
1389

Prog. Theor. Phys. Vol. 121, No. 6, June 2009, Letters
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We examine a unitarity of a particular higher-derivative extension of general relativity
in three space-time dimensions, which has been recently shown to be equivalent to the
Pauli-Fierz massive gravity at the linearized approximation level, and explore a possibility
of generalizing the model to higher space-time dimensions. We find that the model in
three dimensions is indeed unitary in the tree-level, but the corresponding model in higher
dimensions is not so due to the appearance of non-unitary massless spin-2 modes.
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In recent years, there has been a revival of interests of massive gravity models
from various physical viewpoints. For instance, some people conjecture that the
massless graviton might acquire mass via spontaneous symmetry breakdown of gen-
eral coordinate reparametrization invariance, whose dynamical mechanism is some-
times called “gravitational Higgs mechanism”.1)–9) This expectation naturally stems
from brane world scenario where the presence of a brane breaks some of diffeomor-
phisms in the directions perpendicular to the brane spontaneously.2),3) Moreover,
this study is also related to the recent development of string theory approach to
quantum chromodynamics (QCD)5) since if we wish to apply a bosonic string theory
to QCD, massless fields such as tachyonic scalar and spin 2 graviton in string theory,
must become massive or be removed somehow because such the fields do not exist
in QCD.

The other interest of massive gravity is relevant to the problem of counting the
microscopic physical degrees of freedom existing in black holes through a holographic
two-dimensional dual theory where the well-known topological massive gravity with
the Chern-Simons term10) plays an important role.11)

It is well known that there is a unique way to add mass term to general relativity
in a Lorentz-covariant manner without worrying the emergence of a non-unitary
ghost in any space-time dimension whose theory is called the Pauli-Fierz massive
gravity.12) However, there is at least one serious disadvantage in the Pauli-Fierz
massive gravity. Namely, the massive gravity theory defined by Pauli and Fierz
only makes sense as a free and linearized theory since the diffeomorphism-invariant
mass term cannot be introduced into general relativity owing to an obvious identity
gμνgμν = δμ

μ so it seems to be difficult to construct a sensible interacting theory for
the massive graviton.

One resolution for overcoming this difficulty is to introduce some matter fields in
general relativity and then trigger the above-mentioned gravitational Higgs mecha-
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nism. However, recently, there has been an alternative progress for getting a sensible
interacting massive gravity theory in three space-time dimensions without introduc-
ing matter fields such as scalar fields.13) This model has been shown to be equivalent
to the Pauli-Fierz massive gravity at the linearized approximation level. A key idea
in this model is that one takes into consideration higher-derivative curvature terms in
the Einstein-Hilbert action with the wrong sign in such a way that the trace part of
the stress-energy tensor associated with those higher-derivative terms is proportional
to the original higher-derivative Lagrangian.

The main aim of this paper is not olny to explore a possibility of generalizing
this three-dimensional model to higher space-time dimensions but also to examine
the unitarity of this particular higher-derivative extension of general relativity in
three space-time dimensions by Bergshoeff et al.13)

Since we wish to explore a possibility of generalization of three-dimensional mas-
sive gravity model to higher dimensions, we will start with a typical higher-derivative
gravity model14) without cosmological constant up to fourth-order in derivative in a
general D space-time dimensions:∗)

S =
∫

dDx
√−g

[
− 1

κ2
R + αR2 + βRμνR

μν + γ(RμνρσRμνρσ − 4RμνR
μν + R2)

]
,

(1)

where κ2 ≡ 16πGD (GD is the D-dimensional Newton’s constant), α, β and γ are
constants. One important remark is that the Einstein-Hilbert action, which is the
first term having κ2, has the wrong sign. This is a characteristic feature in the
present formalism. The last term proportional to γ is nothing but the Gauss-Bonnet
term, which is a surface term in four space-time dimensions. Einstein’s equations
are then given by

− 1
κ2

Gμν + Kμν = 0, (2)

where Gμν is the conventional Einstein’s tensor defined as Gμν = Rμν − 1
2gμνR and

the tensor Kμν is defined as

Kμν = (2α + β)(gμν∇2 −∇μ∇ν)R + β∇2Gμν

+ 2αR

(
Rμν − 1

4
gμνR

)
+ 2β

(
Rμρνσ − 1

4
gμνRρσ

)
Rρσ + 2γ

[
RRμν − 2RμρνσRρσ

+ RμρστRν
ρστ − 2RμρRν

ρ − 1
4
gμν(R2

ρστλ − 4R2
ρσ + R2)

]
, (3)

where ∇μ is the usual covariant derivative and ∇2 ≡ gμν∇μ∇ν .
In the construction of a new type of massive gravity theory,13) the tensor Kμν

plays a critical role and must satisfy the following condition:
• Its trace K ≡ gμνKμν is proportional to the original higher-derivative La-

grangian.
∗) The space-time indices μ, ν, · · · run over 0, 1, · · · , D − 1. We take the metric signature

(−, +, · · · , +) and follow the notation and conventions of the textbook of MTW.15)
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In particular, this condition ensures that the scalar curvature can be set to zero in
the trace part of the linearized Einstein’s equations.

Taking trace of Kμν gives rise to

K =
[
(2α + β)(D − 1) + β

(
1 − D

2

)]
∇2R

+ 2
(

1 − D

4

)
[γR2

μνρσ + (β − 4γ)R2
μν + (α + γ)R2]. (4)

First, from this condition, the ∇2R term must vanish so that we have a relation
between the constants α and β

α = − D

4(D − 1)
β. (5)

Then, the condition also requires three kinds of independent R2 terms to satisfy

(α + γ)
[
1 − 2c

(
1 − D

4

)]
= 0,

(β − 4γ)
[
1 − 2c

(
1 − D

4

)]
= 0,

γ

[
1 − 2c

(
1 − D

4

)]
= 0, (6)

where c denotes a proportional constant. Of course, in three and four dimensions,
three R2 terms are not completely independent, so precisely speaking, the equations
(6) are valid for D > 4. The cases of D = 3, 4 are separately considered later. It is
obvious that all the equations in (6) are satisfied when

c =
2

4 − D
. (7)

If the equation (7) were not true, we would have a trivial solution α = β = γ = 0,
so we shall confine ourselves to the solution (7) in what follows. Consequently, the
trace part of Einstein’s equations (2) gives us

1
κ2

(
1 − D

2

)
R = K. (8)

As the next step, we shall linearize Einstein’s equations around a Minkowski flat
space-time as usual by writing out gμν = ημν + hμν . Equation (8) together with the
fact that K does not involve the linear term in hμν from the equation (5) produces

Rlin = 0, (9)

and with the help of this equation, Eq. (2) yields(
� − 1

βκ2

)
Glin

μν = 0, (10)
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where Rlin and Glin
μν denote the linearized scalar curvature and Einstein’s tensor,

respectively. Moreover, we have defined � ≡ ημν∂μ∂ν . Let us note that the positivity
of mass of the graviton requires us to take β > 0.

Now we are ready to show that with an appropriate choice of the constants α, β
and γ, the action (1) becomes equivalent to the Pauli-Fierz massive gravity at the
quadratic level. To do that, let us begin with an action13)

Sf = − 1
κ2

∫
dDx

√−g

[
R + fμνGμν +

m2

4
(fμνfμν − f2)

]
, (11)

where fμν is some symmetric tensor field with trace f = gμνfμν and m2 is a constant.
Integrating out the auxiliary field fμν , this action is reduced to the form

Sf = − 1
κ2

∫
dDx

√−g

[
R − 1

m2
R2

μν +
1

m2

D

4(D − 1)
R2

]
. (12)

Note that in order to make this action (12) coincide with the original action (1), we
have to impose constraints on the coefficients in the action (1)

α = − D

4(D − 1)
1

κ2m2
,

β =
1

κ2m2
,

γ = 0. (13)

It is of interest to notice that not only the first and second constraints naturally lead
to the previous relation (5), but also the second constraint is consistent with the
mass positivity β > 0, which was mentioned below Eq. (10).

Next, let us expand the metric around a flat Minkowski background ημν and
keep only quadratic fluctuations in the action (11)

Sf =
1
κ2

∫
dDx

[(
fμν − 1

2
hμν

)
Oμν,ρσhρσ − m2

4
(fμνfμν − f2)

]
, (14)

where the operator Oμν,ρσ can be expressed in terms of the spin projection operators

Oμν,ρσ = �
[
1
2
P (2) − D − 2

2
P (0,s)

]
μν,ρσ

, (15)

where P (2) and P (0,s) are the spin-2 and spin-0 projection operators. Concretely, in
the D-dimensions they take the form

P (2)
μν,ρσ =

1
2
(θμρθνσ + θμσθνρ) − 1

D − 1
θμνθρσ,

P (0,s)
μν,ρσ =

1
D − 1

θμνθρσ, (16)

where the transverse operator θμν and the longitudinal operator ωμν are defined as

θμν = ημν − 1
�∂μ∂ν = ημν − ωμν ,

ωμν =
1
�∂μ∂ν . (17)
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It is worth while to stress that the structure of the operator Oμν,ρσ is the same in
any space-time dimension.

Here we wish to perform the path integration over hμν in the action (14). To do
that, it is convenient to think of partition function

Z =
∫

DhμνDfμνeiSf . (18)

One can rewrite the action (14) as

Sf =
1
κ2

∫
dDx

[
− 1

2
(h − f)μνOμν,ρσ(h − f)ρσ

+
1
2
fμνOμν,ρσfρσ − m2

4
(fμνfμν − f2)

]
. (19)

Changing the variables from hμν to kμν ≡ hμν − fμν , the partition function (18)
reads

Z =
∫

DkμνDfμνeiS′
f , (20)

where S′
f is defined by

S′
f ≡ 1

κ2

∫
dDx

[
−1

2
kμνOμν,ρσkρσ +

1
2
fμνOμν,ρσfρσ − m2

4
(fμνfμν − f2)

]
. (21)

In attempting to perform the path integration over kμν , we find it impossible
to do so since there is no inverse matrix of Oμν,ρσ. That is, because of the gauge
invariance, the linearized diffeomorphisms, in the action (21), the operator Oμν,ρσ

has zero eigenvalues so that its inverse matrix, which is in essence the propagator
of the massless graviton, does not generally exist. This is also clear from the obser-
vation that we need more spin projection operators P (1), P (0,w), P (0,sw) and P (0,ws)

in addition to P (2) and P (0,s) in order to form a complete set of the spin projection
operators in the space of second rank symmetric tensors. Thus, in order to make
the operator Oμν,ρσ invertible, we fix the gauge transformations by De Donder’s
gauge-fixing conditions. Then, the gauge-fixed action of (21) is of form

Ŝf ≡ 1
κ2

∫
dDx

[
− 1

2
kμνOμν,ρσkρσ +

1
2α

(
∂νkμ

ν − 1
2
∂μk

)2

+
1
2
fμνOμν,ρσfρσ − m2

4
(fμνfμν − f2)

]

=
1
κ2

∫
dDx

[
− 1

2
kμνÔμν,ρσkρσ +

1
2
fμνOμν,ρσfρσ − m2

4
(fμνfμν − f2)

]
, (22)

where α is a gauge parameter and the new operator Ôμν,ρσ is defined through a
complete set of the spin projection operators

Ôμν,ρσ = �
[
1
2
P (2) +

1
2α

P (1) +
−2(D − 2)α + D − 1

4α
P (0,s) +

1
4α

P (0,w)
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−
√

D − 1
4α

P (0,sw) −
√

D − 1
4α

P (0,ws)

]
μν,ρσ

, (23)

where P (1), P (0,w), P (0,sw) and P (0,ws) are defined as

P (1)
μν,ρσ =

1
2
(θμρωνσ + θμσωνρ + θνρωμσ + θνσωμρ),

P (0,w)
μν,ρσ = ωμνωρσ,

P (0,sw)
μν,ρσ =

1√
D − 1

θμνωρσ,

P (0,ws)
μν,ρσ =

1√
D − 1

ωμνθρσ. (24)

Note that all the spin projection operators {P (2), P (1), P (0,s), P (0,w), P (0,sw), P (0,ws)}
satisfy the orthogonality relations

P (i,a)
μν,ρσP

(j,b)
ρσ,λτ = δijδabP

(i,a)
μν,λτ ,

P (i,ab)
μν,ρσP

(j,cd)
ρσ,λτ = δijδbcP

(i,a)
μν,λτ ,

P (i,a)
μν,ρσP

(j,bc)
ρσ,λτ = δijδabP

(i,ac)
μν,λτ ,

P (i,ab)
μν,ρσP

(j,c)
ρσ,λτ = δijδbcP

(i,ac)
μν,λτ , (25)

with i, j = 0, 1, 2 and a, b, c, d = s, w and the tensorial relation

[P (2) + P (1) + P (0,s) + P (0,w)]μν,ρσ =
1
2
(ημρηνσ + ημσηνρ). (26)

Using these relations, it is straightforward to derive the inverse of the matrix Ôμν,ρσ

Ô−1
μν,ρσ =

1
�

[
2P (2) + 2αP (1) − 2

D − 2
P (0,s) − 2{−2(D − 2)α + D − 1}

D − 2
P (0,w)

− 2
√

D − 1
D − 2

P (0,sw) − 2
√

D − 1
D − 2

P (0,ws)

]
μν,ρσ

. (27)

Hence, we can now perform the path integration over kμν without hesitation

Z =
∫

DfμνeiSPF , (28)

where SPF is the Pauli-Fierz massive gravity action with the correct sign:12)

SPF =
1
κ2

∫
dDx

[
1
2
fμνOμν,ρσfρσ − m2

4
(fμνfμν − f2)

]
. (29)

Let us consider deliberately what we have done above. It seems that the action
(12), or equivalently the action (11), is equivalent to the Pauli-Fierz massive gravity
action (29) at least at the linearized level since, as seen in Eq. (21), the tensor field
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kμν does not interact with the other tensor one fμν at all so that we can integrate
kμν away after the gauge-fixing. However, in the higher-order approximation level,
there appear interaction terms between kμν (in other words, hμν) and fμν , so that
it is impossible to perform the path integration over kμν to arrive at the Pauli-Fierz
action (29). Then, we can only show that the action (12) is equivalent to the action
S′

f in (21) with many of interaction terms involving the tensor fields kμν and fμν ,
which is essentially an interacting theory of two symmetric tensor fields where one
is a massless tensor field with the wrong sign and the other is a massive tensor one
with the correct sign. Incidentally, let us mention the cases of three (D = 3)- and
four (D = 4)-dimensional space-time. In the three-dimensional case, it is easy to see
that the present analysis naturally reduces to the work by Bergshoeff et al.13) On
the other hand, in the case of four dimensions, we find it impossible to construct the
tensor Kμν satisfying the condition. This fact can be also seen in the presence of the
pole at D = 4 in Eq. (7).

To give a definite answer to a question whether or not our massive gravity model
is really physically plausible, we have to investigate the property of unitarity of the
higher-derivative action (12) directly. Actually, we will find that the model is unitary
only in three dimensions while in the other dimensions we have non-unitary massless
spin-2 modes which come from the wrong sign in front of the Einstein-Hilbert action.
Thus, it is impossible to generalize the three-dimensional massive gravity model by
Bergshoeff et al.13) to higher space-time dimensions.

To this aim, let us notice that each term in the action (12) is expressed by the
spin projection operators as

−√−gR = −1
4
hμν [P (2) − (D − 2)P (0,s)]μν,ρσ�hρσ,

ξ
√−gRμνR

μν = ξ
1
4
hμν [P (2) + DP (0,s)]μν,ρσ�2hρσ,

λ
√−gR2 = −ξ

D

4
hμνP (0,s)

μν,ρσ�2hρσ, (30)

where we have defined as ξ ≡ 1
m2 and λ ≡ − 1

m2
D

4(D−1) ≡ − D
4(D−1)ξ. A nice feature

in the present theory is that with the coefficients in front of the higher-derivative
terms, the scalar ghost mode which exists in the spin projection operator P (0,s) is
canceled out as can be seen

ξ
√−gRμνR

μν + λ
√−gR2 = ξ

1
4
hμνP (2)

μν,ρσ�2hρσ. (31)

Taking De Donder’s gauge conditions for diffeomorphisms again, the quadratic La-
grangian part of the action (12) (up to the overall constant 1

κ2 ) reads

L =
1
2
hμνPμν,ρσhρσ, (32)

where the operator P is defined as

Pμν,ρσ = �
[
1
2
(−1 + ξ�)P (2) − 1

2α
P (1) +

2(D − 2)α − (D − 1)
4α

P (0,s) − 1
4α

P (0,w)
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+
√

D − 1
4α

P (0,sw) +
√

D − 1
4α

P (0,ws)

]
μν,ρσ

. (33)

Then, the inverse of the operator P is calculated as

P−1
μν,ρσ =

1
�

[
2

−1 + ξ�P (2) − 2αP (1) +
2

D − 2
P (0,s) +

2(D − 1) − 4α(D − 2)
D − 2

P (0,w)

+
2
√

D − 1
D − 2

P (0,sw) +
2
√

D − 1
D − 2

P (0,ws)

]
μν,ρσ

. (34)

Using it, the propagator for hμν takes the form

〈0|T (hμν(x)hρσ(y))|0〉 = iP−1
μν,ρσδ(D)(x − y). (35)

Now we are willing to investigate the unitarity of the theory. One of the easiest
way is to see the imaginary part of the residue of the tree-level amplitudes at the poles
where the external sources are conserved, transverse stress-energy tensor. Then, the
longitudinal operator ωμν in the spin projector operators does not contribute, so
only the projection operators P (2) and P (0,s) survive. Thus, the amplitude A takes
the form in the momentum space

A = iT ∗μν

[
2

p2 + 1
ξ

P (2) − 2
p2

(
P (2) − 1

D − 2
P (0,s)

)]
μν,ρσ

T ρσ

= i

[
2

p2 + 1
ξ

(
|Tμν |2 − 1

D − 1
|Tμ

μ |2
)
− 2

p2

(
|Tμν |2 − 1

D − 2
|Tμ

μ |2
)]

. (36)

Since the stress-energy tensor Tμν is now conserved and transverse, we can expand
it in terms of the polarization vector εi

μ with i = 1, 2, · · · , D − 2 as Tμν = tijε
i
μεj

ν .
Then the amplitude A can be rewritten as

A = i

[
2

p2 + 1
ξ

(
|tij|2 − 1

D − 1
|tii|2

)
− 2

p2

(
|tij|2 − 1

D − 2
|tii|2

)]
. (37)

It is now straightforward to evaluate the imaginary part of the residue of the
amplitude at the poles. First, at the massless pole corresponding to the massless
graviton, we have

Im Res(A)|p2=0 = −2
(
|tij|2 − 1

D − 2
|tii|2

)
. (38)

This is obviously vanishing for D = 3 while it becomes negative for D > 4. This fact
implies that there is no dynamical massless graviton in three dimensions whereas the
massless graviton becomes a ghost for D > 4. On the other hand, at the massive
pole corresponding to the massive graviton

Im Res(A)|p2=− 1
ξ

= 2
(
|tij|2 − 1

D − 1
|tii|2

)
, (39)
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which is positive for both D = 3 and D > 4. Therefore, the massive graviton with
mass ‘m’ is a dynamical field with the positive norm. Accordingly, it is worth while
to emphasize that the gravitational theory defined by the action (12) is free from the
ghost and describes an interacting unitary massive gravity theory only in three space-
time dimensions whereas it is not unitary in more than four dimensions. This fact
is also certified by the observation that the action (21) includes the Einstein-Hilbert
action with the wrong sign so that the corresponding massless graviton mode has a
negative norm, which is non-dynamical only in three dimensions. It is remarkable
that the ghost does not show up in three dimensions even if there is a propagator
like 1

˜(˜− 1
ξ
)

which can be seen in Eq. (34).

In this short article, we have clarified unitarity of a massive gravity model in
three space-time dimensions by Bergshoeff et al.13) Although we can formally con-
struct a sort of dual action (11) which connects the higher-derivative action (12) and
the Pauli-Fierz massive gravity action (29) at the quadratic level via path integra-
tion, it has turned out that it is necessary to analyze the higher-derivative action
(12) in some detail. We have pointed out that even if it seems to be possible to
generalize the three-dimensional theory with a particular higher-derivative terms,13)

to higher dimensions except in four dimensions, only the three-dimensional theory
provides a unitary theory of the massive graviton. This is because in three space-
time dimensions the non-unitary massless graviton mode is not dynamical while in
the other higher dimensions it becomes dynamical, thereby violating the unitarity
of the theory.
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