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Abstract. We consider unsteady flows of incompressible fluids with a general implicit con-
stitutive equation relating the deviatoric part of the Cauchy stress S and the symmetric part of
the velocity gradient D in such a way that it leads to a maximal monotone (possibly multivalued)
graph and the rate of dissipation is characterized by the sum of a Young function depending on
D and its conjugate being a function of S. Such a framework is very robust and includes, among
others, classical power-law fluids, stress power-law fluids, fluids with activation criteria of Bingham
or Herschel–Bulkley type, and shear rate–dependent fluids with discontinuous viscosities as special
cases. The appearance of S and D in all the assumptions characterizing the implicit relationship
G(D, S) = 0 is fully symmetric. We establish long-time and large-data existence of weak solution to
such a system completed by the initial and the Navier slip boundary conditions in both the subcrit-
ical and supercritical cases. We use tools such as Orlicz functions, properties of spatially dependent
maximal monotone operators, and Lipschitz approximations of Bochner functions taking values in
Orlicz–Sobolev spaces.
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1. Introduction. In continuum thermodynamics, which we understand is a
powerful framework for describing responses of materials, the fundamental system
of partial differential equations is a consequence of balance equations (for mass, linear
and angular momentum, energy) and the formulation of the second law of thermody-
namics. This system of equations includes the physical quantities such as the density,
the velocity, the internal energy (or temperature), the heat flux, and the Cauchy
stress and is then completed by constitutive relations that characterize the response
of a given material to applied external loading. For fluids, the Cauchy stress is related
to the velocity gradient (its symmetric part) and the heat flux to the temperature gra-
dient, and these relations may depend on other quantities.

In a purely mechanical setting restricted to incompressible homogeneous fluids
that flow at uniform temperature, this fundamental system of governing equations
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reduces to

(1.1) div v = 0 and � (v,t + div(v ⊗ v))− divSSS = −∇p+ �b ,

where � ∈ (0,∞) is the constant density, v = (v1, v2, v3) is the velocity, p is the mean
normal stress, and SSS, a part of the Cauchy stress TTT = −pIII + SSS, is the only quantity
that specifies material properties of a given fluid. We suppose that SSS is symmetric.

In our simplified setting, the second law of thermodynamics takes the form

(1.2) TTT ·DDD = SSS ·DDD ≥ 0 ,

where DDD = DDD(v) is the symmetric part of the velocity gradient. The quantity SSS ·DDD
appears in the mathematical considerations very naturally. Indeed, taking the scalar
product of (1.1)2 and v, we end up with the equation

(1.3)
(
1
2�|v|2

)
,t
+ div

(
(p+ 1

2�|v|2)v
)− div(SSSv) + SSS ·DDD = �b · v .

The integration over Ω, a three-dimensional domain occupied by the material, together
with the Gauss theorem, then leads to

(1.4)
1

2

d

dt

∫
Ω

�|v|2 dx +

∫
Ω

SSS ·DDD dx dt ≤
∫
Ω

�b · v dx

provided that the boundary terms satisfy

(1.5)

∫
∂Ω

(
(p+ 1

2�|v|2)v · n− SSSv · n) dS ≥ 0 ,

which is, for example, the case of no-slip boundary conditions when

(1.6) v(t, x) = 0 for t ∈ [0, T ] and x ∈ ∂Ω ,

where T ∈ (0,∞). Navier’s slip boundary conditions combined with the imperme-
ability of the boundary are another type of boundary conditions fulfilling (1.5): if
n = n(x) is an outer normal to ∂Ω at x ∈ ∂Ω and zτ := z − (z · n)n denotes the
projection of a vector z defined on ∂Ω to the tangent plane located at x ∈ ∂Ω, then
the fluid exhibits Navier’s slip on the impermeable boundary if

(1.7) v · n = 0 and (SSSn)τ = −γ∗vτ on (0, T )× ∂Ω ,

where γ∗ > 0. Note that in our setting (SSSv)τ = (TTTv)τ . If γ∗ = 0 in (1.7), then the
fluid slips along the boundary. The no-slip condition (1.6) can be viewed as the limit
of (1.7) if γ∗ → ∞. Since (for SSS symmetric and v fulfilling (1.7))

(SSSv) · n = (SSSn) · v = (((SSSn) · n)n+ (SSSn)τ ) · vτ = (SSSn)τ · vτ = −γ∗|vτ |2 ,

we observe that (1.7) fulfills (1.5) as well. We complete the considered problem by
formulating the initial condition:

(1.8) v(0, x) = v0(x) in Ω,

where v0 is a given function fulfilling the compatibility conditions divv0 = 0 in Ω and
v0 · n = 0 on ∂Ω.
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Let us return to the quantity SSS · DDD. If the initial velocity v0 and b are given
L2-integrable functions, then (1.4) implies that

(1.9) sup
t∈[0,T ]

∫
Ω

|v|2 dx+

∫ T

0

∫
Ω

SSS ·DDD dx dt <∞ .

From the point of view of mathematical analysis it seems natural to address the
question of whether this type of a priori large-data information suffices to establish
the existence of a long-time and large-data solution to relevant initial and boundary
value problems driven by (1.1) for a general class of fluid models. Here, we focus on
implicitly constituted fluids.

1.1. Implicitly constituted incompressible fluids. Newton’s statement [47]
“The resistance arising from the want of lubricity in parts of the fluid is, other things
being equal, proportional to the velocity with which the parts of the fluid are separated
from one another.” is mostly interpreted as to give rise to the linear relationship be-
tween the shear stress and the shear rate, in which the constant of the proportionality
is the viscosity, which is then generalized to the formula

(1.10) SSS = 2μ∗DDD, μ∗ ∈ (0,∞) .

One can, however, perceive Newton’s statement more generally, namely, as the fact
that the shear stress and the shear rate are related, and then one ends up with the
implicit relation

(1.11) GGG(DDD,SSS) = 0 ,

or even more generally

(1.12) G̃GG(DDD,TTT) = 0 .

There are fundamentally new discoveries and far-reaching consequences that come
from this general viewpoint, in particular, if one investigates them in a systematic way,
as is done in the original works by Rajagopal [49, 50] and Rajagopal and Srinivasa
[51]. We summarize those relevant to incompressible fluids next.

Obviously, in comparison with traditional models, in which SSS (or TTT) is a function
of DDD, the implicit equation (1.11) or (1.12) can describe much more complicated
responses while the number of involved quantities is unchanged. The class (1.12)
is capable of capturing several non-Newtonian phenomena such as shear thinning,
shear thickening, and pressure thickening and includes combinations of these effects
with various activation and deactivation criteria. (In addition, such models can be
developed within a unifying thermodynamic framework; see [51, 42].) To give a simple
example that falls to the class given by (1.11), let us consider the equation

(1.13) 2ν(|DDD|2) (τ∗ + (|SSS| − τ∗)+
)
DDD = (|SSS| − τ∗)

+
SSS with τ∗ > 0 ,

where x+ denotes the positive part of x: x+ = max{x, 0}. Setting
(1.14) GGG(DDD,SSS) = 2ν(|DDD|2) (τ∗ + (|SSS| − τ∗)+

)
DDD− (|SSS| − τ∗)

+
SSS,

we see that (1.13) is of the form (1.11). More interestingly, one can easily observe that
(1.13) is equivalent to the traditional description of fluids of a Bingham or Herschel–
Bulkley type [20]:

|SSS| ≤ τ∗ ⇔ DDD = 0 and |SSS| > τ∗ ⇔ SSS =
τ∗DDD
|DDD| + 2ν(|DDD|2)DDD.(1.15)
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Model (1.13) covers as a special case (by setting τ∗ = 0) the fluids with shear-
dependent viscosity

(1.16) SSS = 2ν(|DDD|2)DDD with ν : R+ → R
+ ,

including the classical power-law fluids

(1.17) SSS = 2μ∗|DDD|r−2DDD with 1 ≤ r <∞, μ∗ ∈ (0,∞)

and their various generalizations such as

(1.18) SSS = 2μ∗(α∗ + |DDD|2) r−2
2 DDD with r ∈ R, μ∗, α∗ ∈ (0,∞).

The Navier–Stokes model (1.10) is achieved by taking r = 2 in (1.17).
The form (1.15), in which the response of fluids with the activation criterion

is mostly written, motivated several researchers to include tools such as variational
inequalities, multivalued function analysis, and functions with discontinuities into the
theoretical investigation of relevant boundary value problems. On the other hand, the
reformulation (1.13) with continuous function GGG enables us to avoid such tools and
technical difficulties connected with them.

Another interesting class belonging to (1.11) are the stress power-law fluids (see
[41] for a more detailed exposition focused on identifying different features between
(1.18) and (1.19) and on solving several special problems in simple geometries) char-
acterized through the relation

(1.19) DDD =
1

2μ∗
(β∗ + |SSS|2) s−2

2 SSS with s ∈ R, β∗ ∈ (0,∞),

which reduces to the Navier–Stokes fluid (1.10) for s = 2. Thus, we observe that
the constitutive relations (1.11) and (1.12) contain two explicit subclasses as special
cases, namely,

TTT = T̃TT(DDD) and DDD = D̃DD(TTT) ,(1.20)

SSS = S̃SS(DDD) and DDD = D̃DD(SSS) .(1.21)

While the first subclass, in which the stress is a nonlinear function of DDD, has been
experimentally observed and systematically applied to modeling since the end of the
nineteenth century1 and mathematically analyzed since the 1960s,2 the significance
of the second subclass, in which DDD is a nonlinear function of the stress, has been
addressed quite recently (see [49, 50]), although such models were introduced before
in geophysics (see, for example, [25]), chemical engineering (see, for example, [55]),
etc. (see also [16]).

From the point of view of continuum physics, Rajagopal [49, 50, 48] provides
several convincing arguments why the latter class should be preferable. Not only do
the equations (1.20)2 and (1.21)2 reflect naturally the fact that the force (per unit
area) is the cause and the velocity gradient (or its symmetric part) is its effect, but

1See Schwedoff [54], Troutan [61], and further references in books on non-Newtonian fluids, such
as Bird, Amstrong, and Hassager [9], Huilgol [31], and Schowalter [53], or in the survey paper [44].

2Theoretical analysis initiated by Ladyzhenskaya [35, 36] (see also Lions [37]) has developed
extensively during the last few decades; see, for example, studies of different types [6, 7, 10, 19, 18,
28, 38, 39, 40, 62].
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the framework given by (1.20)2 (and more generally by (1.12)) also provides a natural
setting to incorporate the constraint of incompressibility into the constitutive equation
and to justify incompressible fluid models with the viscosity depending on the mean
normal stress (pressure).3

There are also mathematical reasons that make the class of implicitly constituted
fluid attractive. The fact that we deal with ten first order equations instead of four
second order equations (as in the case of the Navier–Stokes equation) corresponds well
to the approaches developed in the analysis of nonlinear partial differential equations
if one deals with the concept of weak solution (a nice reference towards this direction
is the classical book by Lions [37]). In spite of an enlarged number of unknowns, such
a framework is also promising from the point of view of finite element discretization
and subsequent computer simulations, as this approach does not introduce redundant
differentiation. When well developed, such an approach could be also a good starting
point for the analysis of rate-type and integral-type fluid models.

Observing that for the power-law fluid (1.17) with r > 1 (and 2μ∗ = 1 for sim-
plicity)

(1.22) SSS = |DDD|r−2DDD ⇐⇒ DDD = |SSS| 2−rr−1SSS ,

and consequently SSS is a monotone function of DDD (in the sense of the definition below)
and vice versa, and the quantity ξ = SSS ·DDD that enters the energy estimates (1.9) takes
the form (r′ = (r − 1)/r)

SSS ·DDD = |DDD|r = |SSS|r′

=
1

r
SSS ·DDD+

1

r′
SSS ·DDD =

1

r
|DDD|r + 1

r′
|SSS|r′ ,

(1.23)

we have given motivation for the following assumptions on the structure of the implicit
constitutive relation (1.11).

Introducing a natural identification

(1.24) (DDD,SSS) ∈ A ⇐⇒ GGG(DDD,SSS) = 0 ,

we put the following assumptions on A:
(i) A comes through the origin: (0,0) ∈ A.
(ii) A is a monotone graph:

(SSS1 − SSS2) · (DDD1 −DDD2) ≥ 0 for all (DDD1,SSS1), (DDD2,SSS2) ∈ A.
(iii) A is a maximal monotone graph. Let (DDD,SSS) ∈ R

3×3
sym × R

3×3
sym be given:

If (S̄SS− SSS) · (D̄DD−DDD) ≥ 0 for all (D̄DD, S̄SS) ∈ A, then (DDD,SSS) ∈ A.
(iv) A is a ψ-graph. There are nonnegative m ∈ L1(Q), c∗ > 0, and N -function

ψ such that

SSS ·DDD ≥ −m+ c∗(ψ(|DDD|) + ψ∗(|SSS|)) for all (DDD,SSS) ∈ A .

3Such models are important in many applications such as elastohydrodynamic lubrication (see
Szeri [59]). The fact that viscosity should depend on the pressure has been questioned by Stokes
[58], experimentally first observed by Barus [5], and well documented in the book by Bridgman [12];
see [30, 15] for more details and further references. This class of incompressible materials that fits
to implicitly constituted fluids (1.12) or (1.20)2 is, however, not the subject of investigation in this
study. We refer the reader to [15] for the most recent results concerning mathematical analysis of
incompressible fluids with the pressure and the shear rate–dependent viscosity.
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Here, ψ∗ denotes the conjugate (dual) function to ψ. We provide the definition of
N -functions (or Young functions), together with a brief summary of their properties,
and the definition of Orlicz spaces in subsections 1.2 and 2.1. We notice that the
choice ψ(s) = 1

r s
r covers the case discussed in (1.23) and there are further important

constitutive relations that call for the setting given by the assumption (iv). Using the
symbol f ∼ g to denote “f is equivalent to g at ∞,”4 the framework delineated by
the assumptions (i)–(iv) is suitable to describe fluids with nonpolynomial growth

SSS ∼ (1 + |DDD|2) r−2
2 ln(1 + |DDD|)DDD =⇒ ψ(DDD) ∼ |DDD|r ln(1 + |DDD|) ,

or fluids in which the experimental data are reflected by a convex function ψ with
different polynomial upper and lower growth; in such a case ψ(DDD) := ψ(|DDD|) fulfills
for certain 1 < q ≤ r <∞ and positive constants c1, c2, c3, and c4 the condition5

(1.25) c1s
q − c2 ≤ ψ(s) ≤ c3s

r + c4, s ∈ [0,∞) .

For the sake of completeness we shall show in Lemma 1.1 below that (1.14) with
ν(|DDD|2) = |DDD|r−2DDD and r ∈ [1,∞) fulfills all the assumptions (i)–(iv). Since any pair
(ψ, ψ∗) of N -functions fulfills the Young inequality

SSS ·DDD ≤ ψ(|SSS|) + ψ∗(|DDD|),
the framework characterized by the condition (iv) for some N -function ψ seems to be
optimal. We wish to emphasize that the role of SSS and DDD in the assumptions (i)–(iv) is
equipollent and that merely monotone property (ii) is required here. We are thus able
to cover a broader class of implicitly constituted fluids in comparison to our previous
study [14], where we analyzed steady flows and we required instead of (ii) a strict
monotone property either in DDD or SSS. We also refer the reader to the introductory part
of [14], where complementary information on implicitly constituted fluids is provided,
including figures and other examples.

The framework considered here should not be confused with a complementary
but different setting introduced by Minty [46] and generalized for x-dependent graphs
by Francfort, Murat, and Tartar [23]. Here, we start with the implicit constitutive
equation (1.11) and through (1.24) introduce a maximal monotone graph. In [23], the
authors start with a maximal monotone graph and observe that with every maximal
monotone graph one can associate 1-Lipschitz function ϕ such that (DDD,SSS) ∈ A ⇐⇒
DDD− SSS = ϕ(SSS+DDD).

Note that it follows from (1.9) and the assumption (iv) that

(1.26) sup
t∈[0,T ]

∫
Ω

|v|2 dx+

∫ T

0

ψ(|DDD|) + ψ∗(|SSS|) dx dt <∞ .

The objective of this paper is to develop a mathematical theory for a class of initial
and boundary value problems described by (1.1), (1.7), (1.8), and (1.11) and denoted
as Problem P in what follows. Problem P includes two nonlinear terms: the implicit

4More precisely, f ∼ g means that 0 < lim inf|r|→∞
|f(r)|
|g(r)| = lim sup|r|→∞

|f(r)|
|g(r)| <∞.

5Using the Lebesgue space setting generated by the lower and upper bounds in (1.25), mathe-
matical analysts have developed (see, for example, [1, 8, 22]) a theory for problems involving elliptic
operators with nonstandard growth based on the gradient estimates in Lq(Ω) but with r-growth that
leads to an (artificial) condition relating q and r. Such a condition is not needed if one directly works
with the condition (iv).
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relation (1.11) and the quadratic nonlinearity div(v ⊗ v). In order to identify the
limit in the latter term we need the compactness of the velocity in L2(0, T ;L2(Ω)3).
Having this in mind we state the result established in this study in the following way:

For an arbitrary set of data involving Ω ⊂ R
3 with smooth boundary ∂Ω,

T ∈ (0,∞), v0 ∈ L2(Ω)3, b ∈ L2(0, T ;L2(Ω)3), and γ∗ > 0, there is long-
time and large-data weak solution to Problem P provided that the graph
A generated by GGG via the identification (1.24) fulfills the assumptions (i)–
(iv) and the function spaces generated by (1.26) and (1.1)2 are compactly
embedded into L2(0, T ;L2(Ω)3).

In fact, since we aim to include in our theory a class of constitutive relations that is
as general as possible, we consider the following generalization of (1.11), namely

(1.27) GGG(t, x,DDD(t, x),SSS(t, x)) = 0, t ∈ [0, T ], x ∈ Ω,

which is able to capture the response of materials, changing the properties at each time
t and each spatial position x. We call the initial and boundary value problem (1.1),
(1.7), (1.8), and (1.27) Problem P(t,x). The generalization (1.27) requires us to add one
more assumption concerning the measurability of a selection function SSS∗ = SSS∗(DDD). The
complete list of assumptions, the definition of weak solution, and a precise formulation
of the main theorem are given in the next subsection, where we also discuss why and in
what sense this result generalizes previous studies, and we summarize the tools used in
the proof, underlining their novel features. We aim to present a simple proof. Some
of the key tools, in particular, Orlicz spaces, regularization of maximal monotone
graphs, and Lipschitz approximations of the Bochner spaces with values in the Orlicz
spaces, are studied in detail in section 2. Section 3 contains the complete proof of the
theorem. Finally, we include several auxiliary results in Appendices A–D. Appendix A
summarizes several lemmas related to Lipschitz approximations of Bochner–Sobolev
functions. In Appendix B, we establish the global second derivative regularity for
the Neumann problem to the Poisson problem in the Orlicz space setting. Appendix
C contains details concerning the existence of pressure introduced within the proof
in section 3 and Appendix D presents the trace theorem for noninteger Sobolev–
Slobodetski spaces.

We finish this section by showing that (1.14) with the power-law viscosity fulfills
all the assumptions (i)–(iv).

Lemma 1.1. Let 1 ≤ r < ∞. Assume that GGG : R3×3
sym × R

3×3
sym → R

3×3
sym is given by

the formula

(1.28) GGG(DDD,SSS) = |DDD|r−2
(
τ∗ + (|SSS| − τ∗)+

)
DDD− (|SSS| − τ∗)

+
SSS with τ∗ > 0 .

Then A defined by (1.27) fulfills the conditions (i)–(iv) above.
Proof. Obviously, GGG(0,0) = 0 and (i) holds. Since GGG(DDD,SSS) = 0 implies that{

DDD = 0 ⇔ |SSS| ≤ τ∗ ,
DDD �= 0 ⇔ |SSS| > τ∗ ⇔ DDD = (|SSS| − τ∗)

1
r−1 SSS

|SSS| ⇔ SSS = τ∗DDD
|DDD| + |DDD|r−2DDD ,

(1.29)

we distinguish three different cases to verify the monotone property (ii). First, if
|SSS1| < |SSS2| ≤ τ∗, then DDD1 = DDD2 = 0 and (ii) is trivial. Next, if |SSS1| ≤ τ∗ < |SSS2|, then
DDD1 = 0 and

(SSS2 − SSS1) · (DDD2 −DDD1) = (SSS2 − SSS1) ·
(
(|SSS2| − τ∗)

1
r−1

SSS2
|SSS2|

)

= (|SSS2| − τ∗)
1
r−1

(
|SSS2| − SSS1 · SSS2

|SSS2|
)

≥ (|SSS2| − τ∗)
1
r−1 (|SSS2| − |SSS1|) > 0 .
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Last, if τ∗ < |SSS1| ≤ |SSS2|, then the monotone property (ii) follows from the observation

that the function μ(s) := (s−τ∗) 1
r−1 /s is positive and increasing6 on (τ∗,∞). Maximal

monotone property (iii) follows from the continuity of GGG. Finally, we observe that for
|SSS| > τ∗ we have on one hand side (by inserting the formula for DDD)

SSS ·DDD = (|SSS| − τ∗)
1
r−1 |SSS| = (|SSS| − τ∗)

r
r−1 − (|SSS| − τ∗)

1
r−1 τ∗

≥ (|SSS| − τ∗)
r
r−1 − c(r, τ∗) ≥ 1

r
|SSS| r

r−1 − c(r, τ∗) ,

and on the other hand side (by inserting the formula for SSS)

SSS ·DDD = τ∗|DDD|+ |DDD|r ≥ |DDD|r .
As SSS · DDD = 0 for |SSS| ≤ τ∗ we conclude easily from these observations that there are
c∗ > 0 and c(r, τ∗) > 0 such that for all DDD, SSS fulfilling GGG(DDD,SSS) = 0 we have

SSS ·DDD ≥ c∗

(
|DDD|r
r

+
|SSS|r′
r′

)
− c(r, τ∗) ,

which is the condition (iv).

1.2. Main result. Before introducing weak solution to Problem P(t,x) and stat-
ing the result concerning its existence, we fix notation and provide useful definitions.

Let T ∈ (0,∞) denote the length of the time interval, and let Ω ⊂ R
d, d > 1,

be a bounded domain with C1,1-boundary ∂Ω; then we write Ω ∈ C1,1. We also set
Q = (0, T )× Ω and Γ = (0, T )× ∂Ω.

For q ∈ [1,∞] we define the Lebesgue spaces Lq(Ω) and the Sobolev spaces
W 1,q(Ω) in a standard way, and we denote the trace of a Sobolev function u, if it
exists, by tr u. If X , Y are Banach spaces, then Xd := X×· · ·×X and we use X∗ for
dual space to X and Lq(0, T ;Y ) to denote the Bochner spaces. For (scalar-, vector-,
or tensor-valued) functions g and h we shall write

(f, g) :=

∫
Ω

f(x)g(x) dx if fg ∈ L1(Ω) ,

(f, g)Q :=

∫
Q

f(t, x)g(t, x) dx dt if fg ∈ L1(Q) ,

(f, g)∂Ω :=

∫
∂Ω

f(S)g(S) dS if fg ∈ L1(∂Ω) ,

(f, g)Γ :=

∫
Γ

f(t, S)g(t, S) dS dt if fg ∈ L1(Γ) ,

〈g, f〉 := 〈g, f〉X∗,X if f ∈ X and g ∈ X∗ .

We also use the space Cweak(0, T ;L
q(Ω)) consisting of all u ∈ L∞(0, T ;Lq(Ω)), satis-

fying (u(t), ϕ) ∈ C([0, T ]) for all ϕ ∈ C(Ω).
We introduce the subspaces (and their duals) of vector-valued Sobolev functions

from W 1,q(Ω)d which have zero normal component on the boundary. First, we define
in a standard way for any q ∈ [1,∞)

Lqn,div := {v ∈ D(Ω)d; div v = 0}‖·‖q .

6One observes that for s > τ∗, μ′(s) = 1
s2

(
2−r
r−1

s+ τ∗
)
(s− τ∗)−

r
r−1 ≥ 1

s2
τ∗
r−1

(s− τ∗)−
r
r−1 > 0.
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Then by V and Vdiv we denote

V := {v ∈ W d+2,2(Ω)d; v · n = 0 on ∂Ω}, Vdiv := V ∩ L2
n,div.

Note that V ⊂ W 1,∞(Ω)d and therefore we can finally for any q ∈ [1,∞) introduce
the following spaces:

W 1,q
n := V‖·‖1,q

, W−1,q′
n :=

(
W 1,q

n

)∗
(q′ = q/(q − 1)),

W 1,q
n,div := Vdiv

‖·‖1,q
, W−1,q′

n,div :=
(
W 1,q

n,div

)∗
.

We say that ψ : R → R+ is an N -function if ψ is an even continuous convex
function such that

(1.30) lim
s→0+

ψ(s)

s
= 0 and lim

s→∞
ψ(s)

s
= ∞ .

We also define a complementary N -function ψ∗ as the Legendre transform of ψ, i.e.,

(1.31) ψ∗(s) := sup
�∈R

(s · �− ψ(�)) .

An N -function ψ satisfies Δ2-condition if there exist C1 > 0 and C2 > 0 such that
for all s ∈ R we have

(1.32) ψ(2s) ≤ C1ψ(s) + C2,

and ψ satisfies ∇2-condition if there exists β > 0 such that for all s ≥ 1 we have

(1.33) ψ
(s
2

)
≤ ψ(s)

2(1+β)
.

The statements (i) ψ satisfies ∇2-condition and (ii) ψ∗ satisfies Δ2-condition are
equivalent; see [52, Chap. II, Thm. 3]. From Δ2- and ∇2-conditions for ψ it follows
that for certain 1 < q ≤ r <∞ and positive constants c1, c

∗
1, c2, c

∗
2, c3, c

∗
3, c4, and c

∗
4

c1s
q − c2 ≤ ψ(s) ≤ c3s

r + c4,

c∗1s
r′ − c∗2 ≤ ψ∗(s) ≤ c∗3s

q′ + c∗4;
(1.34)

see [52, Chap. II, Cor. 5]. An opposite implication may not hold; the counterexample
may be found also in [52, p. 27]. Note that condition (1.34)2 follows from the definition
of ψ∗ and (1.34)1. We introduce the Orlicz spaces Lψ(Ω), Lψ(Q) in subsection 2.1.

At this point, we can give the assumptions characterizing the subclass of implicitly
constituted fluids (1.27) we shall study. Introducing an identification

(1.35) (DDD,SSS) ∈ A(t, x) ⇐⇒ GGG(t, x,DDD,SSS) = 0 ,

we put the following assumptions on A (or A(t, x) for almost all (a.a.) (t, x) ∈ Q):
(A1) A comes through the origin: (0,0) ∈ A(t, x).
(A2) A is a monotone graph:

(SSS1 − SSS2) · (DDD1 −DDD2) ≥ 0 for all (DDD1,SSS1), (DDD2,SSS2) ∈ A(t, x) .
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(A3) A is a maximal monotone graph. Let (DDD,SSS) ∈ R
d×d
sym × R

d×d
sym :

If (S̄SS− SSS) · (D̄DD−DDD) ≥ 0 for all (D̄DD, S̄SS) ∈ A(t, x), then (DDD,SSS) ∈ A(t, x).

(A4) A is a ψ graph. There are nonnegative m ∈ L1(Q), c∗ > 0, and N -function
ψ such that

SSS ·DDD ≥ −m(t, x) + c∗(ψ(|DDD|) + ψ∗(|SSS|)) for all (DDD,SSS) ∈ A(t, x) .

(A5) The existence of a measurable selection. Either there is SSS∗ : Q×R
d×d
sym → R

d×d
sym

such that (ξ,SSS∗(t, x, ξ)) ∈ A(t, x) for all ξ ∈ R
d×d
sym and SSS∗ is measurable, or

there is DDD∗ : Q × R
d×d
sym → R

d×d
sym such that (DDD∗(t, x, ξ), ξ) ∈ A(t, x) for all

ξ ∈ R
d×d
sym and DDD∗ is measurable.

We comment on (A5) and sufficient conditions that guarantee its validity in Re-
mark 1.1 below. In the proof of the main theorem we use only the selection SSS∗. At
the point where we introduce an approximative scheme, we, however, briefly outline
how to proceed in the case that only selection DDD∗ is available.

Finally, we are ready to define weak solution to Problem P(t,x) and establish the
main theorem. Recall that the triplet (p,v,SSS) is a solution of Problem P(t,x) if (p,v,SSS)
satisfies (1.1) (1.7), (1.8), and (1.27). For simplicity, we set � = 1.

Definition 1.1. Assume that

(1.36) v0 ∈ L2
n,div, b ∈ Lq

′
(0, T ;W−1,q′

n ), and γ∗ ≥ 0.

We say that (p,v,SSS) is weak solution to Problem P(t,x) if

p ∈ L1(Q),(1.37)

v ∈ Cweak(0, T ;L
2
n,div) ∩ Lq(0, T ;W 1,q

n,div) with DDD(v) ∈ Lψ(Q),(1.38)

SSS ∈ Lψ
∗
(Q),(1.39)

lim
t→0+

‖v(t)− v0‖22 = 0,(1.40)

〈v,t,w〉+ (SSS,DDD(w))− (v ⊗ v,DDD(w)) + γ∗(v,w)∂Ω = 〈b,w〉+ (p, divw)

for all w ∈W 1,1
n such that DDD(w) ∈ L∞(Ω)d×d and a.e. in (0, T ),

(1.41)

(DDD(v(t, x)),SSS(t, x)) ∈ A(t, x) for a.a. (t, x) ∈ Q.(1.42)

Theorem 1.1. Let A satisfy the assumptions (A1)–(A5) with ψ satisfying Δ2-
and ∇2-conditions and fulfilling

(1.43) c1s
q − c2 ≤ ψ(s) ≤ c3s

r + c4 with q >
2d

d+ 2
and arbitrary r ∈ [q,∞).

Then for any Ω ∈ C1,1 and T ∈ (0,∞) and for arbitrary v0, b, and γ∗ satisfying
(1.36) there exists weak solution to Problem P(t,x) in the sense of Definition 1.1.

The proof of this theorem is presented in section 3. Several comments concerning
the novel features of this result, methods incorporated into its proof, and the relevance
to previous studies are in order.

In the analysis of Problem P(t,x) we distinguish two different cases, subcritical
and supercritical,7 depending on whether v is an admissible test function in (1.41)

7The borderline case is considered part of the subcritical case.
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or not.8 If v is an admissible test function, the energy equality takes place. Recall
that the energy equality together with Minty’s method represents a powerful tool in
identifying the limit in nonlinear terms such as (1.42). The method presented here is,
however, focused on the supercritical case. Since, in such a case, v cannot be taken
as a test function in (1.41) (and the energy equality is not available), we introduce a
Lipschitz approximation of v (or, more precisely, to vn − v) and follow the goal to
verify the assumptions of a convergence lemma established below (see Lemma 2.4)
that helps us to identify the limit in (1.42) in a straightforward manner.

Regarding the construction of Lipschitz approximations to functions depending
both on t and x for which the spatial derivatives are integrable and the time derivative
belongs to a dual to a suitable Bochner space (as is typical for evolutionary (nonlinear)
partial differential equations), we follow the approach developed by Kinunnen and
Lewis [33] and essentially extended by Diening, Růžička, and Wolf [19] but doing
several steps differently. First, our version of the Lipschitz approximation lemma is
stated in Orlicz–Sobolev spaces. Also, its proof is not based on strong continuity
of maximal function (used in [33, 19]), which allows us, for example, to avoid the
requirements on the Δ2-condition for a dual function (that we, however, need in
other parts of the paper). Finally, we also aim to formulate the statement of the
lemma as the list of properties of Lipschitz approximations to the Bochner functions
taking values in Sobolev or Orlicz–Sobolev spaces and thus obtain an evolutionary
variant of lemma establishing the properties of Lipschitz truncations to a sequence of
Sobolev functions; see [18].

The restriction (1.43) on the parameter q is due to required compact embedding
into L2(0, T ;L2(Ω)d) used in the identification of the limit in the quadratic term. If
we consider steady Stokes-like systems, we can relax the assumption on q and require
that q ≥ 1. For the evolutionary Stokes-like system (with div(v ⊗ v) = 0) and for
steady flows of considered fluids (v,t = 0) we need (1.43).

Since the framework of implicitly constituted fluids characterized by (A1)–(A5)
is more general than the setting considered in previous studies, the result established
in Theorem 1.1 provides large-data existence theory to a broader class of models in
comparison with earlier studies (we refer the reader to the survey paper [43] and the
recent studies [15, 19] for detailed summaries on long-time and large-data analysis of
power–law-type models). In particular, it follows from Theorem 1.1 and Lemma 1.1
that (for large-data) there is weak solution to Bingham or Herschel–Bulkley fluids
(1.28) (or (1.14) with ν(s) ∼ sr−2) if r > 6

5 in three spatial dimensions—the result
that is not covered by any of the previous studies.9 The class of fluids, to which the
result is applicable, is, however, much larger, as indicated in subsection 1.1.

The result stated in Theorem 1.1 can be viewed as a continuation of our previous
studies [27, 14], where similar stationary problems (that cover fluids with discontin-
uous or implicit constitutive equations) were studied. Even for such steady flows,
Theorem 1.1 extends the results established in [14]. This is due to the Orlicz space
setting and the fact that we do not require any kind of strict monotone property here–
merely the assumption (A2) is sufficient to establish our result. References relevant
to the analysis of steady flows of fluids of power-law type are listed at length in [14]

8It does not mean that DDD(v) should be bounded as required from DDD(w) in (1.41); v is admissible
if all terms in the weak formulation (1.41) are, for w = v, meaningful.

9We refer the reader to [20, 24, 35, 45, 56, 57] for analysis of steady and unsteady flows of
incompressible fluids of Bingham or Herschel–Bulkley type and to [27, 29] for analysis of flows of
fluids with discontinuous power–law-like rheology—the results mostly concern the case q > 3d/(d+2).
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or [18].
The last two comments concern the role of boundary condition and the approxi-

mative problems incorporated into our analysis. We consider the Navier slip bound-
ary conditions (1.7) for several reasons. First of all, we are able to construct the
pressure p as an integrable function (while p in [19] and other studies analyzing time-
dependent three-dimensional flows of an incompressible non-Newtonian fluid subject
to the no-slip boundary condition is merely a distribution with respect to the time
variable). Navier’s slip boundary condition (1.7) thus helps us to avoid the splitting
of the pressure (performed in [19]) into the regular part and the distribution, which
brings additional technical difficulties that we did not want to mix up with the other
tools developed here. Of course, it is also worth observing that the analysis can be
developed for boundary conditions different from (1.6). Even more, Navier’s slip can
be a physically more appropriate kind of boundary condition for specific applications
than no-slip condition (1.6). Recall that we can approximate the no-slip boundary
condition by taking γ∗ large in (1.7). Theorem 1.1 does not cover flows exhibiting
no-slip on the boundary. It is, however, possible to establish large-data existence of
weak solution to Problem P(t,x) with (1.6) instead of (1.7) by combining the approach
developed in this study and the decomposition of the pressure developed in [62, 19]. It
is necessary to recognize that in order to obtain p ∈ L1(Q) we require C1,1-regularity
of the boundary (such a smoothness is not needed in [19]); it is exploited in obtaining
the second derivative estimates of solution to the auxiliary Neumann problem for the
Laplace operator in the Orlicz space setting; see Lemma B.1. We state the result for
Ω ∈ C1,1—it is very likely it holds for some Lipschitz domains.

We use the following three-level approximation cascade. First, we consider the
selection SSS∗ being a function of DDD that appears in (A5) and regularize SSS∗ by taking
its convolution with a standard regularizing kernel; thus we obtain a problem for
(p,v). We add the term 1

n |v|s−2v for s so large that it shifts the problem from
the supercritical case to the subcritical case. Finally, we take a finite-dimensional
Galerkin approximation for such a system. In the limit process, we find it to be
more convenient first to let the regularizing parameter tend to zero, then to go from
a finite-dimensional approximation with a maximal monotone graph to a continuous
problem, and finally to investigate the limit when the penalty term 1

n |v|s−2v vanishes.
In the final remark of this section we discuss conditions that imply the existence

of a measurable selection required by (A5).
Remark 1.1. Let L(Q) denote the σ-algebra of Lebesgue measurable subsets of

Q and B(Rd×dsym) the σ-algebra of all Borel subsets of Rd×dsym . The measurability of SSS∗

in (A5) is meant with respect to the σ-algebra generated by L(Q)⊗ B(Rd×dsym). The
existence of a measurable selection is a consequence of the measurability of the graph
A(t, x), which in particular means that the following two conditions are satisfied (see
[17] and [3, Chap. 8]):

(i) for all DDD ∈ R
d×d
sym , the set {SSS ∈ R

d×d
sym : (DDD,SSS) ∈ A(t, x)} is closed;

(ii) for any closed C ⊂ R
d×d
sym , the set

{(t, x,DDD) ∈ Q× R
d×d
sym : there exists SSS ∈ C such that (DDD,SSS) ∈ A(t, x)}

is measurable with respect to the σ-algebra L(Q)⊗ B(Rd×dsym).
The measurability of the graph is a standard assumption in most considerations on ab-
stract multivalued elliptic and parabolic problems. Introducing the assumption (A5)
weakens the above conditions but provides a better readability for readers not famil-
iar with abstract measure theory of multivalued mappings. The analogous comments
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concern the measurability of DDD∗.

2. Tools.

2.1. Orlicz spaces. In this subsection we recall several facts about N -functions
and the Orlicz spaces corresponding to them. We recall that ψ : R → R+ is an N -
function if ψ is an even continuous convex function satisfying (1.30). A function ψ∗

defined as

(2.1) ψ∗(s) := sup
�∈R

(s �− ψ(�))

is called a complementary (conjugate, dual) function to ψ. It follows from its definition
that ψ∗ is also an N -function and (ψ∗)∗ = ψ.

For any open bounded set Q ⊂ R
d+1, we define the Orlicz space Lψ(Q) as a set

of all measurable functions u : Q→ R that satisfy

lim
λ→0

∫
Q

ψ(λu) dx dt = 0.

This space equipped with the norm

‖u‖Lψ = ‖u‖ψ := inf

{
λ > 0;

∫
Q

ψ(λ−1u) dx dt ≤ 1

}

is a Banach space. By W k,ψ(Q) we mean the Orlicz–Sobolev space, namely the space
of functions that have all distributional derivatives of order not larger than k in Lψ(Q).
We say that a sequence of functions {sn}n∈N converges modularly to s in Lψ(Q) if
there exists a constant λ > 0 such that limn→∞

∫
Q
ψ( 1λ(s

n − s)) dx dt = 0.

If we assume that ψ satisfies Δ2-condition, then L
ψ(Q) is separable and, moreover,

(2.2) (Lψ(Q))∗ = Lψ
∗
(Q).

Next, we formulate Young and Hölder inequalities for N -functions and Orlicz
spaces (see, e.g., [52]).

Lemma 2.1. Let ψ be an N -function. Then the following (Young) inequality
holds:

(2.3) |ab| ≤ ψ(a) + ψ∗(b) for all a, b ∈ R.

Assume that u ∈ Lψ(Q) and v ∈ Lψ
∗
(Q); then the following (Hölder) inequality holds:

(2.4)

∫
Q

uv dxdt ≤ 2‖u‖ψ‖v‖ψ∗ .

2.2. Maximal monotone graphs. This subsection is devoted to several im-
portant properties of a maximal monotone graph.

Lemma 2.2 (properties of SSS∗). Let A(t, x) be a maximal monotone ψ-graph
satisfying (A1)–(A5) with measurable selection SSS∗ : Q × R

d×d
sym → R

d×d
sym. Then SSS∗

satisfies the following conditions:
(a1) DomSSS∗(t, x, ·) = R

d×d
sym a.e. in Q.

(a2) SSS∗ is monotone; i.e., for every ξ1, ξ2 ∈ R
d×d
sym and a.a. (t, x) ∈ Q

(2.5) (SSS∗(t, x, ξ1)− SSS∗(t, x, ξ2)) · (ξ1 − ξ2) ≥ 0.
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(a3) There are nonnegative m ∈ L1(Q), c∗ > 0, and N -function ψ such that for
all DDD ∈ R

d×d
sym the function SSS∗ satisfies

(2.6) SSS∗ ·DDD ≥ −m(t, x) + c∗(ψ(|DDD|) + ψ∗(|SSS∗|)).
Moreover, let U be a dense set in R

d×d
sym , and let (BBB,SSS∗(t, x,BBB)) ∈ A(t, x) for a.a.

(t, x) ∈ Q and for all BBB ∈ U . Let also (DDD,SSS) ∈ R
d×d
sym × R

d×d
sym . Then the following

conditions are equivalent:

(i) (SSS− SSS∗(t, x,BBB)) · (DDD−BBB) ≥ 0 for all (BBB,SSS∗(t, x,BBB)) ∈ A(t, x) ,

(ii) (DDD,SSS) ∈ A(t, x).
(2.7)

Proof. The proof of (a1)–(a3) follows along the same lines as for the standard
Lq-setting; see, e.g., Chiadò Piat, Dal Maso, and Defranceschi [17]. Indeed, if SSS∗

is a selection of the graph and A(t, x) ⊂ R
d×d
sym for a.a (t, x) ∈ Q, then (a1) holds.

Moreover, since (DDD,SSS∗(DDD)) ∈ A(t, x), then by (A2) and (A3) also (a2)–(a3) hold.
To prove the second part of the lemma observe that an arbitrary monotone graph
can be extended to the maximal monotone graph. In particular, for a given (t, x) ∈
Q, the set {(BBB,SSS∗(t, x,BBB)) ∈ A(t, x); BBB ∈ U , where U is a dense set in R

d×d
sym} ∪

{DDD(t, x),SSS(t, x)} can be extended to the monotone graph Ã(t, x). If BBB ∈ U , which is
dense in R

d×d
sym , then due to [2, Cor. 1.5], recalled in Corollary 2.3, it holds that A(t, x)

= Ã(t, x).
Corollary 2.3. Let A and Ã be given maximal monotone functions and U be

an open convex set so that A(ζ) ∩ Ã(ζ) �= ∅ for every ζ from a dense subset of U .
Then A(ζ) = Ã(ζ) for every ζ from U .

Next, we formulate a convergence lemma that serves as a simple criterion to
prove that DDD and SSS, limits of weakly converging sequences DDDn and SSSn in Lψ and Lψ∗,
respectively, fulfill the implicit constitutive relation (1.35) or, equivalently, (1.42).

Lemma 2.4. Let A(t, x) be a maximal monotone ψ-graph satisfying (A1)–(A5),
and assume that there are sequences {SSSn}∞n=1 and {DDDn}∞n=1 such that for some Q′ ⊂ Q
there hold that

(DDDn(t, x),SSSn(t, x)) ∈ A(t, x) for a.a. (t, x) ∈ Q′,(2.8)

DDDn ⇀ DDD weakly in Lψ(Q′)d×d,(2.9)

SSSn ⇀ SSS weakly in Lψ
∗
(Q′)d×d,(2.10)

lim sup
n→∞

∫
Q′

SSSn ·DDDn dx dt ≤
∫
Q′

SSS ·DDD dx dt.(2.11)

Then for a.a. (t, x) ∈ Q′ we have

(2.12) (DDD(t, x),SSS(t, x)) ∈ A(t, x).

Proof. For the proof of (2.12) we first observe that (2.8)–(2.11) imply that

(2.13) lim sup
n→∞

∫
Q′
(SSSn − SSS∗(t, x,DDD)) · (DDDn −DDD) dx dt ≤ 0.

Since the graph is monotone, (2.13) is equivalent to

(2.14) lim sup
n→∞

∫
Q′

|(SSSn − SSS∗(t, x,DDD)) · (DDDn −DDD)| dx dt = 0.
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Therefore, (SSSn−SSS∗(t, x,DDD)) · (DDDn−DDD) converges strongly in L1(Q′) and consequently
weakly; namely, we have for all nonnegative ϕ ∈ L∞(Q′)

(2.15) lim
n→∞

∫
Q′
(SSSn − SSS∗(t, x,DDD)) · (DDDn −DDD)ϕ dx dt = 0.

From (2.15) it can be deduced that

(2.16) lim
n→∞

∫
Q′

SSSn ·DDDnϕ dx dt = lim
n→∞

∫
Q′

SSSn ·DDDϕ dx dt =
∫
Q′

SSS ·DDDϕ dx dt.

Consequently, since the graph is monotone, we observe that for an arbitrary fix matrix
BBB ∈ R

d×d
sym and all nonnegative ϕ ∈ L∞(Q′)

0 ≤ lim
n→∞

∫
Q′
(SSSn−SSS∗(t, x,BBB)) · (DDDn−BBB)ϕ dx dt =

∫
Q′
(SSS−SSS∗(t, x,BBB)) · (DDD−BBB)ϕ dx dt.

But since ϕ is arbitrary, we get that for all BBB and a.a. (t, x) ∈ Q′

(2.17) (SSS− SSS∗(t, x,BBB)) · (DDD−BBB) ≥ 0.

Since A(t, x) is a maximal graph and BBB is arbitrary, we conclude from (2.7) that
(DDD(t, x),SSS(t, x)) is in the graph A(t, x) for a.a. (t, x) ∈ Q′.

2.3. Lipschitz approximation of Bochner functions taking values in the
Orlicz–Sobolev spaces. This final subsection deals with a very powerful tool that
plays an important tool in the existence proof. It concerns Lipschitz approximations
of Bochner functions that take values in Sobolev or, more generally, in Orlicz–Sobolev
spaces. It carries on the study by Kinunnen and Lewis [33], who, however, do not con-
trol uniformly the measure of the set where the Lipschitz truncations differ from the
original functions. In fact, the result presented generalizes a similar approximation
procedure developed by Diening, Růžička, and Wolf [19], who considered the stan-
dard Sobolev space setting and used strong continuity of Hardy–Littlewood maximal
functions. We present a new version of the Lipschitz approximation lemma stated
for time-dependent functions taking values in the Orlicz–Sobolev spaces. In order to
avoid (at least in this lemma) the assumption on the Δ2-condition for dual function
we dot not use the continuity of the maximal function in the Lp spaces. Finally, in-
spired by the approach developed for time-independent problems, where the Lipschitz
approximations of Sobolev functions are introduced and studied (see [18] and the ref-
erences therein), we formulated the lemma, as closely as we could, as a statement
about the properties of Lipschitz truncations of Bochner functions that take values in
the Sobolev or, more generally, Orlicz–Sobolev spaces.

Lemma 2.5. Let Ω ⊂ R
d be an open bounded set and T > 0 be the length of the

time interval. Assume that ψ is an N -function satisfying (1.34)1 with q, r ∈ (1,∞)
and ψ∗ is its conjugate automatically fullfiling (1.34)2. For any functions HHH, H̄HH and
arbitrary sequences {un}∞n=1 and {HHHn}∞n=1 we set

an := |HHHn|+ |HHH|+ |H̄HH| and bn := |DDD(un)|,
and assume that for certain C∗ > 1∫

Q

ψ∗(an) + ψ(bn) dx dt+ sup
t∈(0,T )

‖un(t)‖22 ≤ C∗,

un → 0 a.e. in Q := (0, T )× Ω.

(2.18)
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In addition, let {GGGn}∞n=1 and {fn}∞n=1 be such that GGGn is symmetric and

GGGn → 0 strongly in L1(Q)d×d,(2.19)

fn → 0 strongly in L1(Q)d,(2.20)

and that the following identity holds in D′(Q)d:

(2.21) un,t + div(HHHn −HHH+GGGn) = fn.

Then there exists β > 0 such that for arbitrary Qh ⊂⊂ Q and for arbitrary λ∗ ∈
(λmin,∞) with λmin such that ψ(λmin) = λmin and for arbitrary k ∈ N there exist
a sequence of {λnk}∞n=1, the sequence of open sets {Enk }∞n=1, E

n
k ⊂ Q, and a sequence

{un,k}∞n=1 bounded in L∞
loc(0, T ;W

1,∞
loc (Ω)d) such that for any 1 ≤ s <∞

λnk ∈ [λ∗, (c3 + c4/λ
r
min)

rk−1
r−1 (λ∗)r

k

] for all n ∈ N,(2.22)

un,k → 0 strongly in Ls(Qh)
d,(2.23)

‖DDD(un,k)‖L∞(Qh) ≤ C(h,Ω)λnk ,(2.24)

un,k = un in Qh \ Enk ,(2.25)

lim sup
n→∞

|Qh ∩Enk | ≤ C(h,Ω)
C∗

ψ(λ∗)
.(2.26)

Moreover, for all g ∈ D(Qh) the following estimates hold:

lim sup
n→∞

∫
Qh∩Enk

(|HHHn|+ |HHH|+ |H̄HH|) |DDD(un,k)| dx dt ≤ C(h,C∗)
(

λ∗

ψ(λ∗)
+

1

kβ

)
,(2.27)

− lim inf
n→∞

∫ T

0

〈un,t,un,kg〉 dt ≤ C(g, h, C∗)
(

λ∗

ψ(λ∗)
+

1

k

)β
.(2.28)

Proof. We recall the definition of the modified parabolic metric dα on R
d+1 and

corresponding balls that are given in Appendix A. ForX,Y ∈ R
d+1, whereX := (t, x),

Y := (s, y), and for R > 0, α > 0, A ⊂ R
d+1 we define

dα(X,Y ) := max
(
|x− y|, |t−s|1/2

α1/2

)
,

QαR(X) :=
{
Y ∈ R

d+1; dα(X,Y ) < R
}
,

diamαA := sup
X,Y ∈A

dα(X,Y ).

For 0 ≤ g ∈ L1(0,∞;L1(Rd)) we introduce the parabolic maximal functions M(g)
and Mα(g) through

M(g)(t, x) := sup
0<ρ<∞

−
∫
(t−ρ,t+ρ)

(
sup

0<R<∞
−
∫
BR(x)

g(s, y) dy

)
ds,

Mα(g)(t, x) := sup
QαR(t,x)

−
∫
QαR(t,x)

g(s, y) dy ds.

Next, for arbitrary open E ⊂ Q we consider the Whitney covering {QαRi(Xi), ζi}i∈N

of the set E given in Lemma A.1 and we introduce a truncation operator LαE by (A.8)
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as

LαEu(t, x) :=

⎧⎪⎨
⎪⎩
u(t, x) if (t, x) ∈ Q \ E,
∞∑
i=1

uQαRi
ζi(t, x) if (t, x) ∈ E,

(2.29)

where

uQαRi
:= −
∫
QαRi

u dx dt.

We will use the operator Lα to construct un,k. For this purpose we need to choose a
proper set E where we modify the original sequence un. We proceed in the following
way. For given λ∗ ∈ (λmin,∞) with λmin such that ψ(λmin) = λmin and k ∈ N fixed,
we introduce μi for i = 1, . . . , k by the following recurrent formula:

μi := ψ(μi−1) with μ0 := λ∗.(2.30)

Note that from strict monotonicity and strict convexity of ψ and the definition of

λmin it follows that μi < μi+1 and10 λ∗ ≤ μi ≤ (c3 + c4/λ
r
min)

rk−1
r−1 (λ∗)r

k

for all
i = 0, . . . , k− 1, where c3 and c4 are constants that appear in (1.43). Next, using the
assumption (2.18) we see that

k−1∑
i=0

∫
{ψ(μi)<ψ∗(M(an))+ψ(M(bn))≤ψ(μi+1)}

ψ∗(M(an)) + ψ(M(bn)) dx ≤ C∗.

Hence, there surely exists j0 ∈ [0, . . . , k − 1] such that

(2.31) k

∫
{ψ(μj0 )<ψ∗(M(an))+ψ(M(bn))≤ψ(μj0+1)}

ψ∗(M(an)) + ψ(M(bn)) dx ≤ C∗.

Having such j0, we finally define

λnk := μj0 ,(2.32)

Hn
k := {(t, x) ∈ Q; ψ∗(M(an)) + ψ(M(bn)) > ψ(λnk )}.(2.33)

Thus (2.22) holds and (2.18), (A.2) lead to the estimate

(2.34) |Qh ∩Hn
k | ≤

CC∗

ψ(λ∗)
.

We also define the sets

Gn := {(t, x) ∈ Q;Mαnk (|GGGn|) > 1},(2.35)

Fn := {(t, x) ∈ Q;Mαnk (|fn|) > 1}(2.36)

10Using (1.43) we observe that for s > λ∗ > λmin

ψ(s) ≤ c3s
r + c4 = sr (c3 + c4/s

r) ≤ sr (c3 + c4/λ
r
min) =: c∗sr.

Consequently,

μi = ψ(μi−1) ≤ c∗μri−1 ≤ c∗(ψ(μi−2))
r ≤ c∗(c∗μri−2)

r ≤ · · · ≤ c1+r+···+ri−1

∗ (λ∗)r
i
= c

ri−1
r−1∗ (λ∗)r

i
.
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and define αnk as

(2.37) αnk :=
λnk

(ψ∗)−1(ψ(λnk ))
.

We observe that (2.19), (2.20), and (A.3) imply that

(2.38) lim sup
n→∞

|Gn ∪ Fn| = 0.

In order to be able to apply Lemma A.3 we need to have control over full gradient.
For this purpose we define

(2.39) H̃n := {(t, x) ∈ Q; M(|∇un|) > n}.
If follows from (2.18) and (1.43) and the standard Korn inequality that

(2.40)

∫
Q

|∇un|q dx dt ≤ CC∗ with q >
2d

d+ 2
,

which then implies

(2.41) |H̃n| ≤ CC∗

nq
.

Finally, we define an open set Enk as

(2.42) Enk := Gn ∪ Fn ∪Hn
k ∪ H̃n.

With this setting, we finally define un,k as

(2.43) un,k := LαnkEnku
n,

and we shall investigate its properties.
First, we notice that boundedness of {un} in L∞(0, T ;L2

n,div) (see (2.18)1) and

Lq(0, T ;W 1,q(Ω)d) with q > 2d/(d + 2) (as stated in (2.40)) implies, by a standard
interpolation, that {un} is uniformly bounded in L2+η(0, T ;L2+η(Ω)d) with some
η > 0. By Vitali’s theorem, this together with the a.e. convergence (2.18)2 leads to
the observation that

un → 0 strongly in L2(Q)d (n → ∞).

Thus, referring to (A.9) and (2.43) we conclude that

(2.44) un,k → 0 strongly in L2(Q)d (n→ ∞).

Using Lemma A.3 we get un,k ∈ L∞(0, T ;W 1,∞
loc (Ω)d), but not uniformly with

respect to n and k.
Next, we show the uniform estimate (2.24) a.e. in Qh. It is evident from the

definition (2.43) that

DDD(un,k(t, x)) = DDD(un(t, x)) in Qh \ Enk ⊂ Qh \Hn
k ,

and thus for a.a. (t, x) ∈ Qh \ Enk we have

ψ(|DDD(un(t, x))|) ≤ ψ(M(bn)) ≤ ψ(bn) ≤ ψ(λnk ),
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which implies

(2.45) ‖DDD(un,k)‖L∞(Qh\Enk ) ≤ λnk .

It remains to show (2.24) in Enk . Let X ∈ Enk be arbitrary. Then X ∈ QRi(Xi) for
some i and we have

|DDD(un,k(X))| =
∣∣∣∣∣∣DDD
⎛
⎝∑

j

ζj(X)unQRj (Xj)

⎞
⎠
∣∣∣∣∣∣

(A.4)7=

∣∣∣∣∣∣DDD
⎛
⎝∑

j

ζj(X)(unQRj (Xj) − unQ4Ri
(Xi))

⎞
⎠
∣∣∣∣∣∣

(A.4),(A.5)

≤ CR−1
i

∑
j∈Ai

|unQRj (Xj) − unQ4Ri
(Xi)|

(A.4),(A.5)

≤ CR−1
i −
∫
Q4Ri

(Xi)

∣∣∣∣∣un −−
∫
Q4Ri

(Xi)

un

∣∣∣∣∣ dx dt
(A.7)

≤ C−
∫
Q4Ri

(Xi)

(|DDD(un)|+ αnk (|GGGn|+ |HHHn|+ |HHH|) + αnkRi|fn|) dx dt

(A.4)2≤ C−
∫
Q16Ri

(XEn
k
)

(|DDD(un)|+ αnk (|GGGn|+ |HHHn|+ |HHH|) + αnkRi|fn|) dx dt,

where XEn
k
is some point in Qh \ Enk . Thus, using (2.35) and (2.36) we get

|DDD(un,k(X))| ≤ C−
∫
Q16Ri

(XEn
k
)

|DDD(un)|+ αnk (|HHHn|+ |HHH|) dx dt+ Cαnk

≤ Cmax

{
αnk ,−
∫
Q16Ri

(XEn
k
)

|DDD(un)| dx dt,−
∫
Q16Ri

(XEn
k
)

αnk |HHHn| dx dt,(2.46)

−
∫
Q16Ri

(XEn
k
)

αnk |HHH| dx dt
}
.

If the maximum is achieved by the second term, then

(2.47)
|DDD(un,k(X))|

C
≤ −
∫
Q16Ri

(XEn
k
)

|DDD(un)| dx dt

and we have

ψ

( |DDD(un,k(X))|
C

)
≤ ψ

(
−
∫
Q16Ri

(XEn
k
)

|DDD(un)| dx dt
)

(2.18)

≤ ψ

(
−
∫
Q16Ri

(XEn
k
)

bn dx dt

)
≤ ψ(λnk ).

This implies

(2.48) |DDD(un,k(X))| ≤ Cλnk .
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If the maximum is achieved by the third term, we have

(2.49)
|DDD(un,k(X))|

Cαnk
≤ −
∫
Q16Ri

(XEn
k
)

|HHHn| dx dt.

Applying ψ∗,

ψ∗
( |DDD(un,k(X))|

Cαnk

)
≤ ψ∗

(
−
∫
Q16Ri

(XEn
k
)

|HHHn| dx dt
)

(2.18)

≤ ψ∗
(
−
∫
Q16Ri

(XEn
k
)

an dx dt

)
≤ ψ(λnk )

and hence

(2.50) |DDD(un,k(X))| ≤ C(ψ∗)−1(ψ(λnk ))α
n
k = Cλnk .

It follows from the definition of αnk that the same holds if the extremum is achieved
by the last term.

Consequently, using (2.37) and observing that ψ∗(1) < λmin = ψ(λmin) < ψ(λnk ),

which implies that αnk =
λnk

(ψ∗)−1(ψ(λnk ))
< λnk , we get

(2.51) |DDD(un,k(X))| ≤ C(λnk + αnk ) ≤ 2Cλnk ,

which implies (2.24).
Next, to show (2.27) we split Hn

k as Hn
k = Hn,1

k +Hn,2
k , where

Hn,1
k := {(t, x) ∈ Hn

k ; ψ(λ
n
k ) < ψ∗(M(an)) + ψ(M(bn)) ≤ ψ(ψ(λnk ))},(2.52)

Hn,2
k := {(t, x) ∈ Hn

k ; ψ(ψ(λ
n
k )) < ψ∗(M(an)) + ψ(M(bn))},(2.53)

and compute∫
Qh∩Enk

(|HHHn|+ |HHH|+ |H̄HH|) |DDD(un,k)| dxdt = ∫
Qh∩Hnk

· · ·+
∫
(Qh\Hnk )∩(Fn∪Gn)

· · ·

=

∫
Qh∩Hn,1k

· · ·+
∫
Qh∩Hn,2k

· · ·+
∫
(Qh\Hnk )∩(Fn∪Gn)

· · · =: In1 + In2 + In3 .

First, by using (2.18) and (2.24) we estimate In3 with the help of the Hölder inequality
as

(2.54)

In3 ≤ C(h)
(‖HHHn‖Lψ∗ + ‖HHH‖Lψ∗ + ‖H̄HH‖Lψ∗

) ‖λnkχFn∪Gn‖Lψ ≤ CC∗‖λnkχFn∪Gn‖Lψ .
Next, denoting N := ‖λnkχFn∪Gn‖Lψ we can use a definition of the norm in an Orlicz
space to observe that

1 =

∫
Fn∪Gn

ψ(λnk/N) dx dt =⇒ N =
λnk

ψ−1(|Fn ∪Gn|−1)

(2.22)

≤ C(λ∗)r
k

ψ−1(|Fn ∪Gn|−1)
.

Finally, substituting this estimate into (2.54) and using (2.38) we conclude that

lim sup
n→∞

In3 = 0.
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Next, the term In2 is estimated similarly. First, using the Hölder inequality, (2.18),
(2.24), and the similar estimates for N as above we find that

In2 ≤ C‖λnkχHn,2k
‖Lψ ≤ Cλnk

ψ−1(|Hn,2
k |−1)

.(2.55)

Consequently, applying (A.2) and (2.18) and using the concavity of ψ−1 and the
convexity of ψ we find that11

In2 ≤ Cλnk

ψ−1
(
ψ(ψ(λn

k
))

C∗

) ≤ CC∗λnk
ψ(λnk )

≤ CC∗λ∗

ψ(λ∗)
.(2.56)

Thus, to finish the proof of (2.27) it remains to estimate In1 . Hence, using the Young
inequality and (2.31) we get that

In1 ≤ C(h)
√
k

∫
Qh∩Hn,1k

(|HHHn|+ |HHH|+ |H̄HH|) λ
n
k√
k
dx dt

(2.31)

≤ C(h,C∗)√
k

+
√
k

∫
Qh∩Hn,2k

ψ

(
λnk√
k

)
dx dt

(A.2)

≤ C(h,C∗)√
k

+
C(h,C∗)

√
kψ
(
λnk√
k

)
ψ(λnk )

.

(2.57)

Next, using ∇2-condition for ψ we observe that

ψ(s/2m) ≤ ψ(s)

2m(1+β)
.

Therefore setting m := 1
2 ln2 k and substituting it into (2.57) we observe that

In1 ≤ C(h,C∗)√
k

+
C(h,C∗)

2
1
2 (1+β) ln2 k

≤ C(h,C∗)
(

1√
k
+

1√
k(1+β)

)
(2.58)

for some β > 0.
Thus, it remains to prove (2.28). First, using (A.12) and (2.44) we have

lim sup
n→∞

−
∫ T

0

〈un,t,un,kg〉 dt = lim sup
n→∞

∫
Q

un,k,t · (un − un,k)g dx dt

≤ lim sup
n→∞

C(g)

∫
Qh∩Enk

|un,k,t ||un − un,k| dx dt.

Next, for arbitrary X ∈ Enk we can find i such that X ∈ QRi(Xi). Then, similarly as
above we have

Riα
n
k |un,k,t (X)| ≤ CR−1

i

∑
j∈Ai

|unQRj (Xj) − unQRi (Xi)|

≤ C−
∫
Q4Ri

(Xi)

|DDD(un)|+ αnk (|GGGn|+ |HHHn|) + αnkRi|fn| dx dt =: Y ni .

11The last inequality is a consequence of the fact that ψ(λ)/λ is nondecreasing, which follows
from the convexity of ψ. Indeed, we have

ψ(λ1) = ψ
(
(1− λ1

λ2
)0 + λ1

λ2
λ2

)
≤

(
1− λ1

λ2

)
ψ(0) + λ1

λ2
ψ(λ2) =

λ1
λ2
ψ(λ2) .
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Similarly,

−
∫
QRi (Xi)

|un − un,k| dx dt ≤ C−
∫
Q4Ri

(Xi)

∣∣∣∣∣un −−
∫
Q4Ri

(Xi)

un dx dt

∣∣∣∣∣ dx dt
≤ CRiY

n
i .

Consequently, we get

(2.59)

∫
Qh∩Enk

|un,k,t ||un − un,k| dx dt ≤ C(αnk )
−1
∑
i

|Qh ∩QRi(Xi)|(Y ni )2.

First, using a procedure similar to that in the estimate |DDD(un,k)| we get that

Y ni ≤ Cλnk .

Therefore (2.59) can be estimated as

(2.60)

∫
Qh∩Enk

|un,k,t ||un − un,k| dx dt ≤ C(αnk )
−1λnk

∑
i

|Qh ∩QRi(Xi)|Y ni .

In addition, using the properties of the Whitney covering (A.4) and the definition of
Y ni we get that∫

Qh∩Enk
|un,k,t ||un − un,k| dx dt

≤ C(αnk )
−1λnk

∫
Qh∩Enk

|DDD(un)|+ αnk (|GGGn|+ |HHHn|) + αnk |fn| dx dt.(2.61)

Consequently, using (2.19), (2.20), and (2.38) we have

lim sup
n→∞

∫
Qh∩Enk

|un,k,t ||un − un,k| dx dt

≤ C lim sup
n→∞

(αnk )
−1λnk

∫
Qh∩Hnk

|DDD(un)|+ αnk |HHHn| dx dt.
(2.62)

Finally, we again split the remaining integral into two parts to observe that

(αnk )
−1λnk

∫
Qh∩Hnk

|DDD(un)|+ αnk |HHHn| dx dt = (αnk )
−1λnk

∫
Hn,1k

· · ·+ (αnk )
−1λnk

∫
Hn,2k

· · ·

=: An1 +An2 .

Next, we proceed similarly as in the proof of (2.27). First, using the Hölder inequality
we can estimate the second term as

An2 ≤ Cλnk

(
‖HHHn‖Lψ∗‖χHn,2k

‖Lψ + (αnk )
−1‖DDD(un)‖Lψ‖χHn,2k

‖Lψ∗
)
.

Then, by using (2.18) and a procedure similar to that above and (2.37) we get

An2 ≤ C(h,C∗)
(

λ∗

ψ(λ∗)
+

(ψ∗)−1(ψ(λnk ))

(ψ∗)−1(ψ(ψ(λnk )))

)
≤ C(h,C∗)

(
λ∗

ψ(λ∗)

)β
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for some β > 0. To estimate An1 we use the Young inequality, (2.37), and (2.31) to
get (see the similar procedure above)

An1 ≤ C(h,C∗)√
k

+
√
k|{ψ(λnk ) <M(an)}|

(
ψ∗(λnk (α

n
k )

−1/
√
k) + ψ(λnk/

√
k)
)

≤ C(h,C∗)

(
1√
k
+

√
kψ∗((ψ∗)−1(ψ(λnk ))/

√
k)

ψ(λnk )
+

√
kψ(λnk/

√
k)

ψ(λnk )

)

≤ C(h,C∗)
kβ

,

(2.63)

where in the last inequality we used ∇2-condition. Thus, (2.28) follows.

3. Proof of Theorem 1.1. In order to prove the existence of solutions we
introduce a three-level approximation scheme based on the standard regularization
of the selection SSS∗ (that comes from (A5)), adding the penalty term that makes
the problem subcritical12 and then projecting such a problem to finite-dimensional
Galerkin approximations. In the proof, starting from the Galerkin system for the
penalized problem with regularized selection, we first let the regularization parameter
tend to zero, then we take the limit from a finite-dimensional approximation (with
a maximal monotone graph) to a continuous problem, and finally we investigate the
limit when the penalty term vanishes.

3.1. (η, �, n)-approximation. Let us assume first that by (A5) there is a mea-
surable selection SSS∗ from the graph A having the properties collected in Lemma 2.2.
We approximate SSS∗ by smooth functions. For this reason, let ρ ∈ C∞

0 (Rd×dsym) be a
mollification kernel, i.e., a radially symmetric function with support in a unit ball
B(0, 1) ⊂ R

d×d
sym and

∫
R
d×d
sym

ρ dξ = 1. For η > 0 we set ρη(ξ) = 1
ηd2

ρ( ξη ) and define

(3.1) SSSη(t, x, ξ) = (SSS∗ ∗ ρη)(t, x, ξ) =
∫
R
d×d
sym

SSS∗(t, x, ζ)ρη(ξ − ζ)dζ.

Note that this definition can be used only in the case that the selection SSS∗ is available.
If this is not the case, then according to (A5) we know that there is a measurable
selection DDD∗ and we can define SSSη as

SSSη := (DDD∗ ∗ ρη + ηIII)−1,

where an additional term ηIII guarantees that the mapping ζ �→ (DDD∗ ∗ ρη)(t, x, ζ) + ηζ
is invertible. For clarity, we proceed with SSSη defined in (3.1). One easily observes,
using the convexity of ψ and ψ∗ and the Jensen inequality, that the approximation
SSSη satisfies a condition analogous to (2.6).

Next, the penalty term 1
n |v|2q

′−2v is added to the equations in order to move the
problem from the supercritical case to the subcritical case, and finally the Galerkin
scheme is applied. The first limit, η → 0, is easy since we work in finite-dimensional
spaces and appropriate sequences converge strongly. In the next step, using the
fact that the graph is monotone, we let � → ∞ in the Galerkin system and apply
Lemma 2.4. The main difficulty here consists in showing that assumption (2.11) of
Lemma 2.4 is satisfied. On this level of approximation, for each n ∈ N, the sufficient
regularity of solutions (velocity) is due to the presence of the penalty term.

12In our understanding, it means that the velocity field is an admissible test function in the weak
formulation of the balance of linear momentum.
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The final limit, n → ∞, essentially uses the results of subsection 2.3. Again
Lemma 2.4 is used to verify that the limits DDD and SSS form a couple belonging to the
graph A. We shall observe that by means of the Lipschitz approximation method,
which represents a key tool in the proof, we are able to verify the assumption (2.11).

Let {wi}∞i=1 be an orthogonal basis of Vdiv that is orthonormal in L2
n,div. Note

that since Vdiv ↪→ L2
n,div compactly and densely, such a basis surely exists and can be

constructed as eigenfunctions of the following problem:

d+2∑
k=1

(∇kwi,∇kv) = λi(wi,v) for all v ∈ Vdiv.

If P � denotes the orthogonal projection of L2(Ω)d on the span{w1, . . . ,w�}, it follows
directly from the construction of the basis that

(3.2) ‖P �v‖Vdiv
≤ C‖v‖Vdiv

for all � ∈ N and all v ∈ Vdiv.

Next, for an arbitrary fixed η > 0 and arbitrary fixed �, n ∈ N we introduce the
following (η, �, n)-approximative problem: to find a vector-valued function vη := vη,�,n

such that vη(t, x) :=
∑�

i=1 c
η,�
i (t)wi(x), where the coefficients cη,�i solve the following

system of � ordinary differential equations:

(vη,t,wi) +
1

n

(
|vη|2q′−2vη,wi

)
+ (SSSη(·,DDD(vη)),DDD(wi))− (vη ⊗ vη,DDD(wi))

+ γ∗(vη,wi)∂Ω = 〈b,wi〉, i = 1, . . . , �,

vη(0) = P �v0.

(3.3)

Using the standard Carathéodory theory it is not difficult to obtain a solution
to (3.3) defined on a possibly short time interval [0, T ∗). This solution can, however,
be extended to the whole time interval [0, T ] provided we can establish uniform esti-
mates on vη that are independent of T ∗. We shall derive such estimates in the next
subsection.

3.2. Limit η → 0. Multiplying the ith equation in (3.3) by cη,�i , summing over
i = 1, . . . , �, and integrating the result over (0, t), with t ∈ (0, T ), we find the identity

1

2
‖vη(t)‖22 +

∫
Qt

1

n
|vη|2q′+ SSSη(·,DDD(vη)) ·DDD(vη) dx dτ + γ∗

∫ t

0

‖vη‖22,∂Ωdτ

=

∫ t

0

〈b,vη〉dτ + 1

2
‖vη(0)‖22,

(3.4)

where we use notationQt := (0, t)×Ω. Using (A4), or, to be precise, using Lemma 2.2,
and using the Young and Korn inequalities we get

sup
t∈(0,T )

‖vη(t)‖22 +
∫
Q

ψ(|DDD(vη)|) + ψ∗(|SSSη(t, x,DDD(vη))|) + 1

n
|vη|2q′ dx dt

+ γ∗
∫ T

0

‖vη‖22,∂Ω dt−
∫
Q

m dx dt ≤ C(b,v0) ≤ C.

(3.5)

Since the basis is smooth and finite dimensional, we conclude from (3.3) and (3.5)
that

(3.6)

∫ T

0

∣∣∣∣ ddtcη,�i (t)

∣∣∣∣
q′

dt ≤ Cl.
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As a consequence of (3.5) and (3.6) we observe that {(cη,�1 , . . . , cη,�� )} is bounded

in W 1,q′([0, T ];R�), and by the Arzela–Ascoli theorem we can find a subsequence
converging to some (c�1, . . . , c

�
�) in C

0,α([0, T ];R�) for some α ∈ (0, 1). Since {wi}�i=1

is a finite fixed family of functions belonging to W 3,d(Ω)d, we are also able to find a
subsequence that is again not relabeled such that

vη → v strongly in C0,α([0, T ];C1(Ω̄)d),(3.7)

SSSη(·,DDD(vη)) ∗
⇀ SSS weakly∗ in L∞(Q)d×d,(3.8)

vη,t
∗
⇀ v,t weakly∗ in Lq

′
(0, T ;C(Ω̄)d).(3.9)

Using (3.7)–(3.9) it is quite standard to take the limit η → 0 in (3.3) and to show

that v� := v =
∑�
i=1 c

�
iwi and SSS� := SSS satisfy

(v�,t,wi) +
1

n

(
|v�|2q′−2v�,wi

)
+ (SSS�,DDD(wi))− (v� ⊗ v�,DDD(wi))

+ γ∗(v�,wi)∂Ω = 〈b,wi〉, i = 1, . . . , �,

v(0) = P �v0.

(3.10)

It remains to show that (DDD(v�),SSS�) belongs to the graph A(t, x) for a.a. (t, x) ∈ Q.
Since SSS∗ is the selection of the graph, according to Lemma 2.2, we have for all ζ,BBB ∈
R
d×d
sym and a.a. (t, x) ∈ Q

(3.11) (SSS∗(t, x, ζ)− SSS∗(t, x,BBB)) · (ζ −BBB) ≥ 0.

Adding and subtracting the term (SSS∗(t, x, ζ)−SSS∗(t, x,BBB)) ·DDD(vη) and then integrating
the result with respect to the probability measure having the density ρη(DDD(vη)− ζ),
it follows from (3.11) that∫

R
d×d
sym

(SSS∗(t, x, ζ)− SSS∗(t, x,BBB)) · (DDD(vη)−BBB)ρη(DDD(vη)− ζ)dζ

≥
∫
R
d×d
sym

(SSS∗(t, x, ζ)− SSS∗(t, x,BBB)) · (DDD(vη)− ζ)ρη(DDD(vη)− ζ)dζ.

(3.12)

Since the difference (SSS∗(t, x, ζ)−SSS∗(t, x,BBB)) can be, for |ζ| ≤ ‖DDD(vη)‖∞+η, estimated
simply by a constant dependent on BBB, then (3.12) can be rewritten as(∫

R
d×d
sym

SSS∗(t, x, ζ)ρη(DDD(vη)− ζ)dζ − SSS∗(t, x,BBB)

)
· (DDD(vη)−BBB)

≥ −C�(BBB)
∫
R
d×d
sym

|DDD(vη)− ζ|ρη(DDD(vη)− ζ)dζ.

(3.13)

Hence, using the strong convergence (3.7) we see that the right-hand side of (3.13)
tends to zero as η → 0 and we get

lim inf
η→0

(SSSη(t, x,DDDvη)− SSS∗(t, x,BBB)) · (DDD(vη)−BBB) ≥ 0 for a.a. (t, x) ∈ Q ,(3.14)

which, due to the strong convergence ofDDD(vη) and weak* convergence of SSSη(x,DDD(vη)),
yields that for all BBB ∈ R

d×d
sym and for a.a. (t, x) ∈ Q

(3.15) (SSS� − SSS∗(t, x,BBB)) · (DDD(v�)−BBB) ≥ 0 .

Thus, by Lemma 2.2, we conclude that

(DDD(v�),SSS�) ∈ A(t, x) for a.a. (t, x) ∈ Q .
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3.3. Limit � → ∞. Similarly as in the preceding subsection, multiplying the
ith equation in (3.10) by c�i and summing the result over i = 1, . . . , � and integrating
over (0, t), we get

1

2
‖v�(t)‖22 +

∫
Qt

1

n
|v�|2q′+SSS� ·DDD(v�) dx dτ + γ∗

∫ t

0

‖v�‖22,∂Ωdτ

=

∫ t

0

〈b,v�〉dτ + 1

2
‖v�(0)‖22.

(3.16)

Similarly as above, this relation implies

sup
t∈(0,T )

‖v�(t)‖22 +
∫
Q

ψ(|DDD(v�)|) + ψ∗(|SSS�|) + 1

n
|v�|2q′ dx dt

+ γ∗
∫ T

0

‖v�‖22,∂Ω dt ≤ C(b,v0,m) ≤ C.

(3.17)

As an easy consequence of (1.34), the Korn inequality, and the standard interpolation,
we also get that

(3.18)

∫
Q

|∇v�|q + |SSS�|r′ + |v�| (d+2)q
d dx dt ≤ C.

The next step concerns the uniform estimate on the time derivative of v�. Since
now we are taking the limit in infinite-dimensional space, such an estimate is not as
trivial as in preceding subsection. First, we define

(3.19) z := max

{
r,

(d+ 2)q

(d+ 2)q − 2d
, 2q′

}
.

In what follows, we will show that v�,t is bounded in Lz
′
(0, T ;V∗

div). To establish such

a uniform bound we use the fact that for any u ∈ Vdiv we have (v�,t,u) = (v�,t, P
�(u)).

Consequently, by using (3.10) and the continuity of P � (3.2), we have

‖v�,t(t)‖V∗
div

:= sup
{u;‖u‖Vdiv

=1}
(v�,t, P

�(u))

≤ sup
u

∣∣∣∣((v� ⊗ v�),∇P �(u)) + 〈b, P �(u)〉 − (SSS�,DDD(P �(u))).

− 1

n
(|v�|2q′−2v�, P �(u))− γ∗(v�, P �(u))∂Ω

∣∣∣∣.
(3.20)

In order to estimate the right-hand side of (3.20) we first note that Vdiv ↪→W 1,∞ and
then observe that∣∣∣∣

∫
Ω

SSS� ·DDD(P �(u)) dx
∣∣∣∣ ≤ C‖SSS�‖r′‖DDD(P �(u))‖z ≤ C‖SSS�‖r′ ,∣∣∣∣

∫
Ω

(v� ⊗ v�) · ∇P �(u) dx
∣∣∣∣ ≤ ‖v� ⊗ v�‖ (d+2)q

2d

‖∇P �(u)‖z ≤ C‖v�‖2(d+2)q
d

,

1

n

∣∣∣∣
∫
Ω

|v�|2q′−2v� · P �(u) dx
∣∣∣∣ ≤ C

n
‖v�‖2q′−1

2q′ ‖P �(u)‖z ≤ C

n
‖v�‖2q′−1

2q′ .
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To handle the right-hand side term we have (note that q ≤ r)

∣∣〈b, P �(u)〉∣∣ ≤ ‖b‖−1,q′‖P �(u)‖1,q ≤ C‖b‖−1,q′ .

And finally, for the boundary term, we have the estimate

γ∗
∣∣(v�, P �(u))∂Ω∣∣ ≤ Cγ∗‖v�‖2,∂Ω‖P �(u)‖2,∂Ω ≤ γ∗C‖v�‖2,∂Ω.

Using all these estimates in (3.20) and then taking the z′ power, integrating the result
with respect to t ∈ (0, T ), and using a priori estimates (3.17)–(3.18), we obtain the
uniform bound

(3.21) ‖v�,t‖Lz′(0,T ;V∗
div)

≤ C.

Having (3.17) and (3.21) and using the Aubin–Lions lemma, we can extract a not
relabeled subsequence such that

v� → v strongly in Lq(0, T ;L2(Ω)d),(3.22)

v�
∗
⇀ v weakly∗ in L∞(0, T ;L2(Ω)d),(3.23)

DDD(v�)
∗
⇀ DDD(v) weakly∗ in Lψ(Q)d×d,(3.24)

v� ⇀ v weakly in Lq(0, T ;W 1,q
n,div),(3.25)

SSS�
∗
⇀ SSS weakly∗ in Lψ

∗
(Q)d×d,(3.26)

SSS� ⇀ SSS weakly in Lr
′
(0, T ;Lr

′
(Ω)d×d),(3.27)

v�,t ⇀ v,t weakly in Lz
′
(0, T ;V∗

div),(3.28)

|v�|2q′−2v� ⇀ |v|2q′−2v weakly in L
2q′

2q′−1 (Q)d,(3.29)

v� ⇀ v weakly in L2(0, T ;L2(∂Ω)d).(3.30)

Having all these convergence results, it is then easy to show that

〈v,t,w〉+ 1

n

(
|v|2q′−2v,w

)
+ (SSS,DDD(wi))− (v ⊗ v,DDD(w))

+ γ∗(v,w)∂Ω = 〈b,w〉 for all w ∈ Vdiv and a.a. t ∈ (0, T ),
(3.31)

and that

lim
t→0+

‖v(t)− v0‖22 = 0.

Moreover, using the density of Vdiv in any W 1,q
n,div, we can conclude that (3.31) holds

for all w ∈ Y , where Y := {u ∈ W 1,z
n,div;u ∈ L2(∂Ω)d} with z defined in (3.19). Note

that the space Y is well defined since we assume that q > 2d
d+2 . Moreover, we can

repeat the procedure as in (3.20), and by using (3.17) and (3.18), we can deduce that

(3.32) ‖v,t‖Lz′(0,T ;Y ∗) ≤ C.

To finish this subsection, we need to show that (DDD(v),SSS) ∈ A(t, x) for a.a. (t, x) ∈ Q.
To do so, we set in (3.31) w := �ε ∗ �ε ∗ vj for some j ∈ N and for some standard
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symmetric mollifier �ε depending only on time t. Here, ∗ denotes the standard convo-
lution operator with respect to the time variable, i.e., for ϕ ∈ L1(0, T ;X) and ϕ ≡ 0
on R \ (0, T )

(� ∗ ϕ)(t) =
∫ ∞

−∞
�ε(t− τ)ϕ(τ)dτ .

Hence, if we define vε,j
def
= �ε ∗ �ε ∗ vj , we get after integration over (s0, s) ⊂ (0, T )

with ε < 1
2 min{s0, T − s}∫ s

s0

〈v,t,vε,j〉 dt−
∫ s

s0

(v ⊗ v,DDD(vε,j)) dt+

∫ s

s0

(SSS,DDD(vε,j)) dt

+ γ∗
∫ s

s0

(v,vε,j)∂Ω dt+
1

n

∫ s

s0

(|v|2q′−2v,vε,j) dt =

∫ s

s0

〈b,vε,j〉 dt.
(3.33)

The sequence of functions {vε,j} is weakly convergent to vε in Lq(0, T ;W 1,q
n,div) as

j → ∞, and since the space Lψ(Q)d×d is reflexive, then∇vε,j is also weakly convergent
in Lψ(Q)d×d. Moreover, we also have that vε,j converges weakly to vε in L2q′(Q)d.
Consequently, taking the limit in (3.33) j → ∞ we find that

lim
j→∞

∫ s

s0

〈v,t,vε,j〉 dt−
∫ s

s0

(v ⊗ v,DDD(vε)) dt+

∫ s

s0

(SSS,DDD(vε)) dt

+ γ∗
∫ s

s0

(v,vε)∂Ω dt+
1

n

∫ s

s0

(|v|2q′−2v,vε) dt =

∫ s

s0

〈b,vε〉 dt.
(3.34)

Then, we can observe that for a.a. s0, s such that 0 < s0 < s < T it follows that

lim
j→∞

∫ s

s0

〈v,t,vε,j〉 dt = lim
j→∞

∫ s

s0

〈v,t, (�ε ∗ �ε ∗ vj)〉 dt

= lim
j→∞

∫ s

s0

〈(�ε ∗ v,t), (�ε ∗ vj)〉 dt =
∫ s

s0

((�ε ∗ v),t, (�ε ∗ v)) dt

=

∫ s

s0

1

2

d

dt
‖�ε ∗ v‖22 dt =

1

2
‖�ε ∗ v(s)‖22 −

1

2
‖�ε ∗ v(s0)‖22.

Next, we take the limit ε→ 0 and obtain for a.a. s0, s, namely for all Lebesgue points
of the function v(t), that

(3.35) lim
ε→0

lim
j→∞

∫ s

s0

〈v,t,vε,j〉 dt = 1

2
‖v(s)‖22 −

1

2
‖v(s0)‖22.

Next, we focus on taking the limit ε→ 0 in the remaining terms in (3.34). First, note
that due to a priori estimates (3.22)–(3.29) the limiting procedure in the second, the
fourth, the fifth, and the sixth terms is quite standard. Also note that since div v = 0
we have that (v ⊗ v,∇v) = 0. It remains to discuss the convergence result for the
third term in (3.34). First, it is easy to observe that∫ s

s0

(SSS, (�ε ∗ �ε ∗DDD(v))) dt =
∫ s

s0

((�ε ∗ SSS), (�ε ∗DDD(v))) dt.

Both of the sequences {�ε ∗ SSS} and {�ε ∗DDD(v)} converge in measure in Q due to [28,
Prop. 2.3]. Moreover, since ψ and ψ∗ are convex nonnegative functions, then the weak
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lower semicontinuity and estimate (3.5) imply that the integral

∫ T

0

∫
Ω

ψ(|DDD(v)|) + ψ∗(|SSS|) dx dt

is finite. By [28, Prop. 2.4], the sequences {�ε ∗ S̄SS} and {�ε ∗ DDDv} are uniformly
bounded, and according to [28, Lem. 2.1], we have

�ε ∗DDD(v) → DDD(v) modularly in Lψ(Qs0,s)
d×d,

�ε ∗ SSS → SSS modularly in Lψ
∗
(Qs0,s)

d×d ,

where Qs0,s := (s0, s)× Ω. Applying [28, Prop. 2.2] allows us to conclude that

(3.36) lim
ε→0

∫ s

s0

((�ε ∗ SSS), (�ε ∗DDD(v))) dt =
∫ s

s0

(SSS,DDD(v)) dt.

Consequently, we can take the limit ε→ 0 in (3.34) and obtain that

(3.37)
1

2
‖v(s)‖22+

∫ s

s0

(SSS,DDD(v))+
1

n
‖v‖2q′2q′ + γ∗‖v‖22,∂Ω dt =

∫ s

s0

〈b,v〉 dt+ 1

2
‖v(s0)‖22

is valid for a.a. 0 < s0 < s < T . Since we already know that the initial condition
is attained in L2(Ω)d, we can set in (3.37) lims0→0+ (here the limit is taken over all
possible s0) and we can conclude that

(3.38)
1

2
‖v(t)‖22 +

∫ t

0

(SSS,DDD(v)) +
1

n
‖v‖2q′2q′ + γ∗‖v‖22,∂Ω dτ =

∫ t

0

〈b,v〉 dτ + 1

2
‖v0‖22 .

On the other hand, letting � → ∞ in (3.16) and using weak lower semicontinuity of
norms it is easy to deduce with the help of (3.22)–(3.29) that

lim sup
�→∞

∫ t

0

(SSS�,DDD(v�)) dτ ≤ −
∫ t

0

1

n
‖v‖2q′2q′ − γ∗‖v‖22,∂Ω + 〈b,v〉 dτ

+
1

2
‖v0‖22 −

1

2
‖v(t)‖22.

(3.39)

Consequently, comparing (3.38) and (3.39) we get for a.a. t ∈ (0, T ) that

(3.40) lim sup
�→∞

∫
Qt

SSS� ·DDD(v�) dx dτ ≤
∫
Qt

SSS ·DDD(v) dx dτ.

Thus, by virtue of Lemma 2.4 we observe that (DDD(v),SSS) ∈ A(t, x) for a.a. (t, x) ∈ Q.

3.4. Limit n → ∞. In this subsection, (vn,SSSn) denotes the couple satisfying
(3.31). From weak lower semicontinuity of norms, convexity of ψ and ψ∗, and (3.17),
(3.18), and (3.32) we observe that

sup
t∈(0,T )

‖vn(t)‖22 +
∫
Q

ψ(|DDD(vn)|) + ψ∗(|SSSn|) + 1

n
|vn|2q′ dx dt

+

∫ T

0

‖∇vn‖qq + ‖SSSn‖r′r′ + ‖vn‖
(d+2)q
d

(d+2)q
d

+ γ∗‖vn‖22,∂Ω dt
+ ‖vn,t‖Lz′(0,T ;Y ∗) ≤ C.

(3.41)
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Furthermore, we introduce the pressure: for a.a. t ∈ (0, T ) we define {pn1} and {pn2}
through

pn1 := L1(SSSn),

pn2 := −L1(vn ⊗ vn) + γ∗L2(vn) +
1

n
L3(|vn|2q′−2vn)− L4(b),

where the operators Li are defined in Lemma C.1. Note that it is exactly the same
as solving, for all ϕ ∈ W 2,∞(Ω) such that ∇ϕ · n = 0 on ∂Ω, the following problems
(for a.a. times in (0, T )):

(3.42) (pn1 ,�ϕ) = (SSSn,∇2ϕ),

∫
Ω

pn1dx = 0 ,

(pn2 ,�ϕ) = −(vn ⊗ vn,∇2ϕ) + γ∗(vn,∇ϕ)∂Ω +
1

n
(|vn|2q′−2vn,∇ϕ)

− 〈b,∇ϕ〉 ,
∫
Ω

pn2dx = 0 .
(3.43)

Note that we include in the right-hand side of (3.43) the terms that are compact.
Setting pn := pn1 + pn2 , we observe (applying the result of Lemma C.1) that

pn ∈ L1+ε(0, T ;L1+ε(Ω)) with an ε > 0 and
∫
Ω p

n dx = 0 for a.a. t ∈ (0, T ). In
addition, for fixed vn and SSSn, the pressure pn constructed by the above scheme is
unique and satisfies (this can be deduced by using the Helmholtz decomposition)

〈vn,t,w〉+ (SSSn,DDD(w))− (vn ⊗ vn,DDD(w)) + γ∗(vn,w)∂Ω + 1
n (|vn|2q

′−2vn,w)

= (pn, divw) + 〈b,w〉 for all w ∈ W 1,∞
n and a.a. t ∈ (0, T ).

(3.44)

Next, we use (3.41) and with the help of Lemma C.1 we establish uniform estimates
for the pressures. First, since ψ satisfies Δ2- and ∇2-conditions, we can use (C.9) to
get for a.a. t ∈ (0, T ) that∫

Ω

ψ∗(pn1 ) dx ≤ C

(
1 +

∫
Ω

ψ∗(|SSSn|) dx
)
.

Consequently, integrating the result with respect to time and using (3.41), we deduce
that

(3.45)

∫
Q

ψ∗(pn1 ) dx dt ≤ C.

To estimate pn2 , we refer to Lemma C.1 with z defined in (3.19): thus for a.a. t ∈ (0, T )
(see [15], where such an estimate is derived directly) we have

‖pn2‖z′ ≤ C

(
‖vn‖22z′ + γ∗‖vn‖ z′

d′ ,∂Ω
+

1

n
‖|vn|2q′−1‖

max( 2q′
2q′−1

, dz
′

d+z′ )
+ ‖b‖−1,z′

)
.

Due to the definition of z, we can use a continuous embedding to conclude that

‖pn2‖z′ ≤ C

(
‖vn‖2q(d+2)

d

+ γ∗‖vn‖2,∂Ω + ‖b‖−1,q′ +
1

n
‖vn‖2q′−1

2q′

)
.
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Hence, applying the z′-power, using the definition of z, integrating with respect to
time, and using (3.41) we get that

(3.46)

∫
Q

|pn2 |z
′
dx dt ≤ C.

Finally, using all estimates above and (3.44) we can get that

(3.47)

∫ T

0

‖vn,t‖z
′

(W 1,z
n )∗ dt ≤ C.

As a consequence of the uniform estimates (3.41), (3.45), (3.46), (3.47) and the Aubin–
Lions lemma, we can find not relabeled subsequences such that

vn → v strongly in Lq(0, T ;Wα,q(Ω)d) for all α ∈ [0, 1),(3.48)

vn
∗
⇀ v weakly∗ in L∞(0, T ;L2(Ω)d),(3.49)

DDD(vn)
∗
⇀ DDD(v) weakly∗ in Lψ(Q)d×d,(3.50)

vn ⇀ v weakly in Lq(0, T ;W 1,q
n,div),(3.51)

SSSn
∗
⇀ SSS weakly ∗ in Lψ

∗
(Q)d×d,(3.52)

SSSn ⇀ SSS weakly in Lr
′
(0, T ;Lr

′
(Ω)d×d),(3.53)

vn,t ⇀ v,t weakly in Lz
′
(0, T ; (W 1,z

n )∗),(3.54)

1

n
|vn|2q′−2vn → 0 strongly in L1(Q)d,(3.55)

pn1 ⇀ p1 weakly in L1(0, T ;L1(Ω)) ∩ Lψ∗
(Q),(3.56)

pn2 ⇀ p2 weakly in Lz
′
(0, T ;Lz

′
(Ω)),(3.57)

vn ⇀ v weakly in L2(0, T ;L2(∂Ω)d).(3.58)

Next, using the trace theorem (Lemma D.1), (3.48), and (3.58), we can deduce that

vn → v strongly in Ls(0, T ;Ls(∂Ω)d) for all s ∈ [1, 2).(3.59)

Moreover, using the construction of the pressure and continuity of the operators Li
(see also [15, p. 700] for details) we can deduce from (3.41), (3.43), (3.48), (3.55),
(3.57), and (3.59) that

pn2 → p2 strongly in Ls(0, T ;Ls(Ω)) for all s ∈ [1, z′).(3.60)

Having all these convergence results, it is then easy to show that

〈v,t,w〉+ (SSS,DDD(w))− (v ⊗ v,DDD(w)) + γ∗(v,w)∂Ω = 〈b,w〉+ (p, divw)

for all w ∈W 1,1
n such that DDD(w) ∈ L∞(Ω)d×d and a.a. t ∈ (0, T ).

(3.61)

Thus, to finish the proof, it remains to show that (DDD(v),SSS) ∈ A(t, x) for a.a. (t, x) ∈ Q.
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To do that we apply Lemma 2.5. Indeed, we define

un := vn − v,

HHHn := −SSSn + pn1 III,

HHH := −SSS+ p1III,

H̄HH := SSS∗(t, x,DDD(v)),

fn := − 1

n
|vn|2q′−2vn,

GGGn := vn ⊗ vn − v ⊗ v + (pn2 − p2)III .

Hence, using (3.44), (3.61), (3.48)–(3.60), we see that all assumptions of Lemma 2.5
are satisfied. Then for some nonnegative ϕ ∈ D(Ω) and η ∈ D(0, T ) we define Q2 as
the set where η(t)ϕ(x) ≡ 1 and Q1 := supp ηϕ. Then for such a given set Q1 and
given λ∗ and k we can find a sequence {un,k}∞n=1 from Lemma 2.5 such that

DDD(un,k)
∗
⇀ 0 weakly∗ in L∞(Q1)

d×d,

un,k → 0 strongly in Ls(Q1)
d for all s <∞.

(3.62)

Next, we set in (3.44) w := un,kϕη and integrate the result with respect to time
(0, T ). Moreover, having (3.62), we see that we can add and subtract the limiting
identity (3.61) to deduce that

lim
n→∞

∫ T

0

〈un,t,un,kϕ〉η − (HHHn,DDD(un,k)ϕ)η dt

= lim
n→∞

∫
Q

GGGn ·DDD(un,kϕ)η +HHHn · (un,k ⊗∇ϕ)η + fn · un,kϕη dx dt.
(3.63)

Due to the strong convergence of GGGn, un,k, and fn we observe that

lim
n→∞

∫ T

0

〈un,t,un,kϕ〉η − (HHHn,DDD(un,k)ϕ)η dt = 0.(3.64)

Consequently, using (2.28) we find that

lim sup
n→∞

−
∫
Q\Enk

HHHn ·DDD(un,k)ϕη dt ≤ C(ϕ, η)

(
λ∗

ψ(λ∗)
+

1

k

)β
.(3.65)

Therefore, using the definition of Q \ Enk and HHHn we get that (note that the pressure
term vanishes since trDDD(vn − v) = 0 a.e. in Q)

lim sup
n→∞

∫
Q\Enk

(SSSn − SSS) ·DDD(vn − v)ϕη dt ≤ C(ϕ, η)

(
λ∗

ψ(λ∗)
+

1

k

)β
.

Using (3.50) and again (2.28) we can also deduce from this relation that

lim sup
n→∞

∫
Q\En

k

(SSSn − SSS∗(t, x,DDD(v)) ·DDD(vn − v)ϕη dt ≤ C(ϕ, η)

(
λ∗

ψ(λ∗)
+

1

k

)β
.
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Since the graph A is monotone, we observe that the previous estimate, the uniform
bound (3.41), the estimate (2.26), and the Hölder inequality imply that

lim sup
n→∞

∫
Q

|(SSSn − SSS∗(t, x,DDD(v))) ·DDD(vn − v)ϕη| 12 dx dt ≤ lim sup
n→∞

∫
Q\Enk

· · ·+
∫
Enk

· · ·

≤ C(ϕ, η)

(
λ∗

ψ(λ∗)
+

1

k

) β
2

+ lim sup
n→∞

√
|Enk | ≤ C(ϕ, η)

(
λ∗

ψ(λ∗)
+

1

k

) β
2

+
C(ϕ, η)√
ψ(λ∗)

.

Consequently, letting λ∗ → ∞ we obtain that

lim sup
n→∞

∫
Q2

|(SSSn − SSS∗(t, x,DDD(v))) ·DDD(vn − v)| 12 dx dt = 0 .

Since Q2 was chosen arbitrarily, we can deduce that at least for subsequence

(3.66) gn := (SSSn − SSS∗(t, x,DDD(v))) ·DDD(vn − v) → 0 a.e. in Q.

Next, we apply a biting lemma (see [4, p. 655]) to conclude that there is a g ∈ L1(Ω),
a subsequence of {gn} (that we do not relabel), and a nonincreasing sequence of sets
Ej ⊂ Q such that limj→∞ |Ej | = 0 so that for arbitrary j we have

gn ⇀ g weakly in L1(Q \ Ej).
The last statement is equivalent to the following condition (see [21, Chap. 8, Thm.
1.3]):

(3.67)

For all η > 0 there is δ > 0: if F ⊂ Q \ Ej and |F | < δ, then sup
n

∫
F

gndx ≤ η .

Referring to Vitali’s theorem, we deduce from (3.66) and (3.67) that

gn → 0 strongly in L1(Q \ Ej).
Consequently, using (3.50) we can finally deduce that

lim sup
n→∞

∫
Q\Ej

SSSn ·DDD(vn) dx dt =
∫
Q\Ej

SSS ·DDD(v) dx dt.

Therefore applying Lemma 2.2 we get that (DDD(v(t, x)),SSS(t, x)) ∈ A(t, x) for a.a.
(t, x) ∈ Q \ Ej . Since the measure of Ej tends to zero, we immediately observe
that (DDD(v(t, x)),SSS(t, x)) ∈ A(t, x) for a.a. (t, x) ∈ Q, which completes the proof.

Appendix A. Parabolic Lipschitz approximation of Sobolev functions.
In this section we recall the key tool used in the proof of the main theorem. It is a
generalization of the result established in [19] within the framework of the standard
Lebesgue spaces to the framework using Orlicz spaces.

We start with the definition of the modified parabolic metric dα on R
d+1 and

corresponding balls. For X,Y ∈ R
d+1, where X := (t, x), Y := (s, y), and for R > 0,

α > 0, A ⊂ R
d+1 we define

dα(X,Y ) := max
(
|x− y|, |t−s|1/2

α1/2

)
,

QαR(X) :=
{
Y ∈ R

d+1; dα(X,Y ) < R
}
,

diamαA := sup
X,Y ∈A

dα(X,Y ).
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For 0 ≤ g ∈ Lψ(Q) we introduce the parabolic maximal functions M(g) and Mα(g)
through

M(g)(t, x) := sup
0<ρ<∞

−
∫
(t−ρ,t+ρ)

(
sup

0<R<∞
−
∫
BR(x)

g(s, y) dy

)
ds,

Mα(g)(t, x) := sup
QαR(t,x)

−
∫
QαR(t,x)

g(s, y) dy ds.

Note that M and Mα share the property

Mα(g) ≤ M(g) in R
d+1(A.1)

and we have the estimate∫
Q

ψ(M(g)) dx dt ≤ C

∫
Q

ψ(g) dx dt,(A.2)

provided that ψ satisfies ∇2- and Δ2-conditions. We refer the reader to [34, Thm.
2.1.1, p. 33]. It, however, also holds (see [13]) that

(A.3) |{(t, x) ∈ Q;Mα(g)(t, x) > Λ}| ≤ C(Q)Λ−1

∫
Q

g dx dt.

Lemma A.1 (covering lemma). Let E ⊂ R
d+1 be an open bounded set. Then

there exist a countable family of cubes {QαRi(Xi)}i∈N and a family of smooth functions
{ζi}i∈N such that

∞⋃
i=1

QαRi/2 =

∞⋃
i=1

QαRi = E,

4Ri ≤ dα(Xi, ∂E) ≤ 8Ri for all i ∈ N with 0 < Ri < 1,(A.4)

Rj > 2Ri ⇒ QαRi(Xi) ∩QαRj(Xj) = ∅,
QαRi/4(Xi) ∩QαRj/4(Xj) = ∅ for all i, j ∈ N, i �= j,

ζi ∈ C∞
0 (Qα2Ri/3(Xi)) for all i ∈ N,

αR2
i |∂tζi|+Ri|∇ζi| ≤ C(d) in R

d+1 for all i ∈ N,
∞∑
i=1

ζi(X) = 1 for all X ∈ E.

Moreover, defining Ai := {j ∈ N : Qα2Ri
3

(Xi) ∩Qα2Rj
3

(Xj) �= ∅}, we have

card(Ai) ≤ C(d) for all i ∈ N,

QαRj (Xj) ⊂ Qα4Ri(Xi) ⊂ E for all j ∈ Ai.(A.5)

Proof. The proof can be found in [19]; note that it suffices to combine all infor-
mation from Lemma 3.1 in [19] and Lemma C.1 in [19] together with the estimates
(3.4)–(3.7) in [19].

We also introduce the notation for mean value over an arbitrary set A for an
integrable function u:

uA := −
∫
A

u dx dt.
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Lemma A.2 (Poincaré inequality [13]). Let u, f ∈ L1(QαR) and ∇u, q ∈ L1(QαR)
d

satisfying

(A.6) −
∫
QαR

uφ,t =

∫
QαR

q · ∇φ+

∫
QαR

fφ for all φ ∈ C∞
0 (QαR).

Then

(A.7)

∫
QαR

|u− uQαR | ≤ CR

(∫
QαR

|∇u|+ α|q|+ αR|f |
)
.

Finally, let E ⊂ Q be an open set, and let u ∈ L1(Q). Let {QαRi} be the covering
of E from Lemma A.1 and {ζi} be the corresponding partition of unity. Then we
introduce the following truncation operator LαE such that

LαEu(t, x) :=

⎧⎪⎨
⎪⎩
u(t, x) if (t, x) ∈ Q \ E,
∞∑
i=1

uQαRi
ζi(t, x) if (t, x) ∈ E.

(A.8)

It is easy to observe (see Lemma 3.11 in [19]) that for all 1 ≤ a <∞

(A.9)

∫
Q

|LαEu|a dx dt ≤ c(a)

∫
Q

|u|a dx dt.

The last lemma of this subsection concerns the most important behavior of the
operator LαE .

Lemma A.3. Let Ω be an open bounded set in R
d. Assume that u ∈ L∞(0, T ;

L2(Ω)), ∇u ∈ Ls(Q)d, and q ∈ Ls(Q)d for some s > 1 are such that

u,t = div q

in the sense of distribution. Moreover, let E ⊂⊂ Q be an open set such that

(A.10) Mα(|∇u|) + αMα(|q|) ≤ C∗ <∞ a.e. in Q \ E.
Then for any Q′ ⊂⊂ Q there exists C(α, d, C∗, Q′) such that

‖∇LαEu‖L∞(Q′) ≤ C,

‖ (LαEu),t (LαEu− u)‖L1(Q′) ≤ C,
(A.11)

and for all φ1 ∈ C∞
0 (Ω) and all φ2 ∈ C∞

0 (0, T ) we have

∫ T

0

〈u,t,LαEuφ1〉φ2 dt = −1

2

∫
Q

(LαEu)2φ1(φ2),t dx dt

−
∫
Q

(u− LαEu) (LαEu),t φ1φ2 dx dt

−
∫
Q

(u− LαEu)LαEuφ1 (φ2),t dx dt.

(A.12)

Proof. The proof of (A.11) can be found in [19, Thm. 3.9, p. 15]. For the identity
(A.12) see [13, Lem. A.4].
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Appendix B. Estimates for the Neumann problem.
Lemma B.1. Let Ω ⊂ R

d be an open bounded set of class C1,1. Assume that
ψ is an N -function satisfying ∇2- and Δ2-conditions. Then there are D1, D2 > 0
depending only on Ω, C1, and β such that for any f ∈ Lψ(Ω) with

∫
Ω f dx = 0 there

is a unique u ∈ W 2,1(Ω) solving

−�u = f in Ω,

∇u · n = 0 on ∂Ω,∫
Ω

ψ(|∇2u|) dx ≤ D1

∫
Ω

ψ(|f |) dx+D2.

(B.1)

Note that there are numerous similar results for the Dirichlet boundary data
or others where (B.1)3 is proved locally; see, e.g., [32]. However, to the best of
our knowledge, the result for the Neumann problem that holds globally, up to the
boundary, seems to not be available in the mathematical literature. This is why we
include the proof here.

Before proving Lemma B.1, we note that there is an alternative way to prove the
result using the Marcinkiewicz interpolation theorem; see [11], where the author does
not even use the Orlicz spaces but proves an interpolation theorem for more general
spaces (that, however, cover Orlicz spaces satisfying ∇2- and Δ2-conditions). The
statement is, however, again focused on a homogeneous Dirichlet problem and cannot
be directly applied to our setting.

Proof. We consider ψ̃ satisfying the “sharp” ∇2- and Δ2-conditions: there are
β > 0 and C1 > 0 such that for all s ∈ R+

(B.2) ψ̃(s) ≤ ψ̃(2s)

21+β
≤ C1ψ̃(s)

21+β
.

We shall show below that for such ψ̃’s we have∫
Ω

ψ̃(|∇2u|) dx ≤ D1

∫
Ω

ψ̃(|f |) dx.(B.3)

If ψ is a general N -function satisfying ∇2- and Δ2-conditions, we can find ψ̃ that
is also an N -function, ψ̃(s) = ψ(s) for all s ≥ 1, and ψ̃ satisfies the “sharp” conditions
(B.2). Setting (by ψ′

+ we mean the right-hand side derivative13)

q :=
ψ′
+(1)

ψ(1)

and defining for all s ∈ [0, 1]

ψ̃(s) := ψ(1)sq,

we first notice that necessarily q > 1; otherwise ψ is not an N -function. Then it is
evident that ψ̃ is also an N -function. Moreover, it satisfies the sharp conditions for
all s ∈ (0, 1). Hence we need to show that it also satisfies these conditions for s ≥ 1.
But the ∇2-condition is valid since ψ satisfies it. On the other hand, since ψ satisfies
Δ2-condition for all s, it is evident that ψ̃ satisfies sharp Δ2-condition for all s ≥ 1.

13Since ψ is convex and locally Lipschitz and its effective domain is equal to R, its left-hand side
derivative and right-hand side derivative exist at all points.
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Hence, we see that ψ̃ satisfies both Δ2- and ∇2-sharp conditions. From (B.3) we
easily conclude that (B.1)3 holds with D2 = 2ψ(1)|Ω|.

To complete the proof we need to prove (B.3) for ψ̃ fulfilling (B.2). For this pur-
pose we modify particular steps of the proof for the standard Marcinkiewicz theorem.
First, we assume that ψ̃ and f are smooth and show (B.3) for such a ψ̃. Since the
estimate will not depend on how smooth ψ̃ is, we can then easily extend the result for
all ψ̃ satisfying ∇2- and Δ2-conditions. Hence, for arbitrary nonnegative measurable
g, we denote

μg(t) := |{x ∈ Ω; g(x) > t}|.
Then as a direct consequence of this definition we get that

(B.4)

∫ ∞

0

ψ̃′
+(t)μg(t) dt =

∫
Ω

ψ̃(g(x)) dx.

Next, using the standard Lr theory for (B.1), we know that for any r ∈ (1,∞) there
exists Cr > 0 such that any solution u of (B.1) satisfies (for proof see [26, Chap. 2])

(B.5)

∫
Ω

|∇2u|r dx ≤ Cr

∫
Ω

|f |r dx.

Moreover, it is evident that (−�)−1 is a linear operator. Next, we define f1(t, x) and
f2(t, x) such that

f1(t, x) := f(x)χ{|f(x)|≤t} −−
∫
Ω

f(x)χ{|f(x)|≤t} dx,

f2(t, x) := f(x)χ{|f(x)|>t} −−
∫
Ω

f(x)χ{|f(x)|>t} dx.
(B.6)

Note that f1(t, x) + f2(t, x) = f(x) for all t. Then for each fi we find ui as

(B.7) u1(t, x) := (−�)−1f1(t, x), u2(t, x) := (−�)−1f2(t, x),

subjected to the Neumann homogeneous data. Again, since the problems are linear,
we have u1(t, x) + u2(t, x) = u(x) for all t. Next, from the definition it follows that
for all t, f1 is bounded. Consequently, we fix some r that will be specified later, and
by using (B.5) we get that

(B.8)

∫
Ω

|∇2u1(t, x)|r dx ≤ Cr

∫
Ω

|f1(t, x)|r dx ≤ C

∫
{|f(x)|≤t}

|f(x)|r dx,

where the second inequality follows from (B.6). Moreover, it directly follows from
(B.8) that

(B.9) μ|∇2u1|(a) ≤
C
∫
{|f(x)|≤t} |f(x)|r dx

ar
.

Next, we fix some z ∈ (1, q) that will again be specified later and in the same
manner as above we derive

(B.10) μ|∇2u2|(a) ≤
C
∫
Ω |f2(t, x)|z dx

az
≤
C
∫
{|f(x)|>t} |f(x)|z dx

az
,
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which is valid for all a. Thus, combining (B.10) and (B.9) and using the fact that
u1 + u2 = u we get

μ|∇2u|(2a) ≤ μ|∇2u1|(a) + μ|∇2u2|(a)

≤
C
∫
{|f(x)|≤t} |f(x)|r dx

ar
+
C
∫
{|f(x)|>t} |f(x)|z dx

az
.

(B.11)

Setting a = t/2 (note that here one can choose a differently to get an optimal constant
in the final inequality) we have

μ|∇2u|(t) ≤ C

(∫
{|f(x)|≤t} |f(x)|r dx

tr
+

∫
{|f(x)|>t} |f(x)|z dx

tz

)
.(B.12)

Finally, multiplying (B.12) by ψ̃′
+(t) (which is nonnegative), integrating the result

with respect to t ∈ (0,∞), and using (B.4) we conclude that∫
Ω

ψ̃(|∇2u|) dx

≤ C

∫ ∞

0

(∫
{|f(x)|≤t} |f(x)|r dx

tr
+

∫
{|f(x)|>t} |f(x)|z dx

tz

)
ψ̃′
+(t) dt

=: CI1 + CI2.

(B.13)

Next, we evaluate I1 and I2. Using the Fubini theorem we have

I1 =

∫
Ω

|f(x)|r
∫ ∞

|f(x)|

ψ̃′
+(t)

tr
dt dx,(B.14)

I2 =

∫
Ω

|f(x)|z
∫ |f(x)|

0

ψ̃′
+(t)

tz
dt dx.(B.15)

Consequently, assuming that for arbitrary a > 0 we know that∫ ∞

a

ψ̃′
+(t)

tr
dt ≤ C

ψ̃(a)

ar
,(B.16)

∫ a

0

ψ̃′
+(t)

tz
dt ≤ C

ψ̃(a)

az
,(B.17)

we get from (B.13) and (B.14)–(B.15) the estimate in (B.1). Hence, it remains to
show (B.17)–(B.16). We start with (B.17). Using integration by parts, we find that∫ a

0

ψ̃′
+(t)

tz
dt =

ψ̃(a)

az
− lim
τ→0+

ψ̃(τ)

τz
+ z

∫ a

0

ψ̃(t)

tz+1
dt =

ψ̃(a)

a
+ z

∫ a

0

ψ̃(t)

tz+1
dt,

where for the second equality we use the fact that z < q and the definition of ψ̃ on
(0, 1). Hence, to prove (B.17) it remains to estimate the last term. To show it, we
first notice that from (B.2) it follows that for any α ∈ (0, 1)

(B.18) ψ̃(αs) ≤ Cα1+β ψ̃(s).

Indeed, it is clear from (B.2) that for any m ∈ N, ψ̃(2−ms) ≤ 2−(β+1)mψ̃(s). Hence
for any α ∈ (0, 1) we can find m such that α ∈ [2−m−1, 2−m). Consequently, there is
γ ∈ (0, 1) such that

α = (1− γ)2−m−1 + γ2−m.
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Thus, using the convexity of ψ̃ we have

ψ̃(αs) = ψ̃((1 − γ)2−m−1s+ γ2−ms) ≤ (1 − γ)ψ̃(2−m−1s) + γψ̃(2−ms)

≤ 2ψ̃(s)2−(β+1)m ≤ 4αβ+1ψ̃(s)

and (B.18) follows. Consequently, we also get

ψ̃(αt)

(αt)β+1
≤ Cψ̃(t)

tβ+1
=⇒ ψ̃(t1)

tβ+1
1

≤ Cψ̃(t2)

tβ+1
2

for all t1 ≤ t2 .

Hence, we finally fix z ∈ (0, 1) such that z < 1 + β and observe that∫ a

0

ψ̃(t)

tz+1
dt =

∫ a

0

1

tz−β
ψ̃(t)

t1+β
dt ≤ C

ψ̃(a)

a1+β

∫ a

0

1

tz−β
dt ≤ Cψ̃(a)

az

and (B.17) follows.
Next, we check (B.16). First, using the sharp Δ2-condition, it follows that for

any α ∈ (2k, 2k+1) there holds that

ψ̃(αs) ≤ 2Ck+1
1 ψ̃(s) ≤ 2Ck+1

1

2kq
αqψ̃(s).

Thus, we see that for all

(B.19) q ≥ ln2(2C
2
1 )

and any α ≥ 1 there holds that

(B.20) ψ̃(αs) ≤ αqψ̃(s) =⇒ ψ̃(t1)

tq1
≤ ψ̃(t2)

tq2
for all t1 ≥ t2 .

Finally, we set r := ln2(2C
2
1 ) + 2 and integrate by parts to find that∫ ∞

a

ψ̃′
+(t)

tr
dt = lim

τ→∞
ψ̃(τ)

τr
− ψ̃(a)

ar
+ r

∫ ∞

a

ψ̃(t)

tr+1
dt ≤ r

∫ ∞

a

ψ̃(t)

tr+1
dt,

where the second inequality follows from (B.20) and from our choice of r. Finally,
using a simple algebraic inequality and (B.20) with q := r − 1 we have∫ ∞

a

ψ̃(t)

tr+1
dt =

∫ ∞

a

1

t2
ψ̃(t)

tr−1
dt ≤ ψ̃(a)

ar−1

∫ ∞

a

t−2 dt =
ψ̃(a)

ar
.

Thus, the proof is complete.

Appendix C. Reconstruction of the pressure. In this part we introduce the
operators Li used in the reconstruction of the pressure given in (3.42)–(3.43).

Lemma C.1. Let Ω ⊂ R
d be a bounded domain with C1,1 boundary. Then there

are linear operators that are, for arbitrary q ∈ (1,∞) and arbitrary s ∈ ( d
d−1 ,∞),

bounded in the following sense:

L1 : Lq(Ω)d×d → Lq(Ω),(C.1)

L2 : Lq(∂Ω)d → Ld
′q(Ω),(C.2)

L3 : L
ds
d+s (Ω)d → Ls(Ω),(C.3)

L4 :W−1,q
n → Lq(Ω),(C.4)
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and the following relations hold for all ϕ ∈W 2,∞(Ω) satisfying ∇ϕ · n = 0 on ∂Ω:

(L1(BBB),�ϕ) = (BBB,∇2ϕ),

∫
Ω

L1(BBB) dx = 0,(C.5)

(L2(v),�ϕ) = (v,∇ϕ)∂Ω,
∫
Ω

L2(v) dx = 0,(C.6)

(L3(w),�ϕ) = (w,∇ϕ),
∫
Ω

L3(w) dx = 0,(C.7)

(L4(b),�ϕ) = 〈b,∇ϕ〉,
∫
Ω

L4(b) dx = 0.(C.8)

Moreover, for arbitrary N -function ψ satisfying �2- and ∇2-conditions, there exists
C > 0 depending only on Ω and ψ such that

(C.9)

∫
Ω

ψ(|L1(BBB)|) dx ≤ C

(
1 +

∫
Ω

ψ(|BBB|) dx
)
,

provided that the right-hand side of (C.9) is finite.
Proof. First, we prove the statement of lemma for the operator L1. Since D(Ω)d×d

is dense in Lq(Ω)d×d for all q ∈ [1,∞), it suffices to prove (C.1) and (C.5) only for
BBB ∈ D(Ω)d×d. For any such BBB we set

(C.10)

�L1(BBB) = div divBBB in Ω,

∇L1(BBB) · n = 0 on ∂Ω,∫
Ω

L1(BBB) dx = 0;

i.e., we can formally write L1(BBB) := (�)−1 div divBBB. Clearly, L1 is linear and continu-
ous (as a consequence of the standard theory for the Laplace equation) as a mapping
from W 2,q(Ω)d×d to W 2,q(Ω) for all q ∈ (1,∞). Moreover, multiplying (C.10) by
arbitrary ϕ ∈ W 2,s(Ω) with s ∈ (1,∞) such that ∇ϕ · n = 0 on ∂Ω and integrating
twice by parts (note that all boundary terms vanish) we get (C.5). Next, we focus on
the boundedness stated in (C.1). To show it, we find ϕ such that

(C.11)

�ϕ = |L1(BBB)|q−2L1(BBB)−−
∫
Ω

|L1(BBB)|q−2L1(BBB) dx in Ω,∫
Ω

ϕ dx = 0, ∇ϕ · n = 0 on ∂Ω.

Using the Lq theory for the Laplace equation, we know that there is a constant C > 0
depending only on Ω and q such that∫

Ω

|∇2ϕ|q′ ≤ C

∫
Ω

∣∣∣∣|L1(BBB)|q−2L1(BBB)−−
∫
Ω

|L1(BBB)|q−2L1(BBB) dx

∣∣∣∣
q′

dx

≤ C

∫
Ω

|L1(BBB)|q dx.
(C.12)

Note that since BBB is smooth, the integral on the right-hand side is finite for any
q ∈ (1,∞). Consequently, substituting ϕ into (C.5)1 and using (C.5)2, the Hölder
inequality, and the estimate (C.12), we find that

(C.13)

∫
Ω

|L1(BBB)|q dx = (BBB,∇2ϕ) ≤ ‖BBB‖q‖∇2ϕ‖q′ ≤ C‖BBB‖q‖L1(BBB)‖q−1
q
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and (C.1) follows. The proof for the operator L4 is almost the same, with the only
difference that we consider b ∈ V and by the density argument we extend the validity
of (C.4) on the whole W−1,q

n .
Next, the proof for L3 is even easier; it is enough to see that L3 is defined as

(∇L3(w),∇ϕ) = −(w,∇ϕ) for all smooth ϕ,

∫
Ω

L3(w) dx = 0.(C.14)

Thus using the theory for the Laplace equation we see that L3 is linear and bounded

even as an operator L
ds
d+s →W 1, dsd+s (Ω). Consequently, using the embedding theorem

we get (C.3).
Finally, we focus on L2. Since C(∂Ω) is dense in Lq(∂Ω) for any q ∈ (1,∞), we

prove the result only for continuous v. Then by continuity we can extend it onto the
whole Lq. Hence, we first introduce an approximative linear operator L2

ε as

(C.15)

(∇L2
ε(v),∇ϕ)Ωε = − 1

|Ωε| (v,∇ϕ)Ωε for all ϕ ∈W 1,2(Ω)ε,∫
Ωε

L2
ε(v) dx = 0,

where

Ωε := {x ∈ Ω; dist (x, ∂Ω) < ε},

and v ∈ C(Ω)d is an extension of v from ∂Ω onto Ω. Note that such an operator is
well defined. Next, we investigate the limit ε→ 0+. First, we find ϕ solving

�ϕ = |L2
ε(v)|(2d)

′−2L2
ε(v)−−

∫
Ω

|L2
ε(v)|(2d)

′−2L2
ε(v) dx in Ω,∫

Ω

ϕ dx = 0, ∇ϕ · n = 0 on ∂Ω.

Consequently, we have

‖ϕ‖2d2,2d ≤ C

∫
Ω

|L2
ε(v)|(2d)

′
dx.

Thus, using this in (C.15) and integrating by parts we find (after using the Hölder
inequality) that∫

Ω

|L2
ε(v)|(2d)

′
=

1

|Ωε| (v,∇ϕ)Ωε ≤ ‖v‖∞‖∇ϕ‖∞ ≤ C‖v‖∞‖ϕ‖2,2d

≤ C‖v‖∞‖L2
ε(v)‖(2d)

′−1
(2d)′

and consequently

(C.16) ‖L2
ε(v)‖(2d)′ ≤ C‖v‖∞.

Therefore, we can find a subsequence and L2(v) such that for ε→ 0+

L2
ε(v)⇀ L2(v) weakly in L(2d)′(Ω).
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Moreover, since v is continuous it is easy to take the limit in (C.15) and to show that
(in fact it is (C.2))

(C.17)

(L2(v),�ϕ) = (v,∇ϕ)∂Ω for all ϕ ∈W 2,2d(Ω) such that ∇ϕ ∈ W 1,2d
n ,∫

Ω

L2
ε(v) dx = 0.

To show that the operator is well defined, i.e., that the weak limit is unique and
does not depend on the extension of v, one can argue by linearity of (C.17) and the
estimates (boundedness) proved below. Thus, it remains to show that L2 fulfills (C.6).
To this end, we define for arbitrary k ∈ N

Lk := min{k, |L2(v)|}.
Then, for arbitrary q ∈ (1,∞), we look for ϕ solving

�ϕ = |Lk|d′q−1 sign L2(v)−−
∫
Ω

|Lk|d′q−1 sign L2(v) dx in Ω,∫
Ω

ϕ dx = 0, ∇ϕ · n = 0 on ∂Ω.

Consequently, for arbitrary s ∈ (1,∞), we have

(C.18) ‖ϕ‖2,s ≤ C‖|Lk|d′q−1‖s <∞,

where the second inequality follows from the fact that Lk is bounded. Thus, using
such a ϕ in (C.17) we find that (we use the Hölder inequality, the trace theorem, and
the estimate (C.18))∫

Ω

|Lk|d′q−1|L2(v)| dx = (v,∇ϕ)∂Ω ≤ ‖v‖Lq(∂Ω)d‖∇ϕ‖Lq′ (∂Ω)d

≤ C‖v‖Lq(∂Ω)d‖ϕ‖2, d′q
d′q−1

≤ C‖v‖Lq(∂Ω)d‖|Lk|d
′q−1‖ d′q

d′q−1

<∞.

Next, since Lk ≤ |L2(v)|, the above estimate directly implies that

‖Lk‖d′q ≤ C‖v‖Lq(∂Ω)d .

Thus letting k → ∞ we deduce that

‖L2(v)‖d′q ≤ C‖v‖Lq(∂Ω)d ,

which finishes the proof of the first part of the lemma.
Finally, we focus on proving (C.9) for smooth compactly supported BBB; the com-

plete estimate (C.9) is then achieved by the density argument as ψ satisfies ∇2- and
Δ2-conditions. Thus, for BBB smooth, we know that L1(BBB) belongs to any Lp(Ω)d×d for
p ∈ [1,∞). Next, we insert ϕ into (C.5), solving

�ϕ =
ψ(L1(BBB))

L1(BBB)
−−
∫
Ω

ψ(L1(BBB))

L1(BBB)
dx in Ω,∫

Ω

ϕ dx = 0, ∇ϕ · n = 0 on ∂Ω.
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Doing so and using the fact that
∫
Ω
L1(BBB) dx = 0, we find the identity∫

Ω

ψ(L1(BBB)) dx = (BBB,∇2ϕ).(C.19)

Our aim is to estimate the right-hand side of (C.19) (which is finite). Since ψ∗ satisfies
Δ2- and ∇2-conditions we can use Lemma B.1 to arrive at∫

Ω

ψ∗(|∇2ϕ|) dx ≤ D1

∫
Ω

ψ∗
(∣∣∣∣ψ(L1(BBB))

L1(BBB)
−−
∫
Ω

ψ(L1(BBB))

L1(BBB)
dx

∣∣∣∣
)
dx+D2.(C.20)

Next, we use the Δ2-condition and the Jensen inequality to estimate the right-hand
side of (C.20) and to obtain∫

Ω

ψ∗(|∇2ϕ|) dx ≤ C

(
1 +

∫
Ω

ψ∗
(
ψ(L1(BBB))

|L1(BBB)|
)
dx

)
.(C.21)

Finally, since ψ is an N -function, we can use the estimate stated in [52, Chap. II,
p. 14] and conclude that∫

Ω

ψ∗(∇2ϕ) dx ≤ C

(
1 +

∫
Ω

ψ(L1(BBB)) dx

)
.(C.22)

Thus, to estimate the right-hand side of (C.19) we use the Young inequality and the
convexity of ψ∗ and (C.22) and observe that

(BBB,∇2ϕ) ≤
∫
Ω

ψ(ε−1|BBB|) dx+

∫
Ω

ψ∗(ε|∇2ϕ|) dx

≤
∫
Ω

ψ(ε−1|BBB|) dx+ ε

∫
Ω

ψ∗(|∇2ϕ|) dx

≤
∫
Ω

ψ(ε−1|BBB|) dx+ εC

(
1 +

∫
Ω

ψ(L1(BBB)) dx

)
.

Finally, using this in (C.19) and choosing ε such that Cε = 1
2 we can move the

second term on the left-hand side, and then by using the Δ2-condition for ψ (that
is, the ∇2-condition for ψ∗) we directly obtain (C.9). The proof of Lemma C.1 is
complete.

Appendix D. Trace theorem for Sobolev–Slobodetski spaces.
Lemma D.1 (trace theorem [60]). Let Ω ⊂ R

d be a bounded Lipschitz domain.
Then there exists a continuous linear trace operator tr such that for all p ∈ (1,∞)
and α > 1

p

(D.1) tr :Wα,p(Ω) →Wα− 1
p ,p(∂Ω).

Proof. The proof of (D.1) is in fact not exactly stated in [60]. However, it
can be proved by using several theorems stated there. First, in subsection 2.2.2
(Remark 3) it is shown that Wα,p(Ω) = Λαp,p(Ω), where the first one is the Sobolev–
Slobodetski space and the second one is the Besov space. Then, in subsection 2.3.5
one can find that Λαp,q(Ω) = Bαp,q(Ω), where B

α
p,q is the Triebel space introduced in

subsection 2.3.1. Finally, in subsection 3.3.3, the trace theorem is proved in the setting

tr : Bαp,q(Ω) → B
α− 1

p
p,q (∂Ω). Combining all these facts we finally obtain (D.1).
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