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Abstract

In this paper we study the perturbations produced in the boundary layer by an impinging
oblique shock wave or Prandtl–Meyer expansion fan. The flow outside the boundary layer
is assumed supersonic, and we also assume that the point, where the shock wave/expansion
fan impinges on the boundary layer, moves downstream. To study the flow, it is convenient
to use the coordinate frame moving with the shock; in this frame, the body surface moves
upstream. We first study numerically the case when the shock velocity Vsh = O(Re−1/8).
In this case the interaction of the boundary layer with the shock can be described by the
classical equations of the triple-deck theory. We find that, as Vsh increases, the boundary
layer proves to be more prone to separation when exposed to the expansion fan, not the
compression shock.

Then we assume Vsh to be in the range: 1 ≫ Vsh ≫ Re−1/8. Under these conditions,
the process of the interaction between the boundary layer and the shock/expansion fan can
be treated as inviscid and quasi-steady if considered in the reference frame moving with the
shock/expansion fan. The inviscid analysis allows us to determine the pressure distribution in
the interaction region. We then turn our attention to a thin viscous sublayer that lies closer to
the body surface. In this sublayer the flow is described by classical Prandtl’s equations. The
solution to these equations develops a singularity provided that the expansion fan is strong
enough. The flow analysis in a small vicinity of the singular point shows an accelerated
‘expansion’ of the flow similar to the one reported by Neiland (1969a) in his analysis of
supersonic flow separation from a convex corner.

1 Introduction

The boundary-later separation from a body surface leads to a significant alteration of the flow
field and of the forces experienced by the body. Therefore, it is not surprising that the separation
phenomenon has been a focus of attension in fluid dynamics for many years. The first theoretical
model of a separated flow was suggested by Kirchhoff (1869) who studied the flow past a flat
plate perpendicular to the free-stream velocity with the separation taking place at the plate edges.
Later, the Kirchhoff model was applied to other body shapes. In particular, Levi-Civita (1907)
used it to study the separated flow past a circular cylinder. An important conclusion of this
work was that the Euler equations admit a family of solutions with the position of the separation
point on the cylinder surface playing the role of a free parameter. However, Kirchhoff’s theory
failed to reveal the physical processes leading to the separation, and provided no clues on how
to choose the separation point.

Now we know that to find the location of the separation point, one needs to take into con-
sideration the boundary layer that forms on the cylinder surface. According to Prandtl (1904),
this is due to a specific behaviour of the flow in the boundary layer that separation takes place.
Prandtl described the separation process as follows. Since the flow in the boundary layer has to
satisfy the no-slip condition on the body surface, the fluid velocity decreases from the value dic-
tated by the inviscid theory at the outer edge of the boundary layer to zero on the body surface.
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The slow-moving fluid near the body surface is very sensitive to the pressure variations. On the
front part of the body the pressure normally decreases in the downstream direction which makes
the pressure gradient negative. It is referred to as the favourable pressure gradient because it
acts to accelerate the flow keeping the boundary layer attached to the body surface. However,
further downstream the pressure starts to rise, and the boundary layer finds itself under the
action of a positive (adverse) pressure gradient. In these conditions the boundary layer tends to
separate from the body surface. The reason for separation may be explained as follows. Since
the velocity in the boundary layer decreases towards the wall, the kinetic energy of fluid parti-
cles inside the boundary layer appears to be less than that at the outer edge of the boundary
layer. In fact, the closer a fluid particle is to the wall, the smaller its kinetic energy appears to
be. This means that while the pressure rise in the outer flow may be quite significant, the fluid
particles inside the boundary layer may not be able to get over it. Even a rather small increase
of the pressure may cause the fluid particles near the wall to stop and then turn back to form a
reverse flow region characteristic of separated flows. According to Prandtl, the separation point
is identified as a point on the body surface where the skin friction τw = µ∂u

∂y

∣∣
y=0

becomes zero.
Here we denote the longitudinal velocity by u, the distance from the body surface by y and
µ is the viscosity coefficient. Indeed, with τw being positive upstream of the separation point,
the longitudinal velocity u stays positive which means that the fluid particles in the boundary
layer move downstream along the wall and the flow appears to be attached to the body surface.
However, once the skin friction turns negative, a layer of reversed flow (u < 0) forms near the
wall, giving arise to a region of recirculation.

The above arguments relied on the kinematics of the flow, and seemed to be self-evident, but
it was soon discovered that the flow reversal does not necessarily imply that the boundary layer
breaks away from the body surface. The first example of such situation was presented by Blasius
(1908) who considered a circular cylinder that is initially kept motionless in a stagnant fluid. At
time t = 0, the cylinder is brought to motion with a constant velocity, which leads to a formation
of the boundary layer on the cylinder surface. The solution of the boundary-layer equations
showed that when the non-dimensional time reaches t = 0.644, the skin friction turned zero at the
rear stagnation point, and then two symmetric recirculation regions formed inside the boundary
layer, expanding upstream from the rear stagnation point. The appearance of the recirculation
regions does not signify the boundary-layer separation. Indeed, experimental observations (see,
for example, Nakayama, 1988) clearly show that the eruption of eddies from the boundary layer
starts at t ≈ 3.0. Before that the boundary layer remains thin, and does not influence the
external inviscid part of the flow. The eddy eruption was found to start when a singularity forms
in the solution of the boundary-layer equations. This behaviour is not restricted to impulsively
started cylinder, but is observed in various other flows. In particular, Walker (1978) studied
the finite time singularity in the boundary layer exposed to a rectilinear vortex. Soon after a
detailed description of the finite time singularity was given by van Dommelen & Shen (1980).
These results were re-examined with the help of numerical and analytical methods by various
authors, including van Dommelen & Shen (1982), Cowley (1983), Elliott et al. (1983), Ingham
(1984), Peridier et al. (1991), Christov & Tsankov (1993), Cassel et al. (1996). They confirmed
that in the case of circular cylinder the flow reversal in the boundary layer is observed starting
at t = 0.644, but the solution remains smooth, which means that the eddies are still confined to
a thin O(Re−1/2) region near the cylinder surface. This continues until t = 3.0 when the solution
develops a singularity at a position θ = 111◦ from the front stagnation point, signifying the start
of the eddy eruption process.

For steady flows, a link between the separation and singular behaviour of the solution of
the boundary-layer equations was first discovered by Howarth (1938) and Hartree (1939). They
considered a flow where the velocity Ue(x) at the outer edge of the boundary layer was a linearly
decreasing function of the coordinate x measured along the body contour. In these conditions the
boundary layer is exposed to the adverse pressure gradient that makes the skin friction to decrease
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with x. Howarth and Hartree found that the solution of the boundary-layer equations becomes
singular at the point x = xs where the skin friction is zero. The form of the singularity was later
uncovered by Landau & Lifshitz (1944). Making use of heuristic arguments they arrived at a
conclusion that the skin friction decreases on approach to the separation point as τw ∼ √

xs − x.
They also found that the velocity component normal to the body surface experiences unbounded
growth being proportional to 1/

√
xs − x. The latter appeared to explain the eruption of eddies

from the boundary layer. Later Goldstein (1948) confirmed this result on a more rigorous basis,
and (which is even more important) proved that the singularity at the separation precludes the
solution to be continued beyond the point of zero skin friction.

Thus, it became clear that the boundary-layer theory in its classical form, as formulated by
Prandtl (1904), could not be used in a vicinity of the separation point. A key element of the
separation process that was not fully appreciated in Prandtl’s description, was an interaction
between the boundary layer and external inviscid flow, now referred to as the viscous-inviscid
interaction. Asymptotic theory of the viscous-inviscid interaction, also known as the triple-deck
theory, was formulated simultaneously by Neiland (1969b) and Stewartson & Williams (1969) in
their study of the ‘self-induced separation’ in a supersonic flow and by Stewartson (1969) and
Messiter (1970) for incompressible fluid flow near the trailing edge of a flat plate. The solution
of the classical problem of the boundary-layer separation from a smooth body surface (like a
circular cylinder) in a steady incompressible flow was presented by Sychev (1972). Later, many
researchers were involved in the development of the theory, and it became clear that the viscous-
inviscid interaction plays a key role in a wide variety of fluid-dynamic phenomena. An exposition
of applications of the theory to different forms of the boundary-layer separation may be found,
for example, in Sychev et al. (1998), Neiland et al. (2007) and Ruban (2018).

Returning to the unsteady separation, it should be noted that an additional independent
variable, time, makes the boundary layer separation a rather complicated phenomenon that may
assume various forms. Until now, the theoreticians have concentrated on two of these. The
first one may be called the ‘incipient separation’, which emerges at a finite time at a particular
point on the body surface in otherwise attached boundary layer. The classical example of such
situation is an impulsive motion of a circular cylinder discussed above. This form of separation
is observed in many other physical situations, most notably, at the leading edge of pitching up
aerofoil (see, for example, Degani et al., 1996) where the erupting vortex leads to the phenomenon
of dynamic stall.

In the second category are flows with ‘developed separation’. A typical example is the flow
past a circular cylinder with the Kármán vortex street in its wake. In this flow each individual
vortex forms near the cylinder surface through accumulation of vorticity in the boundary layer.
Once the circulation around the vortex reaches a critical value, it is shed downstream, and
another one starts to form in its place. During this cycle, the separation point moves up and
down the cylinder surface.

Even before calculating the boundary-layer equations for this flow, one can predict that the
solution will develop a singularity at the separation point. Indeed, if the solution remained
regular, then the separation eddies could stay within the boundary layer, which is not what
happens in reality. Once the fact of a singular behaviour of the boundary layer is accepted, an
analogy between the unsteady separation over a fixed wall and a steady separation on a moving
wall can be established (this analogy was mentioned for the first time by Sears 1956 and Moore
1958). Indeed, on approach to the separation point, ∂u/∂x is expected to become infinitely large,
making the convective acceleration of the fluid u∂u/∂x much larger than the local acceleration
∂u/∂t, provided that the latter is calculated in the coordinate frame moving with the separation
point. Of course, the fact that the flow near the separation point is governed by the steady
equations does not yet mean that the theory of steady separation becomes applicable. Indeed,
in the frame moving with the separation point, the body surface no longer remains motionless.
Figure 1 shows what happens when the separation point moves upstream along the cylinder
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Figure 1: Boundary-layer separation on downstream moving wall.

surface and, correspondingly, for an ‘observer’ in the moving frame, the cylinder surface moves
downstream. Due to the action of viscous forces, the fluid particles adjacent to the wall will
be involved in the downstream motion, which precludes the recirculation region to start from
a point on the body surface, as it happens in the case of steady flow separation. Instead, the
separation now takes place from a point that lies in the middle of the boundary layer, as was
first suggested by Rott (1956), Sears (1956) and Moore (1958). To explain how it happens, let us
consider a sequence of cross-sections of the boundary layer corresponding to progressively larger
values of the longitudinal coordinate x. In each cross-section the fluid velocity u is a function
of the normal coordinate y. If the boundary layer is exposed to an adverse pressure gradient,
then the fluid will experience a deceleration. As a result the velocity profile will have a minimum
that lies some distance ymin(x) from the wall. If the pressure gradient is strong enough, then the
minimal velocity will continue to decrease with x, leading to the separation point

(
xs, ymin(xs)

)
,

where u is zero. At this point the so-called Moore–Rott–Sears condition u = ∂u
∂y = 0 holds.

A significant breakthrough in this field was made in late 70s and 80s when the ideas of
triple-deck theory were applied to the analysis of steady boundary-layer separation on a down-
stream moving wall. Firstly, Sychev, Vic. V. (1980) confirmed that the solution of the classical
boundary-layer equations does develop a singularity at the Moore–Rott–Sears point. Assuming
that the pressure gradient remains regular on approach to this point, Sychev found that the min-
imum velocity decreases as umin ∼ √

xs − x. He also proved that the singularity precludes the
solution to be continued downstream of the separation, which implies that the boundary-layer
theory (in its classical formulation) is insufficient for describing the separation process.

A new theory was developed by Sychev, Vic. V. (1979, 1984, 1987) with a help from van
Dommelen & Shen (1983) based on the asymptotic analysis of the Navier–Stokes equations at
large values of the Reynolds number. It was shown that, similar to the case of motionless wall
(see Sychev, 1972), a key element of the separation process is the mutual interaction of the
boundary layer and the external inviscid part of the flow. However, unlike in the conventional
triple-deck theory (Sychev, 1972) the boundary layer on the downstream moving wall finds itself
under the action of extreme adverse pressure gradient even before the interaction region. As
a consequence, the flow in the boundary layer experiences a sharp deceleration, leading to a
formation of a relatively thick region of retarded fluid near the point of minimal velocity. It
modifies completely the process of the interaction between the boundary layer and external flow,
making it predominantly inviscid. For these and other details of the theory the reader is referred
to Chapter 5 of the monograph by Sychev et al. (1998).

An analogue of this theory for supersonic flows was presented by Ruban et al. (2011). They
considered the boundary layer exposed to a shock wave that moves upstream. Initially it was
assumed that the pressure jump across the shock ∆p̂ is an order ρ̂∞V̂

2
∞Re

−1/4 quantity and the
shock speed is V̂sh ∼ V̂∞Re

−1/8, where ρ̂∞ and V̂∞ are the free-stream density and velocity,
respectively, and Re is the Reynolds number assumed large. Under these conditions the viscous-
inviscid interaction is described by the equations of the classical triple-deck theory. These were
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(a) Velocity profile in stationary coordinate
frame.

(b) Velocity profile in downstream-moving co-
ordinate frame.

Figure 2: Blasius boundary layer in stationary and moving coordinates.

first studied numerically. Then an analytic solution of the viscous-inviscid interaction problem
was constructed under assumption of relatively large wall speed: V̂sh/V̂∞ ≫ Re−1/8. It was found
that, while there are mathematical differences, the physical processes leading to the separation
are in essence the same as in the corresponding subsonic flow.

This study and the works listed above are restricted to the case of downstream moving
wall. The problem of boundary-layer separation on an upstream moving wall proved to be more
difficult. The reason for this lies, at least partially, in an unclear topology of the flow. Both
for the motionless wall and for the wall moving downstream, the separation may be identified
by the onset of the flow reversal in the boundary layer. Contrary to that, for the upstream
moving wall, a link between the flow reversal and boundary-layer separation does not appear to
exist. This is illustrated by Figure 2, where the classical Blasius boundary layer is considered.
Figure 2(a) displays the velocity profile across the boundary layer in conventional coordinate
system attached to the body surface. Of course, this is the only coordinate system in which the
flow is steady. For unsteady flows such ‘privileged’ coordinate system does not exist, and the
velocity profile proves to be dependent on a particular coordinate system used. In figure 2(b) we
consider the same flow in the coordinate frame that moves downstream along the plate surface.
In this frame a ‘reverse flow’ region is observed near the plate surface. Of course, this does not
mean that now the boundary layer develops a separation. Keeping this in mind, our aim in this
paper will be to identify situations when a singularity develops in the boundary layer. Indeed, if
the flow is free of singularities, then no separation can be expected.

In the present study, we use the same formulation as in Ruban et al. (2011), namely, we
consider the boundary layer in the supersonic flow exposed to a shock or expansion fan. The
triple-deck theory for such flows is easily generalised for the case of upstream moving flow. Zhuk
(1982) was the first to present numerical solution of the triple-deck equations for the upstream
moving wall. More recently the calculations were repeated by Yapalparvi & van Dommelen
(2012). The results of these works suggest that increasing wall speed suppresses the separation.
In the present paper we show that the behaviour of the flow changes drastically when instead
of the impinging shock the boundary layer is exposed to an expansion fan. With large enough
wall speed, the singularity develops in the boundary layer of the type first described by Neiland
(1969a) in his analysis of supersonic flow separation from a convex corner.

2 Problem Formulation

In this paper we consider, as an example, the boundary layer on the surface of a flat plate that
is aligned with the oncoming supersonic flow. Our interest is in the incipience of the separation
caused by an impinging shock or expansion wave. The latter can be produced by an expansion
ramp situated above the plate as shown in Figure 3. We assume that the ramp, and hence, the
shock/expansion fan are moving downstream with respect to the plate with velocity V̂sh. If one
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Figure 3: The flow layout.

assumes that V̂sh/V̂∞ ∼ Re−1/8, where V̂∞ is the free-stream velocity, and Re is the Reynolds
number, then the triple-deck theory is applicable. In section 4 we will present the results of the
numerical solution of the triple-deck equations. To make an analytic progress in the flow analysis
we shall assume that

1 ≫ V̂sh/V̂∞ ≫ Re−1/8. (1)

The condition V̂sh/V̂∞ ≪ 1 ensures that the pressure stays unchanged across the boundary layer
in the leading order approximation.

In this study we are interested in non-linear perturbations in the boundary layer. We therefore
assume that the pressure jump across the shock/expansion fan is proportional to

(
V̂sh/V̂∞

)2
which, according to (1), is small. This means that while the perturbations in the boundary
layer are non-linear, the perturbations outside the boundary layer are weak and can be described
in framework of the Ackeret theory. In this theory, both the shock wave and expansion fan
degenerate into a characteristic, such that the fan shown in figure 3 becomes, in fact, infinitely
narrow.

To study the flow we introduce a Cartesian coordinate frame (x̂, ŷ) that moves along the plate
with the shock/expansion fan; x̂ is measured along the plate surface and ŷ in the perpendicular
direction. The velocity components in these coordinates are denoted by (û, v̂), and the stream
function by ψ̂. As usual, we denote the gas density by ρ̂, pressure by p̂, enthalpy by ĥ and dynamic
viscosity coefficient by µ̂. The ‘hat’ is used here for dimensional variables. The non-dimensional
variables are introduced as follows

û = V̂∞u, v̂ = V̂∞v, ψ̂ = ρ̂∞V̂∞L̂ψ,

ρ̂ = ρ̂∞ρ, ĥ = V̂ 2
∞h, p̂ = p̂∞ + ρ̂∞V̂

2
∞p,

µ̂ = µ̂∞µ, x̂ = L̂x, ŷ = L̂y,

where ρ̂∞, p̂∞ and µ̂∞ are the values of density, pressure and viscosity coefficient in the oncoming
flow; L̂ denotes the distance between the leading edge of the plate and current position of the
point of interaction of the boundary layer with the shock/expansion fan. We calculate the
Reynolds number as

Re =
ρ̂∞V̂∞L̂

µ̂∞
,

and assume that the free-stream Mach number

M∞ =
V̂∞√

γp̂∞/ρ̂∞

has a finite value larger than one; γ denotes the specific heat ratio of the gas considered.
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Figure 4: Three-tiered structure of the interaction region.

The mathematical analysis of the flow may be conducted by applying the limit Re → ∞ to
the Navier–Stokes equations. Alternately one can start with the triple-deck theory. We shall
choose the latter approach. Remember that the interaction of the shock wave or expansion
fan with the boundary layer leads to a formation of the three-tiered viscous-inviscid interaction
region; see Figure 4. The nonlinear processes, characteristic of the flow separation are confined
to the near-wall layer (region 1).

The asymptotic solution of the Navier–Stokes equations in this layer is sought in the form
(for details the reader is referred to Section 2 in the textbook by Ruban, 2018):

x = 1 +Re−3/8µ
−1/4
w ρ

−1/2
w

λ5/4β3/4
X, y = Re−5/8µ

1/4
w ρ

−1/2
w

λ3/4β1/4
Y,

u = Re−1/8 µ
1/4
w ρ

−1/2
w

λ−1/4β1/4
U + · · · , v = Re−3/8 µ

3/4
w ρ

−1/2
w

λ−3/4β−1/4
V + · · · ,

p = Re−1/4 µ
1/2
w

λ−1/2β1/2
P + · · · , ψ = Re−3/4 µ

1/2
w

λ1/2β1/2
Ψ+ · · · ,

ρ = ρw + · · · , µ = µw + · · · .





(2)

Here, in addition to conventional scaling with respect to the small parameter Re−1/8, we use
affine transformations with ρw and µw being the dimensionless density and dynamic viscosity on
the body surface immediately before of the interaction region, and λ denoting the dimensionless
skin friction produced by conventional boundary layer before the triple-deck region. It is given
by the compressible version of the Blasius solution (see Section 1.10 in Ruban, 2018). The
dependence of the solution in the triple-deck region on the free-stream Mach number, M∞, is
expressed through parameter β =

√
M2

∞ − 1. These transformations allow us to exclude ρw, µw,
λ and β from the equations for the interaction region.

The flow in region 1 is described by the boundary-layer equations

U
∂U

∂X
+ V

∂U

∂Y
= − dP

dX
+
∂2U

∂Y 2
, (3a)

∂U

∂X
+
∂V

∂Y
= 0, (3b)
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with the pressure P being a function of X only.
The no-slip conditions on the plate surface are written as

U = −Uw, V = 0 at Y = 0. (3c)

Notice that in the coordinate frame moving with the expansion fan (see Figure 3), the plate
surface moves upstream. We denote its speed, scaled with Re−1/8, as Uw. Equations (3a), (3b)
also require the far-field attenuation conditions

U = Y − Uw at X = ±∞, (3d)

which follows from matching with the solution in the unperturbed boundary layer upstream and
downstream of the interaction region. The matching condition with the solution in the main
part of the boundary layer (region 2 in figure 4) is expressed as

U = Y +A(X) + · · · as Y → ∞. (3e)

Here A(X) denotes the so called displacement function. It is used in the interaction law

P = PsH(X)− dA

dX
, (3f)

which is deduced from the flow analysis in region 3 (see Figure 4): The first term on the right-
hand side of (3f) stands for the impinging shock/expansion fan, with H being the Heaviside
function:

H(X) =

{
0 if X < 0,

1 if X ≥ 0.

The strength of the shock/expansion fan is defined by factor Ps. It is positive for the shock and
negative for the expansion wave. The second term in (3f) represents the displacement effect of
the boundary layer.

The above formulation is applicable for a perfect gas flow, and remains valid both for an
adiabatic wall and for the case when the wall temperature is kept constant at least locally in the
triple-deck region. It involves two parameters that may be thought of as the similarity parameters
of the flow: the shock strength Ps and the wall speed Uw. These are related to pressure jump
∆p̂sh across and the shock speed V̂sh as follows

Ps =
∆p̂shRe

1/4

ρ̂∞V̂ 2
∞

µ
−1/2
w

λ1/2β−1/2
, Uw =

V̂shRe
1/8

V̂∞

µ
−1/4
w ρ

1/2
w

λ1/4β−1/4
.

In what follows we shall use the ‘Cartesian formulation’ (3) of the interaction problem for
numerical analysis of the flow. For theoretical analysis it is more convenient to express the
problem in von Mises variables (see, for example, Ruban, 2018) where the momentum (3a) and
continuity (3b) equations assume the form

U
∂U

∂X
= − dP

dX
+ U

∂

∂Ψ

(
U
∂U

∂Ψ

)
, (4a)

∂

∂Ψ

(
V

U

)
=

∂

∂X

(
1

U

)
. (4b)

These should be solved with the interaction law (3f), now written as

P = PsH(X) + lim
Ψ→∞

V

U
, (4c)
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subject to the no-slip conditions (3c)

U = −Uw, V = 0 at Ψ = 0, (4d)

the far-field attenuation conditions (3d)

U
∣∣∣
X=±∞

=

{
−
√
2Ψ + U2

w if Ψ ∈
[
0,−1

2U
2
w

]
,

√
2Ψ + U2

w if Ψ > −1
2U

2
w

(4e)

and the condition (3e) at the outer edge of the viscous sublayer (region 1 in figure 4):

U =
√
2Ψ + · · · as Ψ → ∞. (4f)

The formulation of the interaction problem (3) is similar to the one in Ruban et al. (2011).
The main difference is that Ruban et al. (2011) considered the case of downstream moving wall.
It was shown that for the flow to separate, the boundary layer on a downstream moving wall
had to be exposed to a shock wave. The mathematical description of the separation process
is somewhat different from that presented by Sychev, Vic. V. (1979, 1983, 1984, 1987) for the
incompressible flow. However, the physical processes leading to the separation are rather similar.
In the present paper we consider the case of upstream moving flow. We shall see that in this
case the shock wave does not cause separation. Surprisingly enough, the boundary layer has to
be exposed to an expansion fan for the separation to take place.

To start the theoretical analysis of the flow we note that when formulating the equations
of the triple-deck theory, it is assumed that the wall speed is an order O(Re−1/8) quantity.
Therefore, to satisfy condition (1) we have to assume that

Uw → ∞. (5)

In this limit, the near-wall region 1 splits into two regions: the nonlinear inviscid region 1a and a
thinner viscous region 1b adjacent to the plate surface; see Figure 5. We start our analysis with
region 1a.

∆X ∼ U−1
w

1b

1a

2

3

Figure 5: Splitting of region 1.
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3 Flow Analysis in Region 1a

The form of the asymptotic solution of the interaction problem (4) in region 1amay be determines
using the principle of least degeneration. We start with the initial condition (4e). In order to
avoid degeneration in equation (4e) we have to assume that

Ψ ∼ U2
w and U ∼ Uw.

Since the separation is a non-linear process, we have to ensure that the two terms on the left-hand
side of the momentum equation (4a) remain in balance with one another. This is only possible if

P ∼ U2 ∼ U2
w.

An estimate for the lateral velocity component V is obtained, as usual, from the continuity
equation (4b). The two sides of this equation remain in balance with each other provided that

V ∼ U2
w

∆X
. (6)

Here ∆X is the longitudinal scale of the interaction region. It may be found using the interaction
law (4c). Balancing the pressure on the left hand side of (4c) with the second term on the right
hand side, it is easily found that

∆X ∼ 1

Uw
. (7)

Substituting (7) back into (6), we find
V ∼ U3

w.

This suggests that the asymptotic solution of (4) in region 1a may be sought in the form

U = UwU∗ + · · · , V = U3
wV∗ + · · · , P = U2

wP∗ + · · · , (8)

with the arguments X∗, Ψ∗ of functions U∗, V∗ and P∗ defined by

X =
1

Uw
X∗, Ψ = U2

wΨ∗. (9)

Substitution of (8), (9) into (4) shows that, in the leading-order approximation, the flow in
region 1a is governed by the equations

U∗

∂U∗

∂X∗

= − dP∗

dX∗

, (10a)

∂

∂Ψ∗

(
V∗
U∗

)
=

∂

∂X∗

(
1

U∗

)
, (10b)

P∗ = P̄sH(X∗) + lim
Ψ∗→∞

V∗
U∗

, (10c)

that should be solved with the boundary conditions

V∗ = 0 at Ψ∗ = 0, (10d)

U∗ =

{
−√

2Ψ∗ + 1 if Ψ∗ ∈
[
0,−1

2

]
,√

2Ψ∗ + 1 if Ψ∗ > −1
2

at X∗ = ∞, (10e)

U∗ =
√
2Ψ∗ + · · · as Ψ∗ → ∞, (10f)

P∗ = P̄s at X∗ = ∞, (10g)

P∗ = 0 at X∗ = −∞. (10h)

10



Here it has been assumed that the strength of the shock/expansion fan is given by

Ps = U2
wP̄s, (11)

with P̄s being an order one parameter. Notice that the viscous term disappears from the mo-
mentum equation (10a), signifying that the flow in region 1a may be treated as inviscid. For
this reason we can only impose the impermeability condition (10d) on the body surface, leaving
the task of satisfying the no-slip condition to the flow analysis in region 1b. It should be also
noticed that for an inviscid flow the far-field attenuation condition (3d), (4e) cannot be satisfied
both upstream and downstream of the interaction region. When solving the inviscid interaction
problem (10) we assume the velocity profile to be undisturbed downstream of the interaction re-
gion as stated in (10e). This is to ensure the existence of the solution in region 1b; for a detailed
discussion of this issue the reader is referred to Kirsten (2018).

The boundary-value problem (10) is solved as follows. Integrating the momentum equation
(10a) with respect to X∗ we have

1

2
U2
∗ + P∗ = H∗(Ψ∗). (12)

To find the Bernoulli function H∗(Ψ∗) we set X∗ = ∞ in (12) and use conditions (10e) and (10g):

H∗(Ψ∗) = Ψ∗ +
(
1
2 + P̄s

)
. (13)

Now we can substitute (13) back into (12) and solve the resulting equation for U∗.

U∗ =





−
√
2Ψ∗ − 2P∗ + 2

(
1
2 + P̄s

)
if Ψ∗ ∈

[
0, P∗ −

(
1
2 + P̄s

)]
,

√
2Ψ∗ − 2P∗ + 2

(
1
2 + P̄s

)
if Ψ∗ > P∗ −

(
1
2 + P̄s

)
.

(14)

In order to find the pressure P∗(X∗) we turn our attention to the continuity equation (10b).
Integration of (10b) with respect to Ψ∗ with initial condition (10d) allows us to write

V∗
U∗

=
∂

∂X∗

Ψ∗∫

0

dΨ′
∗

U∗(X∗,Ψ′
∗)
. (15)

We first consider the region near the plate surface where U∗ is negative and is given by the first
of equations in (14). We have

Ψ∗∫

0

dΨ′
∗

U∗(X∗,Ψ′
∗)

=
√
2
(
1
2 + P̄s

)
− 2P∗ −

√
2Ψ∗ − 2P∗ + 2

(
1
2 + P̄s

)
. (16)

At the position of flow reversal, where U∗ = 0, the second term on the right-hand side of (16)
vanishes, leading to

P∗−( 1

2
+P̄s)∫

0

dΨ′
∗

U∗(X∗,Ψ′
∗)

=
√
2
(
1
2 + P̄s

)
− 2P∗.

Above this point, we have to use the second equation in (14). We have

Ψ∗∫

0

dΨ′
∗

U∗(X∗,Ψ′
∗)

=
√
2
(
1
2 + P̄s

)
− 2P∗ +

Ψ∗∫

P∗−( 1

2
+P̄s)

dΨ′
∗√

2Ψ′
∗ − 2P∗ + 2

(
1
2 + P̄s

)

=
√
2
(
1
2 + P̄s

)
− 2P∗ +

√
2Ψ∗ − 2P∗ + 2

(
1
2 + P̄s

)
. (17)

11



It remains to substitute (17) into (15) and then into the interaction law (10c), and we will have
the following equation for P∗(X∗):

P∗ = P̄sH(X∗)−
1√

2
(
1
2 + P̄s

)
− 2P∗

dP∗

dX∗

. (18)

The solution to (18) is written as

P∗ =





0 if X∗ < 0,

1

2
+ P̄s −

1

2

(
1− Ce−X∗

1 + Ce−X∗

)2

if X∗ > 0.
(19)

It satisfies conditions (10g), (10h) and is continuous at X∗ = 0 provided that constant C is
chosen to be

C =
1−

√
1 + 2P̄s

1 +
√
1 + 2P̄s

. (20)

3.1 Impinging shock or expansion fan

In the flow with impinging shock, P̄s > 0, and it follows from (19), (20) that the pressure displays
a monotonic growth as X∗ increases from 0 to ∞. Consequently, the fluid in the viscous layer
(region 1b in figure 5), that moves in the direction opposite to the X∗-axis, finds itself under
action of favourable pressure gradient. No boundary-layer separation can be expected under
these conditions. Contrary to that, in the case of an expansion fan, the pressure is decaying in
the positive X∗-direction, which means that the flow in region 1b appears to be under an adverse
pressure gradient. Similar to the downstream moving wall (see Ruban et al., 2011) we expect a
singularity to form in region 1b when the velocity Ue at the outer edge of this region turns zero.

To find Ue(X∗) one needs to set Ψ∗ = 0 in the first of equations (14), and use (19) for P∗.
This gives

Ue = −1− Ce−X∗

1 + Ce−X∗

. (21)

It is easily seen that Ue first turns zero at X∗ = 0 when the strength P̄s of the expansion fan
assumes the value

P̄s = −1

2
. (22)

In this case, (21) turns into

Ue =





0 if X∗ < 0,

−1− e−X∗

1 + e−X∗

if X∗ > 0,
(23)

and the pressure P∗ can be found from the equation

P∗ = −1

2
U2
e , (24)

that is deduced by setting Ψ∗ = 0 in (13) and combining it with (12).
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4 Numerical solution of the triple-deck problem

Here we return to the original triple-deck problem (3), and discuss the behaviour of the flow based
on numerical solution of (3) for Uw = O(1). The calculations were conducted with the help of
numerical technique developed by Kravtsova et al. (2005). An interested reader is referred to
this original paper for details of the method. Here we shall give a brief description of the method.
To perform the calculations, we introduce a discrete mesh

{
xi
}
, where i = 1, · · · , N , and denote

the vector composed of the values of the displacement function A at the mesh point by A. We
also consider the vector dP/dx whose elements are the values of the pressure gradient at the
mesh points. Then finite-difference representation of the inviscid equation (3f) can be expressed
in the form

dP

dx

∣∣∣
inv

= NA (25)

Also, for given displacement function A, equations (3a), (3b) allow us to calculate the velocity
field and the pressure gradient in the viscous sublayer

dP

dx

∣∣∣
visc

= MA+R, (26)

where the term R corresponds to the boundary-layer solution with A = 0. The requirement that
the pressure gradient should be the same in the viscous sublayer and at the bottom of the upper
deck leads to the following set of equations

(M−N )A = R. (27)

These are solved by means of Newtonian iterations. As usual the Newtonian iterations prove to
be rather sensitive to the initial guess. Keeping this in mind we started with a small value of
Uw and, after convergence was achieved, the obtained distribution of the fluid dynamic functions
was used to initiate the calculations for the next value of Uw. For each Uw, the strength of the
expansion fan was chosen according to (22) which, being combined with (11), gives

Ps = −1

2
U2
w.

Figure 6 displays the streamlines in the boundary layer on the wall moving upstream with
velocities Uw = 2.0 and Uw = 3.0. The pressure distribution in the interaction region is shown in
figure 7. We see that two eddies are forming in the flow; one lies downstream of the impinging
expansion fan and the other upstream of the fan. We shall call them the primary eddy and
the secondary eddy, respectively. The primary eddy grows with Uw, while the secondary eddy
becomes relatively smaller. The formation of the primary eddy is explained as follows. If we
consider a fluid particle situated near the wall downstream of the impinging expansion fan, then
initially this particle moves in the negative X-direction. It encounters a growing pressure, and
therefore, experiences a deceleration. If the fluid particle is sufficiently close to the wall, then its
kinetic energy is large enough to overcome the growing pressure, and it continues to move along
the wall in the original direction. However, one can see from (3d) that there always are fluid
particles with smaller initial velocity. These are stoped by the growing pressure, and are forced
to turn back. The smaller the initial velocity, the earlier this happens.

The situation with the secondary eddy is more complicated. We observe in figure 6 that the
fluid particles away from the wall continue travelling in the positive X-direction. However, those
that are closer to the wall, decelerate before the impinging expansion fan and turn back despite
they are exposed to a favourable pressure. This can only be explained by action of viscous forces.
Our computations indeed show that the viscous forces prove to be strong in the secondary eddy
before it ‘collides’ with the primary vortex. Of course, the theory presented in the previous
section shows that the fluid motion should become effectively inviscid as Uw → ∞. We expect
that in this limit the secondary vortex will disappear, as shown in figure 10.
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(a) Uw = 2.0. The streamlines shown in black correspond to the following values
of the stream function: 0.001; 1; 3; 6; 10; 15; 20. For the coloured lines these are:
−0.4; −0.8; −1.2; −1.6.
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(b) Uw = 3.0. The streamlines shown in black correspond to the following values
of the stream function: 0.001; 1; 3; 6; 10; 15; 20. For the coloured lines these are:
−0.4; −0.8; −1.2; −1.6; −2; −2.4.

Figure 6: The streamline pattern in the boundary layer exposed to an impinging expansion fan.
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Figure 7: Pressure variation in the interaction region. Dashed line shows the theoretical solution
(23), (24).

5 Viscous Region 1b

Here we continue the theoretical analysis of the flow we started in Section 3. Now we turn our
attention to a thin viscous near-wall layer shown as region 1b in figure 5. In this region the
asymptotic solution of the interaction problem (4) is sought in the form

U = Uw Ũ(X∗,Ψ) + · · · , V = UwṼ (X∗,Ψ) + · · · as Uw → ∞. (28)

Here, it is taken into account that region 1b has the same longitudinal extent as region 1a. The
scaling for U is dictated by the necessity to perform the matching with the solution in region 1a.
We also need to satisfy the no-slip condition on the body surface. The latter is only possible if
the convective terms in the momentum equation (4a) remain in balance with the viscous term,
that is

U
∂U

∂X
∼ U

∂

∂Ψ

(
U
∂U

∂Ψ

)
. (29)

The above equation expresses in the von Mises variable standard Prandtl’s requirement that is
used to determine the thickness of the boundary layer. Since X ∼ U−1

w and U ∼ Uw, it follows
from (29) that Ψ = O(1). Using further the continuity equation (4b), one can deduce that
V ∼ Uw. Finally, the pressure P does not change across region 1b and stays the same as in
region 1a:

P = U2
wP∗(X∗) + · · · . (30)

To find the velocity components Ũ and Ṽ one needs to solve the equations of classical
boundary-later theory:

Ũ
∂Ũ

∂X∗

− Ue
dUe

dX∗

= Ũ
∂

∂Ψ

(
Ũ
∂Ũ

∂Ψ

)
, (31a)

∂

∂Ψ

(
Ṽ

Ũ

)
=

∂

∂X∗

(
1

Ũ

)
. (31b)

In (31a) we used the Bernoulli equation (24) to express the pressure gradient in terms of the
velocity Ue(X∗) at the outer edge of region 1b; the latter is given by (23). The boundary
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conditions for (31) are

Ũ = −1, Ṽ = 0 at Ψ = 0, (31c)

Ũ = −1 at X∗ = ∞, (31d)

Ũ = Ue(X∗) at Ψ = −∞. (31e)

The limit Ψ → −∞ in (31e) corresponds to the outer edge of region 1b.
In what follows our task will be to determine the behaviour of the solution of (31) near the

outer edge of region 1b on approaching X∗ = 0, where Ue vanishes. To perform this task we start
with the asymptotic analysis of (31) in the limit X∗ → ∞. In this case, (23) may be expanded
as

Ue = −1 + 2e−X∗ + · · · as X∗ → ∞. (32)

Corresponding to this, the longitudinal velocity Ũ inside region 1b is sought in the form

Ũ = −1 + f(Ψ) e−X∗ + · · · as X∗ → ∞, Ψ = O(1), (33)

first suggested by Krapivskii & Neiland (1982). Substitution of (33) together with (32) into
(31a), (31c) and (31e) results in the following boundary-value problem for function f(Ψ):

f ′′ − f = −2, f(0) = 0, f(−∞) = 2.

Its solution is easily found to be
f(Ψ) = 2− 2eΨ. (34)

Substitution of (34) back into (33) yields

Ũ = −1 + 2e−X∗ − 2e−X∗+Ψ + · · · . (35)

Let us now consider the limit

Ψ → −∞, X∗ = O(1).

At this stage it is convenient to introduce a modified Bernoulli function

H̃ = 1
2 Ũ

2 − 1
2U

2
e , (36)

which allows us to write equation (31a) as

∂H̃

∂X∗

= Ũ
∂2H̃

∂Ψ2
. (37)

Substitution of (35) together with (32) into (36) shows that

H̃ = 2e−X∗+Ψ + · · · as X∗ → ∞, Ψ = O(1).

This suggests that for all finite values of X∗ the solution of equation (37) should be sought near
the outer edge of region 1b in the form

H̃(X∗,Ψ) = h(X∗) e
Ψ + · · · as Ψ → −∞, (38)

where function h(X∗) is such that

h(X∗) = 2e−X∗ + · · · as X∗ → ∞. (39)
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Figure 8: Formation of regions 1b′ and 1a′.

We substitute (38) into (37) and take into account that at large negative values of Ψ the
coefficient Ũ on the right-hand side of (37) is given by (23). This leads to the following equation
for function h(X∗):

h′

h
= −1− e−X∗

1 + e−X∗

, X∗ ∈ [0,∞).

The solution of this equation, satisfying the initial condition (39), is written as

h(X∗) =
2

eX∗ + 2 + e−X∗

, X∗ ∈ [0,∞). (40)

Now we can substitute (40) back into (38) and use for H̃ its definition (36). Solving the
resulting equation for Ũ , we find that near the outer edge of region 1b

Ũ = −
√

U2
e +

4eΨ

eX∗ + 2 + e−X∗

+ · · · as Ψ → −∞, X∗ ∈ [0,∞). (41)

In particular, if X∗ → 0+, then it follows from (23) that

Ue = −1
2X∗ + · · · , (42)

and equation (41) reduces to

Ũ = −
√

1
4X

2
∗ + eΨ + · · · as Ψ → −∞, X∗ → 0+. (43)

The asymptotic formula (43) has been obtained using a double limit procedure. We first
assumed that Ψ tends to minus infinity, with X∗ remaining an order one quantity; this led to
equation (41). Then it was assumed that X∗ tends to zero. Therefore, strictly speaking, formula
(43) remains valid provided that the first term in the square root is much larger than the second
one, and a new region (let us call it region 1b′) should be introduced where eΨ/X2

∗ becomes an
order one quantity; see figure 8.

5.1 Region 1b′

In region 1b′, a characteristic independent variable η should satisfy the condition

eΨ

X2
∗

= φ(η) = O(1), as Ψ → −∞, X∗ → 0+, (44)

where φ is an arbitrary function of η. It is convenient to choose φ(η) = eη (see Elliott et al.,
1983). Then we will have

η = Ψ− 2 lnX∗. (45)
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Using (45) in (43), we find that on approaching region 1b′

Ũ = −X∗

√
1
4 + eη + · · · .

This suggests that the solution in region 1b′ should be sought in the form

Ũ = −X∗F (η) + · · · as X∗ → 0+, (46)

where function F (η) is such that

F (η) =
√

1
4 + eη + · · · as η → −∞. (47)

To find the function F (η) we need to substitute (46), (45) and (42) into the momentum
equation (31a). The three terms in this equation are calculated as

Ũ
∂Ũ

∂X∗

= −X∗F
(
2F ′ − F

)
, Ue

dUe

dX∗

=
1

4
X∗,

Ũ
∂

∂Ψ

(
Ũ
∂Ũ

∂Ψ

)
= −X3

∗F
(
FF ′

)′
.

We see that as X∗ → 0+, the viscous term can be disregarded, which means that the flow in
region 1b′ appears to be effectively inviscid. The equation for F (η) assumes the form

2FF ′ − F 2 = −1
4 .

Its solution, satisfying the boundary condition (47), is easily found to be

F (η) =
√

1
4 + eη.

Hence, the longitudinal velocity (46) in region 1b′ is written as

Ũ = −X∗

√
1
4 + eη + · · · as X∗ → 0+. (48)

To have the solution in the entire region 1b (see figure 8) we shall, finally, consider the limit

X∗ → 0+, Ψ = O(1). (49)

Since the velocity Ue(X∗) at the outer edge of region 1b is regular for all X∗ > 0, the asymptotic
solution of equation (31a) with respect to the limit (49) can be sought in the form of the Taylor
expansion

Ũ(X∗,Ψ) = Ũ0(Ψ) +X∗Ũ1(Ψ) + · · · . (50)

Substitution of (50) and (42) into (31a) yields

Ũ1 =
1

2

d2

dΨ2

(
Ũ2
0

)
. (51)

Here Ũ0(Ψ) remains undetermined. We only know from matching of (50) with (48) that

Ũ0(Ψ) = −eΨ/2 + · · · as Ψ → −∞. (52)

Now we can substitute (52) into (51). We find that

Ũ1(Ψ) = 1
2e

Ψ + · · · as Ψ → −∞. (53)
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5.2 Displacement effect of region 1b

The displacement effect of a boundary layer is characterised by the angle the streamlines make
with the body surface. Integrating the continuity equation (31b) with initial condition (31c), we
have

Ṽ

Ũ
= −

Ψ∫

0

1

Ũ2

∂Ũ

∂X∗

dψ. (54)

Corresponding to two limits, (44) and (49), that had to be considered in region 1b, we shall
subdivide the integration interval in (54) into two parts:

ψ ∈ [0,Ψ∆] and ψ ∈ [Ψ∆,Ψ]. (55)

Here
Ψ∆ = ∆+ 2 lnX∗,

with ∆ being a positive parameter satisfying the conditions 1 ≪ ∆ ≪ −2 lnX∗. The second
interval in (55) corresponds to region 1b′. In terms of variable η it is wtitten as

η ∈ [∆,−∆]. (56)

Notice that the interval of variation of η in (56) is ‘inverted’ to signify that the left-hand side
boundary of (56) corresponds to the lower edge of region 1b′, while the right-hand side boundary
represents its upper edge.

When dealing with the first of intervals in (55), we need to use for Ũ the asymptotic repre-
sentation (50). Hence, we have

−
Ψ∆∫

0

1

Ũ2

∂Ũ

∂X∗

dψ = −
Ψ∆∫

0

Ũ1(ψ)[
Ũ0(ψ)

]2 dψ + · · · as X∗ → 0+. (57)

It follows from (52) and (53) that

Ũ1(ψ)[
Ũ0(ψ)

]2 → 1

2
as ψ → −∞.

Keeping this in mind, we rearrange the integral on the right-hand side of (57) as

−
Ψ∆∫

0

Ũ1(ψ)[
Ũ0(ψ)

]2 dψ = −
2 lnX∗+∆∫

0

{
Ũ1(ψ)[
Ũ0(ψ)

]2 − 1

2

}
dψ − lnX∗ − 1

2
∆

= − lnX∗ − 1

2
∆ +D + · · · as X∗ → 0−, (58)

with constant D given by

D = −
−∞∫

0

{
Ũ1(ψ)[
Ũ0(ψ)

]2 − 1

2

}
dψ.

19



Now we turn to the second interval in (55), where Ũ is represented by (46). We see that

−
Ψ∫

Ψ∆

1

Ũ2

∂Ũ

∂X∗

dψ =
1

X2
∗

Ψ−2 lnX∗∫

∆

(
1

F
− 2

F ′

F 2

)
dη

=
2

X2
∗


ln

√
1
4 + eη − 1

2√
1
4 + eη + 1

2

+
1√

1
4 + eη



Ψ−2 lnX∗

∆

=
2

X2
∗

[
Ψ− 2 lnX∗ + 2

]
+ · · · . (59)

Comparing (59) with (58), it is easily seen that the displacement effect of region 1b is pre-
dominantly due to region 1b′. Substituting (59) into (54) and rescaling the velocity components
according to (28), we can conclude that at the outer edge of region 1b′

V

U
=

2

X2
∗

Ψ− 4

X2
∗

(
lnX∗ − 1

)
+ · · · . (60)

5.3 Displacement effect of region 1a

Let us now calculate the streamline slope V/U in region 1a. For this purpose we can use equation
(15). At the ‘bottom’ of region 1a, where Ψ∗ is small, the integral on the right-hand side of (15)
is given by (16). Setting P̄s = −1

2 in (16), we have

Ψ∗∫

0

dΨ′
∗

U∗(X∗,Ψ′
∗)

=
√
−2P∗ −

√
2Ψ∗ − 2P∗. (61)

We are interested in small values of X∗ where P∗ may be obtained by substituting (42) into (24).
We see that

P∗ = −1

8
X2

∗ + · · · as X∗ → 0+, (62)

which allows us to express (61) in the form

Ψ∗∫

0

dΨ′
∗

U∗(X∗,Ψ′
∗)

=
1

2
X∗ −

1

2
X∗

√
1 + 8

Ψ∗

X2
∗

.

For small values of Ψ∗/X
2
∗ √

1 + 8
Ψ∗

X2
∗

= 1 + 4
Ψ∗

X2
∗

,

and therefore,
Ψ∗∫

0

dΨ′
∗

U∗(X∗,Ψ′
∗)

= −2
Ψ∗

X∗

.

It remains to rescale V∗, U∗ and Ψ∗ with the help of (8), and we can conclude that at the ‘bottom’
of region 1a

V

U
= U2

w

2Ψ∗

X2
∗

+ · · · = 2Ψ

X2
∗

+ · · · . (63)

It is easily seen that (63) coincides with the first term in (60). Hence, the second term in
(60) should be solely attributed to the displacement effect of region 1b:

V

U

∣∣∣∣
region 1b

= − 4

X2
∗

(
lnX∗ − 1

)
+ · · · as X∗ → 0+. (64)
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To evaluate the displacement effect of region 1a, we have to use instead of (16) equation (17).
Setting P̄s = −1

2 in (17) and using (62) for P∗, we have

Ψ∗∫

0

dΨ′
∗

U∗(X∗,Ψ′
∗)

=
1

2
X∗ +

√
2Ψ∗ +

1

4
X2

∗ . (65)

Differentiation of (65) with respect to X∗ yields

∂

∂X∗

Ψ∗∫

0

dΨ′
∗

U∗(X∗,Ψ′
∗)

=
1

2
+

1

2

1√
1 + 2ξ

, (66)

where

ξ =
4Ψ∗

X2
∗

.

It follows from (66) and (15) that at the outer edge of region 1a

V∗
U∗

=
1

2
. (67)

It also follows from (66) that the main contribution to the displacement effect of region 1a is
produced by region 1a′ (see figure 8) where

ξ =
4Ψ∗

X2
∗

= O(1). (68)

With the help of (8) we can express (67) in the form

V

U

∣∣∣∣
region 1a

=
1

2
U2
w + · · · . (69)

Comparing (69) with (64), and keeping in mind that Uw ≫ 1, one can conclude that as long
as X∗ is not too small, the displacement effect of region 1a is dominant. However, for any Uw,
no matter how large, there always exists a vicinity of X∗ = 0, where the displacement effect of
region 1b can no longer be ignored. Our next task will be to examine the flow behaviour in this
new region.

6 Flow Near Singularity. Inviscid Region C

In the region in question (we shall call it region C; see figure 8) we introduce a new longitudinal
coordinate, X̆, such that

X∗ = σX̆, (70)

where the scaling parameter σ is defined by the equation

2| lnσ|
σ2

= U2
w. (71)

This ensures that the streamline angle (64) produced by region 1b is the same order quantity as
the streamline angle (69) produced by region 1a.

Region C is composed of the stream filaments that pass through regions 1a′ and 1b′; see
figure 9. The longitudinal velocity U∗ in region 1a′ is given by (14). Setting P̄s = −1

2 and taking
into account that for small X∗ the pressure is given by (62), we can express (14) in the form

U∗ =




−1

2X∗

√
1 + 2ξ if ξ ∈

[
0,−1

2

]
,

1
2X∗

√
1 + 2ξ if ξ > −1

2 ,
(72)
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Figure 9: Formation of region C.

where ξ is given by (68).
If we now express (62) and (72) in terms of the new coordinate (70), and return to the original

variables P , U and Ψ with the help of (8) and (9), then we will see that in region 1a′

P = U2
wσ

2
(
− 1

8X̆
2
)
+ · · · ,

U =




Uwσ

(
− 1

2X̆
√
1 + 2ξ

)
+ · · · if ξ ∈

[
0,−1

2

]
,

Uwσ
(
1
2X̆

√
1 + 2ξ

)
+ · · · if ξ > −1

2 ,

where

ξ =
4Ψ

U2
wσ

2X̆2
.

This suggests that the solution in region C has to be sought in the form

U = UwσŬ + · · · , P = U2
wσ

2P̆ + · · · ,
X =

σ

Uw
X̆, Ψ = U2

wσ
2Ψ̆,



 (73)

with functions Ŭ(X̆, Ψ̆) and P̆ (X̆, Ψ̆) satisfying the following matching condition with the solu-
tion in region 1a′:

P̆ = −1
8X̆

2 + · · · ,

Ŭ =




−1

2X̆
√
1 + 2ξ + · · · if ξ ∈

[
0,−1

2

]
,

1
2X̆

√
1 + 2ξ + · · · if ξ > −1

2 ,





as X̆ → ∞, (74)

where ξ is expressed in terms of variables of region C by means of the equation

ξ =
4Ψ̆

X̆2
. (75)

To formulate the corresponding matching conditions with the solution in region 1b′, we need
to return to equation (48). Combining it with the first of equations (28) and applying the
rescaling (70), renders the solution in region 1b′ in the form

U = Uwσ(−X̆)
√

1
4 + eη + · · · ,

which means that the sought matching condition for the velocity Ŭ in region C is written as

Ŭ = −X̆
√

1
4 + eη + · · · as X̆ → ∞. (76)

22



The similarity variable η is defined by equation (45). We now need to express it in terms of
the variables (73) of region C. Substituting (70) and the fourth equation in (73) into (45), we
have

η = U2
wσ

2Ψ̆ + 2| lnσ| − 2 ln X̆.

Finally, it follows from (71) that 2| lnσ| = U2
wσ

2, and therefore, we can write

η = χ(Ψ̆ + 1)− 2 ln X̆, (77)

where χ = 2| lnσ|.
Before performing mathematical analysis of the flow in region C we need to supplement (73)

with the corresponding asymptotic representation of the lateral velocity V . For this purpose the
equation

∂Ψ

∂X
= −V. (78)

is used. Evaluating the left-hand side in (78) with the help of (73) it is easily seen that in
region C the lateral velocity should be sought in the form

V = U3
wσV̆ . (79)

Now we can substitute (73) into the momentum equation (4a). We see that in the limit
Uw → ∞ this equation reduces to

Ŭ
∂Ŭ

∂X̆
= − dP̆

dX̆
,

which shows that the flow in region C can be treated as inviscid. This allows us to use the
Bernoulli equation

1

2
Ŭ2 + P̆ = H̆(Ψ̆). (80)

The Bernoulli function H̆(Ψ̆) can be found by means of matching with solutions in regions 1a′

and 1b′. We start with region 1a′, where we have to use equations (74), (75). We see that

H̆1a′ = Ψ̆. (81)

When matching with region 1b′, equations (76), (77) have to be used, leading to

H̆1b′ =
1
2e

χ(Ψ̆+1). (82)

Notice that the matching between (81) and (82) is performed by setting Ψ̆ → 0 in (81) and
Ψ̆ → −∞ in (82). The composite Bernoulli function that is applicable to all streamlines in
region C is obtained by adding (81) to (82):

H̆ = Ψ̆ + 1
2e

χ(Ψ̆+1). (83)

Substituting (83) into (80) and solving the resulting equation for Ŭ we find that

Ŭ = ±
√
2Ψ̆ + eχ(Ψ̆+1) − 2P̆ . (84)

To decide where the velocity Ŭ is positive and where it is negative, we need to consider the
topology of the streamlines in region C. We shall use for this purpose the streamline sketch in
figure 10. We know that in region 1b′ and in the lower part of region 1b′ on the right-hand side
of the sketch, the fluid particles move against the flow outside the boundary layer. As they do
so, they encounter a growing pressure and experience a deceleration. In fact, given Ψ̆ on the
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Ψ̆ = Ψ̆M
Ψ̆R

R
S

M

A′

A

Region 1a′

Region 1b′

Figure 10: Streamline pattern in region C.

streamline considered, one can find the pressure P̆ that makes the fluid to stop and turn back.
This means that any cross-section AA′ in region C has a ‘reverse’ point R, where

Ŭ = 0.

The value Ψ̆R of the stream function on the streamline passing through point R is obtained by
setting Ŭ = 0 in (84). This leads to the following equation

2Ψ̆R + eχ(Ψ̆R+1) = 2P̆ , (85)

relating Ψ̆R to the pressure P̆ at cross-section AA′.
To find the pressure distribution P̆ (X̆) in region C we shall use the fact that this region is

rather short, and therefore the flow is subject to the conditions of the ‘condensed flow regime’
(see Bogolepov & Neiland, 1971). In this regime, the streamline slope angle at the outer edge of
region C remains constant:

V

U

∣∣∣∣
Y̆=∞

= const. (86)

The value of the constant on the right-hand side of (86) may be obtained through matching with
the solution (69) in region 1a:

V

U

∣∣∣∣
Y̆=∞

=
1

2
U2
w. (87)

Applying the scalings (73) and (79) to the velocity components U and V on the left-hand side
of (87), we can conclude that in region C the following equation holds:

V̆

Ŭ

∣∣∣∣
Y̆=∞

=
1

2
. (88)

The left-hand side in this equation may be calculated using the continuity equation (4b). It
is written in terms of variables (73), (79) of region C as

∂

∂Ψ̆

(
V̆

Ŭ

)
=

∂

∂X̆

(
1

Ŭ

)
. (89)

When integrating (89) across region C, one needs to distinguish three intervals on AA′; see
figure 10. The first one, AR, lies below the reversal point R. The fluid crosses this interval from
right to left, and the velocity Ŭ is given by (84) with the minus sign. Above point R the velocity
Ŭ becomes positive, and we have to use (84) with the plus sign. Equation (84) remains valid
until point M is reached. This point lies on the last streamline that originates in region 1b′ and
turned back by the rising pressure. The value Ψ̆M of the stream function at point M is defined
by the equation

2Ψ̆M + eχ(Ψ̆M+1) − 2P̆M = 0. (90)
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Here P̆M is the maximim value of pressure P̆ in region C. The latter is defined by the strength
of the impinging expansion fan:

Ps = −1

2
U2
w − U2

wσ
2P̆M . (91)

The streamlines crossing AA′ above point M originate in the unperturbed flow region before
the expansion fan (see figure 10), where H̆ also should be a linear function of Ψ̆, as it is in
region 1a′. However, due to obvious misalignment of the streamline before and after the impinging
expansion fan (see figure 6) we shall modify (81) as follows

H̆ = Ψ̆ + Ψ̆0. (92)

To find the shift parameter Ψ̆0 we consider the stagnation point S in figure 10. At this point,
Ŭ = 0 and P̆ = P̆M , and therefore, the left-hand side of (92) is calculated as

H̆ =
1

2
Ŭ2 + P̆ = P̆M ,

while the right-hand side equals
Ψ̆M + Ψ̆0.

This leads to the following equation

P̆M = Ψ̆M + Ψ̆0. (93)

Eliminating P̆M from (93) with the help of (90) we find that

Ψ̆0 =
1
2e

χ(Ψ̆M+1). (94)

It remains to substitute (94) back into (92) and then into (80). Solving the resulting equation
for Ŭ we see that above point M

Ŭ =

√
2Ψ̆ + eχ(Ψ̆M+1) − 2P̆ .

Consequently, for any Ψ̆ > Ψ̆M , we can express the result of the integration of (89) in the
form

V̆

Ŭ
=

∂

∂X̆

[
−

Ψ̆R∫

+∞

dΨ̆√
2Ψ̆ + eχ(Ψ̆+1) − 2P̆

+

Ψ̆M∫

Ψ̆R

dΨ̆√
2Ψ̆ + eχ(Ψ̆+1) − 2P̆

+

Ψ̆∫

Ψ̆M

dΨ̆√
2Ψ̆ + eχ(Ψ̆M+1) − 2P̆

]
,

or, equivalently,

V̆

Ŭ
=

∂

∂X̆

[ +∞∫

Ψ̆M

dΨ̆√
2Ψ̆ + eχ(Ψ̆+1) − 2P̆

+ 2

Ψ̆M∫

Ψ̆R

dΨ̆√
2Ψ̆ + eχ(Ψ̆+1) − 2P̆

+

Ψ̆∫

Ψ̆M

dΨ̆√
2Ψ̆ + eχ(Ψ̆M+1) − 2P̆

]
. (95)
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Figure 11: Pressure variation in region C for ΨM = −0.4 and χ = 3.0, 4.0 and 5.0.

It remains to substitute (95) into (88), and we will have the following integro-differential equation
for P̆ :

1

2
=

d

dX̆

[
2

Ψ̆M∫

Ψ̆R

dΨ̆√
2Ψ̆ + eχ(Ψ̆+1) − 2P̆

]

+
dP̆

dX̆

[ +∞∫

Ψ̆M

dΨ̆
[
2Ψ̆ + eχ(Ψ̆+1) − 2P̆

]3/2 +
1√

2Ψ̆M + eχ(Ψ̆M+1) − 2P̆

]
. (96a)

It should be solved together with equation (85) subject to the boundary condition

P̆ = −1

8
X̆2 + · · · as X̆ → ∞ (96b)

given by (74).
The results of the numerical solution of (96) are displayed in figure 11. We found that when

performing the calculations, a really fine partition in Ψ̆ is needed to make the results mesh
independent. This is due to the fact that the first integral on the right-hand side of (96a) is
singular at the lower limit of integration Ψ̆ = Ψ̆R. Its vicinity Ψ̆ ∈ [Ψ̆R, Ψ̆R+δ] requires a special

treatment. We approximated 2Ψ̆ + eχ(Ψ̆+1) − 2P̆ by a linear function

2Ψ̆ + eχ(Ψ̆+1) − 2P̆ =
[
2 + χeχ(Ψ̆R+1)

]
(Ψ̆− Ψ̆R),

and calculated the resulting integral analytically.
Typical behaviour of the solution is shown in figure 11 where the results of the calculations

performed for ΨM = −0.4 and three values of χ = 3.0, 4.0 and 5.0 are displayed. We found that
for large enough X̆, the asymptote (96b) is followed very closely. Then the graphs corresponding
to different values of χ start to deviate from one another. The larger the parameter χ the
lower appears to be P̆ . Still, for all χ, the pressure increases monotonically with decreasing X̆.
Interestingly enough, the solution terminates at a finite position X̆0 where P̆ becomes infinite.
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6.1 Analysis of the singularity

The behaviour of the solution near singular point X̆0 may be studied analytically based on the
following observations. When P̆M becomes large, the displacement effect of the boundary layer is
predominantly due to the region that lies inside the loop formed by the streamline with Ψ̆ = Ψ̆M ;
see figure 10. This allows us to disregard the two terms on the second line in (96a). We also
note that the streamlines originating from region 1a cannot penetrate the region with large P̆ .
This means that the contribution (81) of region 1a′ into the composite Bernoulli function (83)
can be disregarded. This reduces (96a) to

1

4
=

d

dX̆

∞∫

Ψ̆R

dΨ̆√
eχ(Ψ̆+1) − 2P̆

. (97)

Here Ψ̆R is related to the pressure P̆ via the equation

eχ(Ψ̆R+1) = 2P̆ ,

that is obtained by disregarding 2Ψ̆R in (85).
The integral on the right-hand side of (97) is easily calculated:

∞∫

Ψ̆R

dΨ̆√
eχ(Ψ̆+1) − 2P̆

=
π

χ
√
2P̆

. (98)

It remains to substitute (98) in to (97) and integrate the resulting equation with respect to X̆.
We find that

P̆ =
8π2

χ2

1

(X̆ − X̆0)2
+ · · · as X̆ → X̆0, (99)

with X̆0 denoting the position of the singularity. We found that equation (99) agrees very well
with the numerical results of figure 11.

It should be noted that if the expansion fan strength parameter P̆M as defined by (91) is
finite, then the pressure P̆ will only rise to P̆M , and the above description gives a complete
representation of the flow. However, the above theory is also applicable to the case of self-
induced pressure rise in region C which leads a singularity. In this case a new region should
be introduced near the singular point. In this region the variation of the pressure across the
boundary layer becomes important. The situation is analogous to that discussed in Neiland &
Sychev (1966) and Neiland (1969a). We intend to study this analogy in detail and present the
results in a subsequent publication.

7 Concluding Remarks

Our objective in this paper is to understand if and when the boundary layer can separate from a
rigid body surface that moves in the direction opposite to the main flow external to the boundary
layer. Here we choose the external flow to be supersonic. The reason for this is twofold. First, in
a supersonic flow the region of interest is relatively small which makes it easier to formulate the
governing equations and boundary conditions. Second, we wanted to study both the flow with
adverse pressure gradient and the flow with favourable pressure gradient. As we have seen the
adverse and favourable pressure gradient can be easily achieved in supersonic flows by imposing
either a shock wave or an expansion fan impinging on the boundary layer.

The interaction of the shock wave with the boundary layer is a classical problem of the
triple-deck theory. Strictly speaking this theory is valid when the non-dimensional wall velocity
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Uw = V̂sh/V̂∞ is an order O(Re−1/8) quantity. In Section 4 we presented the results of the
numerical solution of the triple-deck equations for the boundary layer on an upstream moving
wall. The case of an impinging shock, when the boundary layer is exposed to the adverse pressure
gradient, was analysed earlier by Zhuk (1982) and Yapalparvi & van Dommelen (2012). Their
calculations (and our theoretical arguments) suggest that the increasing wall speed suppresses
the separation. Keeping this in mind, the main attention in the present work is payed to the
boundary layer exposed to an expansion fan. We found that two eddies form in the boundary
layer; one lies downstream of the impinging expansion fan and the other upstream of the fan.
The former grows as the wall speed |Uw| increases, while the latter becomes relatively small. The
observed flow behaviour resembles that in the so-called ‘pseudo-shock’ (see Ruban & Vonatsos,
2008), which establishes a link to the collisional separation as described by Stewartson et al.

(1980) and Kluwick & Wohlfahrt (1986).
These conclusions are confirmed by theoretical analysis of the flow that has been performed

under the assumption that the wall speed is larger than that in the triple-deck theory, namely,
1 ≫ Vsh/V∞ ≫ Re−1/8. In this case the viscous lower tier of the triple-deck structure splits
into the inviscid and viscous layers. The pressure distribution along the interaction region can
be found by analysing the interaction of the inviscid layer with the external supersonic flow.
Still, to satisfy the no-slip condition on the body surface, one has to study the flow behaviour
in the near-wall viscous layer. We found that the solution for the viscous layer remains smooth
in the case of impinging shock, but develops a singularity when the boundary layer interacts
with the expansion fan. A detailed analysis of the flow behaviour near the singularity shows
that a new shorter region should be introduced in the vicinity of the separation point. In this
vicinity the flow is governed by the integro-differential equation (96a). We found numerically
and by means of theoretical analysis of (96a) that solution encounters yet another singularity
(99). The physical processes that lead to its formation are essentially the same as those leading
to a singularity in the expansion solution of the classical triple-deck theory; see Neiland (1969a)
and Neiland & Sychev (1966).
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