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1. Introduction

In this paper it is shown, by means of counter examples, that for some spatial domains
the motion of a viscous incompressible fluid is not uniquely determined by the traditional
initial and boundary conditions (i.e., by the applied external forces and by the values of
the fluid velocity at an initial instant of time, at the boundary of the spatial domain, and
at spatial infinity). In a positive direction, we prove uniqueness for the initial boundary
value problem in some classes of spatial domains, and uniqueness for this problem in other
classes of domains under appropriate auxiliary conditions. Regarding the uniqueness
questions to be considered here, it will be shown that the situation is much the same for
the problems of steady flow as for those of nonstationary flow, and much the same for
the linear Stokes equations as for the nonlinear Navier-Stokes equations.

In some respects our results are at variance with those given in previous works on the
subject, and in some other respects our results may appear at first to be not new. Among
the most important papers on theoretical hydrodynamics are some investigations of the
existence and uniqueness theory for the boundary value problems of viscous flow within
various classes of generalized solutions. Rather remarkably, the uniqueness proofs for these
previously studied generalized solution classes do not make use of any properties of the
spatial domain, and so the uniqueness theorems for them have in many cases been given
for an arbitrary spatial domain. This is the case in the celebrated works [21] of Ladyzhen-
skaya, [31] of Prodi, and [33] of Serrin, and also in the present author’s papers [14, 16, 17].
The unigueness theorems of these papers are misleading, however, because the classes of
generalized solutions to which they apply have been defined in such a way as to exclude

from membership, in some domains, some classical and physically important solutions.
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Until now this has gone without notice. It has been widely believed that for smooth solu-
tions which satisfy appropriate integrability conditions the generalized formulations of the
initial boundary value problem studied in these papers are equivalent to the corresponding
classical formulation. In fact, this has been stated by Ladyzhenskaya [21, p. 144], Prodi
[31, p. 175], and Serrin {33, p. 73]. Our counter examples show that these statements are
not correct for some domains, and that the uniqueness theorems for these generalized solu-
tions are not valid for clagsical solutions. Although a class of generalized solutions which
does include all classical solutions that satisfy appropriate integrability conditions has been
studied by the present author in [15], the uniqueness proof given in that paper is not
complete and is not valid for some domains.

The oversight in all of these papers lies in the identification of two types of function
spaces which are not the same for some spatial domains. One of the function spaces consists
of the completion in an appropriate norm (different for nonstationary problems than for
stationary problems) of the set of all smooth solenoidal vector valued functions with
compact support. The other function space consists of the solenoidal funetions which belong
to the completion, in the same norm, of the set of all smooth vector valued functions with
compact support. The only published recognition known to this author that the identity
of these function spaces needs to be proved appears in Lions’ book [24, p. 67, p. 100], but
the proof offered there seems to be incomplete and does not extend, as claimed, to un-
bounded domains. Until now it appears to have been regarded as merely a technical matter
to prove that these function spaces are the same, and it has been generally overlooked that
the result might, and does, fail in some domains. It turns out, in fact, that the identity of
these function spaces for a given spatial domain is equivalent to uniqueness in that domain
for the linear problems of viscous flow. In this respect there is a circularity in the uniqueness
proofs contained in the papers mentioned above. The methods of these papers, nevertheless,
remain of permanent and undiminished importance, and they are adopted and further
developed in our present work.

In this paper we prove the identity of the two types of function spaces for some classes
of domains, specifically for bounded domains, exterior domains, half-spaces, and the whole
space. We thereby prove uniqueness for both the linear and nonlinear initial boundary
value problems (without any condition on the pressure) in these classes of domains; we
believe ours is the first valid uniqueness theorem of this type to be given, even in the context
of classical solutions and even for a bounded domain. We also prove uniqueness for the
linear problem of steady Stokes flow in these same classes of domains by a similar method
based upon proving the identity of appropriate function spaces. In the case of a two-dimen-

sional exterior domain our uniqueness theorem is just the Stokes paradox for solutions with
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finite Dirichlet integrals. Although uniqueness has already been proved for the steady
Stokes equations by potential theoretic methods in the case of a bounded domain by Oseen
[29] and by Odgvist [28], and in the case of an exterior domain by Finn and Noll {6] and
by Chang and Finn [3], our proof has the advantage of being more compatible with the
functional analysis approach to existence theorems. We shall consider some specific do-
mains for which the two types of function spaces differ, and show that in these domains
the boundary value problems of viscous flow possess multiple solutions; this is true for both
the stationary and nonstationary problems, and for both the linear and nonlinear equations.
It seems not to have been previously noticed that uniqueness fails in these domains.
Under appropriate auxiliary conditions we prove uniqueness in these domains for all of
the boundary value problems of viscous flow except the nonlinear stationary problem.
Although we do not attempt to prove uniqueness theorems for the nonlinear stationary
problem, uniqueness theorems for this problem have been given by Finn for a bounded
domain [7] and for an exterior domain [8], and recently Babenko [1] has shown that the
class of “physically reasonable” solutions to which Finn’s uniqueness theorem in [8]
applies includes all solutions with finite Dirichlet integrals.

The simplest context in which to consider an example of the kind of nonuniqueness
that interests us is the boundary value problem for the steady Stokes equations. Thus
consider the question of whether there may exist, for some domains, nontrivial solutions

w(z), p(x) of

Au=Vp in Q (1)
Vau=0 in Q (2)

u=0 on 9Q (3)
u(r)=>0 as |x|->oo. (4)

Here Q, the domain, represents a region filled with fluid and is required to be an open set of
E*, n>2; oQ is the boundary of Q; x=(x, ..., z,) is the generic point of B"; u(x) is a
E"-valued function which represents the fluid velocity; and p(z) is a scalar valued function
which represents the pressure. A simple example of a three-dimensional domain for which
nontrivial solutions exist is Q ={x: #; <0, or #, =0 and 23 +23 <1}. We prove that for this
domain there exists exactly one solution of problem (1)—(4) which possesses a finite Dirichlet

integral and which satisfies the auxiliary condition

fu-nds=[f’, (5)
s

where § is the surface S ={x: z; =0 and 3 + a3 <1}, n=(1, 0, 0) is the unit normal to S, and
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F is any prescribed number. The solution u represents a steady flow with net flux F
through an aperture S in a rigid wall occupying the x,, x;-plane. It should be remarked that
this example can be modified so that the wall has thickness and so that the boundary of
is smooth. It will be shown that the pressure tends to a definite limit at infinity in each
half-space, 2, <0 and x; >0. From a physical point of view it may be more natural to pre-
scribe the pressure drop between the two half-spaces than to prescribe the flux through 8.
Therefore, we also show that exactly one solution of (1)—(4) having a finite Dirichlet inte-
gral is determined by the auxiliary pressure condition

p@)>p, a8 |z|>o0, 2 <0 (6)

plx)=>p, as |x|—>oo, x >0.
We will show that the total flux F through the aperture S is proportional to the pressure
drop p;— P, and also that for a fixed pressure drop, and for various sized but similarly
shaped apertures, the total flux through an aperture is proportional to the cube of its
diameter. These results are of particular significance because there is no pressure drop
predictable in the theory of potential flow through an aperture; the D’Alembert paradox
implies a symmetry of the pressure, upstream and downsteam, for potential flow through
an aperture just as for potential flow past an obstacle; see Shinbrot [34, p. 78]. We believe
that ours is the first mathematical investigation of flow through an aperture to be based
on equations for a viscous fluid; the details are given in section 6.

The same methods used to study flow through an aperture can be applied to somewhat
more complicated domains. For instance, if there are two apertures in a wall occupying
the z,, #3-plane, it will be shown (in section 6) that the fluxes through each cannot be
prescribed independently; a solution of (1)-(4) is uniquely determined by the combined net
flux through the two apertures from one half-space to the other, or alternatively by the
pressure condition (6). It is an easy matter to prove the existence of multiple solutions for
quite a large variety of domains; proving uniqueness under appropriate suxiliary conditions
ig generally more difficult.

The function spaces which enter into the functional analysis approach to existence and

uniqueness questions for problems of steady flow are
Jo(Q) = Completion of D(Q) in norm {| Ve,

and

Q)= (g pEW,Q) and V- =0},

valr={ 3 (%) a

i,7=1

where
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is the Dirichlet integral,
D(Q)={p: p€CT(Q) and V-¢=0},
Wo(Q) = Completion of CF(Q) in norm | V|,

and CP(Q) is the set of all smooth R™-valued functions ¢ with compact support in Q.
In section 2 we consider generalized solutions for the various problems of viscous flow, and
it is shown there that, for an arbitrary open set €, every classical solution of (1)—(4) which
possesses & finite Dirichlet integral belongs to J§({2), and also that u=0 is the only solution
of (1) belonging to J§(Q) if and only if J4(Q) =J5(Q). Clearly Jo(Q) < J5(L) for every domain
Q. If Jo(Q) +=J5(Q), then there is a unique generalized solution of (1)~(4) in each coset of
the quotient space J§{Q)/J(Q). The existence-uniqueness problem thus becomes a matter
of identifying these cosets in a physically meaningful way through auxiliary conditions;
the flux condition (5) for the domain Q = {z: ; 0 or 25 + 3 <1} is an example. In order to
prove J,(Q)=J§(2) in the case of a bounded domain, we use a method of “pulling in”
from the boundary the support of a given solenoidal vector field u €J3(Q) so as to obtain
approximating solenoidal vector fields with compact support in €; these approximating
vector fields belong to J,(2). This method, which is given in section 3, is successful for a
large class of bounded domains, however at present there is no method available for treating
an arbitrary bounded open set. In order to prove uniqueness for an exterior domain we
use a combination of methods. For a region exterior to a sphere we resort to a direct study
of problem (1)—(4); we use an “interior type” L? estimate for Vp in aneighborhood of infin-
ity to show that the coefficients of a solution’s expansion in spherical harmonics must all
vanish. Then, to treat a more general exterior domain we return to a consideration of the
function spaces; this enables us to combine the result for a bounded domain with that for
the exterior of a sphere. These arguments for an exterior domain are given in section 4. To
prove that the two function spaces are the same in the case of a half-space we again study
problem (1)~(4) directly; we obtain an I? estimate for Vp in an “interior half-space” and
use it to prove that a solution’s Fourier transform must vanish. This is done in section 5.
The basic Fourier-transform argument was kindly pointed out to the author by Marvin
Shinbrot.

A proof that Jy(Q)=J5(Q) can also be based on potential-theoretic methods in the
case of a bounded domain or of an exterior domain. Robert Finn has communicated to the
author an argument which shows that a generalized solution of (1) which belongs to J3(Q)
admits an integral representation in terms of its boundary values and of Green’s tensor for
the Stokes equations in such domains, which [implies, the result. To justify this representa-

tion, one uses estimates of Odqvist [28] for derivatives of the Green’s tensor up to the
5762907 Acta mathematica 136. Imprimé le 13 Avril 1976
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boundary, and, in the case of an exterior domain, results of Chang and Finn [3] con-
cerning a solution’s behavior at infinity. The method of proof given in the present paper,
however, has the advantage of making the functional analysis approach to uniqueness
questions independent of the potential-theoretic approach, and is also easily modified to
investigate the function spaces which arise in the study of nonstationary problems.

The initial boundary value problem for the Navier-Stokes equations is that of finding

a solution pair u(x, £}, p(z, t) of

w,+u-Va= —Vp+Au+f, (z, )€Qx(0,T) (7)
Vou=0, (z,1€Qx(0,T) (8)
Wz, 0) =a(z), z€Q (9)

Wz, t) =0, (z,1)€8Q % (0, T) (10)

u(m, 1)~0, as |z|-—-oo (11)

in a space-time cylinder Q x (0, 7). Here f(z, ¢) is the applied external force density and
a(x) is the prescribed initial velocity; for simplicity we have assumed that the prescribed
boundary values and the prescribed limit at infinity are zero, but in [15] we have posed
the problem more generally. In section 2 a class of generalized solutions for the problem
(7)-(11) is defined which includes all classical solutions for which the energy integral
Jou¥(x, f)dx, the Dirichlet integral [q(Vu(z, t))2dx, and the integral [ ui(z, t)dx of the
time derivative are square-summable functions of £ in (0, T'). The principal function spaces

which enter into this definition are

J1(Q) = Completion of D(€) in norm |||,
and
JHQ) = {p: pE€WKQ) and V-¢ =0},

where ||¢||1=]¢| % + || Vo||2 and where

WHQ) = Completion of CF(Q) in norm ||¢||,.
For a given domain (), the question of whether solutions of (7)-(11) are unique is reduced
in section 2 to the question of whether J,(Q)=J7(Q), and this question is reduced in turn

to that of whether there exist nontrivial solutions, with finite norm |[ul|,, of the time-

independent boundary value problem
Au—-u=Vp in Q (12)
Via=0 in Q (13)
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w=0 on &Q (14)
u(z)—>0 as |z]|—>oco. (15)

The methods we use to study problem (12)-(15) are the same as those we use to study
problem (1)-(4); so a unified approach to uniqueness questions for both stationary and
nonstationary problems is achieved. We prove J,(£)) =J7(Q) for bounded domains, exterior
domains (ineluding the whole space), and half-spaces in sections 3, 4, and 5 respectively,
thereby establishing uniqueness for problem (7)—(11) in these classes of domains. For some
other domains, such as the three-dimensional domain Q = {x: , =0 or x5+ 25 < 1}, we show
that J,(Q) #=J7(€2); for these domains the problem of properly posing the initial boundary
value problem becomes one of characterizing, through physically meaningful auxiliary
conditions, the cosets of J7(Q)/J (). For the domain Q= {z: , 40 or 43 +x3 <1} we prove
the uniqueness and (local) existence of a solution of (7)~(11) satisfying the auxiliary condi-

tion

fu(x, £)-nds=F(t), (16)

where F(f) is any smooth function of ¢ which satisfies the compatability condition
{5 a{x)-nds=F(0).

These results put into new perspective the uniqueness theorems previously given for
clagsical solutions of the initial boundary value problem by Foa [9], Dolidze [5], Graffi [13],
and Ito [19]; see also Serrin [32, p. 252]. All of these theorems contain hypotheses concerning
the behavior of the pressure; hypotheses that the pressure should possess a certain degree
of regularity up to the boundary and (in the case of unbounded domains) should tend in a
prescribed manner to a limit at infinity. Our theorems show that an appropriate condition
for the pressure, or some alternative auxiliary condition, is indeed necessary for unigueness
in some domains, but that the special geometry of certain classes of domains, particularly
of bounded domains and of exterior domains, makes such conditions unnecessary and there-
fore inappropriate: the behavior of the pressure is already determined by the initial and
boundary values, and the limit at infinity, prescribed for the velocity. The theorers previ-
ous to ours take no account or advantage of the spatial geometry. It must be remarked that
the Graffi uniqueness theorem is exceptional in that it is proved for an exterior domain
without agsuming that the velocity tends to a limit at infinity, so that the hypothesis made
concerning the pressure is necessary for the result. This very interesting theorem indicates
the strength of a condition for the pressure. Although it is only stated for an exterior

domain, the Graffi theorem is actually valid for an arbitrary (smooth) domain.
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2. Generalized solutions

It turns out to be most convenient to give our uniqueness theorems, even for classical
solutions, within the framework of a class of generalized solutions. We will consider first
the nonlinear initial boundary value problem. In order that the principal point of difficulty
to which this paper is devoted will not be obscured by technicalities related to the introduc-
tion of generalized solutions, let us examine briefly the formal uniqueness argument which
we seek to justify. Suppose that u and @ are two solutions of problem (7)—(11) with corre-
sponding pressures p and $. Letting w=u—1 and ¢=5—p, and operating formally with

equations (7)-{11), one obtains
¢ ¢ ¢
%Hw(t)||2+f [IVW||2d1=ff W-Vw-udxdr—kf f W-Vqdzdr (17)
0 0Jo 0Jo

where [|[W(t)||2= [oW¥(x, t)de and W-Vw-u=X},; w,(0w,/éx;)u;. Among the operations
leading to (17) are several integrations by parts which may be considered to be formally
justified by the boundary conditions (9)~(11). Our concern is with the second integral on
the right, the term which involves the pressure. It will be shown that this term, in effect,
vanishes for some classes of spatial domains without making any hypotheses beyond (7)-(11),
except that the fluid velocity and its first derivatives should be square-summable, while
for some other classes of spatial domains further hypotheses are necessary and natural,
Assuming that the pressure term in (17) does vanish and that u is a classical solution, the
uniqueness argument can be completed as follows. Without any real loss of generality one
may assume |u(z, ¢)| is bounded by a constant C for all (x, t)€Q x (0, T), so that for all
t€(0, T) there holds

<ofivwll-fiwli<fivwi+ 2| wif. (18)

U w-YwW-udx
Q
By combining (18) with (17) one obtains
1
Iwol <3c? [ Iwliar, a9)

which implies that w vanishes, as may be seen by setting F(t)= [}| w|2d= and observing
that (19) becomes F'(¢) < 30?2 F(t).

Tt is evident that this argument can only be applied to sclutions u such that u and Vu
are square-summable over Q x (0, 7'); we will confine our attention to such solutions and
assume in addition that u, is square-summable over Q x (0, T'). The question of whether
every classical solution of (7)—(11) must satisfy these integrability conditions seems worthy

of consideration, but is beyond the scope of this paper; see, however, Ma [25]. We study
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the following class of generalized solutions which includes all classical solutions that meet
these integrability conditions and also generalized solutions obtained by the method of
Kiselev and Ladyzhenskaya [20].
Definition. We call a function u(z, t) a generalized solution of (7)~(11) in (0, 7] if and
only if:
w€L0, T; JT(Q)) and w,€LX(0, T; L2(Q)), (20)

either |u(z, t)] is uniformly bounded in Q x (0, T), or Q< R" and for some

g>n the integral f |u(z, t)|%dx is uniformly bounded for ¢ in (0, T'), (21)

uz, t)—a(z) in L2Q) as t—0, (22)
J‘TJ‘ {u,»p+u-vu-¢+vau:vep —f-d}ldxdt=0 forall GEL*0,T;J,(Q)). (23)
o Jo

Further, if u is a generalized solution in (0, 7"] for all 0 <7 <T, we call u a generalized
solution in (0, T'); here T'= oo is allowed.

Here we have denoted by L0, T; V), with V taken to be either L*(Q) or JT(Q) or
J1(Q), the set of all V-valued measurable functions u(-, ¢) such that [§| u()||3d¢ is finite.
The proof that every classical solution is a generalized solution is based primarily on the
following two lemmas. Lemma 1, well known for smoothly bounded domains, can be proved
for arbitrary open sets by potential theoretic methods, Deny and Lions [4, p. 359]; we give
a direct and elementary proof, valid for an arbitrary open set, at the end of this section.
Lemma 2 is well known; see [21, p. 27] and [16].

LemMmA 1. Let Q be an arbitrary open set of R™. Suppose that u€C(Q), that =0 on 8Q,
that u has generalized first derivatives, and that the integrals [qu2dx and [o(Vu)2dx are finite.
Then w€ W(Q).

LemMA 2. Let Q be an arbitrary open set of B". If w€L5,(Q), then [ou-¢pdx=0 for all
P E€D(Q) if and only if w=Vp for some p ELZ, (Q) with VpELZ.(Q).

A function u(z, t) is called a classical solution of (7)—(11) if u is continuous in Q x [0, T'),
if its derivatives s, Ussy, and 4, are continuous in Q x (0, 7'), and if the conditions (7)—
(11) are satistied for some p(x, £)ECHQ % (0, 7)) in the senses appropriate to continuous
functions. Now if in addition u, u,, and u, are square-summable over Q x (0, T), it is a
routine matter to check that condition (20) follows from Lemma 1 and the definition of
J1(Q). Condition (21) holds at least on every subinterval (0, 7"] of (0, T') in virtue of condi-
tions (10) and (11). Since u, u,€L*(0, T; L*(Q)), certainly u(x, £} converges in L3((Q2) as t—0;
by (9) the limit must be a{z), and thus (22) holds. It is a routine matter to show that the
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set of all functions ¢ € CF(Q x [0; T'), such that V-¢ =0, forms a dense subset of L*0, T,
J,(Q)); for such functions, (23) follows from (7) and Lemma 2. Since u is bounded, u-Vué€
L2(0, T; L2(Q)); if we also assume 1€L?(0, T; L?(Q2)), we can obtain (23) for all ¢ €L*(0, T';
J(Q)) by passing to a limit from solenoidal functions ¢ €CF(Q x [0, T']). We have proved:

TumorEM 1. 4 classical solution u of (7)—(11) is a generalized solution if u, Vu, u,€
L2(Q < (0, T)). Here it is asswmed that T=1*4+Vq where q, VqCeLi (Qx (0, T)) and
e L2Q < (0, TN).

The solution of the initial boundary value problem constructed by Hopf [18] was
proved by him to satisty & list of properties which included the condition u €L*(0, 1; J,(£2)).
The properties listed by Hopf have been subsequently taken by some authors as defining
properties for a class of “weak solutions”. Thus, solutions belonging to solution classes
studied by Prodi [30, 31], Lions [23, 247, and Serrin [33] are required to satisfy the condi-
tion w€ L0, T'; J,(€))). Hidden properties of this condition have made possible some unique-
ness theorems, without auxiliary conditions, which are not valid for classical solutions.
Kiselev and Ladyzhenskaya [20] and Ladyzhenskaya [21], while requiring only that u
belong to L2(0, T; J5(Q)) and not to L2(0, T; J,(Q)), have required that (23) be satisfied by
all @ €L, T JH(Q)). Thus, for domains such that J1(Q) ¢ J,(Q), their condition (23)
implies something more than equation (7) and results in excluding some classical solutions
from membership in their solution class (the paper [20], however, treats only bounded
domains). Consequently they were able to prove uniqueness within their solution class,
without auxiliary conditions, even for an arbitrary spatial domain [21]. For the class of
generalized solutions we defined above, the uniqueness argument of Kiselev and Lady-
zhenskaya reduces the uniqueness problem for (7)-{11) to a matter of determining the
cosets of JT(€2)/J,(Q).

ProrosrrioN 1. Suppose that w and Ut are two generalized solutions of (7)~(11) which
belong to the same coset of L0, T; JT( Q) L0, T; J,(Q)). Then u=1.

Proof. Consider w=mu—1. Let 7 €(0, T) be arbitrary, and let ¢(x, t) be equal to w{z, {)
for t<7, and vanish for ¢ >7. The assumption that u and i belong to the same coset means
that uw--0€L*0, T'; J,(Q)); therefore ¢ €L2(0, T; J,(Q)). Thus we can subtract (23) for @

from (23) for u to obtain

f f {w, w+u-vo-w—10-Vii-w+VYw:Vw}dzdt=0.
oJa
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We write u-Vu-w—ii-Vi-w=w-Vu-w+1i-Vw-w, and observe that [ow-Vu-wdz~=
— [ow-Vw-udz and [oili-Vw-wdx=0. This follows from the integration by parts identity
Jou-Vvewde = — [o(V-u)v-wdz — [qu-Vw-vdz which is easily verified for any three
pointwise bounded vector fields u, v, w€ W%(Q). Instead of assuming that the vector fields
are pointwise bounded it is enough to know, if Q< R", that they belong to LY(Q) with ¢ =n;
in passing to the limit from functions in CP(Q2) one then uses Holder’s inequality and the
Sobolev inequality [|¢|zrq<C||¢|l1» which is valid for p satisfying p—'+n1+}=1 if
n>2, and satisfying 2<p<co if 5 =2. Since W, W=151(d/di)w?, and since w(z, 0)=0, one

obtains
t t
%HW(QH”J IIVWH2dr=f f w- VW - udedr. (24)
0 0JQ

If |u(z, t)] is uniformly bounded in Q x (0, T'), the nonlinear term in (24) can be esti-
mated as in (18), so that (19) is obtained and the proof is completed. If |u(x, )] is perhaps
not uniformly bounded, but fq |u(x, £)]|%dx<C for all t€(0, T') for some ¢>n, then one
can combine Holder’s inequality with the Sobolev inequality ||wl| o, <C|| VW ||™/<||w]|j*-"/2
which is valid for p=+¢~1+3$=1, to obtain

<{lullzacy - [[Vwll - | Wil < Cllww ]| w7 <[ wwl[*+ Ol wlP.

(25)

lf W-VYw-udx
Q

Here Young’s inequality ab <s4*+t—10%, valid for s~14-¢-1=1, has been used in the last
step; and C simply denotes a constant which may change values from step to step. The proof
of Proposition 1 is now completed by using (25) in place of (18).

In order to determine the cosets of JT(Q)/J1(£2), we shall frequently exploit the equi-
valence of showing that J(Q)=J,(Q) and of proving uniqueness for problem (12)-(15)
in Q.

Prorostrron 2. Let L be an arbitrary open set of R*. Then J¥(Q)=J,(Q) tf and only
if the only function wE€JT(Q), such that [o(Vw: Vo +w-@)dx=0 for all ¢ € D(Q), is w=0.

Proof. In order to show that JT(Q)<J,(Q), let m be an arbitrary element of J7(£2).
Clearly [ (Vu: V¢ +u-¢)dz defines a bounded linear functional on ¢ €J,(£2). Thus, since
J1(Q) is a Hilbert space, there is an element vVE€J,(Q) such that [o(Vu: V¢ +u-¢)dr=
fa(Vv:Vg + v-¢)dzx forallg €7 ,(Q). Let w=u —v. Then w € J5(Q) and [, (VW: Vo +w+¢)dow =
0 for all ¢ € D(Q). This, by assumption, implies that w =0 and hence that u=v€J,(Q).

It JF(Q) =J(Q), and if wEJF(Q) satisfies [o(Vw: Vo+w-@)dz=0 for all ¢ € D(Q),
then, since D(Q) is dense in J;(Q)=J7(Q), one obtains [o(Vw: Vw+w-w)dz=0. Thus
w=0.
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The next lemma, which is essentially due to Ladyzhenskaya [21], supplies a means of
estimating the L?norm of Vp in a neighborhood of infinity or in an “‘interior” half-gpace.
We write Q'< < Q to mean that the closure ' of Q' is a compact subset of Q, and we denote

||l zxcyy simply by ||ul|q-. The domain Q may be an arbitrary open subset of R™.

LemMA 3. Let u be a wvector field such that u, Vu€L; (Q) and V-u=0. Suppose
(o (Vu:Vp —1-¢)dx=0 kolds for some L€LZ,,(Q) and all p€D(Q). Let Q' Q' <Q. Let
£ be a continuously differentiable, and piecewise twice continuously differentiable, real valued
function 2 Q->[0, 1], such that =1 in Q", and L =0 in Q—Q'. Then e ;€LE(Q) and

[ tziz5lla- < CellVulla—a-+ Ccl|Hle-+ | (AL ulla- (26)

where the constant Cy depends only on the maximum value of the first derivatives of C.

Proof. Let ¢ be the vector field with 7th component

?51 ={'— CzAugH— i (65 6lm -4 55) (i Cz) (; ug’")} ?
£7] e

i lim=1 ox;

where 8} is one if ¢ =j and zero if i +§, and the subscript ¢ denotes an averaging convolution
9(@)= [ glx—gy)w(y)dy with kernel w€CFP(|x|<1) satisfying [w(x)dz=1. For small
enough g the support of ¢ is in ', and one may check by direct computation that ¢ € D(Q).
By using the well known identities | ¢,ypdx= | ¢y, dz and (¢,),, =(¢z), for the averaging
convolution, we may write the identity [oVu: Védz = [of-$pdx in the form

2 i > m__ Am i __?‘
J;) (CA]]Q) dx+ o zg:l (CAugi) '27';: (65 6} 6; 65) (2 axi C) (axluem) dzx

1 1

- f €Ay -(—2tydat [ (@) S (8l6F—ora) (236) (%m) &z,
Q Qi=1 3.1, m=1 % ox;

i
By using the Schwarz inequality, and also the inequality ab < }a?+b2, we obtain
[I6Aw, | < Cell vulf o+ 112

Since A(fu,) ={Au,+2A-Vu,+(Al)u,, we get

A< Ccl| Vulla—a- +Ello: + [[(AL) -

Finally, noting that |Av|3 =27 1 ||Veszl|k holds for functions »€CP(Q’), as may be
shown through integration by parts, and taking the limit as ¢—0, we obtain (286).

ProrositionN 3. Let u be a vector field such that u, VO€L (Q) and V-u=0, Then
Ja(Vu: Vo +u-¢)dz=0 holds for all ¢ € D(Q) if and only if w€C®(Q) and Au—u=Vp for

some harmonic function p.
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Proof. Suppose that [o(Vu: Vé +u-¢)dz=0 for all ¢ € D(Q). Then, by the lemma, u
has second derivatives Ugq;€L5(Q). Clearly V-u,;=0. Since the derivatives of functions
$€D(Q) also belong to D(Q), one has o (Vuy: Vo + s -@)dz= — [o(VU: Voo, +u-¢y)dz=
0 for all ¢ € D(Q). Thus, by the lemma again, u has locally square-summable third deriva-
tives. An induction argument shows that u has locally square-summable derivatives of
all orders, and therefore, by a well known theorem of Sobolev, u € C®(Q). Finally, we observe
that Lemma 2 implies the existence of p, and that Ap=V-Vp=V-Aw—-V-w=0.

We turn now to a consideration of the boundary value problem (1)-(4) for the steady

Stokes equations.

Definition. We call a function u(zx) a generalized solution of (1)-(4) if and only if
u€J5(Q) and [oVu: Vgpda =0 for all ¢ €J,(Q).

Since the Stokes equations are linear, uniqueness questions for the more general in-
homogeneous houndary value problems reduce to unigqueness questions for problem (1)—(4);
thus in this paper we consider only problem (1)—(4). To prove that every classical solution
of (1)—(4) which possesses a finite Dirichlet integral satisfies our definition of generalized

solution we need the following lemma, in addition to Lemma 2.

Levwma 4. Let Q be an arbitrary open set of R". Suppose that u€C(Q), that =0 on
oQ, that w(x)—~>0 (continuously) as |x|—co, that w has generalized first derivatives, and that
Jo(Vu)2dzx is finite. Then u€ Wo(Q). The assumption that u(x)—0 as |x| - oo may be dropped
altogether if n =2, and may be replaced by the weaker assumption, that fqof (u(x) —c)?/|2|2]dx < oo
tmplies ¢ =0, if n=3.

Proof. If Q is bounded, the inequality ||u|]<Cq[Vu|| holds, and Lemma 4 follows
immediately from Lemma 1. If Q is unbounded, we consider a sequence of truncations of
u of the form £, u, where {;(z) is a continuous and piecewise continuously differentiable real-
valued function of r=|z|, such that for some numbers 0<a, <by, (y(r)=1 for r<a,
0<fy(r) <1 for a,, <r<by, and §(r) =0 for r 2b,. Clearly Lyu€ I‘/’Vé(Q)C Wo(Q). We will give
a particular sequence of functions {{,} such that the truncations {,u converge to u in
Dirichlet norm. Observe that

f {V(Ceu—u)de< 4f
o

Q,ap<r<y

(wy ) dx+ 6 f (Vu) de. 27)

Q,r>ayp

If a,— oo as k> oo, the second integral on the right will tend to zero. In order to show that

the first integral on the right tends to zero, for an appropriate choice of functions £,, we
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need the inequalities

u? u?

—sdz<co for n>=3, and f g << oo for n=2, (28)
ar’ Q.re2 7 logr

which are valid for every function « € C(Q) such that « =0 on 8Q, such that [q(Vu)2dz <o,
and, if n >3, such that [o[(u(x)— ¢)?/|x|*]dz < o implies ¢ =0. The inequality (28) for n >3
is due to Finn [8], who based its proof on an inequality of Payne and Weinberger; we will
give another proof here which is based upon properties of harmonic functions, and which
yields the inequality for n=2 as well. Before proving (28), let us show how (27) and (28)
can be combined to complete the proof of Lemma 4. For the case of n>3 we follow Finn
[8, p. 368]. Let ap=Fk, b, =2k, and (r)=(2k—r)/r for k<r<2k. Then |V(,|=2k/r? for
k<r<2k, and therefore
P u

2
f (uVCk)2d96<4f “*dx<4f %~dx—>0 as k- oo,
Q, k<r<2k Q. (<r<2k7' ” Q, k<r 1

For the case n =2, let a, =¢€, b, =¢¥, and {,(r) =2 —(1/k) log 7 for €* <r<e*. Then | V(| =

1/(kr) for ¢F <r <2, and therefore

?/lxz ’LLZ
(uVCk)de< 73 2dx\ 5 de—>0 as koo,
Q, efgr<e?® Q, eF<r<e®® k Q, ebgr< e T 108’ r

It remains to prove (28). First consider the case n > 3. Extend the domain of definition
of u to all of B™ by setting ¥ =0 in the complement Q° of €). Clearly | Vu: Vdz defines a
bounded linear functional on ¢ € Wy(R™). Thus there exists an element » of W (R") such that
J V{u—v): Véda=0 for all $ €CP(R™). Clearly w—v is harmonic in R" and [ {V(u—v}?dx
is finite. Thus w—=v+¢ for some constant ¢. Now [g.02/r2de<4(n —2)~2 [, (Vv)idx, as may

be checked through an easily justified integration by parts for functions v € C3(R"):

f\ ple= —2f1 ai 2™ —zfz 8@;; .
<2 (20 )m-

Thus [g[(u—c)?/r2]de <4(n—2)2 [z (Vu)2dz, and this implies (28) because of the assump-

tion that u->0 as |#| — o, even in the weakened form.

We argue a little differently if n =2 in order to avoid dealing with the Hilbert space
Wo(R?) whose elements are equivalence classes of functions which differ by constants. As
before, we define « throughout R? by setting =0 in Q°. Then let @ be a truncation of «

which equals 0 for |#| <3/2, and which equals  for |z| >2. We may assume [ (Viz)2dx < oo,
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so that [;.1Vi: Véda defines a bounded linear functional on ¢€ Wy(|x|>1). Let v
be the element of Wy(|z| >1) which satisfies [j,.1V (@ —v): Véde =0 for all €OF(|x| >1).
Clearly @—v is harmonic in |x|>1, and [i;.;{V(#—v)}*dz <o, Thus % —v tends to a
constant as |x|—oo, and hence @—v is a bounded function. Now fj4.10%/(r? log? r)dx <
4§51 (Vo)2dz, as may be easily checked through an integration by parts for functions
vECT(|x] >1):

v dx ov 2, 2 x;
B A B gy BRI B
f1x1>1l%|2 log®|w| f1x1>1121995 }x|2loglx| f!xmgl oz, |x|* log ||

> el o) ([, 2(E))
<2 dx —
(ﬁxl>1121]x] 2log¥ | [« m>121 o%;

f.mm ffffrl =

and since |u|<|v|+ ¢, (28) follows.
A vector field u(z) is called a classical solution of (1)~(4) if u€C(Q) N CHQ) and if

conditions (1)-(4) are satistied, for some p(z) € C1(L2), in the senses appropriate to continuous

Since

functions. The following theorem is an immediate consequence of Lemmas 2 and 4.

TarorEM 2. A classical solution of (1)—(4) is a generalized solution if [o(Va)idz is
finite. The assumption (4), that w(x)—~0 as |x] oo, is unnecessary if Q< R?, and may be
replaced by the weaker assumption, that [ql(u(x)—e)?/|x|?)de<co implies =0, if Q= E”
with n>3.

ProPoSITION 4. Let Q be an arbitrary open set of R*. Then J§(Q)=J,(Q) if and only
if the only generalized solution of (1)—(4) is u=0. If u and @ are two generalized solutions of
(1)—(4) which belong to the swme coset of J§(Q)}J(Q), then u=1l.

Proof. To say that u and @ belong to the same coset of Ji(Q)/J(Q) means just that
u~0€Jy(Q); thus if u and #i are also generalized solutions of (1)-(4) it readily follows that
fa{V(u—i)}2dx=0. Clearly this implies u=0 is the unique generalized solution of (1)-(4)
it J§()=J,Q). On the other hand, suppose the only generalized solution of (1)-(4) is
u=0, and suppose that v€J5(Q). Since [,Vv: Védx defines a bounded lincar functional
on ¢ €Jy(Q), there exists an element w of Jy(Q) such that [oVw: Vépdz= [ Vv: Védx for
all ¢ €J(Q). Clearly w—v is a generalized solution of (1)-(4), and hence w—v=0. Thus we
have v=we€Jy(2).

The proof of the next proposition is similar to that of Proposition 3.
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PrOPOSITION 5. Let u be a veclor field such that u, Vu€L: (Q) and V-u=0. Then
faVu: Védaz=0 holds for all ¢ € D(Q) if and only if u€ C®(Q) and Au=Vp for some harmonic
function p.

We will now give a proof of Lemma 1. The author wishes to thank Professor C. A.
Swanson for suggestions which have led to improvements in the proof. We begin by noting
that the case of an unbounded open set Q) can be reduced to the case of a bounded set by con-
sidering truncations of «; the argument is much simpler than in Lemma 4 because « €L*(().
Thus we consider only the case of bounded €). We need some preliminary facts which are
true for bounded sets.

(i) The set Co(Q) N Lip (£2) of all Lipschitz continuous functions with compact support
in Q is contained in Wi(Q).

To prove this, suppose that » € Cy(Q) N Lip (Q), and let uy(x) = [ w(y)w[(x —y)/olo~"dy
where w(z) is an averaging kernel, with w €07(|x| <1) and | wdx=1. Of course u,—~u in
L*Q) as 9—~0; thus we need only show that [[(9/0x;)u,|| remains bounded uniformly in o
as 9—0. It suffices to show that [(&/ox;)u,| is bounded uniformly in « and g. Let K be the
Lipschitz constant for «, so that |u(x—ey) —u(z)| <Ko|y|. Then

0
a],‘i“e(w)

= \e‘lfl Mu(w — oY) wn(y) dy‘

<

ot f' o U On) dy’ e f' Koyl lonto)|dy <K, -

because the first integral on the right vanishes through integration by parts.

(ii) If v, w € W3(Q), then u(z) = max (v(z), w(z)) € WL(Q). As usual, Wi(Q) denotes those
functions in L2(Q2) which have weak derivatives in L2(().

For every >0, choose v,, w,€C®(Q) such that ||lv—wv,||; <¢ and [jw—w,||; <s; this
is possible by a theorem of Meyers and Serrin [26]. Let u,(x) = max (v (z), w.(z)). It may
be checked that |max («, f) —max (&, )| <|x—&| + | —f| holds for any numbers «, &,
B, and §. Thus ||u—u.|| <|jv—v,|| +||w—-w,|; s0 u,~u in L*(Q) as e—>0. That u, has weak
derivatives du./éx; can be seen by applying (i) to truncations of u,; if {€CP(Q) and {=1
in a subdomain Q' of €, then {u,€Cy(Q) N Lip (Q)< Wé(Q) and u, =u, in Q. To show that
||ou,/éx,|| is finite and remains uniformly bounded as -0, one uses the fact that, for
almost all #, |0u,/ox;| <C max (|Vv,|, | Vw,|). This last inequality can be rigorously proved
by noting that u, is locally Lipschitz continuous and that, in a sufficiently small neighbor-
hood of any given point z, the Lipschitz constant is approximately equal to max (| Vo, (z)]|,

| Vwg(x) | ); one then applies inequality (*).
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(ifi) If Ny={x: €Q and |x—y| <J for some y €6Q}, then the measure of N; tends to
zero as §—0.

To prove this, remember that Q can be formed as a countable union of open,
balls, Q=U%;0,, and also that meas (Q)=1lim, ., meas (UL 0,). Now given £>0,
choose N such that meas (Q—UY;0,)<g/2. Then meas (N;)=meas (NsN U¥,0,)
+meas (N5 0 (Q— UL 0,))<ZE, meas (N; N 0,) +¢/2. Since for every i, meas (N; N 0,)—~0
as §—0, we can choose a value for § such that meas (NN 0,)<g/(2N) forall 4=1, 2, ..., N.
For this value of §, meas Ns<N-g/(2N)+¢/2=e.

The proof of Lemma 1 is completed as follows. For every number § >0, let {s5(r) be a
continuously differentiable non-increasing function of # >0, such that {5(r) =1 for 0 <r<§/2,
[(d]dr)s(r)| <3/d for §/2<r<4, and {s(r) =0 for r >4. Also for 6 >0, choose a finite number
of points y, €902 such that 6Q< U, {x: |x—y,| <6/2}; this is possible because 6Q is compact.
Finally, let #;(x) = max, {s(|z —y;|). Clearly 7s=1 in some open set containing (2, and
clearly #,=0 outside N;. It follows from (ii) that 7, € W3(Q). Moreover [ns(V#;)2dz < (3/5)?
meas (N;) and (s (15)?dx <meas (Ns). Therefore dn;—0 in W3(Q) as 6—0, by (iii).

Now let wt(x)=max (%{z), 0) and w(z)=min (u(z), 0). It follows from (ii) that u*
and u~ belong to W}(Q). We will show that u+ and u~ each belong to Wé(Q) as well, which
implies that »€ W(Q). To this end, let u} (%) = max (w*(z), o (2)); certainly ug € Wi(Q),
by (ii). Since u€C(Q) and u =0 on 8Q, we have uf =4 in a neighborhood of 8Q. Tt follows
that #§ —d, which vanishes in a neighborhood of €, belongs to W%(Q). Since w3 equals w+
everywhere in ) except in part of N, where it equals dzs, it follows that ||ug —u*|,~>0 as
0->0, because meas Ny—~0 and [|d7s]j; 0. Clearly wi —8, which belongs to Wé(Q), also
converges to u+ in W3(Q) as d—0; thus «+ and similarly u— belong to IjVé(Q).

Remark. Consider, for an arbitrary open (bounded) set (2, the question of uniqueness
for the Dirichlet problem: Au=fin ; =0 on 8Q. One has the existence and uniqueness of
a “‘generalized solution” belonging to TjVé(Q) by the Riesz representation theorem. One also
has unigueness for classical solutions by the maximum principle. To show that the classical
solution (when it exists) is the same as the “generalized solution”, one can use Lemma 1
(for unbounded (, Lemma 4}, which implies that every classical solution with a finite
Dirichlet integral belongs to the generalized solution class, and is therefore subject to the

uniqueness theorem of that solution class.

3. Uniqueness in bounded domains

We will give a method here, by which it can be proved, for some bounded domains £,
that J3(Q)=J(Q) and that J3(Q)=J,(Q). In virtue of Propositions 1 and 4, this implies
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uniqueness for generalized solutions of problems (1)—(4) and (7)—(11) in these domains.
Since for functions belonging to W(Q), the norms [IV-[| and |||, are equivalent in the
case of a bounded domain, J§(Q) =J7(Q) and J,(Q)=J,(Q), and it is not necessary to treat
separately the function spaces for stationary and non-stationary problems. The basic idea
of our method can be very simply described by considering a star-like domain Q. To be
precise, suppose the closure &, of Q, = {x: =gy for some y€Q} is contained in Q for every
positive ¢ <1. Then if u€Jg(L2), it is easy to see that u, defined by u,(x) =u(z/) for z€Q,,
and by u,(x) =0 for x€Q -0, ,will belong to Jy(2). One merely observes that u,€ W%(Q),
that V-n,=0, and that the support of u, lies in a compact subset of (; it follows that the
averages of u,, obtained by averaging convolutions with small radii, belong to D({2) and
converge to u, in norm |||, as the radii tend to zero. It is obvious that [ju,—ul|,~0 as
o1, and this proves that J§{€) =J,(€2). To make this argument work for a more general
class of domains, we need a more general class of transformations with which to “pull in”

the support of u from Qp, than the contractions of star-like domains.

TurrEoREM 3. If () is a bounded open set of R", a condition which is sufficient to ensure
that J§(Q) =J(Q) and that JT () =J,(Q), and hence sufficient to ensure uniqueness for genera-
lized solutions of problems (1)~(4) and (7)~(11) in Q, is that there should exist a one-parameter
family {T,} of maps T, Q—Q, say for 0 €(0, 1], with the properties:

(a) Ty is the identity map,

(b) T, is one-to-one for every 9€(0, 13, and the closure of T (L) is contained in Q) for every
0€(0, 1), and

(¢) Tolx) and its first and second derivatives (0/ox;) T (x), (8%/0x;0x,) T ,(x) are uniformly

continuous functions of (g, €)€(0, 1] x Q.

For an arbitrarily given function u€J5(C)), we need to define another function w,,
which we call the image of u under 7', which is solenoidal, has support in 7,(Q), and
belongs to W%(Q). These properties ensure, through an averaging argument, that w,€J,(C}).
The following formula is due to Ford [10]; see also Ford and Heywood [11]. We define u,
implicitely in 7,(€2) by the condition that

_VT@) u(e) 29)

u,(Tp()) 7.(@)
0

should hold for all x€Q, and we set u,(z) =0 forallz €Q — T(Q). Here (V1)) ;= (0/0x,) Ty
7o is the Jacobian det (VT,) of T, and (VT ,-u), =27 ,(87,,/02;)u;. The proof of Theorem

3 is contained in the following two lemmas.
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Lzmma 5. There exists o number 8 <1 such thot the Jacobian F(x) of T, is positive and
bounded away from zero for (o, x)€[5, 1]x Q. The inverse S, of T, and its derivatives
(0]0x)8,(%), are uniformly continuous functions of (0, x) €[, 1] x T ,(£2). Forp €[4, 1], u, belongs
to CY(Q) if u belongs to CHK), and the map WHQ)—~ WHQ) defined by w1, is continuous in
norm ||+ ||y, uniformly in . Finally, if u€ W%(Q), then

[u,—ul|;>0 as p—1.

Proof. The existence of J is ensured by the uniform continuity of J,(»)in (0, 1] xQ,
and by the fact that #(x)=1. To check that the inverse and its derivatives are uniformly
continuous see, for instance, Buck [2, p. 216]. To see that u € C3(QQ) implies that n,€ Cj(Q),

one may inspect the explicit formula

(30)

for €T ,({2), and remember that u,(x) =0 for x€Q — T,(€2). One merely observes that the
right side of (30), and its first derivatives, involve only derivatives of 7, and §, which are
uniformly continuous and hence bounded, and also that ¥, is bounded away from zero.
Noting, in addition, that ¥,(x) is uniformly bounded, one verifies the continuity in W%(Q)
of the map u—mn,. Finally, it is enough to prove that ||u, —ufj;~0, as g1, for functions
u€C5(Q). Clearly there is a constant (s such that maxg [ Vu,| <Cs (maxg|u| + maxq | Vul)
holds for all u€C0HQ) and all p€[8, 1]. Now given a particular u€Cj(€2), and a number
¢ >0, choose a number ¢ which is so small that the measure of N, ={x: 2€Q and |2 —y| <o
for some y €02} is less than ¢ (maxq | Vu|)~2and alsoless than (5 (maxg |u| -~ maxq|Vu|)-2.

Then writing

v, —w)|f= fN [V (1, —u)}*de + L [V (u,—w)de,

— Ny

it is easily seen that the first integral on the right is less than 4e, for all p €[4, 1], and that

the second integral on the right converges to zero as g—>1.

Lemma 6. Let K be any cube which, along with its boundary I, is contained in ), and
which has faces parallel to the coordinate planes of R*. Let p €[5, 1]. Then, for every w€C(Q2),
the outfluzx of u, across the boundary of T,(K) equals the outflux of w across the boundary
of K; that ¢s,

f ug-nds=f u-nds, (31)
Ty r

e

where 1 denotes the outer normal to each surface. Finally, for every u € J5(2), we have u, €J,(Q).
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Proof. For clarity we give the proof in several steps.

(i) Suppose that p(s) is a differentiable curve in Q, with image T',(y(s)) in T'(Q). Let
%o =7(Sp). Then u(z,) is tangent to y at x, if and only if u,(T,(z,)) is tangent to T',(y) at
T (xy).

Let y" denote (d/ds)y. Then y'(s,) is a vector tangent to y at sy, and, by the chain rule,
VT (29)- y'(so) is & vector tangent to T',(y) at T',(x,). Thus, referring to (29), u(x,) is a mul-
tiple of y'(s,) if and only if u (7',(x)) is a multiple of V7' (xg) ' (sy)-

(ii) Suppose that the vector field u is parallel to one coordinate axis, say u(x)=
(0, ..., 0, uyx), 0, ..., 0). Let X be a surface in Q which is parallel to the other coordinate
axes. Then [z 5,8, nds= [pu-nds.

Let 4;;(x) be the matrix of cofactors of F,(z), so that J,(x) =27, (0T ,(x)/02;) A ;).

Letting d; =dz, ... dz,_,dx,,, ... dz,, we have

J‘ U, nds= 2. s (To(w)) A () dx;
T T j=1

T (%)
n " o, uz(x) , ,
= . El W A (%) dx; = fz wy(x) d; = J‘Zu -nds.

(iii) Equation (31) holds for every u€CY Q).

First, suppose u is parallel to one coordinate axis as in (ii). Then all but two faces of K
are generated by lines parallel to u, and there is no flux of u across these faces. By (i) the
corresponding “faces” of T ,(K) are generated by curves tangent to u,, and hence there is
no flux of u, across these “faces” of T,(K). By (ii), the flux of u across the remaining two
faces of K equals the flux of u, across the corresponding “faces” of T, (K). An arbitrary
vector field u€C(Q)) can be written as a sum of component vector fields which are each

parallel to one coordinate axis. Since u, depends linearly on u, we obtain (31).
(iv) For every u€Jg(Q), we have u,€J¢(Q).

In order to verify that V-u,=0 in 7',(Q), and hence in all £}, it is sufficient to check
that | TQ(K)V-u@dx=0 for the image T ,(K) of every cube in ) with faces parallel to the
coordinate planes. Since u€J3(Q), there is a sequence {u,} of functions in CF(Q) which

converges to u in W%(Q). In view of Lemma 5 we have

f V 8, dx =1lim V -ty de=Iim Wy D ds
To(E) n—>00 TQ(K) N=>00 Té(I‘)

=lim | w,-nds=lim V~undx=fv-udx=0.
K

n>oJ T n—>0 J K
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Now for p <1, n, has compact support in €2, and since averaging convolutions preserve the
solenoidal character of a vector field, we have u,€J4(€). Since ||u,~ulj;—~0 as p—~>1, we
have proved that u€Jy(€2).

CorOLLARY 1. If Q is o bounded domamin with boundary of class C?, then J3(Q) =
J(QY=JF(Q) =J,(Q), and consequently problems (1)~(4) and (7)-(11) possess at most one
solution.

Proof. For some positive ¢, the neighborhood N,={x: z€Q and |z—y| <o for some
y€8Q} of 6Q is covered by nonintersecting normals to 8CQ). For each point z€Q— N, let
T ((x)==; and for each point z€N,, of distance & from o€, let 7 (x) be the point, on the
same normal as », of distance &+3(1 —p)o~%(c —&)® from 2Q. This map 7, satisfies the
hypothesis of Theorem 3.

Although it is evident that some domains do not satisfy the hypothesis of Theorem 3,
the example of a star-like domain shows that not much regularity of 8Q is required. The
following corollary generalizes Corollary 1 and applies to domains which have roughly the
same degree of boundary regularity as star-like domains. Its simple proof is left to the
reader.

CoROLARY 2. Let Q) be a bounded domain. Suppose there is an interior subdomain D
of Q with a class C? boundary 6D < Q, such that the region Q — D is covered by nonintersecting
normals to D). Suppose further that the normals do not intersect at points of 0€). Then J§(Q) =
Jo(Q)=JT(Q) =J,(Q), and consequently problems (1)—(4) and (7)~(11) possess at most one
solution.

Remark. All presently known proofs of regularity up to the boundary for solutions of
viscous flow problems are based on potential theoretic methods that trace back to Odqvist
[28]. These results eoncerning regularity up to the boundary have been carried over to
generalized solutions by some authors, [12] and [21]; however, a complete justification for
this depends upon identifying the generalized solution of the Stokes equations with the
clagsical solution. One may either prove Corollary 1, which implies uniqueness in a class
of generalized solutions that includes the classical solution, or prove the generalized
solution admits an integral representation, as suggested by Finn. In [21] the generalized
and classical solutions are tacitly identified; in [12] the result of Corollary 1'is used and
the author states his intention to prove it in a subsequent work. We mention that, if
regularity up to the boundary is known or assumed for generalized solutions, our Corollary
1 follows by an argument of Lions [24, p. 67].

6 ~ 762907 Acta mathematica 136. Imprimé le 13 Avril 1976
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4. Uniqueness in exterion domains and in R*(n=2 or 3)

Our first step in treating questions of uniqueness in the case of an exterior domain, is
to consider the special case of a domain Q which is the exterior of a circle or a sphere. Later,
at the end of this section, we prove uniqueness theorems for more general exterior domains
by using results of sections 2 and 3 in conjunction with the theorems obtained first for
these special cases. Because the form of the equations in spherical coordinates changes
slightly with the number of spatial dimensions, we treat in detail only the cases of two
and three-dimensional exterior domains; we believe the method works in any number of
dimensions. Below, we will call a function u€J7(Q) which satisfies [o(Vu: Vo +u-¢)dz=0
for all ¢ € D(Q) a generalized solution of problem (12)-(15). We begin by showing that the
“pressure” gradient Vp, for either problem (1)-(4) or problem (12)—(15), is square-summable
in a neighborhood of infinity. We may assume without loss of generality that 60 is the unit

circle or sphere.

Lemma 7. Let Q={x: ®€ R" and |z| >1}. If u is a generalized solution of problem (1)~
(4) in Q, and if p is a corresponding pressure funciton as found in Proposition 5, then
f121>5(Vp)ida < oo, If wis a generalized solution of problem (12)-(15) in Q, and if p is a corre-

sponding “pressure” function as found in Proposition 3, then [|;~s(Vp)2de <oco,

Proof. Suppose first that u is a generalized solution of problem (1)-(4). Then u satisfies
the hypotheses of Lemma 3 with f=0. Adopting the notation of Lemma 3, let Q}=
{e:3<|z| <k} and Qi ={x: 2<|z| <2k}, for integers k >4. Define {,(x) to be a function of
|#] =r by setting ((x)=0 for 1<r<2, {y(x)=(r—2)%7--2r) for 2<r<3, {(x)=1 for
3<r<k, Lfx)=k3(r —2k)2(2r — k) for k<r<2k, and {(x)=0 for r>2k. Since for every £,
max |V, | =3/2, we have

Wiz flog < Coll vull-+ [ (AL ufley (32)

by Lemma 3, with a constant C; which is independent of k. It is easy to check that there
exist constants C, and Cj, independent of , such that |AZ,| <0, for all 2<|»| <3, and
such that |Al,| <C,/4k2 < Cy)r? for all @ satisfying k <r <2k. Thus, if C, is the maximum of

the two numbers 810% and C%, we have

”(Aclc)u”?b’c<f2 3O§u2dx+f

k<|z|<2k

Civ/rtdr < O4f w?/rt de. (33)

<lzl< 2<z|

In the proof of Lemma 4, inequalities (28) were obtained for functions belonging to the
completion of CF(Q2) in norm ||V-||. Thus the right sides of (33) and (32) are bounded by
constants independent of k. Letting k—co we obtain [|,3u%.de<oo. Since Vp=Au,

this proves the first part of Lemma 7.
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If u is a generalized solution of (12)—(15), then u satisfies the hypotheses of Lemma 3

with £= —u. Thus
iy {log < O1l[wu]l + Oy [|u]] +{[(AL) ullay (34)

Since u €L2(Q)), the right side is obviously bounded by a constant which is independent of
k. The argument is completed as before.

TaroreM 4. If Q={w: x€R? and |x| >1}, then the only generalized solution of (1)—(4)
s W=0, and hence J§(Q)=J,(Q).

Proof. We introduce polar coordinates x, =r cos 0, z,=r sin §. The radial and angular

components of u are related to the cartesian components by
Uy =u, oS 0 —ugsin 0, wu, = u, sin 0 4w, cos §
and the polar expressions for the derivatives of a function p are

op Op opsinl op op . op cosl
= =2 gosfl——= —, = =Zginf+ —,
ox, or E P/ B oxy O sint o0 r

Thus the Stokes equations Aw, =8p/dz,, Au,=0op/éx, become

. 0 op sind

Alu, cosﬁ—uosmﬂ):a% Cose_ég -

6

Alu, sin 0 + g 0030)=@—) sine—[—a—p o8y,
or 20 r

By eliminating ¢p/0f in the obvious way, and using the polar expression for the Laplacian

8 18C 1 8%¢
AC~872+;ér Frzaiﬁz’

. 2w, 1 %, lou, 2 ous u, &p
GUr 2 LU =2 Mg Ur P 5
one obtains ot e v or o8 P or (39)

The equation V-u=0 becomes in polar coordinates
e e et () (36)

By using (36) we can eliminate from (35) the term involving ug, thus obtaining

u, 1 Pw, 30u, wu, Op
r il r i | ~T= iy 3 7
ort 12 abr r or +r2 or (37)

Now since p is harmonic in the region r >1, it has a series expansion of the form

plr, By =og+aglogr+ > [(ot,r "+ &, r") cosnd + (8,7 " -+ B,r™) sinnb]

n=1
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which may be differentiated term by term. One readily finds that

n=1J38

62) 2 {oo R
f (—) rd0d7*=f artdr+m — o, 7 "+ 0, " dr
3<|z|< R \OF 3

© R
+a > | (=nB,r " T+ nB Y rdr.
n=14J38
Since [|z13(Vp)2dx<oo, it follows that the coefficients of all positive powers of r and of
log r in the expansion of » must be zero. Thus we have

©

Z%’: > (—na, cosnb —nf, sinnd)r=""1. (38)
n=1
Since u€C®(Q), the series for the radial component of u,
[s o]
u,(r, 0) = ag(r) + Z a,(r) cos nd + b, (r) sinnd), (39)

can be differentiated term by term. Substituting (38) and (39) into (37) gives differential

equations for the coefficients of ,:
ag(r) +3r ag(r) +772ay(r) =0
@ (1) +3r tan(r) +r 31 —n®a,(r) = —no,r "1 (40)
Oo(r) +3r71b5(r) +77 21 ~n2)by(r) = —nf,r"L.
Since both u, and wy vanish in a generalized sense on the circle » =1, it follows formally

from (36) that ou,/ér=0 on the circle r=1, and therefore that the coefficients may be
defined on the interval 1 <r < oo, and will satisfy at =1 the initial conditions:
ap()=ag(1)=0, a,(1)=an(l)=0, b,(1)=by(1)=0. (41)
This argument is easily justified. Since u belongs to the completion of C§°(Q2) in norm
[[V-|l, one has by a Poincaré type inequality, that the integral {},_,u*ds—~0 asr—1. Thus
the coefficients a,(r) and b,(+) in the expansion of %, each converge to zero as r—1, and so
do the coefficients, say A,(r) and B,(r), in the expansion of u;. Now (36) implies that ae(r) =
—ag(r)r L, an(r)= —nB,(r)rt—a,(#)r 1, and b)(r) =nd (r)rL—b,(r)r—1. This proves (41).
Clearly a,(r)=0. We will now show that if any one of the coefficients «, or 8, in the
expansion for the pressure is nonzero, then the corresponding coefficient a,(r) or b,(r) of u,
is a monotonically increasing or decreasing function of r, and consequently that ||Va|| is
not finite. To see that the Dirichlet integral of w will not be finite if one of the coefficients

is strictly monotone, observe that (Vu)2 > (6u,/r00)? and that

27 o0 0 n‘&a/i() 2b2(7')
R R e
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The following lemma concerns equations of the form (40); it shows that coefficients of u,
corresponding to nonzero coefficients of p are strictly monotone. Since this is impossible,
it follows that Vp and hence u vanish identically. That J§(Q) =J3(Q) follows from Proposi-

tion 4.

Lemma 8. Let ¢(t) be the solution of the initial value problem () + alt) ' (t) — b(t) (1) =
c(t), $(0) =¢'(0) =0, where it is assumed that a(t), b(t), and c(t) are continuous functions of
£20, and that b(t) =0 for all t=0. Then ¢'(t) >0 for all t >0, if c(t) >0 for all t=0. Similarly,
@' (t) <O for all t>0, if c(£) <0 for all t=0.

Proof. Suppose that c(t) >0 for all £ 0. Since ¢"(£) >0 wherever a(t) ¢’ (f) <c(f) +b(t) $(£),
and since ¢ and ¢’ are continuous functions which vanish at ¢=0, it follows that ¢"(¢) is
positive on some initial f-interval [0, ). Evidently ¢’ and ¢ are positive on (0, ). We claim
¢'(t} >0 for all t>0. If not, there must be a first £>0, say t*, at which ¢'(f) =0. Certainly
$(t*) is positive, so a(t*)¢'(F*) <c(t*) +b(t*) $(#*), and by continuity a(f)$’(t) <c(f) +b(t) H(t)
must hold in some neighborhood of ¢*. Thus in some interval [t* —¢, t*] we have ¢'(£) >0
and ¢"(t) >0. It follows that ¢'(£*) >0.

THEOREM 5. If Q={x: € R? and |x|>1}, then the only generalized solution of (12)-
(15) ¢s =0, and hence J7 (L) =J,(Q).

Proof. We introduce polar coordinates as in the proof of Theorem 4. The equations

Auy —uy =8p|ox,, and Au,—u, =0p|oz, become

i : 0 dp sinf

A(u, cos 0 — ug sin0) — (u, cos @ — u, sm0)=a—f cose_a.g -,

A(w, sinB 4 ug cos 0) — (u, sin 0 + uy COSG)=?£Sin6+6_p cosB-
or 80 r

Multiplying the first of these equations through by cos 6, and the second equation through
by sinf), and then adding and using the polar expression for the Laplacian, we obtain

=z (42)

ort 200> r or 00

The term involving u, can be eliminated, as before, by using the polar form (36) of V-u=0.
Thus

ou, 1 &u, 3 1
Ou’+—2 u’+~@—"+(——1)u,=al° (43)

or* o0 roor \s? or’
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Just as in the case of the Stokes equations, the “pressure” p and the radial component of u
have series expansions (38) and (39). Substituting (38) and (39) into (43) gives differential

equations for the coefficients of u,:
ag(r)+3r  ag(r) + (17 —1)ay(r) =0,

&nl(r) +3r an(r) + 1721 —n2 —12)a,(r) = —no,r—", (44)

By r) + 3 bi(r) 421 — 2 =) by (1) = —nBur—,
As in the case of the Stokes equations, these equations for the coefficients of u, are of the
form considered in Lemma, 8, the coefficients are defined on 1 <r < oo, and the coefficients
satisfy initial conditions (41). Therefore both Vp and w vanish identically, because other-
wise the Dirichlet integral would not be finite. It follows from Proposition 2 that J7(Q) =
J1(Q).

TueoREM 6. If Q={x: x€ R? and || >1}, then the only generalized solution of (1)—(4)

18 u=0, and hence J§(Q)=J,(Q).

Proof. We introduce spherical coordinates x; =7 cos ¢ sin @, 2, =rsin ¢ sin f, 2, =r cos 0.

The radial and angular components of u are related to the cartesian components by
uy = u, sin O cos ¢ +u, cos 0 cos ¢ —u, sin ¢,
Uy = u, 8in O sin ¢ +up cos 0 sin ¢ +uy cos @,
Ug = u, €08 O —uy sin 0.

The derivatives of a function p may be expressed as

ap _op op cos¢ cos  op sing

ox, or cos¢ sinf+75 o0 7 o¢ rsint’
op sing cos®  op cosé

o +2E

89:2 7 Sm(l) sinb+ 26 o0 7 o¢ rsint’

op op _op sm@

@ 6

oxy or cos T80 v

Multiplying the equation Aw,=0p/ox, by sin 0 cos ¢, the equation Awu,=0p/oz, by sin 6
sin ¢, and the equation Au,=0p/ox; by cos 0, and then adding, we obtain

Pu, 1 20u, 2 duy 2 ou, 2u, 2ugcoth op
R e R e e T e St ke B A 4 45
or 72A Uy 80 Peind op 7 7” or’ 42)

In deriving (45) we have used the expression

ac\ |, &% & 1 &%
AL=3 [a( )+;Taz+ "*+smfaa~7]
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for the Laplacian, and denoted by A* the spherical part

il ot, 1 &
U5 “s il
A= T ot e ag

of the Laplacian. The equation V-u=0 can be written

%r_}‘l?__uﬁ 1 8'@66_*‘%_‘_’“900170#
or r 20 rsinfop r

0. (46)

The terms involving uy and u, in (45) can be eliminated by multiplying equation (46)
through by 2/r and adding the result to (45); one obtains
&u,

4ou, 2u, Op
S — =,
or

ror o or

1
+ . A¥y, -+ 47
Since the pressure p is harmonic in the region r>1, it has an expansion in spherical
harmonics of the form
o0 n

p(r, 0, ¢)= Z Z (L XA rvn_l) Y um(0, #). (48)

n=0 m=-n

Here the functions Y, are everywhere-regular eigenfunctions of A* corresponding to eigen-
values —n(n+1). That is

MY, = —nn+1)Y,,, —n<m<n. {49)
Since [|;1-3(0p/er)2dx < oo by Lemma 7, and since the functions Y, are orthogonal on the

sphere, it is easy to see that the coefficients &,,, must vanish for »>0. Thus we have

S S (—n )tV (0, 4). (50)

T n=0 m=—n

Since u€C®((}), we can expand w, in spherical harmonics

8

TR

u(r, 0, 4) = Bun(") ¥ (0, $), (51)

0 m n

and the derivatives of u, may be found by term-by-term differentiation of the series. Sub-
stituting (50) and (51) into (47), and using (49), we obtain differential equations for the
coefficients of u,: '

a'/;z m(y') + 47_1(1';””(7') + 7-_2(2 _n(n + 1)) anm(r) = - (n -+ 1) ocan—”‘z (52)

Since u vanishes in a generalized sense on the sphere r=1, it follows formally from
(46) that both ou,/or and u, vanish on the sphere r=1. Just as in the proof of Theorem 4,

one can prove that the coefficients are defined on the interval 1 <r < oc and satisfy initial
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conditions
Gam(1) = @nm(1) =0. (52)
It follows from Lemma 8 that each coefficient a,,(r), except ay(r), either vanishes
identically (if a,,,=0) or is strictly monotone (if «,,==0). Now, as we may assume that the
functions Y,,, are orthonormal over the unit sphere, we have

u2 00 0 n
[ Zw-["5 % )
|

z|>1 ¥ 1 n=0m=-n

Sinee {u?/r2dx < oo holds for functions u which belong to the completion in norm [[V-||
of OF(€2), as was shown in the proof of Lemma 4, it follows that all the coefficients a,,,(7),
except possibly ag(r), vanish identically. Bub ag(r) also vanishes identically, because the

conditions w=0 on the sphere r=1, and V-u=0 in Q, together imply that
0= j u-nds= f w, ds = agy(r) Vi 2. (54)
Jr)=1 |z}=7

Thus u and Vp vanish identically, and Proposition 4 implies that J§(€2) =J4(€2).

TuEOREM 7. If Q={x: 2€R? and |x| >1}, then the only generalized solution of (12)-
(15) is u =0, and hence J1(Q)=J,(Q).

Proof. Our argument is similar to the proof of Theorem 6. Taking an appropriate linear
combination of the equations Aw,—wu,=2p[0x;, Auy—uy=0p[0x,, Aug—us=0p[oxs;, and
then adding to the result 2/r times the expression (46) for V-u=0, one obtains

u,
or®

1., 40u, (2 _aop
+72Au,+r5+(72 l)u, ol (65)

Again opjor and u, admit the expansions (50) and (51). Substituting these expansions
into (55) we obtain differential equations for the coefficients of u,:
(1) + 47 L0 (1) 7722 — (0 +1) —12) @y (r) = — (R +1) 2ty "2 (56)
We show just as in the proof of Theorem 6 that the coefficients are defined for 1 <r<oo,
satisfy initial conditions (52), and must therefore vanish, becauge otherwise either the Di-
richlet integral would not be finite or the condition V-u=0 would be violated. It follows
from Proposition 2 that J1{Q)=.7,(Q).
An exterior domain Q is usually defined to be an open set of R" which not only contains
a complete neighborhood of infinity, but also has a nonempty complement Q°. For our
next theorem the assumption that Q° is nonempty is unnecessary. Even if Q= R", we will
still speak of generalized solutions of problems (1)-(4), (7)-(11), and (12)-~(15), but with
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the understanding that the boundary conditions (3), (10), and (14) are in effect. dropped.
Thus problem (7)—(11) becomes the Cauchy problem for the Navier-Stokes equations if
Q= R". There is one significant complication. If Q< R? and if the capacity of Q° is zero,
then elements of the spaces J§ (Q) and J(Q) consist of equivalence classes of functions which
differ by constants; see Deny and Lions [4] and Heywood [17]. Thus, in the case that Q< R?
and the capacity of Q° is zero, it is our convention to speak of u =0 as the unique solution of
(1)~(4) if and only if every (locally square-summable function) solution of (1)-(4) belongs
to the element (equivalence class) of J§(Q) which contains u=0. This convention applies

to Lemma 4 and to Proposition 4 as well as to the following theorem.

TurorREM 8. Suppose that Q is an open set of R, n=2 or 3, which contains a complete
neighborhood of infinity, say {x: |x| > R} for some sufficiently large R. Suppose that the bound-
ary of Q, if nonempty, is sufficiently reqular so that the method of section 3 (see Corollary 2)
can be applied to the “anular’ region {x: z€Q and |x| <B+2}. Then J5(Q)=JyQ) and
J1(Q) =J,(Q), and consequently problems (1)-(4), (7)-(11), and (12)—(15) each possess at

most one generalized solution in Q.

Proof. We will show that J§(€Q)=J,(); the proof that J3(Q)=J,(Q) is similar (and
simpler if Q= R?). Let u€J3(Q) be given; if Q< R? and if the capacity of Q° is zero, let u
be a function representing an equivalence class of Jg({2). We may assume u €C®(Q2), for if
not we let v be the element of Jy(Q) such that w=u—v satisfies [oVw: Védx =0 for all
¢ € D(Q); then weC=(Q) N JF(Q), and if we show that weJ,(Q) we will have shown that
u€J(Q). Now it is possible to write w—u,+u, where u, €J5(Q N {z: |x| <R +2}) and
W, €J5({z: |z| >R +1}). We simply use the fact [21, p. 26] that it is possible to construct
a smooth divergence free vector field v in the region B+1<|z|<R+2 which equals
u on the sphere |#| =R+1, and which equals 0 on the sphere |#| =R+2. Then we set
w=uin QN {z: |2| <R+1}, u,;=vin R+1<|z|<R+2, and w,=0 in || >R+2. We
set uy=u—mu, in Q. It is easy to see that u, and u, belong to the function spaces claimed
above, by appealing to Lemma 4. Thus the thecrem of section 3 implies that u, €
Jo(Q N {w:jx] <R+2}), and Theorems 4 and 6 of this section imply that u,€
Jo{2: || >R +1}). But these last two function spaces are both subspaces of J(Q); thus
uy, U, €J,(Q), and so u€Jy(Q).

5. Uniqueness in a half-space

In this section we prove uniqueness for the boundary value problems of viscous flow

in a half-space Q= {x: € R" and , >0}. Beyond the evident interest in considering pro-
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blems of flow in a half-space, our results here will find application in section 6, where they
are combined with results of sections 2 and 3 to study questions of uniqueness pertaining
to problems of flow through an aperture. The basic method of this section is a Fourier trans-
form argument which the author learned from Marvin Shinbrot. In order to justify taking
Fourier transforms, we will show that the functions to which the transform is applied are
square-summable in every plane which is parallel to the boundary plane. Of course u and
Vu are square-summable over such planes if u belongs to either T;Vé(Q) or Wy(Q); in the
case of the space W(Q) we observe that

f wdr < azf (Vu) dx (57)
O<z1<a O<z1<a

holds for every a >0, as follows from the inequality [§f*(x)de <a® [§ (f'(x))2dx for functions
f€C1[0, a] which vanish at zero.

Lemma 9. Let Q={x: x€R" and x,>0}. Suppose that u is o generalized solution in Q
of either problem (1)—(4) or problem (12)—(15), and that p is a corresponding “pressure” func-
tion as found in Propositions 3 and 5. Then for every e >0, the derivatives of 0 of second order
and of higher orders belong to L*(Q,), where Q.= {x: x, >¢}. The derivatives of p of first order
and of all higher orders also belong to L?((),).

Proof. For every a> g, let Q, , ={x: £ <z, <a}. We will prove ||ts;4||q, <> by showing
that [[tzs|q, , is bounded by a constant independent of a. Let us consider fixed values of
a and ¢. Adopting the notation of Lemma 3, let, for each positive integer k, O be the cylin-
der Q= {2: e <z, <a and 23+ ... +a% <k?}. Let Q) be the larger cylinder Q) = {x: ¢/2 <z, <
2a and 25+ ... +25 <(k+1)?}. Let {; be a function which satisfies the hypotheses of Lemma
3 with respect to Q} and Q). We can construct &, so that, for 22+ ... +22% <k?, it depends
only on z, and satisfies max, ., <2, | AL, | <Oy/a?; for instance, let {(x) =a—3(x; —2a)*(2%, —a)
for a3 + ... +2%<k? and @ <z, <2a. Further, we can assume that C; is a bound for not only
| Vik| but also [Af| in all of Qj; note that €y depends on ¢, but not on %, or on a>¢.

Now suppose u is a generalized solution of problem (1)—(4). Lemma 3 gives |[Uzz|las<
Ce||Vull + || (Al u]|oz. To show that ”uxm“Q& , is bounded by a constant independent of
a, we only need to show that as k-, [|(Al;)ul|q; remains less than a constant independent
of a. We have

1 (AZ) u|]= f (AL ) dx + f (AL ) udx + f(Az,cfuzdx. (58)

&/2<z,<2a el2<zi<e a<r;<2a
ki<x®4, . ad <(k+1)? zg+...+zn<k2 22+ tz,<K?
2

The first integral on the right side of (58) tends to zero as k— oo, as may be seen from in-
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equality (57) with a replaced by 2a. The second integral on the right side of (58) is bounded
by C%e?||Vu2; remember that O, depends upon ¢ but not on k or a. The third integral on
the right side of (58) is bounded by (C,a~2)24a?||Vu||?; it actually tends to zero as a— oo.
This completes the proof that ||usullq, <eo. If w is a solution of problem (12)-(15) one
gets the same result, but the argument is of course simpler. The estimates for higher order
derivatives are obtained in a similar way. For instance, if u is a generalized solution
of (1)-(4) we know that U, Wy,€L*%Q,) for every £>0, that V-u,=0, and that
| Vug;: Védz =0 for every ¢€D(Q). Thus we can argue as before, except that it is not
necessary to appeal now to inequality (57). The estimates for derivatives of p follow from

the relations Au=Vp in the case of problem (1)-(4), and Au—u=Vpin the case of problem
(12)~(15).

TarorEM 9. If Q={x: x€R" and x,> 0}, then the only generalized solution of problem
(1)~(4) is 0 =0, and hence J§ () =J,(Q).

Proof. Let 2 =(x,, &) where &=(,, ..., ¢,), and let f={(w,, &) = [ga-1 e~ “FOf(a,, ¥)da
where £=(&,, ..., &). Now since p is harmonic, A(dp/ox;) =0; the Fourier transform of this
equation is

&2 8p

810
6901 ox; |§|2 =0. (59)

Thus (8pfoz;)” = ay(&)e™ ¥  B,(&) 1™, Tt follows from Parseval’s formula and Lemma 9

that
wr 1D
4
J; fR”‘l Z i

We see that 8,(£) vanishes almost everywhere. By taking the Fourier transform of Aw;=

2
dr < oo,

A& dz, = (2n)"‘1f o
Q.1 0%;

oplox; one obtains
6 uz

~lePa ==k, (60)

and this may be solved by the method of variation of parameters; we find (for |£] =0)
that

= ay(§) e ¥+ by(£) €151 — ‘;—"‘l(—;)xl el (61)

Upon differentiating (61) with respect to x;, one obtains

0 i — &z —slz
a—— = ~a;(£)| e+ by(8) [E(em"—;—‘%)e 4 ‘+9%§~)xle Rz, (62)
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Using Parseval’s formula again, we have

.

from which it follows that b,(£) vanishes identically. Now it can be seen that a,(§) must

o 2
— || <oo,

2
— n—-1
dé da, = (27) o,

o
— 4
3:1:1 t

vanish in (61) because u,(0, #)=0 implies that 4,(0, £)=0; more precisely one argues
that

f |di(x1,§)|2d§=(2n)”‘1f |2y, %)|PdE—~0 as 2;->0.
Rn——l Hn—l

Finally, we show that the o;(&) must all vanish, and therefore so also must u, because

of (61). The Fourier transform of V-u=0 is
0 . ... oo
__u1+Z§2u2+'"+7’§nun=O5 (63)
0y

and thus (28/0x,) 4,(0, £) =0. Therefore it is implied by (62) that at least o, (¥) vanishes identi-
cally. This means that (8p/oz,)”, and so also 8p[dz,, vanish. We have just shown that p,
being independent of z,, is a harmonic function of the variables #€ R"~!, Since, by Lemma

9, the Dirichlet integral of p as a function of Z must be finite, it follows that p is a constant.
Thus the o,(£) all vanish.

TarorEM 10. If Q={z: € B" and x, >0}, then the only generalized solution of problem
(12)—(15) is u =0, and hence J1(Q) =J,(Q).

Proof. Just as in the proof of Theorem 9, we argue on the basis of Lemma 9 that the
Fourier transforms of derivatives of p are of the form (dp/ox,)” =o;(£)e” 1" By taking the

Fourier transform of Aw,—u;=0p/ox; we obtain

&2,

N
A a —
s~ (S D= =@ etn, (64)

The general solution of (64), found by the method of variation of parameters, is
1y = a,(8) 6P T 4 by () /FFLE £ oy (E) y,(E) e, (65)

where

O [
P g ve T e+ vE e Ve (g
Since ||u||q <<, it follows from Parseval’s formula that the 6,(£) must vanish identically.

The Fourier transform of V-u=0 again yields (63), from which we conclude that
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(8jox)4,(0, £)=0. In view of (65), the pair of equations #,(0, £)=0 and (9/0x,)4,(0, £} =0
together imply that
a1(8) +y1(8) oy (§) = 0

—VE +1ay(E) —y1(E) |E] () = 0. (66)

The matrix of coefficients is nonsingular, and therefore both a,(£) and o,(£) vanish identi-
cally. Now, as in the proof of Theorem 9, we see that p is a harmonic function with finite
Dirichlet integral in the variables Z€ R"~*. Thus p is a constant, the «,(§) must vanish
identically, and so by (65) u must also vanish identically.

We remark that the result just proved implies uniqueness for the initial boundary

value problem (7)—(11) in virtue of Proposition 2.

6. Flow through an aperture—Auxiliary conditions

In this section we study problems of flow through an aperture, as described in the
introduction. For the most part we consider the case of a single rigid wall which, except for
apertures in the wall, divides the space of fluid into two parts. More complicated situations
will be only briefly mentioned. Assumptions about the number of apertures or about the
shape of the apertures are not very important, but we give complete uniqueness proofs

only in cases of smoothly bounded apertures. We shall assume that
Q={r€R" 2,40 or (25 s, ..., %,)ES}, where (67)
S is a bounded open subset of the z,, x,, ..., x,-plane,
and make further assumptions about § as needed.

Lremma 10. Let Q be defined by (67). Let u belong to either Jo(Q) or J(Q). Then

[su-nds=0, where n denotes the unit normal vector to the surface S, and where ds =dxydz, ... dx,.

Proof. We need only consider u€.J,(Q), because J,(Q)<=J,(Q). Let {¢,} be a sequence
of functions in D(C2) which converges to u in norm ||V-||. Then {¢,} also converges to u
in the L?-norm of a bounded open subset of Q which contains the surface S; see for instance
{27, p. 20]. Thus lim, o (¢, nds= [su-nds; see [27, p. 15]. However, since each ¢ has
compact support, we have [, -nds= {, .oV @ dz=0.

LemMMA 11. Let Q be defined by (67). Assume (without any real loss of generality) that S
contains the unit disc x5+ ... +a% <1. If Q< B™ with n > 2, then there exists a vector field h{x)
which belongs to both J5(Q) and JT(Q), and which satisfies [sb-nds=1. If Q< R?, then there
exists a vector field b(x) €J5(Q) which satisfies [sh-nds=1. In either case, b€C?(QY) and the
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support of b is confined to the set (x5 + ... +a3)t <27+ |xy |. Finally, if Q< R", then |b(z)] <

Clx]|=", |vb(e)] <Clz|=", and |Ab(z)] <C|ax|-"-L

Proof. A suitable function h(z) may be constructed as follows. Let § be the angle be-
tween the positive z-axis and the ray joining a point = with the origin. Let b(x) be defined

by

(cos 200 | ™(ay, g, ..., 2,y for 0<O<lor
play=3 0 for lm<O<in
— (cos 20)*| x|~ "(wy, @y ..., %) for dm<B<m

Let w(z) be an averaging kernel; assume that w €C3(|#) <3) and that [, <;w(z)dz=1.

We define b(x) by setting b(x) =p [|4<1 f)(m+y)w(y)dy, where § is a normalizing constant
chosen so that {sb-nds=1. All of the assertions of the lemma are immediately apparent.

LemMa 12. Let Q be defined by (67), with S the unit disc a3+ ... 2% <1. Ifu€Ji(Q)
satisfies [gn-nds=0, then u€J,(Q). If u€JF(Q) satisfies [su-nds=0, then w€Jy(Q). Thus
two functions W, WEJT(Q) belong to the same coset of Ji(C)[J(Q) tf and only if [su-nds=
{st-nds, and two functions w, DEJF(Q) belong to the sume coset of JG()/Jo(Q) 3f and only if

fsu-nds= [sli-nds.

Proof. Suppose that n€.J7 (), and that [¢u-nds=0. Because the total flux of u across
S vanishes, it is possible to construct a divergence free vector field veE W%(D), where D=
{w: {x] <1}, which equals u on § in the sense of traces. In fact one can find a suitable func-
tion v, by finding separately its restriction v+ to D+ ={x: 2, >0 and |« | <1}, and its restric-
tion v= to D~ ={x: ¥, <0 and [z| <1}, using for instance the method given in [21, p. 26].
Clearly v€J,(D), by the result of section 3. Now consider the restriction ut of u to Q+=
{z: 2, >0}, and the restriction u~ of u to Q- ={x: x, <0}. Clearly ut —v+ belongs to JT(Q+),
if we set v* equal to zero outside D+. Thus by Theorem 10, we have ut —v+€J (Q+).
Similarly w——v-€J(£27). Now J(Q+), J(Q), and J (D) are all subspaces of J,(Q).
Therefore @w=(ut—~v+)+ (0~ ~v-)+vEJS(Q). The proof for the spaces Jo(Q) and J(€2)

is exactly the same.

TusoreM 11. Let O be defined by (67), with S the unit disc 25+ ... +a%<1. Then for

any prescribed number F there is a unique generalized solution n of problem (1)-(5).

Proof. Let b be the vector field constructed in Lemma 11. Clearly [oVb: Vo da defines
a bounded linear functional on ¢ €J,(C2). Let v be the unique element of Jo(Q) such that
faVv: Vode= — [, Vh: Vépdz holds for all ¢ €J(Q). Then b+v is a generalized solution
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of problem (1)-(4) and [s(b+v)-nds=1, as follows from Lemmas 10 and 11. Thus u=
F-(b-+v)is a solution of (1)~(5). If u and ii are two solutions of problem (1)—(5), then they
belong to the same coset of J§(Q)/J,(Q) by Lemma 12, and consequently are identical by
Proposition 4.

The next theorem is particularly important because it implies, that by modeling flow
through an aperture on the basis of the Stokes equations, one can predict the net flux
through an aperture from knowledge of the pressure drop from one side of the wall to the

other.

TurorEM 12. Let Q be defined by (67), with S the wnit disc x5+ ... +a%<1. Assume
n>2. Let u be a generalized solution of (1)—~(4) in Q, and let p be a corresponding pressure
functibn as found in Proposition 5. Then there exist constants p, and py, such that (6) is satisfied
in the sense that

f (‘pjﬁﬁ)—zdx<oo and f M_zﬂ)jdx<°°- (68)
Ti<—-1 T1>1 le

If p,=p,, then w=0. For every prescribed pressure drop p,—p, there exists a unique corre-

sponding solution w of problem (1)—(4).

Proof. Modifying Lemma 9 very slichtly we see that [, . ;(Vp)*dz<co and that
[aro1 (Vp)2da < oo, Now let

) p(x) for a1
x) =
P(2—xq, X9, ..., X,) for <1

Clearly 7 is defined and continuous in R" and has a finite Dirichlet integral. By the proof
of Lemma 4 (the inequality of Finn), we thus have [z.[(§(x) —c)?/|#|2]dx < oo for some con-
stant ¢. Since §{z) =p(z) for z; > 1, we have proved the second inequality of (68) with p,—e.
The proof of the first inequality is similar.

Now suppose that p, =p,. Without loss of generality we may take p, =p,=0. Let b
be the vector field constructed in Lemma 11. For some number o we have fsob-nds=
[sw nds. Since, for this o, «b and u belong to the same coset of J5(C2)/J,(Q), we have
u=gh +v for some v€J,(Q). By Proposition 5, u and p are smooth in Q and satisfy Au=
Vp. Therefore

f Au-bdx=f Vp-bdx (69)
lz|<R

lz|<R

for every number R; remember that b is smooth and has support confined to (x§ + ... +2%)¥ <
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2-t+ |x1| We can integrate (69) by parts to obtain

—f Vu:Vbdx%—f b-Vu-nds=—f p(V-b)dx+f pb-nds. (70)
jel<R |z{=R lzl<R

|z|=B

Now since both b and Vu are square-summable over €, the surface integral on the left
tends to zero as R—co. The first integral on the right vanishes. The surface integral on

the right tends to zero as BR— oo because

f pb-nds <(f —pz—ds)m(f (—O—)2d8)1/2 (71)
jZ1-R T \iz-r ]2 eor \l|" )

Here we have used the fact that |b(x)| <C|z|~™*, and applied the Schwarz inequality.

The second factor on the right of (71) remains at least bounded as R—oo; the first factor
tends to zero because [qo(p?/|x|?)dax<oo. Thus we have proved that [ Vu: Vbdx =0.Since
w is a generalized solution of (1)-(4) and since v €.Jy(Q), we have [oVu: Vvdz=0. Therefore
fa(Va)2dz= [oVu: V(ab+Vv)de=0. We have proved that if the pressure drop is zero,
then u vanishes. Since there exist nontrivial solutions of (1)-(4) in € with corresponding
nonzero pressure drops, it follows from the linearity of problem (1)-(4) that there is a linear
(hence one-to-one) correspondence between values of F in condition (5) and values of p, —p,
in condition (6).

It seems likely that Lemma 12 and hence Theorems 11 and 12 remain valid even if S
is an arbitrary open bounded subset of the x,, ..., z,-plane. It would, however, require a
considerable technical effort to prove this. In the next theorem we consider the case of a

single wall with several possibly noncircular apertures.

THEOREM 13. Let Q be defined by (67), where S consists of a finite number of smoothly
bounded disjoint open subsets of the x,, ..., x,-plane. Then all the conclusions of Lemmas 10,

11 {modified in an obvious way), and 12, and of Theorems 11 and 12 hold.

Proof. Clearly we only need to be concerned about the conclusion of Lemma 12. If §
consists of a single noncircular aperture, one can repeat the proof of Lemma 12, but with
D defined to be the cylinder D={x: —1 <z, <1 and (x,, ..., z,) €8} instead of a sphere. The
reader is referred again to [21, p. 26] for a method of constructing v€&.J5(D). Now suppose
that S consists of two smoothly bounded regions, S; and §,, of the s, ..., z,-plane. Let
u€eJF(Q) be given, and let it satisfy fsu-nds=0. One can construct a tubular domain
T<<Q which links the two apertures and which has a smooth boundary o7. Let
=708, and let I',=TN8,. Now a vector field w€J1(T) can be constructed such that
frwends= [gu-nds. Clearly [r,w-nds= fsu-nds alsoholds. Now as in the case of a single
aperture, let D;={x: —1<=z, <1 and (,, ..., #,) €S,}, and let v,€J7(D,) be constructed to
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satisfy v,(=u—won S, ¢=1 or 2. Clearly ut —w+—v{ —v§ €J1(Q)andu——w——v{ —v; €
JT(Q-), where we denote restrictions as in the proof of Lemma 12. By Theorems 3 and 10
we know that JH(T)<J(T), JT(D,)<Jy(D)), JT Q)< J(Q+) and JF(Q-)<J4(Q-). Thus
u€J (Q), because it can be written as a sum of functions, each of which belongs to a sub-
space of J,(£2). This method extends to any finite number of apertures by an obvious induec-
tion argument. The proof for the spaces J3(Q) and Jo(€)) is exactly the same.

The following statement is a corollary principally of Theorem 12.

THEOREM 14. Suppose that Q< R*, with n>2, is defined as in Theorem 13; and con-
sider various solutions of problem (1)—(4). Suppose that for a given pressure drop p,—p,,
there is a net flux F through the aperture (or apertures) S, as determined by Theorem 13. Then,
if the pressure drop is held constant, and if the aperture S is replaced by the similarly shaped
aperture S,={ox: x€8}, 9 >0, the net flux through S, will be g"F. Thus, in the case of a three

dimensional flow, the net flux through an aperture is proportional to the cube of its diameter.

Proof. Let u(x) be the flow with net flux F through S, for the given pressure drop
P2y, and let p(x) be a corresponding pressure. Thus Au=Vp. Let v and ¢ be defined in
Q, = {px: x€Q} by setting v(x) =pu(z/p) and g(x) =p(z/p). Since Av(z) = (1/p) u(z/g), and since
Vq(z) =(1/0)Vp(x/g), we have Av=Vq. Thus v is a solution of (1)-(4) in Q,. The pressure
drap of ¢ is clearly the same as that of p, and jsgv-nds= fsou-ng"tds=o"F.

TrEOREM 15. Suppose that Q< R" is defined as in Theorem 13. Then there exists at
most one generalized solution of the initial boundary value problem for the Navier-Stokes equa-

tions (7)—(11), which satisfies the auziliary flux condition (16).

Proof. If two solutions u and i both satisfy (16}, then fs(u(t) —i(t)) - nds =0 for every ¢.
Thus u(s) —a(t) €J1(Q) for every ¢, which implies that u and # belong to the same coset of
L0, T'; J¥(Q))/L3(0, T'; J,(Q)). Hence u=i by Proposition 1.

THEOREM 16. Suppose that Q< R® is defined as in Theorem 13. Let data i(z, t), a(x),
and F(t) be prescribed for problem (7)-(11), (16). Suppose that a(z)€J;(Q) N Wi(Q), that
£,1,€L2(Q x (0, T)), and that F(t) is a continuously differentiable function of t which satisfies
F(0)= [sa-nds. Then there exists a number T" >0, such that a generalized solution of (7)-
(11), (16) exists in Q x (0, T").

Proof. We seek a solution of (7)~(11) in the form u(z, t) =v{z, t) -+ F(t)b(x), where b(z)
is the vector field constructed in Lemma 11, and v(z, £} €L%(0, T'; J,{Q)). Clearly Lemma 10
implies that any such solution will satisfy the flux condition (16). Now u is a generalized
7~762907 Acta mathematica 136. Imprimé le 13 Avril 1976
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solution of (7)-(11) if and only if v satisfies the initial condition v{(z, 0)=a(x) — F(0)b(x)

and also a generalized form of the differential equation

V;+v-Vv+ Fb-Vv+ Fv-Vb = —Vqg+Av—g,

3

where g=F'b- F?h-Vb— FAb—1, and where ¢ is an appropriate “pressure” function. A
solution v can be found by using the method of Galerkin approximation as developed by
Hopf [18), and by using estimates due to Kiselev and Ladyzhenskaya [20] and further
developed by Serrin [33] and by Heywood [15]. If the data for problem (7)-(11), (16) is
small in an approriate sense, and if a(x) =0, then Lemmas 6, 9, and 11 of [15] can be used
without modification to obtain v, and hence u, in a finite time interval (0, T"). With a very
slight modification of these lemmas, we need not assume a(x) =0. The assumption that the
data be small is not necessary either; however, the estimates of [15] were obtained for the
purpose of treating questions of stability and therefore apply only to small data.

We shall now consider briefly the problem of steady Navier-Stokes flow through an
aperture. To be specific, assume that Q< R® is defined by (67), and consider the problem

of finding a solution u(x), p(x) of

u-Va=—-Vp+Au in Q (72)
Veu=0 in Q, @)
u=20 on &Q, (3)
u(z) >0 as  |z] - oo, (4)
f w-nds="F, (5)

s

where F is a prescribed number.

Definition. Let  be an arbitrary open set of B”. We call u a generalized solution of

(72), (2), (3), (4) if and only if u€JE(Q) and

f (Vu:vé+u-vu-¢)dz=0 (73)
0
holds for every ¢ € D(()).

TEEOREM 17. Let Q< R3 be defined by (67). Then there exists a generalized solution of
(72), (2), (3), (4) in Q, which satisfies the auxiliary flux condition (5), provided F is suffi-

ciently small so that for some y <1,

:Ff v-Vb-vdz <7f (Vv)2dz (74)
o o

holds for all vE€Jy(Q), where b is the function constructed in Lemma 11.
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The reader is reminded that the inequality [o(v?/|x|2)de <4 [q(VV)?dz was givenin the
proof of Lemma 4 for functions v€ W, (Q), if Q< R?; and that Vh(z) is smooth and decays
like |z|~3 at infinity. Therefore condition (74) does not imply that F=0.

Proof. Let b(z) = Fh(x). We will find a generalized solution of (72), (2), (3), (4) of the

form u—v-+b where v€J(Q). Clearly Lemma 10 implies that any such solution must
satisfy condition (5).

Our argument now follows closely one given by Ladyzhenskaya [21, p. 116]. Let Q, =
QN {x: |2| <n}. Our first step is to find v, €J(Q,) such that

fQ{an:V¢+VB:V¢—(vn+B)-V¢-(vn+f))}dx=0 (75)

for all ¢ € D(Q),). Through this part of the argument we will suppress the subscript # from
v, and write simply v. Now

L{—*VB:V¢+(V+B)~V¢-(v+13)}dx

defines a bounded linear functional on ¢ €Jy(Q2,), because of the inequality ||v|| zuqmw <
C,||Vv|| which holds for vE€ W(Q,). Thus, for every v €Jy(L2,), there exists an unique element
AvEeJyQ,) such that

ng(Av):V¢dw=fg{—Vﬁ:VqH—(V+f))-V¢-(v+B)}dx

holds for all ¢ €J4(€2,). Clearly v €J(£),) satisfies (75) if and only if
v=Av. (76)

The operator A is compact in Jo(Q,); if {v*} is weakly convergent in Jy(Q,), then {v*}

converges strongly in L*((2,), and by a short computation
[ tvtavi—av):vgha= ol vl I8l

Therefore, setting ¢ —Av* — AV, one obtains | V(4 —Av)|| -0 as k, I->oco.
Now a solution of (76) is assured by the Leray—Schauder fixed point theorem, if one
can show that all possible solutions of v=214v, for 2€[0, 1], must satisfy || Vv|| <C* for some

constant C*. Any such solution, with corresponding 1, satisfies

L{vv:vqs+zvﬁzv¢—z(v+5)-V¢~(v+ﬁ)}dx=0
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for all ¢ €J(Q). Setting ¢ =v, and integrating one term by parts, one obtaing

Iwole <2959l Alaltovl +4] [ vvb vas

Using (74), this implies
VY] < @ =)~ VB + [BllZxa) = C*. (77)

We have shown the existence of v, €J(€2) satisfying (75) for all ¢ € D(£2,). The bound
(77) is independent of #. Thus, if we extend the domain of each v, to all of Q by setting v,
equal to zero in Q) —Q,, the sequence {v,} must have a weakly convergent subsequence
with limit v €J,(Q). It is easy to see that

fQ{VV:v¢+VB:v¢—(v+5>-v¢-(v+i»)}dx=0

for all ¢ € D(Q2). Thus u=v-+h is a generalized solution of (72), (2), (3), (4) which satisfies
also (5).

Remarks. The proofs just given of the existence of multiple solutions of the various
boundary value problems are applicable to a wider class of domains than those defined by
(67). For instance, the conclusions of Theorems 11, 16, and 17 are valid for the domain
Q={x€R3 2§ +ad<1+a?}. As a further example, let Q be a domain formed by dividing
R3 into four subregions by two intersecting plane walls and then joining the subregions
by apertures in the walls. For this domain it can be easily shown that problem (1)—(4)
possesses three linearly independent solutions. In order to prove uniqueness theorems for
either of these domains one would need certain preparatory results analogous to those we
proved for domains of the form (67) by treating half-spaces in section 5.

The integrability conditions set for solutions in this paper are not appropriate for some
problems. For instance, one would need entirely different methods to study flow through
an infinite tube, say, the initial boundary value problem in Q={zx€ R a}+ 25 <1} with
the auxiliary flux condition (16). It may be even more interesting to consider nonstationary
flow through a slit, i.e., flow in the domain {x€ R?: 2,40 or |x,| <1}. Even though we
have shown (Theorem 11) that steady flow through a slit exists and possesses a finite Di-
richlet integral, it can be easily seen that any nonstationary flow through a slit must possess
an infinite energy integral and therefore be excluded from the solution classes studied in
this paper. Perhaps a theory of nonstationary flow through a slit can be based on the
Dirichlet integral along lines developed in [16]. It seems likely that JT(Q) =J,(Q) forevery
two-dimensional domain ), in which case problem (7)-(11) possesses a unique finite energy

solution in every two-dimensional domain; see Lions and Prodi {22].
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