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Abstract. Results of the kind cited in the title are obtained for the improperly

posed Cauchy problem for a system of two coupled elliptic partial differential equations.

We assume one stabilizing condition is imposed on one of the dependent variables. The

results follow from an a priori inequality which is derived as a consequence of the log-

arithmic convexity of a suitable functional.

1. Introduction. Hadamard [2] showed that the Cauchy problem for elliptic

partial differential equations is ill-posed in that a slight variation in the Cauchy data

may result in a large variation in the solution function. Although thought to be unim-

portant, such problems have been encountered recently in potential theory, in geophysics,

and elsewhere (see [8] and [4]). Pucci [9] and John [3] discovered that imposition of a

suitable bound on the solution of the Cauchy problem for the Laplace equation would

render the solution stable. In [5] Payne developed a method for obtaining error bounds

for the solution of the Cauchy problem for the Laplace equation in n-dimensions under

the assumption that the solution was uniformly bounded. He extended his technique

in [6] to the Cauchy problem for the biharmonic equation where he assumed both the

solution and its Laplacian were uniformly bounded.

In [10] the author showed that the second stabilizing condition in the Cauchy problem

for the biharmonic equation and, more generally, in certain weakly coupled elliptic

systems, could be removed. From an a priori inequality developed there, one is able to

deduce the uniqueness and stability of the solution function as well as to obtain pointwise

bounds for the solution and the square of its gradient. These results were later extended

in [12] to a quasi-linear fourth-order elliptic equation whose principal part is the bi-

harmonic operator. Since we expressed the equations as a system, each equation must

have the same elliptic operator.

In this paper we consider the Cauchy problem for a more general coupled set of two

elliptic equations involving different uniformly elliptic operators. As we only assume one

a priori condition on one of the dependent variables, the system must be truly coupled.

For otherwise the Cauchy problem for the system Aw = v, Ai> = 0, where A is the Laplace

operator and only v is assumed to be uniformly bounded, may have an unstable solution

set.

We note that the results presented here, namely uniqueness, continuous dependence

on the data, and pointwise estimates, answer affirmatively and more completely the
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conjecture made in [11]. Moreover, in view of [13], the pointwise estimates which one

obtains are improvable, whereas in [11] they were not improvable.

2. Statement of the problem and results. Let D be a domain in Euclidean n-space

with boundary B, a Lyapunov boundary, and let 2 be that portion of B on which Cauchy

data is prescribed or, as presented below, measured within an allowable amount of error.

We assume 2 is a C1 surface.

Let

/(«) = a, 0 < « < 1, (2.1)

where x = (xl t ■ ■ ■ , x„), be a family of (not necessarily closed) surfaces which intersect D

and form, for each a, a closed region Da whose boundary consists only of points of 2,

denoted 2„ , and points of the surface /(z) = a, denoted Sa .

We assume that f is a C2 function in Dl such that

(i) if 0 < X < m < 1, then Dx C D„ , (2.2)
(ii) |grad /| > 5 > 0 in ,

(iii) £if < 0, £2/ < 0, |£,/| < ca0 52, ]£2/| < cb0 S2, in Di ,

where c and 5 are fixed positive constants. Here £1 and £2 are uniformly elliptic operators

£jw = (ai(«,i),j , £2v = (&,-,■».<).i , (2-3)

where the repeated indices denote summation, the comma notation indicates partial

differentiation, and the coefficients are C1 functions which satisfy

O'ti 1 , a<£ ^ ^ a 1 j ^

in L> for positive constants aa , ax ,bQ, and and all real vectors £ = (£1 , • • • , £„). We

shall assume that _Da , 0 < a < 1, has nonzero volume and D0 has zero volume.

The existence of such a family of surfaces and the usefulness in forming regions Da

which may include points that are not close to S but at which bounds are sought, was

discussed in [7] and [13].

Consider the set of coupled equations

£j« = G(x, u, v, u_i , v,i) ^ 5^

£2v = H(x, u, v, v,i) + u + h,u,i

where v is uniformly bounded in D and 110 a priori condition is imposed on u. We assume

G and II satisfy uniform Lipschitz conditions in all but the x variables with the Lipschitz

constant in the u argument of H strictly less than one and the vector valued function

h — (h,! , • ■ ■ , h„) satisfies the condition prescribed in (3.9). These restrictions 011 the

appearance of u in the second equation are a consequence of the omission of an a priori

condition on u and the method used to obtain a suitable "replacement" condition via

the system of equations. One could permit a suitably restricted function h0 as coefficient

of the linear term u in (2.5), but this would result in more complicated notation and

restrictions on the appearance of u.

We ask that u and v be C2 functions which satisfy (2.5) in D and
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f (U — M„)2 da <7r, , f (u i — u,){u i — Ui) (l(T < 7T2 ,

(2.6)

J (P ~ v0)2 da < tt:s , f (v,,■ — , — v,) da < TTi ,

on 2, where the quantities m0 , «,• , «o , i\ are the respective measured values of u, ,

v, v,i on S and tti , x2, x3 , and ir4 are given bounds for the error in the measurement of

the data. Since the data is usually determined by measurement, the above form of the

initial data is more useful in applications.

Let

U = u — <t>, V = v — \fr, (2.7)

where <t> and are C2 approximating functions. Then by (2.5) we have

£\U = G(x, u, v, u.i , v.i) — G(x, 4>, \p, <t>,i , \p,t) + g(<t>, \p),

£2V = H(x, u, v, v,i) - H(x, <j>, i, i,i) + U + hiU.i + 3C(<f>, \p),

where

8 = i) = G{x, <t>, 4>,i , 4>,<) — £i<t>,

3C = 3C(<*>, i) = II (x, 4>, i.t) + </» + hd,t - £A-

By means of the Lipschitz assumption on G and II, it follows that

\£tU\ < L, \U\ + L2 |F| + U + U |7.i| + ISl,

|£»7| < (L. + 1) \U\ + L6 |F| + L7 |F.,| + \h{U.t\ + |JfC|,

(2.8)

(2.9)

for constants Ly , ■ ■ • , L- , where |C/,,-| denotes the magnitude of the gradient vector.

We now set

«i = f 02 da, e2 = f V2 da, e3 = I U , U ( da,
- (2.10)

= L V-iV-i d<r' es = ff S2 dx, e6 = JJ 3C2 dx,

where dx is the element of volume in Z), . Furthermore, since v is assumed to be uniformly

bounded in D, we have

ff V2 dx < M2 (2.11)
J J d

for some constant M.

Now consider the functional

F(a) = f (a - v) ff tOuU.iU., + U£tU + 6„F,,F.,- + V£2V] dx dv + kiti
Jo •>JD,

(2.12)

for 0 < a < 1, where the /c, are determinable constants. As is done in [13], one can derive

the continued inequality
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(/■', ~ 0.-K + 1 If (pi" + tV2) dx < F(oi) < ]
- J >'l) x -

• IJ (.PU2 + rV2) dx + (A; + 0,>, , (2.13)

where 0( are computable constants and p = aijfwif_,• and r = b,. We choose fc, > 0,

to ensure the nonnegativity of the lower side. Further, it follows by means of the log-

arithmic convexity argument (see [13]) that

F(a) < 0 < a < 8 < 1, (2.14)

where A"0 is a constant and d is a fixed number in 0 < d < 1.

In (2.14), F(0) can be made small, but we must ascertain that F(a) can be suitably

bounded so that the product does not become large. To this end we consider the following:

Theorem: fjD- U2 dx < C0M2, where C0 is a computable constant.

By means of this theorem, (2.11), and the upper side of (2.13), we can deduce that

F(a) is bounded in terms of M2 and, consequently, by the lower side of (2.13) and (2.14),

that

If (L'2 + F2) dx ~ KM2ii~d)\k<e<]d, (2.15)

where K is a computable constant.

From (2.15) we deduce the uniqueness and continuous dependence on the data of

the solution set u, v of the Cauchy problem for (2.5). Furthermore, using analogues of

the pointwise inequalities derived in [1], which are in terms of the integrals in (2.15),

we can obtain pointwise estimates for u and v and their derivatives at points P in Ds .

As mentioned earlier, these estimates may be improved by the Ritz procedure.

Thus we need only demonstrate that the integral of U2 over compact subsets of Z),

is bounded in terms of M2. This we do in the next section.

3. Proof of the theorem. We define the function s as

s(x) = 1 in Dj

1 _ j{x) -
= -:—m Di - Ds ,

1 — a

where/ satisfies (2.1) and (2.2). Clearly, s has the properties that s,,s ,• < Ml, |s_<

Mi for constants Mx and M2 , and, in the big-o/j notation, J3iS8 = 0(sb) and £2s" = 0(s2).

Further, it follows that

J J U2 dx < J J s'U3 dx. (3.2)

Before establishing the desired result, we note the following inequalities and identities

which are important to the derivation. First, we have

(s„6„F„.)2 < diV,jV,, < ~ btfV.tV,t , (3.3)
On

U.tbaV., < d2U, jU,, + d3V,iV,i < -a,,U,,U . + b,, , (3.4)
Oil On
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where di , d2 , and d3 are fixed constants. These inequalities follow as a consequence

of the bounded derivatives of s and coefficients of the operators and the ellipticity

conditions on the operators £1 and £2 • Secondly, we have the identities

JJ /a,,U.J/.; dx = f s8f/(~) da - J J s*U£lU dx

-1L (g).r * +1 fi *>. (3.5)
fj s4bi, V,iVj dx = J da- - JJ -s*F£2 V dx

which follow on integrating by parts twice. Here (dU/dv)a = 0,^11.,n{ , (dV/dv)b =

bijV.jiii , for iii , the ith. component of the unit normal.

Now we observe that

JJ sXUU.i dx = sXn.U2 da ~ ~ JJ (s%).,U2 dx, (3.7)

so that by (2.8) and (3.7) we can write

JJ s6U2 dx < JJ s6U£2V dx - \ J sh^U2 da

— JJ s^UlHix, u, v, vti) — H(x, <f>, ip, \p,i) + 3C(<f>, \p)] dx, (3.8)

provided that the vector function h satisfies

(s6hi),i <0, x in Di . (3.9)

Clearly, one such function h which satisfies this requirement is given by h{ = .

By the definition of the operator £2 , integration by parts, and the arithmetic mean-

geometric mean inequality (abbreviated A-G inequality), we see that

fj s°U£2Vdx= f da - fj s'U^buVj dx - JJ Fdx

+ 37i JJ seU2 dx + 37r' [J S4(S.,6„ F.,)2 dx,

where 71 is some positive constant to be determined later. Thus, using (3.3) and (3.4),

we find

If sll£2Vdx < J da + [J ssaiiUiiU_j dx

JJ s4b,, V,{V,j dx + 3t, JJ s"U2 dx + ^- JJ 8*btiV,tV,, dx (3.10)I d3

bo"Y 2

for 72 some positive constant.
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Using the Lipschitz condition on H, the A-G inequality, and the ellipticity condi-

tions, we can bound the third term in (3.8) by

-ff s^UiHix, u, v, vti) - H(x, 4>, <p, i.i) + 3C(</>, \f/)\ dx

< u ff s6t/2 dx + Its ff S6U2 dx

+ -5- ff s6[L„2V2 + 3C2] dx + 1^- ff s*biiV,iVii dx, (3.11)

where 73 is some positive constant.

Now combining (3.10) and (3.11) with (3.8) and collecting terms, we obtain

ff s«U2 dx < 0(M2) + (L, + 37, + Its) ff s''U2 dx + T4 ff ssa„U,JJ„ dx
J J Dt D1

+ ki ff s4bijV,iV_i dx, (3.12)

where yt - d2y2(ao)~1 and k, is a computable constant. Here we have collected all surface

integrals over Sj and terms involving V2 and X2 in the first term, as each can be bounded

in terms of M2.

We now seek appropriate bounds on the latter two terms of (3.12). To accomplish

this we will eventually need to consider the terms simultaneously, as each leads to the

other after integrating by parts and using (2.9).

From (3.5) we see that

ff ssaiiUiiUwidx

slf dx< 0(M2) + ff s8 \U^U\ dx + |fc2 ff

< 0(M2) + Lj ff s'U2 dx + | ff saU2 dx + | ff s10[L2 \ V\ + |g|]2 dx

ff seU2 dx + ̂  ff s8 £/„•£/„■ dx + ff s6U2 dx
'0 JJb, 2 JJUl -'T5Ou J JII,

II sl°V-iV-i dx + JJB 8<>U* dx>

where k2 is a computable constant and y5 is a positive constant to be chosen later. Using

the ellipticity conditions on the sixth and eight terms and collecting terms, we have

ff s'a^U^U,, dx < 0(M2) + k3 ff seU2dx + y, ff s46„7.iF.,. dx, (3.13)

where fc3 is a computable constant.

T 2+ 5s
2 a

+
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In a similar manner, from (3.6) it follows that

ff s46„F.,U,1 dx < 0(M2) + ff s4 \ V£2V\ dx

< 0(M2) + ho fJD s'U2 dx + hh /£ s'V.tV.t dx

+ |a077 ff dx,

where y6 and y7 are constants to be chosen. Consequently, by the ellipticity conditions,

we deduce that

s4bijV,iV,j dx < 0(M2) + 7* ff s°U2 dx + 77 IL s8aijU,iUdx. (3.14)

If we multiply (3.13) by yt and (3.14) by fc, , add, and choose y5 = kL(2yi)~1 and

7t = 74(2/0,)"', then

74 ff ssaiiU_iU_j dx + h ff s46,,F,t F,,-dx < 0(M2) + 2(y4k3 + y.k,) ff s"U2 dx.
J"D\ "* dx

(3.15)

Thus, from (3.12) and (3.15), we conclude

UD s'U2 dx < 0{M2) + (L5 + 37l + h3 + 274/C3 + 2y6k,) s'U2 dx.

Consequently, for Lr, < 1 and 71 > 7s , 74 , and yr> chosen sufficiently small, we have

ff snU2 dx < 0(M2); (3.16)

i.e., from (3.2) and (3.16), the conclusion of the theorem follows.
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