# On unitary representations and factor sets of covering groups of the real symplectic groups 

Dedicated to Professor Hisaaki Yoshizawa on his 60th birthday<br>By

Tôru Umeda
(Received October 21, 1982)

## Introduction.

In an attempt to get the metaplectic groups of "higher degree", Kubota presented a Weil type representation for $S L(2, \boldsymbol{C})$ in the papers [7]-[10]. A similar construction of the covering groups of $S L(2, R)$ was obtained by Yamazaki [16]. Briefly speaking, they replaced the role of the Fourier transformation in the construction of so-called Weil representation [14] by that of the FourierBessel transformation. In the present paper we treat the case of the real symplectic group $S p(m, \boldsymbol{R})$, using the Bessel functions of matrix argument defined by Herz [5]. We start from a certain family of unitary operators defined on an open dense subset of $S p(m, \boldsymbol{R})$. Then this family determines a projective unitary representation of $S p(m, \boldsymbol{R})$. For a closer investigation of matters, we introduce a factor set for the universal covering group of $S p(m, R)$, which can be computed explicitly. The purpose of the present paper is to study such a family of unitary operators in connection with the factor set.

Let us explain our results in more detail. Let $S_{m}(\boldsymbol{R})$ be the space of all $m \times m$ real symmetric matrices and $P_{m}$ the space of all $m \times m$ positive definite real symmetric matrices. For $\delta>-1$, we denote by $L_{\delta}^{2}\left(P_{m}\right)$ the Hilbert space of square integrable functions on $P_{m}$ with respect to the measure (det $\left.x\right)^{\delta} d x$, where $d x$ is the restriction of usual Lebesgue measure on $S_{m}(\boldsymbol{R})$. We denote three types of elements in $S p(m, \boldsymbol{R})$ by $d(a)=\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right), t(b)=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right), d^{\prime}(c)=\left(\begin{array}{cc}0 & -^{t} c^{-1} \\ c & 0\end{array}\right)$ for $a, c \in G L(m, \boldsymbol{R})$ and $b \in S_{m}(\boldsymbol{R})$. Corresponding to these elements, we define three types of unitary operators on $L_{\hat{\partial}}^{2}\left(P_{m}\right)$ as follows. For $\varphi \in L_{\hat{\delta}}^{2}\left(P_{m}\right)$,

$$
\begin{array}{ll}
\left.\boldsymbol{d}_{\dot{\delta}}(a) \varphi(x)=\varphi^{(t} a x a\right)|\operatorname{det} a|^{\delta+p} & (a \in G L(m, \boldsymbol{R})), \\
\boldsymbol{t}_{\hat{o}}(b) \varphi(x)=\varphi(x) \operatorname{etr}(\sqrt{ }-1 b x) & \left(b \in S_{m}(\boldsymbol{R})\right), \\
\boldsymbol{d}_{\hat{\delta}}^{\prime}(c) \varphi(x)=\varphi^{*}\left(c^{-1} x^{t} c^{-1}\right)|\operatorname{det} c|^{-\grave{o}-p} & (c \in G L(m, \boldsymbol{R})) .
\end{array}
$$

Here $p=(m+1) / 2, \operatorname{etr}(a)=\exp (\operatorname{tr}(a))$, and $\varphi^{*}$ is the Hankel transform of $\varphi$ defined by

$$
\varphi^{*}(x)=\int_{P_{n n}} \varphi(y) A_{\delta}(x y)(\operatorname{det} y)^{\boldsymbol{j}} d y
$$

with the Bessel function $A_{\dot{d}}$ of $\operatorname{Herz}$ [5]. On the other hand. put

$$
\Omega=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{Sp}(m, \boldsymbol{R}) ; \operatorname{det} c \neq 0\right\} .
$$

Then any element $\sigma$ in $\Omega$ is uniquely decomposed in the form $\sigma=t\left(b_{1}\right) d^{\prime}(c) t\left(b_{2}\right)$. Using this decomposition for $\sigma \in \Omega$, we define a unitary operator $\boldsymbol{r}_{\hat{o}}(\sigma)$ on $L_{\bar{\delta}}^{2}\left(P_{m}\right)$ by $\boldsymbol{r}_{\hat{\delta}}(\sigma)=\boldsymbol{t}_{\boldsymbol{\delta}}\left(b_{1}\right) \boldsymbol{d}_{\delta}^{\prime}(c) \boldsymbol{t}_{\boldsymbol{\delta}}\left(b_{2}\right)$. Let us now state our first theorem:

Theorem 3.2. Let $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \sigma^{\prime}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right), \sigma^{\prime \prime}=\left(\begin{array}{ll}a^{\prime \prime} & b^{\prime \prime} \\ c^{\prime \prime} & d^{\prime \prime}\end{array}\right)$ be three elements in $\Omega$ such that $\sigma^{\prime \prime}=\sigma \sigma^{\prime}$. Then it holds that

$$
r_{\hat{i}}(\sigma) r_{\delta}\left(\sigma^{\prime}\right)=r_{\delta}\left(\sigma^{\prime \prime}\right) e_{\dot{\delta}}\left(\operatorname{sgn}\left(c^{-1} c^{\prime \prime} c^{\prime-1}\right)\right),
$$

where $\boldsymbol{e}_{\delta}(\zeta)=\exp \left(\sqrt{-1} \frac{\pi}{2}(\delta+p) \zeta\right)$ and $\operatorname{sgn} b\left(b \in S_{m}(\boldsymbol{R})\right)$ is the index of inertia of $b$.

From this theorem, we see that $r_{\bar{o}}$ determines a projective unitary representation of $S p(m, \boldsymbol{R})$, so that we obtain a unitary representation of the universal covering group of $S p(m, \boldsymbol{R})$. To investigate this representation, we describe the universal covering group of $S p(m, \boldsymbol{R})$ using an explicit factor set, which we denote by $A\left(\sigma, \sigma^{\prime}\right),\left(\sigma, \sigma^{\prime} \in S p(m, R)\right)$. For example, we have an expression

$$
\begin{equation*}
A\left(\sigma, \sigma^{\prime}\right)=\frac{1}{4}\left\{\operatorname{Sgn}(c)-\operatorname{Sgn}\left(c^{\prime \prime}\right)+\operatorname{Sgn}\left(c^{\prime}\right)-\operatorname{Sgn}\left(c^{-1} c^{\prime \prime} c^{\prime-1}\right)\right\} \tag{5.1}
\end{equation*}
$$

for $\sigma, \sigma^{\prime}, \sigma^{\prime \prime}$ in Theorem 3.2. (For the definition of Sgn, see §5). Now, for a positive integer $q$, we consider the central extension $G_{q}$ of $S p(m, \boldsymbol{R})$ by $\boldsymbol{Z}$ with the factor set $q A\left(\sigma, \sigma^{\prime}\right)$. Here $G_{q}$ is a group with the underlying set $S p(m, \boldsymbol{R})$ $\times \boldsymbol{Z}$ and the group operation $(\sigma, n)\left(\sigma^{\prime}, n^{\prime}\right)=\left(\sigma \sigma^{\prime}, n+n^{\prime}+q A\left(\sigma, \sigma^{\prime}\right)\right)$. Then $G_{1}$ for $q=1$ is by definition the universal covering group of $S p(m, \boldsymbol{R})$. For the structure of $G_{q}$, we see in Proposition 6.1 that $G_{q}$ is a semidirect product of $G_{1}$ and $\boldsymbol{Z} / q \boldsymbol{Z}$. Further in Proposition 6.2, we determine the normal subgroups of $G_{q}$. For the representation of $G_{q}$, from Theorem 3.2 and (5.1), we obtain the following

Theorem 6.3. For $\delta>-1$, there exists an irreducible unitary representation $\boldsymbol{U}_{q, \delta}$ of $G_{q}$ on the Hilbert space $L_{\delta}^{2}\left(P_{m}\right)$ such that for $(\sigma, n) \in G_{q}$ with $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Omega$,

$$
\boldsymbol{U}_{q, \delta} \delta((\sigma, n))=r_{\dot{\partial}}(\sigma) \boldsymbol{e}_{\bar{\partial}}\left(-\frac{4}{q} n-\operatorname{Sgn}(c)\right) .
$$

By virtue of the explicit factor set, we can specify the group of operators on $L_{\hat{\delta}}^{2}\left(P_{m}\right)$ generated by the set $\left\{\boldsymbol{r}_{\dot{j}}(\sigma) ; \sigma \in \Omega\right\}$ as $\boldsymbol{U}_{4, \hat{o}}\left(G_{4}\right)$ for $m$ odd, and $\boldsymbol{U}_{2, \delta}\left(G_{2}\right)$ for $m$ even (Proposition 6.6).

The equivalence of the representation $\boldsymbol{U}_{1, \boldsymbol{\sigma}}$ to relative holomorphic discrete series representation of the universal covering group of $S p(m, \boldsymbol{R})$ is given by the Laplace transformation. Therefore $\boldsymbol{U}_{1, \bar{\delta}}$ is found to be essentially the same as that obtained in Yamada [15, Th. 3.5].

The contents of each section are as follows. $\S 1$ is a preliminary and $\S 2$ is a summary of the necessary facts about the Bessel functions of Herz. In $\S 3$, we compute the factor associated with the family of operators $\left\{\boldsymbol{r}_{\dot{\delta}}(\sigma) ; \sigma \in \Omega\right\}$. In §4, we define and compute an explicit factor set $A\left(\sigma, \sigma^{\prime}\right)$, and describe the universal covering group of $S p(m, \boldsymbol{R})$ by it. Gathering these results in $\S \S 3-4$, we obtain unitary representations of the universal covering group of $S p(m, \boldsymbol{R})$ in $\S 5 . \S 6$ is devoted to study of the group $G_{q} . \$ 7$ is a remark on the relation to relative holomorphic discrete series representations. In Appendix, we give a sufficient condition that the commutant of a certain set of operators on $L^{2}(X)$ is the algebra of multiplication operators.

The author wishes to express his thanks to Professor T. Hirai for his constant encouragement and various advices.

## § 1. Notations and preliminaries.

1.1. We denote by $\boldsymbol{Z}, \boldsymbol{R}$, and $\boldsymbol{C}$, respectively, the ring of integers, the real number field, and the complex number field. Also we use the notation $M_{m}(F)$ and $G L(m, F)$ for the total matrix algebra and the general linear group of degree $m$ with entries in $F$, where $F=\boldsymbol{R}$ or $\boldsymbol{C}$. For a matrix $a,^{i} a$ is the transposed of $a$. We denote by $1_{m}$ or $0_{m}$ the unit matrix or the zero matrix of degree $m$. For $z \in M_{m}(\boldsymbol{C}), \operatorname{Re} z$ or $\operatorname{Im} z$ denotes the real or the imaginary part of $z: \operatorname{Re} z$, $\operatorname{Im} z \in M_{m}(\boldsymbol{R}), z=\operatorname{Re} z+\sqrt{-1} \operatorname{Im} z$. The group of real or complex orthogonal matrices and the group of unitary matrices of degree $m$ are denoted by $O(m, \boldsymbol{R})$, $O(m, C)$, and $U(m)$ respectively. Moreover we use the following spaces of matrices:
$S_{m}(\boldsymbol{R})$ : the space of all $m \times m$ real symmetric matrices,
$S_{m}(\boldsymbol{C})$ : the space of all $m \times m$ complex symmetric matrices,
$P_{m}$ : the space of all $m \times m$ positive definite real symmetric matrices,
$\mathfrak{g}_{m}$ : the Siegel upper half space of degree $m, \mathfrak{g}_{m}=\left\{z \in S_{m}(\boldsymbol{C}) ; \operatorname{Im} z \in P_{m}\right\}$.
For $a \in S_{m}(\boldsymbol{R})$, we write $a>0$ if $a$ is positive definite. As usual det $a$ or $\operatorname{tr} a$ means the determinant or the trace of $a$. Following Herz [5], we write etr( $a$ ) $=\exp (\operatorname{tr} a)$.
1.2. Throughout this paper, we fix an integer $m>0$ and use the letter $p$ for $(m+1) / 2$ consistently, $p=(m+1) / 2$.

On the vector space $S_{m}(\boldsymbol{R})$, we define the measure $d x$ as $\Pi_{i \leq j} d x_{i j}$. Here the coordinate $x_{i j}$ is taken from the components of $x=\left(x_{i j}\right)$, and $d x_{i j}$ is the Lebesgue measure on $\boldsymbol{R}$.

Let $G L(m, \boldsymbol{R})$ act on $S_{m}(\boldsymbol{R})$ by $x \rightarrow^{t} a x a=x^{a}\left(x \in S_{m}(\boldsymbol{R}), a \in G L(m, \boldsymbol{R})\right)$. Then $P_{m}$ is an open orbit. It is easy to see that the module of the linear transformation $x \mapsto x^{a}$ with respect to the measure $d x$ is $|\operatorname{det} a|^{2 p}$, i. e., $d x^{a}=|\operatorname{det} a|^{2 p} d x$. So we have a $G L(m, \boldsymbol{R})$-invaritnt measure $(\operatorname{det} x)^{-p} d x$ on $P_{m}$.

On the other hand, every element $x \in P_{m}$ is diagonalized by an element in $O(m, \boldsymbol{R})$. Using the eigenvalues of $x$, we can write the measure $d x$ in the form

$$
d x=\Pi_{i<j}\left|t_{i}-t_{j}\right| d t_{1} \cdots d t_{m} d u
$$

Here $x={ }^{t} u t u, t=\operatorname{diag}\left(t_{1}, \cdots, t_{m}\right), u \in O(m, R)$, and $d u$ is a Haar measure on $O(m, \boldsymbol{R})$. Since $O(m, \boldsymbol{R})$ is compact, the absolute convergence of an integral with respect to $d x$ depends only on the part $\prod_{i<j}\left|t_{i}-t_{j}\right| d t_{1} \cdots d t_{m}$. For example, the integral

$$
\int_{P_{m}}\left(\operatorname{det}\left(x_{0}+\sqrt{-1} y\right)\right)^{-\alpha} d y
$$

is absolutely convergent if $\operatorname{Re} \alpha>m$ for a fixed $x_{0} \in P_{m}$.
1.3. As in Herz [5], we make the following convention.

A complex analytic function $f$ on $S_{m}(\boldsymbol{C})$ is called symmetric if it satisfies $f\left({ }^{t} u z u\right)=f(z)$ for all $u \in O(m, C)$. A symmetric function $f(z)$ is actually an analytic function of $m$ elementary symmetric functions of $z, s_{1}=\operatorname{tr} z, s_{2}, \cdots, s_{m}$ $=\operatorname{det} z$. Using this fact, for a symmetric function $f$, we extend its domain of definition from $S_{m}(\boldsymbol{C})$ to $M_{m}(\boldsymbol{C})$ naturally. Then we see $f\left({ }^{t} z\right)=f(z)$ and $f(z w)$ $=f(w z)$. Moreover, it is useful to note the following. Let $x \in P_{m}$ and $x^{1 / 2}$ be the positive definite square root of $x$. Then $x^{1 / 2} z x^{1 / 2} \in S_{m}(\boldsymbol{C})$ for $z \in S_{m}(\boldsymbol{C})$, and we have $f(x z)=f(z x)=f\left(x^{1 / 2} z x^{1 / 2}\right)$.

## §2. Bessel functions of matrix argument.

In this section we summarize some results of Herz [5].

### 2.1. Definition of the Bessel functions.

Let $\hat{\delta}$ be a complex number with $\operatorname{Re} \delta>p-1$. The Bessel function $A_{\hat{o}}(x)$ $\left(x \in S_{m}(\boldsymbol{C})\right)$ is defined as

$$
\begin{equation*}
A_{\partial}(x)=(2 \pi \sqrt{-1})^{-m p} \int_{\substack{R \in z=x_{0}>0 \\ z \in S_{m}(C)}} \operatorname{etr}\left(z-x z^{-1}\right)(\operatorname{det} z)^{-\hat{\delta}-p} d z \tag{2.1}
\end{equation*}
$$

Here the integral should te understood as

$$
(2 \pi)^{-m p} \int_{S_{m}(R)} \operatorname{etr}\left(z-x z^{-1}\right)(\operatorname{det} z)^{-\delta-p} d y
$$

with the variable $z=x_{0}+\sqrt{-1} y$ for a fixed $x_{0} \in P_{m}$, and we take the branch of the function $(\operatorname{det} z)^{-\delta-p}$ for $\operatorname{Re} z>0$ determined by $\left(\operatorname{det} 1_{m}\right)^{-\delta-p}=1$. Since etr $\left(z-x z^{-1}\right)$ is bounded in $z=x_{0}+\sqrt{ }-1 y$, the integral (2.1) converges absolutely for $\operatorname{Re} \delta>p-1$. And by the Cauchy's theorem, (2.1) is independent of $x_{0} \in P_{m}$. Moreover we can see that for any fixed $x_{0} \in P_{m}$, etr $\left(z-x z^{-1}\right)$ is uniformly bounded in $z=x_{0}+\sqrt{-1} y$ whenever $x$ varies in a compact subset of $S_{m}(\boldsymbol{C})$. Therefore $A_{\dot{\delta}}(x)$ is an entire function in $x$ and analytic in $\delta$ for $\operatorname{Re} \delta>p-1$. In addition, for $\operatorname{Re} \delta>p-1$, $A_{\bar{\delta}}(x)$ is bounded in $x \in P_{m}$ and vanishes at infinity.

The analytic continuation in $\delta$ of $A_{\overline{0}}(x)$ is carried out by the differential recurrence formula:

$$
\begin{equation*}
D\left((\operatorname{det} x)^{\hat{\delta}} A_{\hat{o}}(x)\right)=(\operatorname{det} x)^{\delta-1} A_{\delta-1}(x) \tag{2.2}
\end{equation*}
$$

where $D=\operatorname{det}\left(\eta_{i j} \frac{\partial}{\partial x_{i j}}\right), \eta_{i j}=1$ if $i=i$, and $=\frac{1}{2}$ if $i \neq j$. It can be shown that $A_{\delta}$ is analytically continued to all $\delta \in \boldsymbol{C}$, so that $A_{\partial}(x)$ is entire in $\delta$ and $x$ simultaneously.

For $\operatorname{Re} \delta>p-1,(2.1)$ shows that $A_{\dot{\partial}}(x)=O(\operatorname{etr}(|x|))$, and the same estimate holds also for all derivatives of $A_{\dot{\imath}}(x)$. Here $|x|$ is the positive definite hermitian matrix which satisfies $|x|^{2}=^{t} \bar{x} x$.

From the definition (2.1), we see that $A_{\dot{\delta}}(x)$ is symmetric. So we can extend the function $A_{\hat{0}}(z)$ for all $z \in M_{m}(\boldsymbol{C})$.

The very important formula $A_{\dot{o}}$ is the Laplace transform of (2.1):

$$
\begin{equation*}
\int_{P_{m}} \operatorname{etr}(-x z) A_{\bar{u}}(x y)(\operatorname{det} x)^{\delta} d x=\operatorname{etr}\left(-y z^{-1}\right)(\operatorname{det} z)^{-\bar{j}-p} \tag{2.3}
\end{equation*}
$$

This converges absolutely for all $y \in P_{m}, \operatorname{Re} z>0$, and $\operatorname{Re} \delta>-1$. Formulae in the following subsections 2.2 and 2.3 are essentially based on (2.3).

Remark. For $m=1$, the relation of $A_{\delta}(x)$ to the ordinary Bessel function $J_{\hat{\delta}}(x)$ is given by $J_{\delta}(x)=A_{\hat{j}}\left(\frac{1}{4} x^{2}\right)\left(\frac{x}{2}\right)^{\delta}$. (c.f. Watson [13, 6.2])
2.2. The Hankel transform. Let $\delta$ be a real number greater than -1 . We denote by $L_{\delta}^{2}\left(P_{m}\right)$ the Hilbert space of all square integrable functions on $P_{m}$ with respect to the measure $(\operatorname{det} x)^{\delta} d x$. Let us consider the linear transformation with integral kernel $A_{\hat{o}}(x y)$ :

$$
\begin{equation*}
\varphi^{*}(x)=\int_{P_{m}} \varphi(y) A_{\hat{\delta}}(x y)(\operatorname{det} y)^{\bar{i}} d y \tag{2.4}
\end{equation*}
$$

Proposition 2.1 (C.f. Herz [5, Theorem 3.1]). The transform $\varphi \mapsto \varphi^{*}$ on the space of continuous functions with compact supports can be extended on the whole $L_{\delta \delta}^{2}\left(P_{m}\right)$ as a unitary operator, and $\varphi^{* *}=\varphi$. The integral expression (2.4) is valid for $\varphi \in L_{\delta}^{2}\left(P_{m}\right)$ whenever it is absolutely convergent.
2.3. Weber's second exponential integral. For $\operatorname{Re} \delta>-1, a, b \in P_{m}$, and $\operatorname{Re} z>0$, we have an integral formula which converges absolutely (Herz [5, (5.8)]).

$$
\begin{align*}
& \int_{P_{m}} \operatorname{etr}(-x z) A_{\bar{\delta}}(a x) A_{\dot{o}}(b x)(\operatorname{det} x)^{\delta} d x  \tag{2.5}\\
= & \operatorname{etr}\left(-(a+b) z^{-1}\right) A_{\delta}\left(-a z^{-1} b z^{-1}\right)(\operatorname{det} z)^{-\delta-p}
\end{align*}
$$

Here the branch of $(\operatorname{det} z)^{-\delta-p}$ for $\operatorname{Re} z>0$ is determined by $\left(\operatorname{det} 1_{m}\right)^{-\dot{\delta}-p}=1$.

## § 3. Weil type factor of a family of unitary operators.

3.1. Let $\delta$ be a real number greater than -1 . On the analogy of Weil [14], Kubota [9], and Yamazaki [16], we define the following three types of unitary operators on $L_{\delta}^{2}\left(P_{m}\right)$. For $\varphi \in L_{\delta}^{2}\left(P_{m}\right)$,

$$
\begin{array}{ll}
\boldsymbol{d}_{\dot{\partial}}(a) \varphi(x)=\varphi\left(^{( } a x a\right)|\operatorname{det} a|^{\dot{\delta}+p} & (a \in G L(m, \boldsymbol{R})), \\
\boldsymbol{t}_{\dot{\delta}}(b) \varphi(x)=\varphi(x) \operatorname{etr}(\sqrt{-1} b x) & \left(b \in S_{m}(\boldsymbol{R})\right), \\
\boldsymbol{d}_{\dot{\delta}}^{\prime}(c) \varphi(x)=\varphi^{*}\left(c^{-1} x^{i} c^{-1}\right)|\operatorname{det} c|^{-\hat{o}-p} & (c \in G L(m, \boldsymbol{R})) .
\end{array}
$$

Here $\varphi^{*}$ is defined in 2.2.
In the following we often denote these operators as $\boldsymbol{d}(a), \boldsymbol{t}(b)$, and $\boldsymbol{d}^{\prime}(c)$ without the parameter $\delta$ in case there is no fear of confusion.

Proposition 3.1. Let $b \in G L(m, \boldsymbol{R})$ be symmetric. Then we have

$$
\left(\boldsymbol{d}_{\hat{o}}^{\prime}\left(-b^{-1}\right) \boldsymbol{t}_{\dot{o}}(b)\right)^{3}=\exp \left(\sqrt{-1} \frac{\pi}{2}(\overline{\boldsymbol{o}}+p) \operatorname{sgn} b\right) .
$$

Here $\operatorname{sgn} b$ is the index of inertia of $b$, i.e., the dimension of positive eigenspace of $b$ minus that of negative one.

Proof. We show the equality

$$
\left(\boldsymbol{d}^{\prime}\left(-b^{-1}\right) \boldsymbol{t}(b)\right)^{2}=\boldsymbol{l}(-b) \boldsymbol{d}^{\prime}\left(b^{-1}\right) \exp \left(\sqrt{-1} \frac{\pi}{2}(\hat{o}+p) \operatorname{sgn} b\right)
$$

Let us compute $I=\left(\boldsymbol{d}^{\prime}\left(-b^{-1}\right) \boldsymbol{t}(b)\right)^{2} \varphi(x)$ for a continuous function $\varphi$ on $P_{m}$ with compact support. Put

$$
\begin{aligned}
\Phi\left(x_{1}, x_{2}\right)= & \varphi\left(x_{1}\right) \operatorname{etr}(\sqrt{-1} b x) A_{\dot{j}}\left(x_{1} b x_{2} b\right)\left(\operatorname{det} x_{1}\right)^{\delta} \\
& \times \operatorname{etr}\left(\sqrt{-1} b x_{2}\right) A_{\dot{j}}\left(x_{2} b x b\right)\left(\operatorname{det} x_{2}\right)^{\delta} .
\end{aligned}
$$

Then we see formally

$$
I=|\operatorname{det} b|^{2 p+2 \delta} \int_{P_{m}}\left(\int_{P_{m}} \Phi\left(x_{1}, x_{2}\right) d x_{1}\right) d x_{2} .
$$

To be precise, we consider the integral $I_{\mathrm{s}}$ with convergence factor $\operatorname{etr}\left(-\varepsilon x_{2}\right)$, $\varepsilon>0$,

$$
I_{:}=|\operatorname{det} b|^{2 p+2 \delta} \int_{P_{m}}\left(\int_{P_{m}} \operatorname{etr}\left(-\varepsilon x_{2}\right) \Phi\left(x_{1}, x_{2}\right) d x_{1}\right) d x_{2} .
$$

Then by Fubini's theorem,

$$
\begin{aligned}
I_{\varepsilon}= & |\operatorname{det} b|^{2 p+2 \delta} \int d x_{1} \int \operatorname{etr}\left(-\varepsilon x_{2}\right) \Phi\left(x_{1}, x_{2}\right) d x_{2} \\
& =|\operatorname{det} b|^{2 p+2 \hat{j}} \int \varphi\left(x_{1}\right) \operatorname{etr}\left(\sqrt{-1} b x_{1}\right)\left(\operatorname{det} x_{1}\right)^{\dot{\delta}} d x_{1} \\
& \times \int \operatorname{etr}\left((-\varepsilon+\sqrt{-1} b) x_{2}\right) A_{\dot{\partial}}\left(x_{2} b x b\right) A_{\dot{\partial}}\left(x_{1} b x_{2} b\right)\left(\operatorname{det} x_{2}\right)^{i} d x_{2} .
\end{aligned}
$$

By the Weber's second exponential integral (2.5), integral $\int \cdot d x_{2}$ is equal to

$$
\operatorname{etr}\left(-b\left(x+x_{1}\right) b z_{z}^{-1}\right) A_{\dot{j}}\left(-b x b z_{\varepsilon}^{-1} b x_{1} b z_{\dot{c}}^{-1}\right)\left(\operatorname{det} z_{s}\right)^{-\delta-p}
$$

where $z_{i}=\varepsilon-\sqrt{-1} b$. Therefore,

$$
\begin{aligned}
I_{\mathrm{s}}= & |\operatorname{det} b|^{2 p+2 \bar{\delta}} \operatorname{etr}\left(-b x b z_{\varepsilon}^{-1}\right)\left(\operatorname{det} z_{s}\right)^{-\dot{o}-p} \\
& \times \int \varphi\left(x_{1}\right) \operatorname{etr}\left(b\left(\sqrt{-1}-z_{\varepsilon}^{-1} b\right) x_{1}\right) A_{\dot{o}}\left(-b z_{\varepsilon}^{-1} b x b z_{z}^{-1} b x_{1}\right)\left(\operatorname{det} x_{1}\right)^{\hat{j}} d x_{1} .
\end{aligned}
$$

Letting $\varepsilon$ tend to zero. we have

$$
\begin{aligned}
I & =|\operatorname{det} b|^{2 p+2 \delta} \varphi^{*}(b x b) \operatorname{etr}(-\sqrt{-1} b x) \times \lim _{\varepsilon \rightarrow 0}\left(\operatorname{det} z_{\mathrm{s}}\right)^{-\delta-p} \\
& =\boldsymbol{t}(-b) \boldsymbol{d}^{\prime}\left(b^{-1}\right) \varphi(x) \times|\operatorname{det} b|^{\dot{\delta}+p} \lim _{\varepsilon \rightarrow 0}\left(\operatorname{det} z_{\mathrm{s}}\right)^{-\delta-p} .
\end{aligned}
$$

Recalling the choice of the branch for $(\operatorname{det} z)^{-\delta-p}$, we can easily compute the factor:

$$
\lim _{\bar{i} \rightarrow 0}\left|\operatorname{det} z_{\mathrm{s}}\right|^{\delta+p}\left(\operatorname{det} z_{\mathrm{s}}\right)^{-\delta-p}=\exp \left(\sqrt{-1} \frac{\pi}{2}(\delta+p) \operatorname{sgn} b\right) .
$$

Thus we obtain the assertion.
Q.E.D.
3.2. Let us consider the real symplectic group of degree $m$ in the usual form,

$$
S p(m, \boldsymbol{R})=\left\{\sigma \in G L(2 m, \boldsymbol{R}) ;^{\imath} \sigma J \sigma=J\right\}, \quad J=\left(\begin{array}{rr}
0_{m} & -1_{m} \\
1_{m} & 0_{m}
\end{array}\right) \in M_{2 m}(\boldsymbol{R}) .
$$

We write $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ using the $m \times m$ block components $a, b, c, d \in M_{m}(\boldsymbol{R})$, and denote $c=c(\sigma)$. We put

$$
\Omega=\{\sigma \in S p(m, \boldsymbol{R}) ; \operatorname{det} c(\sigma) \neq 0\} .
$$

Moreover we define three types of elements in $\operatorname{Sp}(m, \boldsymbol{R})$ as follows:

$$
d(a)=\left(\begin{array}{cc}
a & 0_{m} \\
0_{m} & { }^{t} a^{-1}
\end{array}\right), \quad t(b)=\left(\begin{array}{cc}
1_{m} & b \\
0_{m} & 1_{m}
\end{array}\right), \quad d^{\prime}(c)=\left(\begin{array}{cc}
0_{m} & -{ }^{t} c^{-1} \\
c & 0_{m}
\end{array}\right)
$$

for $a, c \in G L(m, \boldsymbol{R})$ and $b \in S_{m}(\boldsymbol{R})$.
It is easy to see that every $\sigma \in \Omega$ can be written uniquely in the form

$$
\begin{equation*}
\sigma=t\left(b_{1}\right) d^{\prime}(c) t\left(b_{2}\right), \quad b_{1}, b_{2} \in S_{m}(\boldsymbol{R}), \quad c \in G L(m, \boldsymbol{R}) \tag{3.1}
\end{equation*}
$$

In fact, for $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, we have $b_{1}=a c^{-1}$ and $b_{2}=c^{-1} d$. Using the decomposition (3.1) for $\sigma \in \Omega$, we define a unitary operator $r(\sigma)=r_{\delta}(\sigma)$ on $L_{\delta}^{2}\left(P_{m}\right)$ by

$$
\begin{equation*}
r_{\hat{o}}(\sigma)=\boldsymbol{t}_{\delta}\left(b_{1}\right) \boldsymbol{d}_{\delta \delta}^{\prime}(c) \boldsymbol{t}_{\dot{j}}\left(b_{2}\right) . \tag{3.2}
\end{equation*}
$$

Let us put $\boldsymbol{e}_{\delta}(\zeta)=\exp \left(\sqrt{-1} \frac{\pi}{2}(\delta+p)_{\zeta}\right)$ for $\zeta \in C$.
Theorem 3.2. Let $\sigma, \sigma^{\prime}, \sigma^{\prime \prime}$ be three elemeuts in $\Omega$ such that $\sigma^{\prime \prime}=\sigma \sigma^{\prime}$. Then it holds that

$$
r_{i}(\sigma) r_{\hat{i}}\left(\sigma^{\prime}\right)=r_{\bar{o}}\left(\sigma^{\prime \prime}\right) e_{\dot{\partial}}\left(\operatorname{sgn}\left(c^{-1} c^{\prime \prime} c^{\prime-1}\right)\right),
$$

where $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \sigma^{\prime}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right), \sigma^{\prime \prime}=\left(\begin{array}{ll}a^{\prime \prime} & b^{\prime \prime} \\ c^{\prime \prime} & d^{\prime \prime}\end{array}\right)$.
For the proof of Theorem, we prepare a computational lemma.

Lemma 3.3. Let ${ }^{t} f=f, c, c^{\prime} \in G L(m, \boldsymbol{R})$. Then we have

$$
\begin{equation*}
d^{\prime}(c) t(f) d^{\prime}\left(c^{\prime}\right)=t\left(f_{1}\right) d^{\prime}\left(c f c^{\prime}\right) t\left(f_{2}^{\prime}\right), \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{d}^{\prime}(c) \boldsymbol{t}(f) \boldsymbol{d}^{\prime}\left(c^{\prime}\right)=\boldsymbol{t}\left(f_{1}\right) \boldsymbol{d}^{\prime}\left(c f c^{\prime}\right) \boldsymbol{t}\left(f_{2}^{\prime}\right) \boldsymbol{e}_{\delta}(\operatorname{sgn} f) \tag{3.4}
\end{equation*}
$$

where $f_{1}=-c^{-1} f^{-1} c^{-1}$ and $f_{2}^{\prime}=-c^{\prime-1} f^{-1 t} c^{\prime-1}$.
Proof. It is easy check the following equalities.

$$
\begin{align*}
& d\left(a_{1}\right) d\left(a_{2}\right)=d\left(a_{1} a_{2}\right), \quad d(a)^{-1}=d\left(a^{-1}\right),  \tag{1}\\
& t\left(b_{1}\right) t\left(b_{2}\right)=t\left(b_{1}+b_{2}\right), \quad t(b)^{-1}=t(-b),  \tag{2}\\
& d^{\prime}\left(c_{1}\right) d^{\prime}\left(c_{2}\right)=d\left(-{ }^{t} c_{1}^{-1} c_{2}\right), \quad d^{\prime}(c)^{-1}=d^{\prime}\left(-{ }^{t} c\right),  \tag{3}\\
& d(a) t(b) d(a)^{-1}=t\left(a b^{t} a\right),  \tag{4}\\
& d(a) d^{\prime}(c)=d^{\prime}\left(a^{-1} c\right), \quad d^{\prime}(c) d(a)=d^{\prime}(c a) . \tag{5}
\end{align*}
$$

By a simple computation we see that there hold the equalities in which $d, t, d^{\prime}$ are substituted by $\boldsymbol{d}, \boldsymbol{t}, \boldsymbol{d}^{\prime}$ respectively.

$$
\begin{align*}
& \boldsymbol{d}\left(a_{1}\right) \boldsymbol{d}\left(a_{2}\right)=\boldsymbol{d}\left(a_{1} a_{2}\right), \quad \boldsymbol{d}(a)^{-1}=\boldsymbol{d}\left(a^{-1}\right), \\
& \boldsymbol{t}\left(b_{1}\right) \boldsymbol{t}\left(b_{2}\right)=\boldsymbol{t}\left(b_{1}+b_{2}\right), \quad \boldsymbol{t}(b)^{-1}=\boldsymbol{t}(-b), \\
& \boldsymbol{d}^{\prime}\left(c_{1}\right) \boldsymbol{d}^{\prime}\left(c_{2}\right)=\boldsymbol{d}\left(-{ }^{t} c_{1}^{-1} c_{2}\right), \quad \boldsymbol{d}^{\prime}(c)^{-1}=\boldsymbol{d}^{\prime}\left(-{ }^{t} c\right), \\
& \boldsymbol{d}(a) \boldsymbol{t}(b) \boldsymbol{d}(a)^{-1}=\boldsymbol{t}\left(a b^{t} a\right), \\
& \boldsymbol{d}(a) \boldsymbol{d}^{\prime}(c)=\boldsymbol{d}^{\prime}\left({ }^{t} a^{-1} c\right), \quad \boldsymbol{d}^{\prime}(c) \boldsymbol{d}(a)=\boldsymbol{d}^{\prime}(c a) .
\end{align*}
$$

Moreover, recalling the equality $\left(d^{\prime}\left(-f^{-1}\right) t(f)\right)^{3}=1$, or

$$
t(f)=d^{\prime}\left(f^{-1}\right) t(-f) d^{\prime}\left(f^{-1}\right) t(-f) d^{\prime}\left(f^{-1}\right),
$$

we get by (1)~(5)

$$
\begin{aligned}
d^{\prime}(c) t(f) d^{\prime}\left(c^{\prime}\right) & =d^{\prime}(c) d^{\prime}\left(f^{-1}\right) t(-f) d^{\prime}\left(f^{-1}\right) t(-f) d^{\prime}\left(f^{-1}\right) d^{\prime}\left(c^{\prime}\right) \\
& =d\left(-{ }^{t} c^{-1} f^{-1}\right) t(-f) d^{\prime}\left(f^{-1}\right) t(-f) d\left(-f c^{\prime}\right) \\
& =t\left(-{ }^{t} c^{-1} f^{-1} c^{-1}\right) d\left(-{ }^{t} c^{-1} f^{-1}\right) d^{\prime}\left(f^{-1}\right) d\left(-f c^{\prime}\right) t\left(-c^{\prime-1} f^{-1} c^{\prime-1}\right) \\
& =t\left(f_{1}\right) d^{\prime}\left(c f c^{\prime}\right) t\left(f_{2}^{\prime}\right) .
\end{aligned}
$$

This proves the equality (3.3). The second equality (3.4) can be obtained in a parallel way. In fact, instead of $\left(d^{\prime}\left(-f^{-1}\right) t(f)\right)^{3}=1$, we have only to use the equality $\left(\boldsymbol{d}^{\prime}\left(-f^{-1}\right) \boldsymbol{t}(f)\right)^{3}=\boldsymbol{e}_{\boldsymbol{z}}(\mathrm{sgn} f)$, which was shown in Proposition 3.1.
Q.E.D. for Lemma 3.3.

Proof of Theorem 3.2. Let the decomposition of $\sigma, \sigma^{\prime}, \sigma^{\prime \prime}$ be $\sigma=t\left(b_{1}\right) d^{\prime}(c) t\left(b_{2}\right)$, $\sigma^{\prime}=t\left(b_{1}^{\prime}\right) d^{\prime}\left(c^{\prime}\right) t\left(b_{2}^{\prime}\right), \quad \sigma^{\prime \prime}=t\left(b_{1}^{\prime \prime}\right) d^{\prime}\left(c^{\prime \prime}\right) t\left(b_{2}^{\prime \prime}\right)$. We have $b_{2}+b_{1}^{\prime}=c^{-1} c^{\prime \prime} c^{\prime-1}$, because $c^{\prime \prime}=$ $c a^{\prime}+d c^{\prime}, b_{2}=c^{-1} d, b_{1}^{\prime}=a^{\prime} c^{\prime-1}$. Put $f=b_{2}+b_{1}^{\prime}=c^{-1} c^{\prime \prime} c^{\prime-1}$. Then $f$ is symmetric and

$$
\begin{aligned}
\sigma^{\prime \prime} & =\sigma \sigma^{\prime}=t\left(b_{1}\right) d^{\prime}(c) t\left(b_{2}\right) t\left(b_{1}^{\prime}\right) d^{\prime}\left(c^{\prime}\right) t\left(b_{2}^{\prime}\right) \\
& =t\left(b_{1}\right) d^{\prime}(c) t(f) d^{\prime}\left(c^{\prime}\right) t\left(b_{2}^{\prime}\right) .
\end{aligned}
$$

So by (3.3), we get

$$
\sigma^{\prime \prime}=t\left(b_{1}+f_{1}\right) d^{\prime}\left(c f c^{\prime}\right) t\left(f_{2}^{\prime}+b_{2}^{\prime}\right),
$$

where $f_{1}={ }^{t} c^{-1} f^{-1} c^{-1}$ and $f_{2}^{\prime}=-c^{\prime-1} f^{-1} c^{\prime-1}$. The uniqueness of the decomposition shows that $b_{1}^{\prime \prime}=b_{1}+f_{1}, b_{2}^{\prime \prime}=f_{2}^{\prime}+b_{2}^{\prime}$, and $c^{\prime \prime}=c f c^{\prime}$. So by definition,

$$
\boldsymbol{r}\left(\sigma^{\prime \prime}\right)=\boldsymbol{t}\left(b_{1}+f_{1}\right) \boldsymbol{d}^{\prime}\left(b f c^{\prime}\right) \boldsymbol{t}\left(f_{2}^{\prime}+b_{2}^{\prime}\right)
$$

On the other hand, we have

$$
\begin{aligned}
\boldsymbol{r}(\sigma) \boldsymbol{r}\left(\sigma^{\prime}\right) & =\boldsymbol{t}\left(b_{1}\right) \boldsymbol{d}^{\prime}(c) \boldsymbol{t}\left(b_{2}\right) \boldsymbol{t}\left(b_{1}^{\prime}\right) \boldsymbol{d}^{\prime}\left(c^{\prime}\right) \boldsymbol{t}\left(b_{2}^{\prime}\right) \\
& =\boldsymbol{t}\left(b_{1}\right) \boldsymbol{d}^{\prime}(c) \boldsymbol{t}(f) \boldsymbol{d}^{\prime}\left(c^{\prime}\right) \boldsymbol{t}\left(b_{2}^{\prime}\right) .
\end{aligned}
$$

Then by (3.4), we get

$$
\begin{aligned}
\boldsymbol{r}(\sigma) \boldsymbol{r}\left(\sigma^{\prime}\right) & =\boldsymbol{t}\left(b_{1}\right) \boldsymbol{l}\left(f_{1}\right) \boldsymbol{d}^{\prime}\left(c f c^{\prime}\right) \boldsymbol{l}\left(f_{2}^{\prime}\right) \boldsymbol{t}\left(b_{2}^{\prime}\right) \boldsymbol{e}_{o}(\operatorname{sgn} f) \\
& =\boldsymbol{t}\left(b_{1}+f_{1}\right) \boldsymbol{d}^{\prime}\left(c f c^{\prime}\right) \boldsymbol{t}\left(f_{2}^{\prime}+b_{2}^{\prime}\right) \boldsymbol{e}_{\boldsymbol{j}}(\operatorname{sgn} f) \\
& =\boldsymbol{r}\left(\sigma^{\prime \prime}\right) \boldsymbol{e}_{\boldsymbol{j}}(\operatorname{sgn} f) .
\end{aligned}
$$

Hence the theorem.
Q.E.D.

## §4. A factor set for the universal covering group of $S p(m, \boldsymbol{R})$.

In this section we describe the univarsal covering group of $S p(m, \boldsymbol{R})$ using a factor set, which is convenient for our purpose. We give some explicit computations for the factor set, too.
4.1. We introduce the following notations.
(1) For $\zeta \in \boldsymbol{C}, \zeta \neq 0$, we choose the principal value of its argument as $-\pi \leqq \operatorname{Arg} \zeta<\pi$.
(2) For $a \in M_{m}(\boldsymbol{C})$, we put

$$
\operatorname{Arg}(a)=\sum_{\mu} \operatorname{Arg} \mu
$$

where the summation is taken over all non-zero eigenvalues $\mu$ of $a$ with multiplicities.

Remark 1. For $a \in S_{m}(\boldsymbol{R})$, we have

$$
\operatorname{Arg}(a)=\frac{\pi}{2}(\operatorname{sgn}(a)-\operatorname{rank}(a))
$$

2. If $a \in M_{m}(\boldsymbol{R})$, then $\operatorname{Arg}(a) \in \pi Z$.

### 4.2. A decomposition for elements in $S p(m, \boldsymbol{R})$.

Following Weil [14, Ch. V, n ${ }^{\text {os }} 46-47$, Prop. 6, Cor's 1 \& 2], we explain a "normal" form for $\sigma \in S p(m, \boldsymbol{R})$, which generalizes the expression (3.1) for elements of $\Omega$.

Let $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in M_{m}(\boldsymbol{R})$, and $\operatorname{rank}(c)=r$. Let $V$ be the space of row vectors of dimension $m$. Let $V_{1} \subset V$ be the range under right multiplication by $c$, and $V_{2}$ the orthogonal complement of $V_{1}$ in $V$. We choose orthonormal basis $u_{1}, \cdots, u_{r}$ of $V_{1}$ and $u_{r+1}, \cdots, u_{m}$ of $V_{2}$. And we make a matrix $u$ by arranging $u_{1}, \cdots, u_{n}$ in $m$ columns in this order. Then $u \in O(m, \boldsymbol{R})$. Moreover we put

$$
e_{1}=\binom{1_{r}}{0_{m-r}}, \quad e_{2}=1_{m}-e_{1}=\binom{0_{r}}{1_{m-r}}, \quad E_{r}=\left(\begin{array}{cc}
e_{2} & -e_{1}  \tag{4.1}\\
e_{1} & e_{2}
\end{array}\right) .
$$

In this situation, $\sigma$ can be written in the form

$$
\begin{equation*}
\sigma=d\left(u^{-1}\right) t(g) d\left({ }^{( } \lambda^{-1}\right) E_{r} t(h) d(u) \tag{4.2}
\end{equation*}
$$

where $g, h \in S_{m}(\boldsymbol{R}), e_{1} h e_{1}=h, \lambda \in G L(m, \boldsymbol{R})$. Moreover for a fixed $u$, the decomposition is unique.

Next let us look over how $g, h, \lambda$ change in case $u$ is replaced. If we choose another orthonormal basis of $V_{1}$ and $V_{2}$ and make the matrix $u^{\prime}$ as above, then $v=u^{\prime} u^{-1}$ is of the form

$$
v=\left(\begin{array}{cc}
v_{1} & \\
& v_{2}
\end{array}\right), \quad v_{1} \in O(r, \boldsymbol{R}), \quad v_{2} \in O(m-r, \boldsymbol{R}) .
$$

So we see $v^{-1} e_{1} v=e_{1}, v^{-1} e_{2} v=e_{2}, d\left(v^{-1}\right) E_{r} d(v)=E_{r}$. Using this, we get easily

$$
\begin{equation*}
g=v^{-1} g^{\prime} v, \quad h=v^{-1} h^{\prime} v, \quad \lambda=v^{-1} \lambda^{\prime} v, \tag{4.3}
\end{equation*}
$$

where $\sigma=d\left(u^{\prime-1}\right) t\left(g^{\prime}\right) d\left(^{\left(\lambda^{\prime-1}\right)} E_{r} t\left(h^{\prime}\right) d\left(u^{\prime}\right)\right.$ is the decomposition corresponding to $u^{\prime}$.
4.3. For $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S p(m, R)$ and $z \in \mathfrak{F}_{m}$, we put $J(\sigma, z)=c z+d$. It is well known that $J(\sigma, z)$ is invertible. It can be written in terms of the decomposition (4.2) as

$$
J(\sigma, z)=u^{-1} \lambda\left(e_{1}\left(u z^{t} u+h\right)+e_{2}\right) u,
$$

because $c=u^{-1} \lambda e_{1} u, d=u^{-1} \lambda\left(h+e_{2}\right) u$.
Now we define, using (4.2),

$$
\begin{equation*}
A J(\sigma, z)=\operatorname{Arg}(\lambda)+\operatorname{Arg}\left(e_{1}\left(u z^{l} u+h\right)+e_{2}\right) \tag{4.4}
\end{equation*}
$$

Recalling (4.3), we see easily that this does not depend on the choise of $u$, so that $A J(\sigma, z)$ is defined as a function of $\sigma$ and $z$.

Let $\sigma \in \Omega$, i.e., $\operatorname{rank}(c)=m$. Then, from the decomposition (3.1), we can choose $u=1_{m}$, and get

$$
\begin{equation*}
A J(\sigma, z)=\operatorname{Arg}(c)+\operatorname{Arg}\left(z+c^{-1} d\right) \tag{4.5}
\end{equation*}
$$

Let $c=0$, i.e., $\sigma=\left(\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right)$. Then we can also choose $u=1_{m}$ and get $A J(\sigma, z)=\operatorname{Arg}\left({ }^{t} a^{-1}\right)=\operatorname{Arg}\left(a^{-1}\right)$.

The important property of $A J(\sigma, z)$ is the following.

Proposition 4.1. For a fixed $\sigma \in S p(m, \boldsymbol{R})$, the function $A J(\sigma, z)$ of $z$ is continuous on $\mathfrak{G}_{m}$.

Proof. Let us write $u z^{t} u=\left(\begin{array}{cc}z_{1} & * \\ * & *\end{array}\right), z_{1} \in S_{r}(\boldsymbol{C})$. It is easy to see $z_{1} \in \mathfrak{g}_{r}$. Since $e_{1} h e_{1}=h$, the matrix $h$ is of the form $\binom{h_{1}}{0_{m-r}}, h_{1} \in S_{r}(\boldsymbol{R})$. Then we have

$$
e_{1}\left(u z^{t} u+h\right)+e_{2}=\left(\begin{array}{cc}
z_{1}+h_{1} & * \\
0 & 1_{m-r}
\end{array}\right) .
$$

Therefore we have only to consider the eigenvalues of $z_{1}+h_{1}$. Since $z_{1}+h_{1} \in \mathfrak{g}_{r}$, its eigenvalues are in the complex upper half plane $\mathfrak{g}_{1}$. By definition, whenever $\mu$ is in $\mathfrak{g}_{1}$, the map $\mu \mapsto \operatorname{Arg} \mu$ is continuous. Thus the continuity of the map $z \mapsto \operatorname{Arg}\left(z_{1}+h_{1}\right)$ is verified, because the roots of a polynomial depend continuously on its coefficients.
Q. E. D.
4.4. Let us put $j(\sigma, z)=\operatorname{det} J(\sigma, z)$. Then we see

$$
\begin{equation*}
j(\sigma, z)=|j(\sigma, z)| \exp (\sqrt{-1} A J(\sigma, z)) . \tag{4.6}
\end{equation*}
$$

On the other hand, for $\sigma, \sigma^{\prime} \in \operatorname{Sp}(m, R), z \in \mathfrak{F}_{m}$, we have

$$
\begin{equation*}
J\left(\sigma \sigma^{\prime}, z\right)=J\left(\sigma, \sigma^{\prime} z\right) J\left(\sigma^{\prime}, z\right) \quad \text { and } j\left(\sigma \sigma^{\prime}, z\right)=j\left(\sigma, \sigma^{\prime} z\right) j\left(\sigma^{\prime}, z\right) . \tag{4.7}
\end{equation*}
$$

Here the action of $S p(m, \boldsymbol{R})$ on $\mathfrak{h}_{m}$ is given by

$$
\tau z=(a z+b)(c z+d)^{-1}, \quad \tau=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S p(m, R) .
$$

Now we consider

$$
\begin{equation*}
A\left(\sigma, \sigma^{\prime} ; z\right)=\frac{1}{2 \pi}\left(A J\left(\sigma, \sigma^{\prime} z\right)-A J\left(\sigma \sigma^{\prime}, z\right)+A J\left(\sigma^{\prime}, z\right)\right) \tag{4.8}
\end{equation*}
$$

From (4.6) and (4.7), we see that $\exp \left(2 \pi \sqrt{-1} A\left(\sigma, \sigma^{\prime} ; z\right)\right)=1$, so that $A\left(\sigma, \sigma^{\prime} ; z\right)$ $\subseteq Z$. On the other hand, by Proposition 4.1, $A\left(\sigma, \sigma^{\prime} ; z\right)$ is continuous in $z$. Therefore we find that $A\left(\sigma, \sigma^{\prime} ; z\right)$ does not depend on $z \in \mathfrak{פ}_{m}$. So we write it by $A\left(\sigma, \sigma^{\prime}\right)$ instead.

By a simple computation, the following cocycle condition for $A\left(\sigma, \sigma^{\prime}\right)$ is verified:

$$
A\left(\sigma \sigma^{\prime}, \sigma^{\prime \prime}\right)+A\left(\sigma, \sigma^{\prime}\right)=A\left(\sigma, \sigma^{\prime} \sigma^{\prime \prime}\right)+A\left(\sigma^{\prime}, \sigma^{\prime \prime}\right)
$$

Now using this factor set $A\left(\sigma, \sigma^{\prime}\right)$, we construct a central extension $G_{1}$ of $S p(m, \boldsymbol{R})$ as follows. As an underlying set. we take $G_{1}=S p(m, \boldsymbol{R}) \times \boldsymbol{Z}$. The group operation in $G_{1}$ is given by

$$
(\sigma, n)\left(\sigma^{\prime}, n^{\prime}\right)=\left(\sigma \sigma^{\prime}, n+n^{\prime}+A\left(\sigma, \sigma^{\prime}\right)\right) .
$$

Proposition 4.2. The group $G_{1}$ is the universal covering group of $\operatorname{Sp}(m, R)$.
Proof. This can be seen by restricing the factor set on the maximal compact subgroup $\left.K=\left\{\begin{array}{rr}a & -b \\ b & a\end{array}\right) \in G L(2 m, R) ; a+\sqrt{ }-1 b \in U(m)\right\}$. But we give here
another proof in order to mention the topology on the covering group.
Let us realize the universal covering group $S p(m, \boldsymbol{R})^{\sim}$ of $S p(m, \boldsymbol{R})$ as in Kashiwara-Vergne [6, (3.5)]: $S p(m, \boldsymbol{R})^{\sim}=\left\{\left(\sigma, L_{0}\right) ; \sigma \in S p(m, \boldsymbol{R}), L_{\sigma} \in \mathcal{L}_{u}\right\}$ endowed with the group operation ( $\left.\sigma, L_{\sigma}\right)\left(\sigma^{\prime}, L_{\sigma^{\prime}}\right)=\left(\sigma^{\prime \prime}, L_{\sigma}\right.$.) with $\sigma^{\prime \prime}=\sigma \sigma^{\prime}$ and $L_{\sigma} \cdot(z)=L_{\sigma}\left(\sigma^{\prime} z\right)+L_{\sigma^{\prime}}(z)$. Here $L_{\sigma}$ is an element of a family $\mathcal{L}_{\sigma}$ of functions on $\mathfrak{S}_{m}$ given as follows. For any fixed $\sigma \in S p(m, \boldsymbol{R}), L_{\sigma}(z)=\log j(\sigma, z)$, where the values of logarithm are taken in such a way that we get a univalent continuous function on the simply connected domain $\mathfrak{G}_{m}$. Note that $L_{\sigma}$ is determined by its value at $z=\sqrt{-1}$, and that the topology on $S p(m, \boldsymbol{R})^{\sim}$ is given as the induced topology from $S p(m, \boldsymbol{R}) \times \boldsymbol{C}$ to $\left\{\left(\sigma, L_{r}(\sqrt{ } \overline{-1})\right)\right\}$. Now, we put for $\sigma \in S p(m, \boldsymbol{R})$, $s(\sigma)=(\sigma, \log |j(\sigma, z)|+\sqrt{-1} A J(\sigma, z))$. Then Proposition 4.1 shows that $s(\sigma) \in$ $S p(m, \boldsymbol{R})^{\sim}$, so that $s$ gives a cross section from $S p(m, \boldsymbol{R})$ to $S p(m, \boldsymbol{R})^{\sim}$. It is easy to see that $s\left(\sigma \sigma^{\prime}\right)^{-1} s(\sigma) s\left(\sigma^{\prime}\right)=\left(1,2 \pi \sqrt{-1} A\left(\sigma, \sigma^{\prime}\right)\right)$. Thus the factor set $A\left(\sigma, \sigma^{\prime}\right)$ determines the universal covering group of $S p(m, \boldsymbol{R})$.

Let $\Omega^{\prime}$ be the set of $\sigma \in \Omega$ such that $c(\sigma)$ has no negative eigenvalues. Then we see from (4.5) that the cross section $s$ is continuous on $\Omega^{\prime}$, so that the topology on the subset $\left\{(\sigma, n) \in G_{1} ; \sigma \in \Omega^{\prime}, n \in \boldsymbol{Z}\right\}$ is the direct product topology of $\Omega^{\prime}$ and $Z$.
Q. E. D.

### 4.5. A computation of $A\left(\sigma, \sigma^{\prime}\right)$ for a generic case.

Here we compute $A\left(\sigma, \sigma^{\prime}\right)$ for the case that $\sigma, \sigma^{\prime}, \sigma^{\prime \prime}=\sigma \sigma^{\prime} \in \Omega$. The idea is simple. In the definition (4.8), we specialize $z$ as $\sqrt{-1} \infty$.

As before, we write $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \sigma^{\prime}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right), \sigma^{\prime \prime}=\left(\begin{array}{ll}a^{\prime \prime} & b^{\prime \prime} \\ c^{\prime \prime} & d^{\prime \prime}\end{array}\right)$. In the formula (4.5) for $\sigma \in \Omega$, put $z=\sqrt{-1} t$ ( $t$ : positive real number) and let $t$ tend to infinity. Then we get $A J(\sigma, \sqrt{-1} \infty)=\operatorname{Arg}(c)+\frac{\pi}{2} m$, whence

$$
\begin{equation*}
-A J\left(\sigma^{\prime \prime}, \sqrt{-1} \infty\right)+A J\left(\sigma^{\prime}, \sqrt{-1} \infty\right)=-\operatorname{Arg}\left(c^{\prime \prime}\right)+\operatorname{Arg}\left(c^{\prime}\right) \tag{4.9}
\end{equation*}
$$

There remains to compute $A J\left(\sigma, \sigma^{\prime}(\sqrt{-1} \infty)\right)$. We see that $\sigma^{\prime}(\sqrt{-1} t)=a^{\prime} c^{\prime-1}+\varepsilon(t)$ with $\varepsilon(t) \in \mathfrak{S}_{m}$ and $\lim _{t \rightarrow+\infty} \varepsilon(t)=0$. Therefore by (4.5),

$$
\begin{aligned}
A J\left(\sigma, \sigma^{\prime}(\sqrt{ }-1 t)\right) & =\operatorname{Arg}(c)+\operatorname{Arg}\left(a^{\prime} c^{\prime-1}+\varepsilon(t)+c^{-1} d\right) \\
& =\operatorname{Arg}(c)+\operatorname{Arg}\left(c^{-1} c^{\prime \prime} c^{\prime-1}+\varepsilon(t)\right)
\end{aligned}
$$

The following lemma leads us to the conclusion.
Lemma 4.3. Let ${ }^{t} h=h \in G L(m, R)$. For $\varepsilon(t) \in \mathfrak{G}_{m}$ with $\lim _{t \rightarrow+\infty} \varepsilon(t)=0$, we have

$$
\lim _{t \rightarrow+\infty} \operatorname{Arg}(h+\varepsilon(t))=-\operatorname{Arg}(h) .
$$

Proof. Since $h+\varepsilon(t) \in \mathfrak{g}_{m}$, its eigenvalues are in the complex upper half plane. On the other hand, the eigenvalues of $h$ are non-zero real numbers, to which the eigenvalues of $h+\varepsilon(t)$ tend as $t \rightarrow+\infty$. According as the eigenvalue of $h+\varepsilon(t)$ tends to a positive or negative real number, its Arg tends to 0 or $\pi$ respectively. By definition, Arg of a positive real number is 0 and that of a
negative one is $-\pi$. Therefore we see that $\operatorname{Arg}(h+\varepsilon(t))$ tends to $-\operatorname{Arg}(h)$.
Q. E. D.

From this lemma, putting $h=c^{-1} c^{\prime \prime} c^{\prime-1}$, we see that $A J\left(\sigma, \sigma^{\prime}(\sqrt{-1} t)\right)$ tends to $\operatorname{Arg}(c)-\operatorname{Arg}\left(c^{-1} c^{\prime \prime} c^{\prime-1}\right)$ as $t$ tends to infinity. Gathering this and (4.9), we get the following.

Proposition 4.4. Let $\sigma, \sigma^{\prime}, \sigma^{\prime \prime}=\sigma \sigma^{\prime} \in \Omega$. Then

$$
A\left(\sigma, \sigma^{\prime}\right)=\frac{1}{2 \pi}\left\{\operatorname{Arg}(c)-\operatorname{Arg}\left(c^{\prime \prime}\right)+\operatorname{Arg}\left(c^{\prime}\right)-\operatorname{Arg}\left(c^{-1} c^{\prime \prime} c^{\prime-1}\right)\right\}
$$

4.6. In the remainder of this section, we make preparations for $\S \S 5-6$. First we give a computation of $A J(\sigma, z)$ by reduction to lower dimensional case, when $\sigma$ and $z$ are written in the form of a direct sums of lower dimensional ones. Next we compute $A\left(\sigma, \sigma^{\prime}\right)$ for $\sigma, \sigma^{\prime}$ in the maximal compact subgroup of Sp(1, R).

Let $\sigma^{(i)}=\left(\begin{array}{ll}a^{(i)} & b^{(i)} \\ c^{(i)} & d^{(i)}\end{array}\right) \in S p\left(m^{(i)}, \boldsymbol{R}\right)$, and $\boldsymbol{z}^{(i)} \in \mathfrak{F}_{m^{(i)}}(i=1,2)$. We put $\sigma^{(1)} \hat{+} \sigma^{(2)}$ $=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad$ with $\quad a=a^{(1)} \oplus a^{(2)}, \quad b=b^{(1)} \oplus b^{(2)}, \quad c=c^{(1)} \oplus c^{(2)}, \quad d=d^{(1)} \oplus d^{(2)}$. Here $a^{(1)} \oplus a^{(2)}$ means the direct sum of matrices $\left(\begin{array}{cc}a^{(1)} & 0 \\ 0 & a^{(2)}\end{array}\right)$.

Proposition 4.5. It holds that

$$
A J\left(\sigma^{(1)} \hat{+} \sigma^{(2)}, z^{(1)} \oplus z^{(2)}\right)=A J\left(\sigma^{(1)}, z^{(1)}\right)+A J\left(\sigma^{(2)}, z^{(2)}\right) .
$$

Corollary 4.6. Let $\sigma_{j}^{(i)} \in S p\left(m^{(i)}, \boldsymbol{R}\right)(i, j=1,2)$. Then

$$
A\left(\sigma_{1}^{(1)} \hat{\mp} \sigma_{1}^{(2)}, \sigma_{2}^{(2)} \hat{\mp} \sigma_{2}^{(2)}\right)=A\left(\sigma_{1}^{(1)}, \sigma_{2}^{(2)}\right)+A\left(\sigma_{1}^{(2)}, \sigma_{2}^{(2)}\right)
$$

Proof of Proposition 4.5. Let $r^{(i)}=\operatorname{rank}\left(c\left(\sigma^{(i)}\right)\right)(i=1,2)$, and put $m=$ $m^{(1)}+m^{(2)}, r=r^{(1)}+r^{(2)}$. We denote the matrices appearing in the decomposition (4.2) for $\sigma^{(i)}$ by the suffixed letters such as $u^{(i)}, g^{(i)}, h^{(i)}, \lambda^{(i)}$. Similarly we use the notations $e_{j}^{(i)}(i, j=1,2)$ for the matrices that define $E_{r}(i)$ in (4.1). Then we have

$$
\sigma^{(1)} \hat{+} \sigma^{(2)}=d\left(u_{0}^{-1}\right) t\left(g_{0}\right) d\left(^{( } \lambda_{0}^{-1}\right) F t\left(h_{0}\right) d\left(u_{0}\right),
$$

where $u_{0}=u^{(1)} \oplus u^{(2)}, \quad g_{0}=g^{(1)} \oplus g^{(2)}, \quad h_{0}=h^{(1)} \oplus h^{(2)}, \quad \lambda_{0}=\lambda^{(1)} \oplus \lambda^{(2)}, \quad$ and $F=$ $E_{r^{(1)}} \hat{+} E_{r^{(2)}}$. Let $v \in O(m, \boldsymbol{R})$ be a permutation matrix such that $v\left(e_{1}^{(1)}+e_{1}^{(2)}\right) v^{-1}$ $=e_{1}$, then we have $v\left(e_{2}^{(1)}+e_{2}^{(2)}\right) v^{-1}=e_{2}$ and $d(v) F d\left(v^{-1}\right)=E_{r}$. Here $e_{1}, e_{2}$ are as in (4.1). Hence

$$
\sigma^{(1)} \hat{+} \sigma^{(2)}=d\left(u^{-1}\right) t(g) d\left(\lambda^{-1}\right) E_{r} t(h) d(u)
$$

with $u=v u_{0}, g=v g_{0} v^{-1}, h=v h_{0} v^{-1}, \lambda=v \lambda_{0} v^{-1}$. It is easy to verify that this gives the decomposition (4.2) for $\sigma^{(1)} \hat{+} \sigma^{(2)}$. So by definition (4.4), we get

$$
A J\left(\sigma^{(1)} \hat{+} \sigma^{(2)}, z^{(1)} \oplus z^{(2)}\right)=\operatorname{Arg}(\lambda)+\operatorname{Arg}\left(e_{1}\left(u\left(z^{(1)} \oplus z^{(2)}\right)^{t} u+e_{2}\right)\right),
$$

and for the first term in the right-hand side

$$
\operatorname{Arg}(\lambda)=\operatorname{Arg}\left(v\left(\lambda^{(1)} \oplus \lambda^{(2)}\right) v^{-1}\right)=\operatorname{Arg}\left(\lambda^{(1)}\right)+\operatorname{Arg}\left(\lambda^{(2)}\right),
$$

and similarly for the second term. Therefore

$$
A J\left(\sigma^{(1)} \hat{+} \sigma^{(2)}, z^{(1)} \oplus z^{(2)}\right)=A J\left(\sigma^{(1)}, z^{(1)}\right)+A J\left(\sigma^{(2)}, z^{(2)}\right) . \quad \text { Q. E. D. }
$$

Put $k(\theta)=\left(\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ and

$$
B\left(\theta, \theta^{\prime}\right)=\frac{1}{2 \pi}\left(\operatorname{Arg} e^{\gamma^{-1} \theta}+\operatorname{Arg} e^{r^{\prime-i} \theta^{\prime}}-\operatorname{Arg} e^{r^{-(-1}\left(\theta+\theta^{\prime}\right)}\right) .
$$

Then we see for $-\pi \leqq \theta, \theta^{\prime}<\pi$,

$$
B\left(\theta, \theta^{\prime}\right)=\left\{\begin{array}{rll}
1 & \text { if } & \pi \leqq \theta+\theta^{\prime} \\
0 & \text { if } & -\pi \leqq \theta+\theta^{\prime}<\pi \\
-1 & \text { if } & \theta+\theta^{\prime}<-\pi
\end{array}\right.
$$

Proposition 4.7. $A\left(k(\theta), k\left(\theta^{\prime}\right)\right)=B\left(\theta, \theta^{\prime}\right)$.
Proof. It suffices to show $A J(k(\theta), \sqrt{-1})=\theta$ for $-\pi \leqq \theta<\pi$. For $\theta=0$ or $\theta=-\pi$, this equality is obvious. For the case $-\pi<\theta<\pi, \theta \neq 0$, we have the decomposition (4.2) for $k(\theta)$ with $r=1, u=1, g=\cot \theta, h=\cot \theta$, and $\lambda=\sin \theta$. Then by definition (4.4), we get $A J(k(\theta), \sqrt{-1})=\operatorname{Arg}(\sin \theta)+\operatorname{Arg}(\sqrt{-1}+\cot \theta)$ $=\theta$. Hence the proposition.
Q. E. D.

Put $k\left(\theta_{1}, \cdots, \theta_{m}\right)=k\left(\theta_{1}\right) \hat{+} \cdots \hat{+} k\left(\theta_{m}\right)$. Then from Corollary 4.6 and Proposition 4.7, we see

Proposition 4.8. It holds that

$$
A\left(k\left(\theta_{1}, \cdots, \theta_{m}\right), k\left(\theta_{1}^{\prime}, \cdots, \theta_{m}^{\prime}\right)\right)=\sum_{i=1}^{m} B\left(\theta_{i}, \theta_{i}^{\prime}\right)
$$

Corollary 4.9. We have $A\left(E_{r}, E_{r}\right)=r$, especially for $r=m, A\left(d^{\prime}(1), d^{\prime}(1)\right)=m$. Moreover we have $A\left(-1_{2 m},-1_{2 m}\right)=-m$.
§5. Representations of the universal covering group of $S p(m, \boldsymbol{R})$.
First we recall a general proposition about generators of a group and their relations, which is found in Weil [14, Lemme 6].

Lemma 5.1. Let $G$ be a group, and $U$ a subset of $G$ such that the condition $U^{-1} \cap U a \cap U b \cap U c \neq \varnothing$ holds for arbitrary elements $a, b, c$ in $G$. Let $G^{\prime}$ be $a$ group and $\eta$ a map from $U$ to $G^{\prime}$ satisfying the relation $\eta\left(u u^{\prime}\right)=\eta(u) \eta\left(u^{\prime}\right)$ for $u, u^{\prime}, u u^{\prime} \in U$. Then $\eta$ is uniquely extended as a gronp homomorphism from $G$ to $G^{\prime}$.

Note that the condition for $U$ is satisfied when $U$ is an open dense subset of a topological group $G$.

Let us introduce a notation. For $a \in M_{m}(C)$, we put

$$
\operatorname{Sgn}(a)=\frac{2}{\pi} \operatorname{Arg}(a)+\operatorname{rank}(a) .
$$

If $a$ is real symmetric, $\operatorname{Sgn}(a)$ coincides with $\operatorname{Sgn}(a)$ as in Remark 1 in $\S 4$. Note that $\operatorname{Sgn}(a) \in \boldsymbol{Z}$ for $a \in M_{m}(\boldsymbol{R})$.

Using this notation Sgn , we can rewrite the formula in Proposition 4.4 as follows.

$$
\begin{equation*}
A\left(\sigma, \sigma^{\prime}\right)=\frac{1}{4}\left\{\operatorname{Sgn}(c)-\operatorname{Sgn}\left(c^{\prime \prime}\right)+\operatorname{Sgn}\left(c^{\prime}\right)-\operatorname{Sgn}\left(c^{-1} c^{\prime \prime} c^{\prime-1}\right)\right\} \tag{5.1}
\end{equation*}
$$

We describe the universal covering group of $\operatorname{Sp}(m, \boldsymbol{R})$ as the group $G$, defined by the factor set $A\left(\sigma, \sigma^{\prime}\right)$ as in Proposition 4.2.

Theorem 5.2. For $\delta>-1$, there exists a unitary representation $\boldsymbol{U}_{\dot{\delta}}$ of $G_{1}$ on the Hilbert space $L_{\delta}^{2}\left(P_{m}\right)$ such that for $(\sigma, n) \in G_{1}$ with $\sigma \in \Omega$,

$$
\boldsymbol{U}_{\hat{\delta}}(\sigma, n)=\boldsymbol{r}_{\hat{\delta}}(\sigma) \boldsymbol{e}_{\hat{\delta}}(-4 n-\operatorname{Sgn}(c(\sigma))) .
$$

Here $\boldsymbol{r}_{\boldsymbol{o}}(\sigma)$ is defined in (3.2).
Proof. By Lemma 5.1, it is enough to see that $\boldsymbol{U}_{\hat{\delta}}(\sigma, n) \boldsymbol{U}_{\hat{\boldsymbol{o}}}\left(\sigma^{\prime}, n^{\prime}\right)=\boldsymbol{U}_{\hat{\boldsymbol{j}}}\left(\sigma^{\prime \prime}, n^{\prime \prime}\right)$ for $\sigma, \sigma^{\prime}, \sigma^{\prime \prime}=\sigma \sigma^{\prime} \in \Omega$, and $n^{\prime \prime}=n+n^{\prime}+A\left(\sigma, \sigma^{\prime}\right)$. We write $c=c(\sigma), c^{\prime}=c\left(\sigma^{\prime}\right)$, and $c^{\prime \prime}=c\left(\sigma^{\prime \prime}\right)$. Now by definition,

$$
\boldsymbol{U}_{\delta}(\sigma, n) \boldsymbol{U}_{\delta}\left(\sigma^{\prime}, n^{\prime}\right)=\boldsymbol{r}(\sigma) \boldsymbol{r}\left(\sigma^{\prime}\right) \boldsymbol{e}_{\boldsymbol{\delta}}\left(-4 n-4 n^{\prime}-\operatorname{Sgn}(c)-\operatorname{Sgn}\left(c^{\prime}\right)\right) .
$$

We have $\boldsymbol{r}(\sigma) \boldsymbol{r}\left(\sigma^{\prime}\right)=\boldsymbol{r}\left(\sigma^{\prime \prime}\right) \boldsymbol{e}_{\boldsymbol{\delta}}\left(\operatorname{Sgn}\left(c^{-1} c^{\prime \prime} c^{\prime-1}\right)\right)$ by Theorem 3.2, and $4 A\left(\sigma, \sigma^{\prime}\right)=$ $\operatorname{Sgn}(c)-\operatorname{Sgn}\left(c^{\prime \prime}\right)+\operatorname{Sgn}\left(c^{\prime}\right)-\operatorname{Sgn}\left(c^{-1} c^{\prime \prime} c^{\prime-1}\right)$ by (5.1). So we get

$$
\begin{aligned}
\boldsymbol{U}_{\delta}(\sigma, n) \boldsymbol{U}_{\dot{\imath}}\left(\sigma^{\prime}, n^{\prime}\right) & =\boldsymbol{r}\left(\sigma^{\prime \prime}\right) \boldsymbol{e}_{\boldsymbol{\delta}}\left(-4 n-4 n^{\prime}-4 A\left(\sigma, \sigma^{\prime}\right)-\operatorname{Sgn}\left(c^{\prime \prime}\right)\right) \\
& =\boldsymbol{r}\left(\sigma^{\prime \prime}\right) \boldsymbol{e}_{\tilde{\delta}}\left(-4 n^{\prime \prime}-\operatorname{Sgn}\left(c^{\prime \prime}\right)\right)=\boldsymbol{U}_{\hat{\delta}}\left(\sigma^{\prime \prime}, n^{\prime \prime}\right) .
\end{aligned}
$$

This representation is strongly continuous, because it is continuous on the subset $\left\{(\sigma, n) ; \sigma \in \Omega^{\prime}, n \in Z\right\}$.
Q. E. D.

Proposition 5.3. The representation $\boldsymbol{U}_{\hat{0}}(\delta>-1)$ of $G_{1}$ is irreducible.
Proof. We show that a bounded linear operator $T$ on $L_{\delta}^{2}\left(P_{m}\right)$ commuting with every $\boldsymbol{U}_{\hat{o}}(\sigma, n)$ is a scalar operator. Since $T$ commutes with $\boldsymbol{t}(b)$ for all $b \in S_{m}(\boldsymbol{R}), T$ is written in the form $T \varphi(x)=f(x) \varphi(x)\left(\varphi \in L_{\delta}^{2}\left(P_{m}\right)\right)$ for some essentially bounded function $f(x)$. (For its proof, see Appendix.) On the other hand, $T$ commutes with $\boldsymbol{d}(a)$ for all $a \in G L(m, \boldsymbol{R})$. So the function $f(x)$ satisfies the condition that $f(x)=f\left({ }^{i} a x a\right)$ for all $a \in G L(m, \boldsymbol{R})$. Since $G L(m, \boldsymbol{R})$ acts transitively on $P_{m}$ by $x \mapsto^{t} a x a$, the function $f(x)$ must be a constant.
Q. E. D.

Let us determine the kernel $\operatorname{Ker} U_{\hat{\delta}}$ of this representation $\boldsymbol{U}_{\dot{\delta}}$. Note that a normal subgroup of $G_{1} \cong S p(m, R)^{\sim}$ is either equal to $G_{1}$ itself or contained in the centre, and that the centre of $G_{1}$ is $\{( \pm 1, n) ; n \in \boldsymbol{Z}\}$. Since Ker $\boldsymbol{U}_{\delta}$ is normal, we have only to compute $\boldsymbol{U}_{\hat{\delta}}(1, n)$ and $\boldsymbol{U}_{\hat{\delta}}(-1, n)$. From Corollary 4.9, we see $(-1, n)=\left(d^{\prime}(1), n-m\right)\left(d^{\prime}(1), 0\right)$, so that

$$
\begin{aligned}
\boldsymbol{U}_{\hat{\delta}}(-1, n) & =\boldsymbol{U}_{\hat{\boldsymbol{\delta}}}\left(d^{\prime}(1), n-m\right) \boldsymbol{U}_{\delta}\left(d^{\prime}(1), 0\right) \\
& =\boldsymbol{d}^{\prime}(1) \boldsymbol{d}^{\prime}(1) \boldsymbol{e}_{\hat{\delta}}(-4 n+4 m-m) \boldsymbol{e}_{\boldsymbol{\delta}}(-m)=\boldsymbol{e}_{\hat{\delta}}(-4 n+2 m) .
\end{aligned}
$$

Moreover, we see also from Corollary 4.9, $(1, n)=(-1, n+m)(-1,0)$, so that

$$
\begin{aligned}
\boldsymbol{U}_{\hat{\delta}}(1, n) & =\boldsymbol{U}_{\dot{\delta}}(-1, n+m) \boldsymbol{U}_{\hat{\delta}}(-1,0) \\
& =\boldsymbol{e}_{\hat{\delta}}(-4 n-4 m+2 m) \boldsymbol{e}_{\dot{\delta}}(2 m)=\boldsymbol{e}_{\dot{\delta}}(-4 n) .
\end{aligned}
$$

Thus we have the following.
Proposition 5.4. The kernel of the representation $\boldsymbol{U}_{\boldsymbol{\delta}}$ of $G_{1}$ is given as

$$
\operatorname{Ker} \boldsymbol{U}_{\delta}=\{(1, n) ;(\delta+p) n \in \boldsymbol{Z}\} \cup\left\{(-1, n) ;(\delta+p)\left(n-\frac{m}{2}\right) \in \boldsymbol{Z}\right\} .
$$

Let $\boldsymbol{G}_{\boldsymbol{\delta}}$ be the image of $G_{1}$ under $\boldsymbol{U}_{\boldsymbol{\delta}}$. Since the representation $\boldsymbol{U}_{\boldsymbol{\delta}}$ is irreducible, the image of the centre of $G_{1}$ under $U_{\dot{o}}$ coincides with the set of all scalar operators in $\boldsymbol{G}_{\boldsymbol{\delta}}$. We see that $\boldsymbol{G}_{\boldsymbol{\delta}}$ is generated by the set of operators $\left\{\boldsymbol{r}_{\hat{o}}(\sigma) \boldsymbol{e}_{\hat{\delta}}(-\operatorname{Sgn}(c(\sigma))) ; \sigma \in \Omega\right\}$, because $G_{1}$ is generated by the set $\{(\sigma, 0) ; \sigma \in \Omega\}$. In the next section we determine the group generated by the set of operators $\left\{\boldsymbol{r}_{\delta}(\sigma) ; \sigma \in \Omega\right\}$.

## $\S$ 6. Certain central extensions of $\operatorname{Sp}(m, \boldsymbol{R})$ and their representations.

6.1. Let $q$ be a positive integer. In this section we study the central extension $G_{q}$ of $S p(m, \boldsymbol{R})$ by $\boldsymbol{Z}$ with the factor set $q A\left(\sigma, \sigma^{\prime}\right)\left(\sigma, \sigma^{\prime} \in S p(m, \boldsymbol{R})\right.$ ). Here $G_{q}$ is by definition a group with the underlying set $S p(m, \boldsymbol{R}) \times \boldsymbol{Z}$ and the group operation $(\sigma, n)\left(\sigma^{\prime}, n^{\prime}\right)=\left(\sigma \sigma^{\prime}, n+n^{\prime}+q A\left(\sigma, \sigma^{\prime}\right)\right)$. As we see in Proposition $4.2, G_{1}$ is equal to the universal covering group of $S p(m, \boldsymbol{R})$. To avoid any confusion, we denote an element in $G_{q}$ by $(\sigma, n)_{q}$ throughout this section.

In case $q$ devides $q^{\prime}$, consider the natural injection $j_{q, q^{\prime}}$ from $G_{q}$ to $G_{q^{\prime}}$ defined by $j_{q, q^{\prime}}(\sigma, n)_{q}=\left(\sigma, \frac{q^{\prime}}{q} n\right)_{q^{\prime}}$. Then through $j_{q, q^{\prime}}$, we can (and do) identify $G_{q}$ with a normal subgroup of $G_{q^{\prime}}$ of index $q^{\prime} / q$.

Proposition 6.1. The group $G_{q}$ is isomorphic to a semidirect product of $G_{1}$ and $\boldsymbol{Z} / q \boldsymbol{Z}$.

Proof. It is enough to find a subgroup $H_{q}$ of $G_{q}$ such that $H_{q} \cong Z / q Z$ and $G_{1} \cap H_{q}=\left\{(1,0)_{q}\right\}$. Put $k_{q}=k\left(\frac{2 \pi}{q}, 0, \cdots, 0\right)$. (See 4.6 for notation.) Then from Proposition 4.8 we see
(i) $A\left(k_{2}, k_{2}\right)=-1$,
(ii) for $q \geqq 3$ and $1 \leqq l \leqq q-1$,

$$
A\left(k_{q}, k_{q}^{l}\right)=\left\{\begin{array}{lll}
1 & \text { if } & l=q_{0} \\
0 & \text { if } & l \neq q_{0} .
\end{array}\right.
$$

Here we put $q_{0}=\frac{q}{2}-1$ for $q$ even, and $q_{0}=\frac{q-1}{2}$ for $q$ odd. Now, let $H_{q}$ be the subgroup of $G_{q}$ generated by $\kappa_{q}$ with $\kappa_{q}=\left(k_{q}, 1\right)_{q}$ for $q=2$ and $\kappa_{q}=\left(k_{q},-1\right)_{q}$ for $q \geqq 3$. Then from (i) and (ii) we see that $H_{q}$ is of order $q$, and that $\kappa_{q}^{l}$ is of the form $\left(k_{q}^{l}, l^{\prime}\right)_{q}$ with $l^{\prime} \neq 0 \bmod q$ for $1 \leqq l \leqq q-1$. Therefore $H_{q}$ satisfies the required conditions, and we have proved the proposition.
Q. E. D.

We give here some remarks. If $m$ is odd, then $G_{2}$ is isomorphic to the direct product group $G_{1} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$. In fact, put $H=\left\{(1,0)_{2},(-1, m)_{2}\right\}$. Then by Corollary 4.9, $H$ is a subgooup of $G_{2}$ of order 2. Clearly $H$ is contained in the centre of $G_{2}$. In case $m$ is odd, we have $G_{1} \cap H=\left\{(1,0)_{2}\right\}$, whence $G_{2}=$ $G_{1} H \cong G_{1} \times H$.

In general, the centralizer of $G_{1}$ in $G_{q}$ is the centre of $G_{q}$, which is given as $\left\{( \pm 1, n)_{q} ; n \in \boldsymbol{Z}\right\}$. It is easy to see that the centre of $G_{q}$ contains a nontrivial element of finite order if and only if $q m$ is even. And when $q m$ is even, $(-1, q m / 2)_{q}$ is the only non-trivial element of finite order contained in it. Therefore $G_{q}$ is expressed as a direct product of $G_{1}$ and a subgroup of $G_{q}$ if and only if $m$ is odd and $q=2$.
6.2. Normal subgroups of $G_{q}$. Here we determine the normal subgroups of $G_{q}$.

Proposition 6.2. Let $N$ be a normal subgroup of $G_{q}$. Then we have the following two cases: (i) $N=G_{l}$ for some divisor $l$ of $q$, or (ii) $N$ is contained in the centre of $G_{q}$.

Proof. Put $N_{1}=N \cap G_{1}$. Then $N / N_{1}$ is canonically isomorphic to the image of $N$ under the projection of $G_{q}$ to $G_{q} / G_{1}=\boldsymbol{Z} / q \boldsymbol{Z}$. Therefore $N / N_{1}$ is a cyclic group. Let $l$ be the order of $N / N_{1}$. Take a $\xi \in G_{q}$ such that $\xi N_{1}$ is a generator of $N / N_{1}$. Then we have $N=\bigcup_{i=0}^{L-1} \xi^{i} N_{1}$. On the other hand, since $N_{1}$ is a normal subgroup of $G_{1} \cong S p(m, \boldsymbol{R})^{\sim}$, we have two cases: (i) $N_{1}=G_{1}$, or (ii) $N_{1}$ is contained in the centre of $G_{1}$. In case (i), we have $N=G_{l}$. In fact, since $N / N_{1}$ and $G_{l} / G_{1}$ have the same order in the cyclic group $G_{q} / G_{1}$, they coincide with each other. It follows from this that $N=G_{l}$, because $N$ and $G_{l}$ contain $N_{1}=G_{1}$.

Let us consider the case (ii). It suffices to show that $\xi$ is in the centre of $G_{q}$. As $N$ is normal, we see $\alpha \hat{\xi} \alpha^{-1} \in N=\bigcup_{i=0}^{\ell-1} \xi^{i} N_{1}$ for $\alpha \in G_{1}$. So we can write it as $\alpha \xi \alpha^{-1}=\xi^{i(\alpha)} \nu(\alpha)$ with $i(\alpha) \in Z, 0 \leqq i(\alpha)<l$ and $\nu(\alpha) \in N_{1}$. Consider $\beta \alpha \alpha^{-1} \beta^{-1}$ for $\beta \in G_{1}$. Then we obtain $\xi^{i(\beta \alpha)-i(\beta) i(\alpha)}=\nu(\beta)^{i(\alpha)} \nu(\alpha) \nu(\beta \alpha)^{-1} \in N_{1}$, so that $i(\beta \alpha)$ $=i(\beta) i(\alpha) \bmod l$. Therefore the map $\alpha \mapsto i(\alpha) \bmod l$ is a group homomorphism of $G_{1}$ to $(\boldsymbol{Z} / l \boldsymbol{Z})^{\times}$. On the other hand $G_{1}$ is equal to its commutator group. So we see $i(\alpha) \equiv 1 \bmod l$ for all $\alpha \in G_{1}$. From this and $0 \leqq i(\alpha)<l$, we find that $i(\alpha)=1$ for all $\alpha \in G_{1}$. At the same time we have proved that $\nu(\beta \alpha)=\nu(\beta) 2(\alpha)$ for $\alpha, \beta \in G_{1}$. Now, let us write $\nu(\alpha)=\left(\nu_{0}(\alpha), n(\alpha)\right)_{q}$. Since $\nu(\alpha)$ is in the centre of $G_{q}, \nu_{0}(\alpha)= \pm 1$. Then we have $\nu_{0}(\alpha)=1$ for all $\alpha \in G_{1}$ by the same reason above. Gathering these, we see $\alpha \xi \alpha^{-1}=\xi \nu(\alpha)$ with $\nu(\alpha)=(1, n(\alpha))_{q}$. Consider the $l$-th power of this equality. Then noting that $\xi^{l}$ is in the centre of $G_{q}$, we get
$(1,0)_{q}=\nu(\alpha)^{l}=(1, \ln (\alpha))_{q}$, whence $n(\alpha)=0$. Consequently $\nu(\alpha)=(1,0)_{q}$ for all $\alpha \in G_{1}$. Thus we see that $\xi$ commutes with all elements in $G_{1}$, so that $\xi$ is in the centre of $G_{q}$.
Q. E. D.
6.3. Representations $\boldsymbol{U}_{q, \grave{\partial}}$. Now, we consider representations of $G_{q}$ similarly as in Theorem 5.2.

Theorem 6.3. For $\delta>-1$, there exists an irreducible unitary representation $\boldsymbol{U}_{q, i 亠}$ of $G_{q}$ on the Hilbert space $L_{\bar{\delta}}^{2}\left(P_{m}\right)$ such that for $(\sigma, n)_{q} \in G_{q}$ with $\sigma \in \Omega$,

$$
\boldsymbol{U}_{q, i}\left((\sigma, n)_{q}\right)=r_{\dot{\partial}}(\sigma) \boldsymbol{e}_{\delta}\left(-\frac{4}{q} n-\operatorname{Sgn}(c(\sigma))\right) .
$$

This is proved quite similarly as Theorem 5.2. Moreover similarly as computations for Proposition 5.4, we can show $\boldsymbol{U}_{q, \delta} \delta\left((-1, n)_{q}\right)=\boldsymbol{e}_{\boldsymbol{i}}\left(-\frac{4}{q} n+2 m\right)$ and $\boldsymbol{U}_{q . \delta}\left((1, n)_{q}\right)=\boldsymbol{e}_{\sigma}\left(-\frac{4}{q} n\right)$, because $(-1, n)_{q}=\left(d^{\prime}(1), n-q m\right)_{q}\left(d^{\prime}(1), 0\right)_{q}$ and $(1, n)_{q}=$ $(-1, n+q m)_{q}(-1,0)_{q}$. So we have

Proposition 6.4. The hernel of the representation $\boldsymbol{U}_{q, \delta}$ of $G_{q}$ is given as

$$
\operatorname{Ker} \boldsymbol{U}_{q, \delta}=\left\{(1, n)_{q} ;(\delta+p) \frac{n}{q} \in \boldsymbol{Z}\right\} \cup\left\{(-1, n)_{q} ;(\delta+p)\left(\frac{n}{q}-\frac{m}{2}\right) \in \boldsymbol{Z}\right\} .
$$

Remark. The representations $\boldsymbol{U}_{q, \delta}$ are compatible with the inclusion $j_{q, q^{\prime}}$ : $G_{q} \rightarrow G_{q^{\prime}}$, namely $\boldsymbol{U}_{q, \dot{\delta}}=\boldsymbol{U}_{q^{\prime}, \hat{o}^{\circ}} j_{q, q^{\prime}}$.
6.4. In the following, we determine the group generated by the operators $\boldsymbol{r}_{\dot{\delta}}(\sigma), \sigma \in \Omega$. Note that $\boldsymbol{r}_{\delta}(\sigma)=\boldsymbol{U}_{4, \delta}\left((\sigma,-\operatorname{Sgn}(c))_{4}\right)$ with $c=c(\sigma)$ for $\sigma \in \Omega$. So we determine the subgroup of $G_{4}$ generated by the set $\left\{(\sigma,-\operatorname{Sgn}(c(\sigma)))_{4} ; \sigma \in \Omega\right\}$.

Proposition 6.5. The subgroup of $G_{4}$ generated by the set $\left\{(\sigma,-\operatorname{Sgn}(c(\sigma)))_{4}\right.$; $\sigma \in \Omega\}$ is equal to $G_{4}$ if $m$ is odd, and equal to $G_{2}$ if $m$ is even.

Proof. Let $G$ be the subgroup of $G_{4}$ generated by the set $\left\{(\sigma,-\operatorname{Sgn}(c(\sigma)))_{1}\right.$; $\sigma \in \Omega\}$. Put $u_{r}=k\left(\theta_{1}, \cdots, \theta_{m}\right)$ (see 4.6) with $\theta_{1}=\cdots=\theta_{r}=2 \pi / 3, \theta_{r+1}=\cdots=\theta_{m}$ $=-2 \pi / 3$. Then $u_{r} \in \Omega$ and $\operatorname{Sgn}\left(c\left(u_{r}\right)\right)=2 r-m$, whence $\left(u_{r}, m-2 r\right)_{4} \in G$. On the other hand, using Proposition 4.8, we get $\left(u_{r}, m-2 r\right)_{4}^{3}=(1,2 r-m)_{4}$. Therefore $G$ contains $(1,2 r-m)_{4}$. In case $m$ is odd, taking $r$ with $2 r-m=1$, we have $(1,1)_{4} \in G$. This shows that $G \ni(1, n)_{4}$ for $n \in Z$, so that $G$ contains all elements of the form $(\sigma, n)_{4}$ with $\sigma \in \Omega$ and $n \in Z$. Therefore $G=G_{4}$ for $m$ odd.

In case $m$ is even, since $\operatorname{Sgn}(c(\sigma))$ for $\sigma \in \Omega$ is even, we have $G \subset G_{2}$. On the other hand, putting $r=\frac{m}{2}+1$, we see $(1,2)_{4} \in G$. So $G$ contains all elements of the form $(\sigma, 2 n)_{4}$ with $\sigma \in \Omega$ and $n \in \boldsymbol{Z}$. Therefore $G=G_{2}$ for $m$ even.

> Q. E. D.

Let $\boldsymbol{G}_{q, i}$ be the image of $G_{q}$ under the representation $\boldsymbol{U}_{q, j}$. Then we have
$\boldsymbol{G}_{q, \tilde{\delta}} \cong G_{q} / \operatorname{Ker} \boldsymbol{U}_{q, \bar{\sigma}}$. From Proposition 6.5, we obtain the following.
Proposition 6.6. The group generated by the set of operators $\left\{\boldsymbol{r}_{\hat{i}}(\sigma) ; \sigma \in \Omega\right\}$ on the Hilbert space $L_{\hat{\delta}}^{2}\left(P_{m}\right)$ is equal to $\boldsymbol{G}_{4, \delta}$ if $m$ is odd, and equal to $\boldsymbol{G}_{2, \dot{\delta}}$ if $m$ is even.

## § 7. Relation to relative holomorphic discrete series representations.

For $\varphi \in L_{\hat{\delta}}^{2}\left(P_{m}\right)$, we define the Laplace transform $\check{\varphi}$ of $\varphi$ as

$$
\check{\varphi}(z)=\int_{P_{m}} \varphi(x) \operatorname{etr}(\sqrt{-1} x z)(\operatorname{det} x)^{\delta} d x .
$$

This integral converges absolutely for every $z \in \mathfrak{G}_{m}$, so that $\check{\varphi}$ is a holomorphic function on $\mathfrak{g}_{m}$. We denote by $\mathscr{H}_{\bar{\delta}}$ the image of $L_{\delta}^{2}\left(P_{m}\right)$ under the Laplace transformation. By the isomorphism ${ }^{`}: L_{\dot{\delta}}^{2}\left(P_{m}\right) \rightarrow \mathscr{H}_{\delta}$, we transfer the operators $\boldsymbol{d}_{\dot{\delta}}(a), \boldsymbol{t}_{\bar{j}}(b), \boldsymbol{d}_{\dot{\delta}}^{\prime}(c)$, and $\boldsymbol{r}_{\dot{\delta}}(\sigma)$ from $L_{\hat{\delta}}^{2}\left(P_{m}\right)$ to $\mathscr{H}_{\delta}$, whicw we denote by $\breve{\boldsymbol{d}}_{\dot{\delta}}(a), \breve{\boldsymbol{t}}_{\hat{\delta}}(b)$, $\check{\boldsymbol{d}}_{\delta}^{\prime}(c)$, and $\check{\boldsymbol{r}}_{\delta}(\sigma)$ respectively.

It is easy to see that

$$
\begin{aligned}
& \check{d}_{\grave{\partial}}(a) \check{\varphi}(z)=|\operatorname{det} a|^{-\check{\delta} \cdot p} \check{\varphi}\left(a^{-1} z^{t} a^{-1}\right), \\
& \check{\boldsymbol{t}}_{\delta}(b) \check{\varphi}(z)=\check{\varphi}(z+b) .
\end{aligned}
$$

From the formula (2.3), we see

$$
\check{\boldsymbol{d}}_{\dot{\delta}}^{\prime}(1) \varphi(z)=\left(\operatorname{det} \frac{z}{\sqrt{-1}}\right)^{-\dot{-j} p} \check{\varphi}\left(-z^{-1}\right) .
$$

So we have

$$
\check{\boldsymbol{d}}_{\boldsymbol{\delta}}^{\prime}(c) \check{\varphi}(z)=|\operatorname{det} c|^{-\delta-p}\left(\operatorname{det} \frac{z}{\sqrt{-1}}\right)^{-\delta-p} \check{\varphi}\left(-c^{-1} z^{-1 t} c^{-1}\right),
$$

because $\boldsymbol{d}_{\delta}^{\prime}(c)=\boldsymbol{d}_{\delta}\left({ }^{(t} c^{-1}\right) \check{\boldsymbol{d}}_{\delta}^{\prime}(1)$.
Let us consider an anti-automorphism of $\operatorname{Sp}(m, \boldsymbol{R})$ defind by $\sigma \mapsto^{\circ} \sigma=\Gamma^{t} \sigma I$, where $I=\left(\begin{array}{ll}0_{m} & 1_{m} \\ 1_{m} & 0_{m}\end{array}\right)$. We see ${ }^{\circ} \sigma=\left(\begin{array}{ll}{ }^{t} & { }^{t} \\ { }_{c} & { }^{t} \\ a\end{array}\right)$ for $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Note also that ${ }^{\circ} \sigma=$ $J_{1} \sigma^{-1} J_{1}$, where $J_{1}=\left(\begin{array}{ll}1_{m} & 0_{m} \\ 0_{m} & -1_{m}\end{array}\right)$. Then we have for $\sigma \in \Omega$,

$$
\check{r}_{\dot{\partial}}(\sigma) \breve{\varphi}(z) \boldsymbol{e}_{\delta}(-\operatorname{Sgn}(c(\sigma)))=j\left({ }^{\circ} \sigma, z\right)^{-\dot{\delta}-p} \check{\varphi}\left({ }^{\circ} \sigma, z\right) .
$$

Here $j\left({ }^{\circ} \sigma, z\right)^{-\delta-p}=\left|j\left({ }^{\circ} \sigma, z\right)\right|^{-\delta-p} \exp \left(-\sqrt{-1}(\delta+p) A J\left({ }^{\circ} \sigma, z\right)\right.$ ). It turns out from this that our representation $\boldsymbol{U}_{\hat{o}}$ of $G_{1}=S p(m, \boldsymbol{R})^{\sim}$ in Theorem 5.2 is essentially identical with that constructed in the paper of Yamada [15, Th. 3.5], in which $S p(m, R)^{\sim}$ is treated in more abstract manner than the present paper (see the proof of Proposition 4.2).

We note here that the formula (2.3) is a key in deducing the properties of the Bessel function $A_{j}$. So we implicitly used the realization of the representation on the space $\mathscr{H}_{\delta}$. If we work on $\mathscr{H}_{\dot{\delta}}$ not on $L_{\hat{j}}^{2}\left(P_{m}\right)$, the proof of Theorem 3.2 is reduced to a computation on $j\left({ }^{\circ} \sigma, z\right)^{-\delta-p}$, which follows from Proposition 4.4.

Appendix. On commutant of a certain set of operators on $L^{2}(X)$.
Let $(X, \mathfrak{B}, \mu)$ be a measure space, and put $\mathfrak{B}_{0}=\{B \in \mathfrak{B} ; \mu(B)<\infty\}$. In this Appendix, we assume that the measure space is localizable. Here $(X, \mathfrak{B}, \mu)$ is said to be localizable if it satisfies the following. Let $\left\{\varphi_{A} ; A \in \mathfrak{B}_{0}\right\}$ be a family of functions such that $\varphi_{A}$ is a measurable function on $A$ and that $\varphi_{A}(x)=\varphi_{B}(x)$ holds for almost all $x \in A \cap B$, then there exists a locally measurable function $\varphi$ on $X$ such that for every $A \in \mathfrak{B}_{0}, \varphi(x)=\varphi_{A}(x)$ holds for almost all $x \in A$. Note that any $\sigma$-finite measure space is localizable.

We denote by $L^{\infty}(X)$ the set of all locally measurable functions $f$ on $X$ such that ess. sup $|f(x)|$ is bounded for $A \in \mathfrak{B}_{0}$. For $f \in L^{\infty}(X)$, we denote by $M_{f}$ the multiplication operator on $L^{2}(X)$ defined by $M_{f} \varphi=f \varphi\left(\varphi \in L^{2}(X)\right)$.

Theorem. Let $\mathcal{A}$ be a linear subspace of $L^{\infty}(X)$ satisfying the following condition:
(C) every $f \in L^{\infty}(X)$ can be approximated on any $B \in \mathfrak{B}_{0}$ by elements in $A$ in the sense of convergence in measure.
If a bounded linear operator $T$ on $L^{2}(X)$ commutes with $M_{\varphi}$ for all $\varphi \in \mathcal{A}$, then $T$ is a multiplication operator.

Proof. We devide the proof into the following two steps.
( $1^{\circ}$ ) If $T$ commutes with $M_{\varphi}$ for all $\varphi \in \mathcal{A}$, then $T$ commutes with $M_{f}$ for all $f \in L^{\infty}(X)$.
(2 ${ }^{\circ}$ ) If $T$ commutes with $M_{f}$ for all $f \in L^{\infty}(X)$, then $T$ is of the form $M_{h}$ for some $h \in L^{\infty}(X)$.

The step $\left(2^{\circ}\right)$ is a well-known fact that $\left\{M_{f} ; f \in L^{\infty}(X)\right\}$ is a maximal abelian subalgebra in the algebra of all bounded linear operators on $L^{2}(X)$. So we prove here the step ( $1^{\circ}$ ) only.

Let us prove $\left(1^{\circ}\right)$ by contradiction. Suppose there exist an $f \in L^{\infty}(X)$ and a $\dot{\varphi} \in L^{2}(X)$ such that $\alpha=\left\|\left(T M_{f}-M_{f} T\right) \psi\right\|_{L^{2}(X)}$ is positive. Let $\varepsilon$ be a positive number. Then there exists a $B \in \mathfrak{B}_{0}$ such that

$$
\left\|\left(T M_{f}-M_{f} T\right) \psi\right\|_{L^{2}(B)} \geqq \alpha-\varepsilon, \quad\|\psi\|_{L^{2}\left(B^{C}\right)} \leqq \varepsilon, \quad \text { and } \quad\|T \phi\|_{L^{2}\left(B^{C}\right)} \leqq \varepsilon
$$

Here $B^{C}$ denotes the complement of $B$ in $X$. On the other hand, by the absolute continuity of indefinite integral, there exists a $\delta>0$ such that $\left\|\left(T M_{f}-M_{f} T\right) \psi\right\|_{L^{2}(e)}$ $\leqq \varepsilon,\|\phi\|_{L^{2}(e)} \leqq \varepsilon$, and $\|T \psi\|_{L^{2}(e)} \leqq \varepsilon$ hold for arbitrary $e \in \mathfrak{B}_{0}$ with $\mu(e) \leqq \delta$. We fix these $B$ and $\delta$. By the condition (C) on $\mathcal{A}$, there exist $\varphi \in \mathcal{A}$ and $e \subset B$ such that $\sup _{x \in B \backslash e}|f(x)-\varphi(x)| \leqq \varepsilon$ and $\mu(e) \leqq \delta$. Put $B_{1}=B \backslash e$. Let $\chi_{1}$ be the characteristic function of $B_{1}$. We put $\psi_{1}=\phi \chi_{1}$ and $\phi_{2}=\phi-\psi_{1}$. Then we have $\left\|\psi_{2}\right\|_{L^{2}(X)} \leqq 2 \varepsilon$. Hence on one hand,

$$
\begin{aligned}
\left\|\left(T M_{f}-M_{f} T\right) \phi\right\|_{L^{2}\left(B_{1}\right)} & \geqq\left\|\left(T M_{f}-M_{f} T\right) \psi\right\|_{L^{2}(B)}-\left\|\left(T M_{f}-M_{f} T\right) \psi\right\|_{L^{2}(e)} \\
& \geqq \alpha-2 \varepsilon
\end{aligned}
$$

On the other hand, since $T M_{\varphi}=M_{\varphi} T$, we see $T M_{f}-M_{f} T=T M_{f-\varphi}-M_{f-\varphi} T$. Therefere we have

$$
\begin{array}{r}
\left\|\left(T M_{f}-M_{f} T\right) \psi\right\|_{L^{2}\left(B_{1}\right)} \leqq\left\|\left(T M_{f}-M_{f} T\right) \psi_{1}\right\|_{L^{2}\left(B_{1}\right)}+\left\|\left(T M_{f}-M_{f} T\right) \psi_{2}\right\|_{L^{2}\left(B_{1}\right)} \\
\leqq\left\|\left(T M_{f-\varphi}-M_{f-\varphi} T\right) \psi_{1}\right\|_{L^{2}\left(B_{1}\right)}+2 \varepsilon\left\|T M_{f}-M_{f} T\right\| \\
\leqq\left\|T M_{f-\varphi} \psi_{1}\right\|_{L^{2}\left(B_{1}\right)}+\left\|M_{f-\varphi} T \psi_{1}\right\|_{L^{2}\left(B_{1}\right)} \\
+2 \varepsilon\left\|T M_{f}-M_{f} T\right\| .
\end{array}
$$

 Note also $\left\|M_{f-\varphi} T \psi_{1}\right\|_{L^{2}\left(B_{1}\right)} \leqq \varepsilon\left\|T \psi_{1}\right\|_{L^{2}\left(B_{1}\right)} \leqq \varepsilon\|T\|\| \|_{L^{2}(X)}$. Consequently we get

$$
\left\|\left(T M_{f}-M_{f} T\right) \phi\right\|_{L^{2}\left(B_{1}\right)} \leqq 2 \varepsilon\left(\|T\|\|\psi\|_{L^{2}(X)}+\left\|T M_{f}-M_{f} T\right\|\right)
$$

Since $\varepsilon>0$ can be chosen small enough, this gives a contradiction. Q.E.D.
Corollary. Let $A$ be a linear subspace of $L^{\infty}(X)$ satisfying the condition (C). Let $\mathfrak{A}$ be the algebra generated by $A$ and the complex conjugate of $\mathcal{A}$. Then $\mathfrak{A}$ is dense in $L^{\infty}(X)$ with respect to the weak* topology.

Proof. Recall the theorem of Fuglede: if $N$ and $T$ are bounded operators on a Hilbert space and $N$ is normal, then $T N=N T$ implies $T N^{*}=N^{*} T$ (see e.g. Strătilă-Zsidó [11, 2.31]). From this and $M_{\varphi}^{*}=M_{\bar{\varphi}}$, we see that a bounded operator $T$ on $L^{2}(X)$ commutes with $M_{\xi}$ for all $\varphi \in \mathfrak{A}$ if $T$ so does with $M_{\varphi}$ for all $\varphi \in \mathcal{A}$. Then Corollary follows from von Neumann's double commutant theorem.

> Q. E. D.

Remark. In the condition (C), the family $\mathfrak{B}_{0}$ can be replaced by a subfamliy $\mathfrak{K}$ of $\mathfrak{B}_{0}$ satisfying the following (*).
(*) For any $B \in \mathfrak{B}_{0}$, there exist a countablly many $K_{n} \in \mathcal{K}$ and a locally null set $N$ such that $B \subset N \cup\left(\cup_{n} K_{n}\right)$.

For example, in the case where $\mu$ is a Radon measure on a topological space $X$, the family $\mathcal{K}$ of all compact subsets of $X$ satisfies (*).

## Department of Mathematics, Kyoto University

## References

[1] T. Asai, The reciprocity of Dedekind sums and the factor set for the universal covering group of $S L(2, \boldsymbol{R})$, Nagoya Math. J., 37 (1970), 67-80.
[2] S.S. Gelbart, Weil's representation and the spectrum of the metaplectic group, Lecture Notes in Math., 530, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
[3] K.I. Gross and R. A. Kunze, Bessel functions and representation theory I, J. Functional Analysis, 22 (1976), 73-195, II, ibid., 25 (1977), 1-49.
[4] M. Hashizume, Local zeta functions attached to certain holomorphic discrete series representations of the real symplectic group, preprint.
[5] C.S. Herz, Bessel functions of matrix argument, Ann. of Math., 61 (1955), 474-523.
[6] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Inventiones Math., 44 (1978), 1-47.
[7] T. Kubota, A generalized Weil type representation and a function analogous to $e^{-x^{2}}$, Bull. Amer. Math. Soc., 81 (1975), 902-903.
[8] T. Kubota, On an analogy to the Poisson summation formula for generallzed Fourier transformation, J. reine angew. Math., 268/269 (1976), 180-189.
[9] T. Kubota, On a generalized Weil type representation, in "Algebraic Number Theory," Int. Symp., Kyoto, 1976, pp. 117-128.
-10] T. Kubota, On a generalized Fourier transformation, J. Fac. Sci. Univ. Tokyo, 24 (1977), 1-10.
[11] S. Strătilă and L. Zsidó, Lectures on von Neumann algebras, Abacus Press, Tunbridge Wells, 1979.
[12] T. Suzuki, Weil type representations and automorphic forms, Nagoya Math, J., 77 (1980), 145-166.
[13] G.N. Watson, Theory of Bessel functions, Cambridge, 1922.
[14] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math., 111 (1964), 143-211.
[15] H. Yamada, Relative invariants of prehomogeneous vector spaces and a realization of certain unitary representations I, Hiroshima Math. J., 11 (1981), 97-109.
[16] T. Yamazaki, On a generalization of the Fourier transformation, J. Fac. Sci. Univ. Tokyo, 25 (1978), 237-252.

