1629

(1, Lrk , Lrk) terms is unique and can be computed by EVD. Thus, the matrices1630

Er1 , . . . ,ErR−rA+2
can be computed by EVD up to scaling. Since the indices r1, . . . ,1631

rR−rA+2 were chosen arbitrary, it follows that all matrices Er1 , . . . ,ErR−rA+2
can be1632

computed by EVD up to scaling. The overall procedure is summarized in steps 11−181633

of Algorithm 2.1.1634

Now we prove statement 2). First we show that R̃ = R and that the Ẽ1, . . . , ẼR1635

involves the same matrices as E1, . . . ,ER. Similarly to (G.5) we obtain that1636

(G.7) QΩ =
R̃∑

r=1

[
hT
Ω,1ãr

hT
Ω,2ãr

]
◦ Ẽr.1637

It is clear that there exist CR−rA+2
R sets Ω of the form (G.3). Thus, by (G.5) and1638

(G.7), we obtain a system of CR−rA+2
R identities:1639

(G.8)

QΩ =

R−rA+2∑

k=1

[
hT
Ω,1ark

hT
Ω,2ark

]
◦Erk =

R̃∑

r=1

[
hT
Ω,1ãr

hT
Ω,2ãr

]
◦ Ẽr, 1 ≤ r1 < · · · < rR−rA+2 ≤ R.1640

Hence, by (1.5) and (G.5), system (G.8) can be rewritten in matrix form as1641

QΩ(3) =

[[
hT
Ω,1ar1

hT
Ω,2ar1

]
⊗Br1 . . .

[
hT
Ω,1arR−rA+2

hT
Ω,2arR−rA+2

]
⊗BrR−rA+2

]
[Cr1 . . . CrR−rA+2

]T =

R̃∑

r=1

[
hT
Ω,1ãr

hT
Ω,2ãr

]
⊗ Ẽr, 1 ≤ r1 < · · · < rR−rA+2 ≤ R.

(G.9)

1642

From (G.4), (G.6) and the first identity in (G.9), it follows that QΩ(3) has rank1643

Lr1 + · · ·+ LrR−rA+2
. Since the rank is subadditive, it follows from (G.9), that1644

(G.10) Lr1 + · · ·+ LrR−rA+2
≤

R̃∑

r=1

r

([
hT
Ω,1ãr

hT
Ω,2ãr

])
rẼr

, 1 ≤ r1 < · · · < rR−rA+2 ≤ R,1645

where r(f) denotes the rank of a 2 × 1 matrix f : r(0) = 0 and r(f) = 1, if f 6= 0.1646

It is clear that for each r there exist exactly CR−rA+1
R−1 subsets {r1, . . . , rR−rA+2} ⊂1647

{1, . . . , R} that contain r. Hence each Lr appears in exactly CR−rA+1
R−1 inequalities1648

in (G.10). Since ã1 = ar for some r, it follows that the term r

([
hT
Ω,1ã1

hT
Ω,2ã1

])
rẼ1

=1649

r

([
hT
Ω,1ar

hT
Ω,2ar

])
rẼ1

appears in the same CR−rA+1
R−1 inequalities as Lr, implying, by the1650

construction of hΩ,1 and hΩ,2, that

[
hT
Ω,1ar

hT
Ω,2ar

]
6= 0. Thus, rẼ1

appears in exactly1651
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CR−rA+1
R−1 inequalities in (G.10). In the same fashion one can prove that each of the1652

values 1 · rẼ2
, . . . , 1 · rẼ

R̃
appears in (G.10) exactly CR−rA+1

R−1 times. Thus, summing1653

all inequalities in (G.10) and taking into account that R̃ ≤ R and rẼr
≤ Lr for all r1654

we obtain1655

1656

(G.11) (L1 + · · ·+ LR)C
R−rA+1
R−1 ≤ (rẼ1

+ · · ·+ rẼ
R̃
)CR−rA+1

R−1 ≤1657

(L1 + · · ·+ LR̃)C
R−rA+1
R−1 ≤ (L1 + · · ·+ LR)C

R−rA+1
R−1 .16581659

Hence R̃ = R and rẼr
= Lr for all r.1660

To complete the proof of statement 2) we need to show that the terms ã1 ◦1661

Ẽ1, . . . , ãR ◦ ẼR coincide with the terms a1 ◦ E1, . . . ,aR ◦ ER. If we assume that1662

at least one of the inequalities in (G.10) is strict, then the first inequality in (G.11)1663

should also be strict, which is not possible. Thus, (G.10) holds with “≤” replaced1664

by “=”. Hence, by Theorem 1.4, the two decompositions of QΩ in (G.8) coincide1665

up to permutation of their terms. This readily implies that the matrices Ẽ1, . . . , ẼR1666

coincide with λ1E1, . . . , λRER for some λ1, . . . , λR ∈ F\{0}, i.e., there exists an R×R1667

permutation matrix P such that1668

(G.12) [vec(Ẽ1) . . . vec(ẼR̃)] = [vec(E1) . . . vec(ER)] diag(λ1, . . . , λR)P.1669

Substituting (G.12) in (G.2) we obtain that1670

(G.13) [vec(E1) . . . vec(ER)]A
T = [vec(E1) . . . vec(ER)] diag(λ1, . . . , λR)PÃT .1671

Since the matrices E1, . . . ,ER are linearly independent, it follows from (G.13) that1672

AT = diag(λ1, . . . , λR)PÃT . Hence A = ÃPT diag(λ1, . . . , λR). Since any column of1673

Ã is a column of A and since kA = rA ≥ 2, it follows that λ1 = · · · = λR = 1. Hence1674

Ã = AP and, by (G.12), [vec(Ẽ1) . . . vec(ẼR̃)] = [vec(E1) . . . vec(ER)]P, i.e., the1675

terms ã1 ◦ Ẽ1, . . . , ãR ◦ ẼR coincide with the terms a1 ◦E1, . . . ,aR ◦ER.1676

Appendix H. Proof of Theorem 2.17. The following theorem complements1677

results on uniqueness15 presented in subsection 2.5.1 and will be used in the proof of1678

Theorem 2.17. Namely, we will show that Theorem 2.17 is the generic counterpart of1679

Theorem H.1.1680

Theorem H.1. Let T ∈ F
I×J×K admit decomposition (1.2) with ar 6= 0 and1681

rBr
= rCr

= Lr for all r. Assume that the matrix C has full column rank and that1682

the matrices A and B satisfy the following assumption:1683

if at least two of the vectors g1 ∈ C
L1 , . . . ,gR ∈ C

LR are nonzero,

then the rank of a1(B1g1)
T + · · ·+ aR(BRgR)

T is at least 2.
(H.1)1684

Then the decomposition of T into a sum of max ML rank-(1, Lr, Lr) terms is unique.1685

Proof. Since C has full column rank we have that K ≥
∑

Lr. By statement 1) of1686

Theorem 2.4, we can assume that K =
∑

Lr, i.e., that C is square and nonsingular.1687

15It can be shown that if C has full column rank, then Theorem H.1 guarantees uniqueness under
more relaxed assumptions than Theorem 2.6. On the other hand, assumption (H.1) in Theorem H.1
is not easy to verify for particular A and B and Theorem H.1 does not come with an EVD-based
algorithm.
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i) First we reformulate assumption (H.1). Such reformulation will immediately1688

imply that1689

(H.2) kA ≥ 2 and matrix [a1 ⊗B1 . . . aR ⊗BR] has full column rank.1690

If the rank of a1(B1g1)
T + · · · + aR(BRgR)

T is less than 2, then there exist vectors1691

z ∈ F
I and y ∈ F

J such that1692

(H.3) a1(B1g1)
T + · · ·+ aR(BRgR)

T = zyT .1693

Transposing and vectorizing both sides of (H.3) we obtain that (a1 ⊗B1)g1 + · · · +1694

(aR ⊗BR)gR = z⊗ y. Hence assumption (H.1) can be reformulated as follows:1695

the identity (a1 ⊗B1)g1 + · · ·+ (aR ⊗BR)gR = z⊗ y holds

only if at most one of g1, . . . ,gR is nonzero.
(H.4)1696

One can now easily derive (H.2) from (H.4).1697

ii) Now we prove uniqueness. Let T =
∑R̂

r=1 âr ◦ (B̂rĈ
T
r ), where R̂ ≤ R, âr 6= 0,1698

B̂r ∈ F
J×L̂r and Ĉr ∈ F

K×L̂r have full column rank, and L̂r ≤ Lr for r = 1, . . . , R̂.1699

Then, by (1.5),1700

(H.5) [a1 ⊗B1 . . . aR ⊗BR]C
T = T(3) = [â1 ⊗ B̂1 . . . â

R̂
⊗ B̂

R̂
]ĈT .1701

Since, by (H.2), [a1⊗B1 . . . aR⊗BR] has full column rank and since C is a nonsingular1702

matrix, it follows from (H.5) that rT(3)
=
∑

Lr. Hence the matrices [â1⊗B̂1 . . . â
R̂
⊗1703

B̂
R̂
] and Ĉ are at least rank-

∑
Lr, implying that

R̂∑
r=1

L̂r ≥
R∑

r=1
Lr. On the other hand,1704

since R̂ ≤ R and L̂r ≤ Lr for r = 1, . . . , R̂, we also have that
R̂∑

r=1
L̂r ≤

R∑
r=1

Lr. Hence1705

R̂∑
r=1

L̂r =
R∑

r=1
Lr which is possible only if R̂ = R and L̂r = Lr for all r. Multiplying1706

(H.5) by Ĉ−T we obtain that1707

(H.6) [a1 ⊗B1 . . . aR ⊗BR]G = [â1 ⊗ B̂1 . . . âR ⊗ B̂R],1708

where G = CT Ĉ−T is a
∑

Lr ×
∑

Lr nonsingular matrix. Let g1 = [gT
1,1 . . . gT

1,R]
T1709

and g2 = [gT
2,1 . . . gT

2,R]
T be columns of G, where g1,r,g2,r ∈ F

Lr . Then, by assump-1710

tion (H.1), at most one of the vectors g1,1, . . . ,g1,R is nonzero. Since G is nonsingular1711

we have that exactly one of the vectors g1,1, . . . ,g1,R is nonzero. Let g1,i 6= 0. Sim-1712

ilarly, we also have that exactly one of the vectors g2,1, . . . ,g2,R is nonzero. Let1713

g2,j 6= 0. We claim that if g1 and g2 are columns of the same block Gr ∈ F
∑

Lr×Lr1714

of G = [G1 . . . GR], then i = j. Indeed, by (H.5),1715

(H.7) (ai ⊗Bi)g1,i = âr ⊗ y1 and (aj ⊗Bj)g2,j = âr ⊗ y2,1716

where y1 and y2 are columns of B̂r. It follows from (H.7) that ai and aj are propor-
tional to âr. Since, by (H.2), kA ≥ 2, it follows that i = j. Thus, in the partition
Gr = [GT

1r . . . GT
Rr]

T with G1r ∈ F
L1×Lr , . . . GRr ∈ F

LR×Lr , exactly one block is
nonzero. Since G = [G1 . . . GR] is nonsingular, it follows that the nonzero block
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of Gr is square, i.e. Lr × Lr, and nonsingular, r = 1, . . . , R. Hence G can be re-
duced to block diagonal form by permuting its blocks G1, . . . ,GR. Let P denote
a permutation matrix such that GP = blockdiag(G̃11, . . . , G̃RR) with nonsingular
G̃rr ∈ F

Lr×Lr . It is clear that multiplication of the right hand side of (H.6) by P

corresponds to a permutation of the summands in T =
∑R

r=1 âr ◦ (B̂rĈ
T
r ). Thus,

the terms in T =
∑R

r=1 âr ◦ (B̂rĈ
T
r ) can can be permuted so that (H.6) holds for

G = blockdiag(G̃11, . . . , G̃RR). Hence (H.6) reduces to the R identities

(ar ⊗Br)G̃rr = âr ⊗ B̂r, r = 1, . . . , R

which imply that âr is proportional to ar and that the column space of B̂r coincides1717

with the column space of Br. In other words, we have shown that âr and B̂r in1718

T =
∑R

r=1 âr ◦ (B̂rĈ
T
r ) can be chosen to be equal to ar and Br, respectively. Since1719

the matrix [a1 ⊗B1 . . . aR ⊗BR] has full column rank, we also have from (H.5) that1720

Ĉ = C.1721

Proof of Theorem 2.17. If I ≥ R, then the result follows from Theorem 1.9. So,1722

throughout the proof we assume that I < R.1723

By definition set1724

(H.8) WA,B,C := {(A,B,C) : the assumptions in Theorem H.1 do not hold}.1725

We show that µ{WA,B,C} = 0, where µ denotes a measure on F
I×R × F

J×
∑

Lr ×1726

F
K×

∑
Lr that is absolutely continuous with respect to the Lebesgue measure. Obvi-1727

ously, WA,B,C = WC ∪WA,B, where1728

WC := {(A,B,C) : C does not have full column rank} and1729

WA,B := {(A,B,C) : assumption (H.1) does not hold}.17301731

It is clear that, by the assumption
∑

Lr ≤ K in (2.49), µ{WC} = 0, so we need
to show that µ{WA,B} = 0. Since (H.1) does not depend on C, we have WA,B =
W × F

J×
∑

Lr , where

W := {(A,B) : assumption (H.1) does not hold}

is a subset of F
I×R × F

J×
∑

Lr . From Fubini’s theorem [23, Theorem C, p.148] it
follows that µ{WA,B} = 0 if and only if µ1{W} = 0, where µ1 is a measure on
F
I×R ×F

J×
∑

Lr that is absolutely continuous with respect to the Lebesgue measure.
Since R > I and J ≥ LR−1 + LR (= max

1≤i<j≤R
(Li + Lj)), it follows that

µ1{(A,B) : kA < I or k′B < 2} = 0.

Hence we can assume w.l.o.g. that1732

(H.9) W = {(A,B) : assumption (H.1) does not hold, kA = I, and k′B ≥ 2}.1733

The remaining part of the proof is based on a well-known algebraic geometry1734

based method. In [19] we have explained the method and used it to study generic1735

uniqueness of CPD and INDSCAL. We have explained in [19] that to prove that1736

µ1{W} = 0, it is sufficient to show that for F = C the Zariski closure W of W is not1737

the entire space C
I×R × C

J×
∑

Lr , which is equivalent to dimW ≤ IR+ J
∑

Lr − 1.1738

To estimate the dimension of W we will take the following four steps (for a detailed1739
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explanation of the steps and examples see [19]; also, for L1 = · · · = Lr = 1, the overall1740

derivation is similar to the proof of Lemma 2.5 in [33]). To simplify the presentation1741

of the steps, we omit mentioning the isomorphism between C
k×l×C

m×n and C
kl+mn;1742

for instance, we consider W as a subset of Cd1 , where d1 = IR+ J
∑

Lr. In the first1743

step we parameterize W . Namely, we construct a subset Ẑ ⊆ C
d1+I+J+

∑
Lr and a1744

projection π : Cd1+I+J+
∑

Lr → C
d1 such that W = π(Ẑ). In step 2 we represent Ẑ1745

as a finite union of subsets Zl1,...,lI
r1,...,rI

such that each Zl1,...,lI
r1,...,rI

is the image of a Zariski1746

open subset of Cd1−d2+1 under a rational mapping, where d2 := (I−1)(J−1)−
∑

Lr1747

is nonnegative by (2.49). In step 3 we show that dim(Zl1,...,lI
r1,...,rI

) = d1 − d2 + 1 and1748

that dim(π(Zl1,...,lI
r1,...,rI

)) ≤ d1 − d2 − 1. Finally, in step 4 we conclude that dimW =1749

dim(π(Ẑ)) ≤ max(dim(π(Zl1,...,lI
r1,...,rI

))) = d1 − d2 − 1 ≤ d1 − 1.1750

Step 1. Let ω(g1, . . . ,gR) denote the number of nonzero vectors in the set1751

{g1, . . . ,gR}. We claim that if assumption (H.1) does not hold, kA = I, and k′B ≥ 2,1752

then ω(g1, . . . ,gR) ≥ I. Indeed, if I > ω(g1, . . . ,gR) ≥ 2, then by the Frobenius1753

inequality,1754

1 ≥ ra1(B1g1)T+···+aR(BRgR)T = rA blockdiag(gT
1 ,...,gT

R
)BT ≥1755

rA blockdiag(gT
1 ,...,gT

R
) + rblockdiag(gT

1 ,...,gT
R
)BT − rblockdiag(gT

1 ,...,gT
R
) =1756

ω(g1, . . . ,gR) + r[B1g1 ... BRgr] − ω(g1, . . . ,gR) ≥ 2,17571758

which is a contradiction. Hence, W in (H.9) can be expressed as1759

W =
{
(A,B) : there exist g1 ∈ C

L1 , . . . ,gR ∈ C
LR , z ∈ C

I , and y ∈ C
J

1760

such that a1(B1g1)
T + · · ·+ aR(BRgR)

T = zyT ,(H.10)1761

kA = I, k′B ≥ 2, and(H.11)1762

ω(g1, . . . ,gR) ≥ I
}
.(H.12)1763

1764

It is clear that W = π(Ẑ), where1765

Ẑ =
{
(A,B,g1, . . . ,gR, z,y) : (H.10)–(H.12) hold

}
1766

is a subset of CI×R ×C
J×
∑

Lr ×C
L1 × · · · ×C

LR ×C
I ×C

J and π is the projection
onto the first two factors

π : CI×R × C
J×
∑

Lr × C
L1 × · · · × C

LR × C
I × C

J → C
I×R × C

J×
∑

Lr .

Step 2. Let gl,r denote the lth entry of gr. Since

ω(g1, . . . ,gR) ≥ I ⇔ gr1 6= 0, . . . ,grI 6= 0 for some 1 ≤ r1 < · · · < rI ≤ R

and since

gr1 6= 0, . . . ,grI 6= 0 ⇔ gl1,r1 · · · glI ,rI 6= 0 for some 1 ≤ l1 ≤ Lr1 , . . . , 1 ≤ lI ≤ LrI ,

we obtain that1767
1768

Ẑ =
⋃

1≤r1<···<rI≤R

⋃

1≤l1≤Lr1 ,...,1≤lI≤LrI

1769

{
(A,B,g1, . . . ,gR, z,y) : (H.10)–(H.11) hold and gl1,r1 · · · glI ,rI 6= 0

}
.1770

1771
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Let Ar1,...,rI denote the submatrix of A formed by columns r1, . . . , rI . Since (H.11)
is more restrictive than the condition det(Ar1,...,rI ) 6= 0, it follows that

Ẑ ⊆
⋃

1≤r1<···<rI≤R

⋃

1≤l1≤Lr1 ,...,1≤lI≤LrI

Zl1,...,lI
r1,...,rI

,

where1772

1773

Zl1,...,lI
r1,...,rI

=1774
{
(A,B,g1, . . . ,gR, z,y) : (H.10) holds, det(Ar1,...,rI ) 6= 0, gl1,r1 · · · glI ,rI 6= 0

}
.1775

1776

We show that each subset Zl1,...,lI
r1,...,rI

can be represented as the image of a Zariski open1777

subset Y l1,...,lI
r1,...,rI

of CIR+J
∑

Lr+
∑

Lr−IJ+I+J under a rational map φl1,...,lI
r1,...,rI

, Zl1,...,lI
r1,...,rI

=1778

φl1,...,lI
r1,...,rI

(Y l1,...,lI
r1,...,rI

). To simplify the presentation we restrict ourselves to the case r1 =1779

1, . . . , rI = I and l1 = · · · = lI = 1. The general case can be proved in the same1780

way. Let A = [A1 A2] with A1 ∈ F
I×I and A2 ∈ F

I×(R−I), so that A1 = A1...1. By1781

(H.10),1782

(H.13) [B1g1 . . . BIgI ] = [yzT − [BI+1gI+1 . . . BRgR]A
T
2 ]A

−T
1 .1783

Let Br = [b1,r B2,r] and gr = [g1,r gT
2,r]

T , so1784

(H.14) [B1g1 . . . BIgI ] = [b1,1 . . . b1,I ] diag(g1,1, . . . , g1,I)+[B2,1g2,1 . . . B2,Ig2,I ].1785

Then, by (H.13) and (H.14),1786

[b1,1 . . . b1,I ] =
(
[yzT − [BI+1gI+1 . . . BRgR]A

T
2 ]A

−T
1 −

[B2,1g2,1 . . . B2,Ig2,I ]
)
diag(g−1

1,1, . . . , g
−1
1,I ),

(H.15)1787

so the entries of b1,1 . . . b1,I are rational functions of the entries of A, B2,1, . . . ,B2,I ,1788

BI+1, . . . ,BR, g1, . . . ,gR, z, and y. It is clear that1789

1790

Y 1,...,1
1,...,I :=

{
([A1 A2], [B2,1 . . . B2,I BI+1 . . . BR],g1, . . . ,gR, z,y) :1791

det(A1) 6= 0, g1,1 · · · g1,I 6= 0
}

1792
1793

is a Zariski open subset of CI×R×C

J×

(
I∑

r=1
(Lr−1)+

R∑
r=I+1

Lr

)

×C
L1×· · ·×C

LR×C
I×C

J1794

and that Z1,...,1
1,...,I = φ1,...,1

1,...,I(Y
1,...,1
1,...,I ), where the rational mapping1795

φ1,...,1
1,...,I : ([A1 A2], [B2,1 . . . B2,I BI+1 . . . BR],g1, . . . ,gR, z,y) →

([A1 A2], [[b1,1 B2,1] . . . [b1,I B2,I ] BI+1 . . . BR],g1, . . . ,gR, z,y) =

(A,B,g1, . . . ,gR, z,y)

1796

is defined by (H.15).1797

Step 3. In this step we prove that dim(π(Zl1,...,lI
r1,...,rI

)) ≤ IR+ J
∑

Lr − 1. W.l.o.g.1798

we restrict ourselves again to the case r1 = 1, . . . , rI = I and l1 = · · · = lI = 1. Since1799
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the dimension of the image φ1,...,1
1,...,I(Y

1,...,1
1,...,I ) cannot exceed the dimension of Y 1,...,1

1,...,I and1800

since Y 1,...,1
1,...,I is a Zariski open subset we have1801

(H.16) dim(Z1,...,1
1,...,I ) ≤

16 dim(Y 1,...,1
1,...,I ) = IR+J(−I+

R∑

r=1

Lr)+L1+ · · ·+Lr+I+J.1802

Let f : Z1,...,1
1,...,I → C

I×R × C
J×
∑

Lr denote the restriction of π to Z1,...,1
1,...,I :

f : (A,B,g1, . . . ,gR, z,y) → (A,B), (A,B,g1, . . . ,gR, z,y) ∈ Z1,...,1
1,...,I .

From the definition of Z1,...,1
1,...,I it follows that if (A,B,g1, . . . ,gR, z,y) ∈ Z1,...,1

1,...,I , then

(A,B, αβg1, . . . , αβgR, αz, βy) ∈ Z1,...,1
1,...,I for any nonzero α, β ∈ C. Hence for any

(A,B) ∈ f(Z1,...,1
1,...,I ) we have that

f−1((A,B)) ⊇ {(A,B, αβg1, . . . , αβgR, αz, βy) : α 6= 0, β 6= 0},

implying that1803

(H.17) dim(f−1(A,B)) ≥ dim{(αz, βy) : α 6= 0, β 6= 0} = 2,1804

where f−1(·) denotes the preimage. From the fiber dimension theorem [30, Theorem1805

3.7, p. 78], (H.16), (H.17), and the assumption
∑

Lr ≤ (I − 1)(J − 1) in (2.49) it1806

follows that1807
1808

dim(f(Z1,...,1
1,...,I )) ≤ dim(Z1,...,1

1,...,I )− dim(f−1(A,B)) =1809

IR+ J

R∑

r=1

Lr − 1 +

R∑

r=1

Lr − (I − 1)(J − 1) ≤ IR+ J

R∑

r=1

Lr − 1.1810

1811

Since π(Z1,...,1
1,...,I ) = f(Z1,...,1

1,...,I ), we have that dim(π(Z1,...,1
1,...,I )) ≤ IR+ J

R∑
r=1

Lr − 1.1812

Step 4. Finally, we have that dimW = dim(π(Ẑ)) ≤ max(dim(π(Zl1,...,lI
r1,...,rI

))) ≤1813

IR+ J
∑

Lr − 1.1814
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