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Abstract
The International Organization for Standardization (ISO) Guide to the Expression of
Uncertainty in Measurement is being increasingly recognized as a de facto
international standard. The ISO Guide recommends a standardized way of
expressing uncertainty in all kinds of measurements and provides a comprehensive
approach for combining information to evaluate that uncertainty. The ISO Guide
supports uncertainties evaluated from statistical methods, Type A, and uncertainties
determined by other means, Type B. The ISO Guide recommends classical
(frequentist) statistics for evaluating the Type A components of uncertainty; but it
interprets the combined uncertainty from a Bayesian viewpoint. This is inconsistent.
In order to overcome this inconsistency, we suggest that all Type A uncertainties
should be evaluated through a Bayesian approach. It turns out that the estimates
from a classical statistical analysis are either equal or approximately equal to the
corresponding estimates from a Bayesian analysis with non-informative prior
probability distributions. So the classical (frequentist) estimates may be used
provided they are interpreted from the Bayesian viewpoint. The procedure of the
ISO Guide for evaluating the combined uncertainty is to propagate the uncertainties
associated with the input quantities. This procedure does not yield a complete
specification of the distribution represented by the result of measurement and its
associated combined standard uncertainty. So the correct coverage factor for a
desired coverage probability of an expanded uncertainty interval cannot always be
determined. Nonetheless, the ISO Guide suggests that the coverage factor may be
computed by assuming that the distribution represented by the result of measurement
and its associated standard uncertainty is a normal distribution or a
scaled-and-shifted t-distribution with degrees of freedom determined from the
Welch–Satterthwaite formula. This assumption may be unjustified and the coverage
factor so determined may be incorrect. A popular convention is to set the coverage
factor as 2. When the distribution represented by the result of measurement and its
associated standard uncertainty is not completely determined, the
2-standard-uncertainty interval may be interpreted in terms of its minimum coverage
probability for an applicable class of probability distributions.

1. Introduction

The Guide to the Expression of Uncertainty in Measurement
is published by the International Organization for Standard-
ization (ISO) in the names of seven international scientific
organizations [1]1. It is based on specific recommendations
1 The following seven organizations supported the development of this
Guide, which is published in their names: International Bureau of

of the International Committee for Weights and Measures
(CIPM). The ISO Guide has been adopted by most of the
national metrology institutes (NMIs) and regional metrology

Weights and Measures (BIPM), International Electro-technical Commission
(IEC), International Federation of Clinical Chemistry (IFCC), International
Organization for Standardization (ISO), International Union of Pure and
Applied Chemistry (IUPAC), International Union of Pure and Applied Physics
(IUPAP), and International Organization of Legal Metrology (OIML).
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organizations (RMOs) in the world. The ISO Guide is the
basis of the Eurachem/CITAC Guide on Quantifying
Uncertainty in Analytical Measurement [2]. The American
National Standards Institute (ANSI) and the National Confer-
ence of Standards Laboratories International (NCSLI) have
adopted the ISO Guide as the US Guide [3]2. The ISO Guide
is being increasingly recognized in industrial laboratories.

1.1. Background of the ISO Guide

Before publication of the ISO Guide, many different
expressions of uncertainty were in vogue. Sometimes this
led to difficulties in interpretation of published expressions of
uncertainty, in comparing similar results whose uncertainties
were expressed differently, and in using published expressions
of uncertainty as inputs for other uncertainty evaluations.
The ISO Guide recommends that all uncertainties must
be expressed as standard uncertainties or as expanded
uncertainties. These terms are based on the following
concepts introduced by the ISO Guide (section 2 and
annex B). A measurand is a particular quantity subject to
measurement. A result of measurement is a value attributed to
the measurand. Uncertainty is a parameter associated with the
result of measurement that characterizes the dispersion of the
values that could reasonably be attributed to the measurand.
Standard uncertainty is uncertainty expressed as a standard
deviation. Expanded uncertainty is a stated multiple of the
standard uncertainty that defines an interval about the result
of measurement that may be expected to encompass a large
fraction of the distribution of values that could reasonably
be attributed to the measurand (the ISO Guide, sections 2.3.5
and 3.3.7).

The ISO Guide is based on the concept of a measurement
equation. A measurement equation is a mathematical
description of the process that is used for determining the
result of measurement and its associated standard uncertainty
from various input quantities3. The result of measurement is
determined by substituting the estimates of input quantities
in the measurement equation. The uncertainties associated
with the input estimates are components of uncertainty in
determining the result of measurement. The combined
standard uncertainty associated with the result of measurement
is determined by propagating the components of uncertainty
through a linear approximation of the measurement equation
about the input estimates.

Some components represent uncertainty arising from
random effects and others represent uncertainty arising from
systematic (non-random) effects. With advancements in
measurement science and in instruments of measurement,
the uncertainty arising from random effects in physical
measurements continues to decrease. Consequently, the
importance of uncertainty arising from systematic effects
continues to increase. Before publication of the ISO Guide,
there was no generally accepted approach to account for the
uncertainty arising from systematic effects. The ISO Guide
(section 3.2) recommends the following approach. Correct

2 The US Guide is available from NCSLI, 1800, 30th Street, Suite 305,
Boulder, CO 80301, USA (http://www.ncslinternational.org).
3 Reference on Constants, Units, and Uncertainty, Physics Lab-
oratory, National Institute of Standards and Technology, 2000
(http://physics.nist.gov/cuu/Uncertainty/basic.html).

each result of measurement for all recognized systematic
effects and make every effort to identify such effects. Quantify
the uncertainties associated with the corrections applied for
systematic effects. Include the uncertainties associated with
the corrections in the combined standard uncertainty associated
with the corrected result of measurement (NIST Technical
Note 1297 [4], sections D.2 and D.3). Some or all of the
corrections may be set to zero as expression of ignorance.
However, the uncertainties associated with the corrections
may be significant. The ISO Guide treats the uncertainty
components from random effects and from the corrections
applied for systematic effects in exactly the same way.

The ISO Guide recognizes that some components of
uncertainty may be evaluated from statistical methods and
some must be determined by other means, meaning scientific
judgment. The components of uncertainty evaluated from
statistical analysis of current measurements are referred to
as Type A, and the components of uncertainty determined by
scientific judgement based on other measurements or published
data are referred to as Type B. Generally, some components are
Type A and some Type B. So Type A uncertainties need to be
combined with Type B uncertainties to determine the combined
uncertainty associated with the result of measurement. Before
publication of the ISO Guide, this had been a sticky issue
for many metrologists. The ISO Guide resolved the issue by
declaring that no distinction should be made between Type A
and Type B components of uncertainty.

The uncertainties associated with the corrections for
systematic effects are often determined by scientific
judgement, so they are Type B evaluations. However, there is
not always a simple correspondence between the classification
of uncertainties as Type A and Type B and the classification
of uncertainties as arising from random and systematic effects
(the ISO Guide, section 3.3.3, and NIST Technical Note 1297
[4], section 2.3). This point is widely misunderstood.

1.2. Review of the ISO Guide

The ISO Guide summarizes the steps for evaluating the
combined uncertainty in its section 8. Here is a brief review
of these steps.

Step 1. Express mathematically the relationship between
the measurand Y and the input quantities Xi on which
Y depends: Y = f (X1, . . . , Xn). This function is the
measurement equation.

Step 2. Determine xi , the estimated value of input quantity
Xi , either on the basis of the statistical analysis of a series of
measurements or by other means.

Step 3. Evaluate the standard uncertainty u(xi) of each
input estimate xi from the statistical analysis of a series of
measurements or by other means.

Step 4. Evaluate the correlation coefficients associated
with any pairs of input estimates that are correlated.

Step 5. Calculate the result of measurement y for Y from
the measurement equation using for the input quantities Xi the
estimates xi . Thus, y = f (x1, . . . , xn).

Step 6. Determine the combined standard uncertainty
u(y) of the measurement result y from the standard
uncertainties and correlation coefficients associated with the
input estimates using the law of propagation of uncertainties:
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u2(y) = ∑
i c

2
i u

2(xi) + 2
∑

(i<j) cicju(xi)u(xj )r(xi, xj ),
where c1, . . . , cn are partial derivatives of Y with respect to
X1, . . . , Xn evaluated at x1, . . . , xn, respectively, and r(xi , xj )

is the correlation coefficient between Xi and Xj for i, j =
1, . . . , n and i �= j . The partial derivatives c1, . . . , cn are
sensitivity coefficients.

Step 7. If it is necessary to give an expanded uncertainty
U , whose purpose is to provide an interval [y ± U ] that may
be expected to encompass a large fraction of the distribution of
values that could reasonably be attributed to the measurand Y ,
multiply the combined standard uncertainty u(y) by a coverage
factor k to obtain U = ku(y). Select k on the basis of level
of confidence (coverage probability) required of the interval.
According to Taylor [5], the interval [y ± U ] = [y ± ku(y)]
should be referred to as an expanded uncertainty interval.
However, some metrologists prefer the term coverage interval.

Step 8. Report the result of measurement y together
with its combined standard uncertainty u(y) or expanded
uncertainty U . Describe how y, u(y), and U were obtained.

The ISO Guide prescribes a procedure for evaluating the
result of measurement y for the value Y of the measurand and
its associated combined standard uncertainty u(y) from the
estimated values x1, . . . , xn of the input quantities X1, . . . , Xn

and their associated standard uncertainties u(x1), . . . , u(xn)

when the measurement equation Y = f (X1, . . . , Xn) is
specified. This procedure does not use any information that
might be available on the probability distributions for the
input quantities X1, . . . , Xn and it does not yield a complete
specification of the probability distribution represented by y

and u(y). In this sense, the ISO Guide propagates uncertainties
rather than probability distributions.

The ISO Guide (section 6.2.2) defines the coverage
probability (level of confidence) of an expanded uncertainty
interval [y ± U ] = [y ± ku(y)] as follows:

More specifically, U is interpreted as defining
an interval about the measurement result that
encompasses a large fraction p of the probability
distribution characterized by that result and its
combined standard uncertainty, and p is the coverage
probability or level of confidence of the interval.

The word ‘characterize’ has a very specific and different
meaning in statistics than the way it is used in the ISO Guide.
So in this paper (and elsewhere), we use the word ‘represent’
instead. According to the ISO Guide (section 2.3), the
result of measurement y and its associated combined standard
uncertainty u(y) represent a probability distribution for the
values that could reasonably be attributed to the value Y of the
measurand. The ISO Guide is vague about the relationship
between the pair y and u(y) and the statistical parameters of
the probability distribution they represent. We interpret that
the distribution represented by y and u(y) is a distribution that
has expected value y and standard deviation u(y).

The ISO Guide’s definition of coverage probability
requires that the value Y of the measurand be treated as a
random variable with a specified probability distribution. The
probability distributions, such as normal (Gaussian) distribu-
tion, Student’s t-distribution, and rectangular distribution, are
described by a probability density function (pdf). The cov-
erage probability is defined with respect to a pdf for Y that

has the expected value E(Y ) = y and standard deviation
S(Y ) = u(y). The coverage probability p of the interval
[y ± ku(y)] is the probability Pr[y − ku(y) � Y � y + ku(y)]
with respect to the specified pdf for Y , where y, u(y), and k are
constants. Alternatively, Pr[−k � (Y − y)/u(y) � k] = p.
In the vernacular of the ISO Guide, the coverage probability
p is the fraction of the pdf represented by y and u(y) that is
encompassed by the interval [y ± ku(y)]. When the pdf for Y

is a normal distribution, the coverage probability p of the inter-
val [y ± 2u(y)] is about 95% (the ISO Guide, table G.2). The
coverage probability of the interval [y ± 2u(y)] with respect
to another pdf for Y may be less or more than 95%.

The ISO Guide (sections 2.3.5 and 6.3.2) recognizes that
the coverage factor k such that the interval [y ± ku(y)] has
a desired coverage probability p (or the coverage probability
p of the interval [y ± ku(y)] for a given coverage factor k)
cannot be determined unless the distribution represented by
y and u(y) and its relevant probabilities and percentiles are
known. Nonetheless, the ISO Guide (section 6.3.3 and
annex G) suggests that the coverage factor k such that the
interval [y ± ku(y)] has a desired coverage probability p

may be determined by assuming that the pdf represented
by y and u(y) is approximately normal or a scaled-and-
shifted t-distribution with degrees of freedom determined
from the Welch–Satterthwaite formula (the ISO Guide,
equation (G.2b)).

1.3. Propagation of probability distributions by numerical
simulation

An alternative to propagating uncertainties is propagating
probability distributions by numerical simulation of the
measurement equation Y = f (X1, . . . , Xn). When the proba-
bility distributions for all input variables X1, . . . , Xn are fully
specified and the measurement equation Y = f (X1, . . . , Xn)

is computable, a distribution for Y can be simulated. The sim-
ulated distribution for Y can then be used to determine the
result y, uncertainty u(y), and an interval [y ± ku(y)] with
a desired coverage probability p. There is growing interest
among metrologists in propagating distributions by numerical
simulation as an alternative to propagating uncertainties.

1.4. Relationship between the ISO Guide and the classical
and Bayesian statistics

In classical statistics, the value of the measurand is assumed
to be an unknown constant, often called the true value,
and the measurement data are random variables each with a
sampling probability distribution. Assume that the conditions
of measurement are somehow fixed at the intended levels.
Assume that the process of making measurements is repeated
infinitely many times in the fixed conditions producing
independent measurements. Assume that the dispersion of
data from repeat measurements arises from random effects
occurring in the fixed measurement conditions. Now think of
the relative frequency of realizing data in the neighbourhood
of a given measurement. A sampling distribution is a
probability distribution that describes the relative frequencies
of occurrence for all possible measurements in the fixed
measurement conditions. A sampling distribution has
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an expected value and a standard deviation among other
parameters. A classical statistical analysis starts with
an assumed sampling distribution that applies to each
measurement in a set. The measurements are generally
assumed to be independent. The metrologist relates the
expected value of the sampling distribution of measurement
data to the value of the measurand. The standard deviation
of the sampling distribution quantifies the dispersion of
all possible measurements in the fixed conditions. An
estimate for the value of the measurand is determined from
a statistical theory. The assumed sampling distribution for
the measurement data induces a sampling distribution for
the estimated value of the measurand. The primary outputs
of a classical statistical analysis are (1) an estimate for the
value of the measurand and (2) an estimate of the standard
deviation of the sampling distribution for the estimated value
of the measurand. The difference between the expected value
of the sampling distribution for the estimated value of the
measurand and the true value of the measurand is systematic
error (bias). The classic (frequentist) estimates are based on
one occurrence in measurement conditions assumed to be fixed
at the intended levels. The classical estimates do not apply to
other conditions of measurement. In classical statistics, one
cannot use scientific judgement based on other measurements
and published data.

In Bayesian statistics, the measurement data are constants
and the value of the measurand is a random variable. The
probability distribution for the value of the measurand is a
state of knowledge distribution that describes the degrees of
belief about all possible values that could be attributed to
the value of the measurand. The degrees of belief are based
on all available information including scientific judgement,
current measurements, and ancillary knowledge. Similar
state of knowledge probability distributions apply to the
other unknown quantities involved in measurement. When
we say that a variable represents state of knowledge we
mean that its probability distribution is a state of knowledge
distribution that describes belief about all possible values of the
variable based on available information. A Bayesian analysis
starts with prior distributions, which represent the states of
knowledge before measurements are made, for the values of
unknown quantities. Negligible prior knowledge is expressed
by using non-informative probability distributions. The
measurements are then used to update the prior distributions
using Bayes’ theorem [6, 7] to obtain posterior distributions.
The posterior distribution for the value of the measurand is
a probability distribution that could reasonably be attributed
to the value of the measurand after measurements are made.
A measure of centrality (such as the expected value) and
a measure of dispersion (such as the standard deviation) of
the Bayesian posterior distribution quantify, respectively, the
result of measurement and its associated standard uncertainty.
Thus, Bayesian analysis is a statistical method for updating
the state of knowledge. In Bayesian statistics, one uses
both measurement data and scientific judgement. As
additional information becomes available, Bayesian estimates
are updated via Bayes’ theorem. A more thorough discussion
of the classical and Bayesian statistics from the viewpoint of
quantifying measurement uncertainty is given in references
[8–10].

It turns out that the estimates from a classical statistical
analysis are either equal or approximately equal to the
corresponding estimates from a Bayesian analysis with the
same sampling distributions and non-informative prior (proper
or improper) probability distributions [6, 7]. Therefore,
classical (frequentist) estimates may be used in a Bayesian
framework provided they are interpreted from the Bayesian
viewpoint.

The ISO Guide does not follow completely either the
classical or the Bayesian statistics. For example, the ISO
Guide (section 4.2 and annex G) recommends the use of
classical (frequentist) statistics for evaluating the result xi

and its associated standard uncertainty u(xi). However, the
ISO Guide’s (section 6.2.2) definition of coverage probability
corresponds to the Bayesian view of uncertainty. The ISO
Guide is very clear that the interval [y ± ku(y)] is not
to be interpreted as a confidence interval and the coverage
probability (level of confidence) is not the confidence level of
classical statistics. Some metrologists, however, believe that
when all components of y and u(y) are Type A and they are
evaluated from classical statistics, the ISO Guide permits the
interval [y ± ku(y)] to be interpreted as a confidence interval
of classical statistics.

The ISO Guide (section 4.1.6) gives its interpretation of
the Type A evaluations from classical statistics and Type B
evaluations from scientific judgement as follows:

Each input estimate xi and its associated standard
uncertainty u(xi) are obtained from a distribution
of possible values of the input quantity Xi . This
probability distribution may be frequency based, that
is, based on a series of observations Xi,k of Xi , or it
may be an a priori distribution. Type A evaluations
of standard uncertainty components are founded on
frequency distributions while Type B evaluations
are founded on a priori distributions. It must be
recognized that in both cases the distributions are
models that are used to represent the state of our
knowledge.

Thus, the ISO Guide interprets the Type A evaluations
from classical (frequentist) statistics as expressions of the state
of knowledge and Type B distributions as prior probability
distributions. Hence, the ISO Guide treats all input and output
quantities of the measurement equation Y = f (X1, . . . , Xn)

as variables representing states of knowledge. The ISO Guide
does not justify its interpretation.

The main point of this paper is that the ISO Guide’s
interpretation can be justified if the Type A estimates from
classical statistical analyses are interpreted as approximations
to the corresponding estimates from Bayesian analyses
with non-informative prior distributions4 and the Type B
distributions are interpreted as Bayesian prior distributions.
This interpretation would make the ISO Guide internally
consistent and consistent with Bayesian statistics.

1.5. Problems with the ISO Guide and proposed resolutions

Many researchers are uneasy with the ISO Guide. Statistician
Gleser [11] writes, ‘The ISO recommendation has been of

4 In some cases, the classical (frequentist) estimates may be equal to the
corresponding Bayesian estimates for certain prior distributions.
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concern to many statisticians because it appears to combine
frequentist performance measures and indices of subjective
distributions in a way that neither frequentists nor Bayesians
can fully endorse’. Physicists Weise and Wöger [8] from
the Physikalisch-Technische Bundesanstalt (PTB), the national
metrology institute of Germany, do not support the use of
classical (frequentist) statistics for quantifying uncertainty in
measurement.

In this paper, we address the following problems with the
ISO Guide.

1. The probabilistic interpretation of the Type A component
of the combined standard uncertainty evaluated from
classical statistics is not consistent with the ISO Guide’s
definition of coverage probability.

2. The measurement equation and the procedure of the ISO
Guide for evaluating the combined uncertainty are not
consistent when the Type A component of the combined
standard uncertainty is evaluated from classical statistics.

3. The ISO Guide’s suggestion that the coverage factor for
a desired coverage probability may be determined from a
normal distribution or a scaled-and-shifted t-distribution
with degrees of freedom determined from the Welch–
Satterthwaite formula may be unjustified and the coverage
factor so determined may be incorrect.

We suggest that the first two problems would disappear if all
Type A components are determined through Bayesian statistics
or interpreted as approximations of Bayesian estimates. The
third problem stems from the fact that the ISO Guide’s
method of propagating uncertainties does not yield a complete
specification of the probability distribution represented by the
result of measurement and its associated standard uncertainty.
Therefore, the correct coverage factor k for a given coverage
probability p cannot always be determined (the ISO Guide,
section 6.3.2). A popular convention is to set k = 2. When
the probability distribution represented by the result y and
uncertainty u(y) is not completely determined, the 2-standard-
uncertainty interval [y ± 2u(y)] may be interpreted in terms
of its minimum coverage probability. The minimum coverage
probability of the interval [y ± ku(y)] for a given k is the
lower bound of coverage probabilities for a class of probability
distributions each of which has the expected value y and
standard deviation u(y).

1.6. Outline of this paper

In section 2, we illustrate that when the Type A component
of the combined standard uncertainty u(y) is determined
from classical statistics, the probabilistic interpretation of the
interval [y ± ku(y)] is not consistent with the ISO Guide’s
definition of coverage probability. Then, we show that when
Bayesian statistics is used, the interval [y ± ku(y)] has well-
defined coverage probability. In section 3, we illustrate
that the measurement equation and the procedure of the ISO
Guide for evaluating the combined standard uncertainty u(y)

are consistent when Bayesian statistics is used for Type A
evaluations but not when classical statistics is used. Then we
propose a revision of the ISO Guide’s steps for evaluating the
combined standard uncertainty that would make it consistent.
In section 4, we illustrate that the coverage factor k such that the
interval [y ± ku(y)] has a desired coverage probability p may

be incorrect when annex G of the ISO Guide is used. When
the distribution represented by the result y and uncertainty
u(y) is not completely determined, a popular convention is
to select the coverage factor as 2 ([4], appendix C). We will
describe the minimum coverage probability of the interval
[y ± 2u(y)] for the following two classes of probability
distributions: those that have expected value y and standard
deviation u(y) and those that are symmetric, unimodal, and
have expected value and mode y and standard deviation u(y).
In section 5, we address practical issues in using the ISO
Guide. In section 6, we address practical issues in justifying the
statistical assumptions about measurement data. A summary
appears in section 7.

2. Proposal to make the Type A uncertainties
consistent with the ISO Guide’s definition of
coverage probability

In this section, we show that the probabilistic interpretation of
the interval [y ± ku(y)] determined from classical statistics
is not consistent with the ISO Guide’s definition of coverage
probability. However, the coverage probability of the interval
[y ± ku(y)] is well defined when Bayesian statistics is used.

2.1. Uncertainty evaluated from classical statistics

Let z1, . . . , zm be a series of measurements that are subject
to both random and systematic effects for evaluating the
unknown value Y of the measurand. In classical statistics,
Y is an unknown constant and the uncertainty is about the
measurements z1, . . . , zm. We use the script symbols Y and
Z for the unknown constant parameters of classical statistics.
We assume the following about random effects in z1, . . . , zm:

Assumption 1. The measurements z1, . . . , zm are independent
random variables having the same normal distribution with
expected value Z and standard deviation σ . Here, both Z
and σ are unknown constants and σ represents the dispersion
of all possible measurements in the given conditions. The
dispersion of measurements is presumed to arise from random
effects. The common probability distribution for z1, . . . , zm is
a sampling distribution.

Let zA be the arithmetic mean of z1, . . . , zm, i.e. zA =
(1/m)

∑
i zi . Let s(z) be the experimental standard deviation

of z1, . . . , zm, i.e.

s(z) =
√∑

i (zi − zA)2

m − 1
.

Let s(zA) = s(z)/
√

m be the experimental standard deviation
of the mean zA. Then, zA is the best statistical (Type A)
estimate of Z in the sense that the expected valueE(zA) is equal
to Z and the standard deviation S(zA), which is equal to σ/

√
m,

is smallest among all estimates whose expected value is Z .
Assumption 1 implies that s(z) is representative of the standard
deviation σ . According to the ISO Guide (section 4.2), the
Type A standard uncertainty associated with zA from classical
statistics is u(zA) = s(zA) = s(z)/

√
m. The uncertainty

u(zA) = s(zA) = s(z)/
√

m is an estimate of the standard
deviation S(zA) = σ/

√
m of the sampling distribution for zA.

When the number m of measurements z1, . . . , zm is small, the
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classical uncertainty s(zA) is uncertain. The uncertainty in
s(zA) arising from small m is a statistical uncertainty. The
statistical uncertainty in s(zA) is accounted for by the degrees
of freedom (the ISO Guide, section E.4.3). The degrees of
freedom associated with s(zA) are (m − 1).

The error in zA with respect to Y is (zA −Y) = (zA −Z)+
(Z − Y), where (zA − Z) is random error and (Z − Y) is
systematic error (bias). The uncertainty u(zA) = s(zA) =
s(z)/

√
m accounts for the uncertainty arising from random

effects. In classical statistics, the bias (Z − Y) is a constant;
therefore, one cannot deal with the uncertainty arising from
bias. In the framework of the ISO Guide (section 3.2),
a correction is required to counter the bias when it may not be
negligible. A typical assumption about the required correction
is as follows:

Assumption 2. The correction c and its associated standard
uncertainty u(c) are determined from a rectangular distribution
on the interval (−a, a) specified by scientific judgement
(Type B). The correction c is identified with the expected
value and the uncertainty u(c) is identified with the standard
deviation of the rectangular distribution on the interval (−a, a).
Thus, c = 0 and u(c) = a/

√
3 (the ISO Guide, section 4.3.7).

The ISO Guide (section G.4.2) introduced the concept
of degrees of freedom associated with Type B uncertainties
and proposed an approach to specify them. The degrees of
freedom associated with u(c) = a/

√
3 are often assumed

to be infinity, which means that there is no doubt that the
rectangular distribution on the interval (−a, a) is sufficiently
wide to account for possible systematic error in zA (the ISO
Guide, section G.4.3). The claim of infinite degrees of freedom
for the standard uncertainty evaluated from such rectangular
distribution is a sticky issue for some metrologists.

According to the ISO Guide (section 5), the result of
measurement y for the unknown value Y of the measurand
is y = zA + c = zA + 0 = zA and its associated standard
uncertainty is

u(y) =
√

u2(zA) + u2(c) =
√

s2(zA) +
a2

3
.

Following the ISO Guide (annex G), the effective degrees
of freedom νeff associated with u(y) =

√
s2(zA) + a2/3 are

determined from the Welch–Satterthwaite formula (the ISO
Guide, equation (G.2b)). Thus,

νeff = u4(y)

s4(zA)/(m − 1)
.

According to the ISO Guide, an expanded uncertainty interval
for Y with coverage probability p is

[y ± ku(y)] ≡ [y ± t(1/2)(1+p)(νeff)u(y)]

≡
[
zA ± t(1/2)(1+p)(νeff)

√
s2(zA) +

a2

3

]
,

where the coverage factor k = t(1/2)(1+p)(νeff) is the
1
2 (1 + p) × 100th percentile of the t-distribution with degrees
of freedom νeff .

It follows from assumption 1 that the sampling distribution
of (zA −Z)/s(zA) is the t-distribution with degrees of freedom
(m−1) [12]. Thus, [zA±t(1/2)(1+p)(m−1)s(zA)] is a confidence

interval for Z with confidence level p, where t(1/2)(1+p)(m−1)

is the 1
2 (1 + p) × 100th percentile of the t-distribution with

degrees of freedom (m − 1). The confidence level p is not
a statement about the computed interval. It is a statement
about the statistical procedure. Suppose the process of making
the measurements and computing confidence intervals could
be repeated infinitely many times under exactly the same
experimental conditions and the same sampling distributions
continued to apply, then p specifies the fraction of such
intervals that would include Z [12].

In classical (frequentist) statistics, zA and s(zA) are
random variables with sampling distributions. Since c = 0 and
u(c) = a/

√
3 are constants, the result y = zA+c = zA+0 = zA

and uncertainty

u(y) =
√

u2(zA) + u2(c) =
√

s2(zA) +
a2

3

are random variables. However, in the ISO Guide’s definition
of coverage probability, the result y and uncertainty u(y)

are constants that represent a probability distribution for
the values that could reasonably be attributed to the value of the
measurand. Therefore, the probabilistic interpretation of the
interval

[y ± ku(y)] ≡ [y ± t(1/2)(1+p)(νeff)u(y)]

≡
[
zA ± t(1/2)(1+p)(νeff)

√
s2(zA) +

a2

3

]

determined from classical statistics is not consistent with the
ISO Guide’s definition of coverage probability.

Note 1. The choice of rectangular distribution for the
correction may be justified by the principle of maximum
entropy. Metrologists can sometimes specify the minimum and
the maximum possible correction for systematic error. When
only the minimum and maximum of a random variable are
known and nothing else, the maximum entropy distribution
is rectangular distribution. When the expected value and
standard deviation of a distribution are known and nothing
else, the maximum entropy distribution is normal distribution.
When the expected value, standard deviation, minimum, and
maximum of a distribution are known and nothing else,
the maximum entropy distribution is a truncated normal
distribution [13].

2.2. Uncertainty evaluated from Bayesian statistics

In Bayesian statistics, the measurements z1, . . . , zm and hence
the statistics zA and s(z) are constants. The uncertainty is in
the state of knowledge about the value of the measurand. We
will use the symbols Y and Z for the random variables that
represent the states of knowledge about the value Y of the
measurand and the expected value Z of the common sampling
distribution for z1, . . . , zm, respectively. We use the symbol
σ for both the unknown constant representing the standard
deviation of the common sampling distribution for z1, . . . , zm

and the random variable that represents the state of knowledge
about the standard deviation. The states of knowledge about
Z and σ before measurements are made are expressed by
prior distributions of Z and σ . Negligible prior knowledge
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about Z and σ is expressed by using non-informative prior
distributions. The measurements z1, . . . , zm are then used to
update the prior distributions to obtain posterior distributions
of Z and σ . Assumption 1 concerning the common sampling
distribution for z1, . . . , zm provides the likelihood function ofZ
and σ conditional on the given measurements z1, . . . , zm. The
mechanism for updating is Bayes’ theorem. Bayes’ theorem
states that the posterior distribution is proportional to the
product of the likelihood function and the prior distribution
[6, 7]. When the prior distributions of Z and σ are non-
informative then under assumption 1 the posterior distribution
of the ratio (Z − zA)/s(zA) is the t-distribution with degrees of
freedom (m−1) ([7], theorem 2.4.1). Here, Z is a variable and
zA and s(zA) are constants. In determining the distribution of
(Z−zA)/s(zA), the posterior distribution of σ is integrated out.
Thus, the Bayesian probability distribution of Z is a scaled-
and-shifted t-distribution with degrees of freedom (m−1) that
has been scaled by s(zA) and shifted by zA.

The expected value and standard deviation of the
t-distribution with degrees of freedom ν are zero and√

ν/(ν − 2), respectively [14]. So the expected value and
standard deviation of Z are

E(Z) = zA and S(Z) =
√

m − 1

m − 3
× s(zA),

respectively. Hence, the Bayesian evaluation of Type A
uncertainty arising from random effects in zA is

uBayes(zA) = S(Z) =
√

m − 1

m − 3
× s(zA).

As the number m of mutually independent and normally
distributed measurements increases, the t-distribution tends
to normal distribution. The uncertainty u(zA) = s(zA) from
classical statistics may be interpreted as an approximation to
the Bayesian uncertainty

uBayes(zA) =
√

m − 1

m − 3
× s(zA).

The approximation is poor when m is small but improves as m

increases.
In order to account for the uncertainty arising from

possible bias in zA, a measurement equation is needed.
A simple measurement equation with additive correction C is
Y = Z + C [10]. The bias in zA is the constant (Z − Y).
The correction C for the bias in zA is a variable. In the
‘negative of bias’ (Y − Z), both Y and Z are treated as
variables representing states of knowledge. In order to specify
a probability distribution for C, the variable Z is replaced with
its expected value zA. Thus, the probability distribution for C

represents belief about the possible values of (Y − zA), where
zA is a constant and Y is the variable. The belief about possible
values of Y is based on all available information including
measurements and scientific judgement. The correction C is
assumed to be distributed independently of Z. According to
assumption 2, the probability distribution for C is rectangular
on the interval (−a, a) with expected value E(C) = c = 0 and
standard deviation S(C) = u(c) = a/

√
3. Thus, the Type B

component of uncertainty associated with the correction c for
possible bias in zA is u(c) = a/

√
3.

According to the ISO Guide, the result of measurement
based on the measurement equation Y = Z + C is y =
zA + c = zA + 0 = zA, where zA = E(Z) and c =
E(C) = 0. The combined standard uncertainty associated
with y is uBayes(y) =

√
S2(Z) + S2(C), which is equal to√

(m − 1)/(m − 3) × s2(zA) + a2/3. Since the measurement
equation is linear, the distribution represented by y and
uBayes(y) is the probability distribution of Y . Since the ratio
(Z − zA)/s(zA) has the t-distribution with degrees of freedom
(m − 1) and C has rectangular distribution on the interval
(−a, a), the distribution of Y = Z + C is identical to that
of the random variable zA + s(zA)T + aR, where T has
the t-distribution with degrees of freedom (m − 1) and R

has rectangular distribution on the interval (−1, 1). Thus,
the coverage probability of the interval [y ± kuBayes(y)] is
the fraction p of the distribution for the random variable
zA + s(zA)T + aR that is encompassed by [y ± kuBayes(y)].
This example illustrates that when the measurement equation
for Y is a linear function of the input quantities, the distribution
represented by the result y and uncertainty uBayes(y) is the
probability distribution of Y . So the coverage probability of
the interval [y ± kuBayes(y)] is well defined with respect to the
distribution of Y .

Now suppose that the measurement equation Y =
f (X1, . . . , Xn) is non-linear. The result y and uncertainty
uBayes(y) are determined from a linear approximation of
the measurement equation (see section 4.2 of this paper).
According to the ISO Guide, the result y and uncertainty
uBayes(y) represent a probability distribution for the values that
could reasonably be attributed to Y . The coverage probability
is well defined with respect to the distribution represented by
y and uBayes(y).

Note 1. A Bayesian uncertainty itself has no statistical
uncertainty. In classical statistics, the standard uncertainty
associated with the arithmetic mean zA of independent
measurements z1, . . . , zm having the same normal sampling
distribution is u(zA) = s(zA). The classical (frequentist)
uncertainty s(zA) is uncertain when m is small. The statistical
uncertainty in s(zA) is accounted for by degrees of freedom.
The corresponding Bayesian uncertainty is

uBayes(zA) =
√

m − 1

m − 3
× s(zA).

The factor
√

(m − 1)/(m − 3) built into the Bayesian
uncertainty accounts for the statistical uncertainty that arises
from a small number of measurements. So the Bayesian
uncertainty uBayes(zA) has no statistical uncertainty. However,
a classical uncertainty as well as a Bayesian uncertainty
may have non-statistical uncertainty. The sources of
non-statistical uncertainty include inadequate measurement
equation, unjustified statistical assumptions (Type A), and
unreasonable state of knowledge distributions (Type B).
The non-statistical uncertainty may be larger than the
statistical uncertainty in uncertainty. Therefore, evaluation of
measurement uncertainty involves more than statistics.

Note 2. An expression for the standard uncertainty
associated with the arithmetic mean zA is required when
the corresponding variable Z may be used as an input
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for evaluating another quantity. The Bayesian standard
uncertainty

uBayes(zA) =
√

m − 1

m − 3
× s(zA)

requires at least m = 4 independent measurements.
Sometimes it is not practical to realize more than two or three
independent measurements. What options do we have for
quantifying the standard uncertainty associated with zA when
m = 2 or m = 3? The first option is to investigate reason-
able prior distributions that might yield a useful expression for
uBayes(zA). The second option is to determine and use a Type B
evaluation of the standard uncertainty associated with zA.
These options are mathematically sound; however, they may
not be practical in certain applications. So, here, we propose
ad hoc expressions for the standard uncertainties associated
with zA when m = 2 and 3. The factor

√
(m − 1)/(m − 3)

built into the Bayesian uncertainty uBayes(zA) accounts for the
statistical uncertainty that arises when the number of indepen-
dent measurements is small. The factor

√
(m − 1)/(m − 3)

is approximately equal to the ratio of the percentile for cover-
age probability p of the t-distribution with degrees of freedom
(m − 1) to the corresponding percentile of the normal dis-
tribution (the ISO Guide, section G.3.4). The conventional
value of the coverage factor is 2, which corresponds to p of
about 95% for normal distribution. For p = 95%, the per-
centiles of the t-distribution for m = 2 and m = 3 are 12.71
and 4.30, respectively (the ISO Guide, table G.2). The cor-
responding percentile of the normal distribution is 1.96. The
ratios 12.71/1.96 = 6.48 and 4.30/1.96 = 2.19 may be taken
as factors that account for the statistical uncertainty in the un-
certainty that arises from a small number of measurements
when m = 2 and m = 3, respectively. Therefore, one may
use u∗(zA) = 6.48 × s(zA) and u∗(zA) = 2.19 × s(zA) as
ad hoc standard uncertainties associated with zA when m = 2
and m = 3, respectively. Some metrologists do not support
these ad hoc expressions because an expression for standard
uncertainty should not depend on probabilistic considerations
associated with uncertainty intervals.

Note 3. According to the ISO Guide (sections 3.3.7 and 8,
step 7), an expanded uncertainty interval [y ± ku(y)] is
determined after the expected value E(Y ) = y and standard
deviation S(Y ) = u(y) have been evaluated. An interval of the
type [y ±ku(y)] can sometimes be constructed with respect to
a probability distribution for Y where y is the expected value
of Y but u(y) is not the standard deviation of Y . For example,
the ratio (Z − zA)/s(zA) has the t-distribution with degrees of
freedom (m − 1). So the interval [zA ± t(1/2)(1+p)(ν) × s(zA)],
where ν = (m − 1) has coverage probability p but s(zA)

is not the standard deviation of Z. It is not clear that this
interval agrees with the ISO Guide. However, the interval
[zA ± k

√
(m − 1)/(m − 3)× s(zA)] fully agrees with the ISO

Guide.

Note 4. The Bayesian result that the ratio (Z − zA)/s(zA)

has the t-distribution with degrees of freedom (m − 1) is of
importance when m is small. This result requires that zA and
s(zA) = s(z)/

√
m have independent sampling distributions

([7], theorem 2.4.1). It turns out that the normal distribution is
the only distribution for which zA and s(z) are independently

distributed [15]. The ISO Guide (section G.5.4) acknowledges
the need of normal distribution. The claim of t-distribution for
(Z − zA)/s(zA) may, therefore, be sensitive to some kinds
of departures from the assumed normal distribution for the
measurements z1, . . . , zm.

Note 5. The sampling distribution of zA is sometimes claimed
to be approximately normal with standard deviation σ/

√
m

by the central limit theorem (CLT). Here, σ is the standard
deviation of the common sampling distribution for z1, . . . , zm.
The original CLT is as follows. Let z1, z2, . . . be a sequence of
identically distributed random variables with expected value µ

and standard deviation σ (both finite), any finite number of
which are independent. Let zA = (1/m)

∑
i zi , then the

distribution of the ratio (zA − µ)/(σ/
√

m) tends to normal
distribution with expected value zero and standard deviation
one as m tends to infinity [16]. The CLT is also true if the zi

have different distributions, µ then being replaced by the mean
of individual µs and σ/

√
m being replaced by the standard

deviation of zA [16]. However, the number m of summands
required for convergence may be very large. The critical
assumptions in the CLT are that the measurements z1, . . . , zm

must be independently distributed, their standard deviations
must be known and of similar magnitude, and the number m

of summands must be sufficiently large for the given standard
deviations. When the CLT is invoked, these assumptions must
be justified.

3. Proposed revision of the ISO Guide to make it
consistent

In section 3.1, we illustrate that the measurement equation and
the procedure of the ISO Guide for evaluating the combined
uncertainty are consistent only when Bayesian statistics is
used for the Type A evaluations. In section 3.2, we propose
a revision of the eight steps (the ISO Guide, section 8) for
evaluating the combined uncertainty that would make the ISO
Guide consistent.

3.1. Measurement equation

The concept of a measurement equation is, perhaps, the most
fundamental technical contribution of the ISO Guide. In
its simplest form, a measurement equation is expressed as a
mathematical function Y = f (X1, . . . , Xn) that represents
the process that is used to determine the result of measurement
and its associated standard uncertainty. All input and output
quantities are regarded as random variables representing states
of knowledge (the ISO Guide, section 4.1.6). Some of the
input variables X1, X2, . . . , Xn may themselves be viewed as
measurands and functions of additional input variables [4].
For example, we may have X1 = f1(W11, W12, . . . , W1K)

and X2 = f2(W21, W22, . . . , W2L), etc. In such cases, the
measurement equation is actually a system of equations. Such
a system could be used to link a hierarchy of measurements,
partition a complex measurement problem into smaller more
manageable components, or to combine a number of input
variables. Sometimes the function f may be determined
experimentally or exist only as an algorithm that must be
evaluated numerically (the ISO Guide, section 4.1.2).
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A measurement equation includes influence quantities
that take into account sources of variability, such as different
observers, instruments, samples, laboratories, and the times
at which measurements are made as well as corrections
for systematic effects. The measurement equation should
include all influence quantities that could contribute a
significant component to the uncertainty in assigning a value
to the measurand [4]. The measurement equation Y =
f (X1, . . . , Xn) should be exhaustively complete in the sense
that one of the input variables should represent a correction for
possible bias in the rest of the function.

3.1.1. Type A evaluations from Bayesian statistics. The
measurement equation Y = f (X1, . . . , Xn) is well defined
from the following Bayesian viewpoint. The Type A
evaluations are parameters of Bayesian posterior distributions
and Type B evaluations are parameters of Bayesian prior
distributions. They have the same probabilistic interpretations.
In both cases the expected values x1, . . . , xn and standard
deviations u(x1), . . . , u(xn) of X1, . . . , Xn are constants. The
pair xi and u(xi) represents a probability distribution for the
values that could reasonably be attributed to the input quantity
Xi for i = 1, 2, . . . , n. When the measurement equation Y =
f (X1, . . . , Xn) is non-linear, it is approximated by a first-order
(linear) Taylor series for evaluating the combined standard
uncertainty u(y). The first-order Taylor series approximation
is

Y = f (X1, . . . , Xn) ≈ f (x1, . . . , xn) +
∑

i

ci(Xi − xi)

= y +
∑

i

ci(Xi − xi),

where c1, . . . , cn are partial derivatives of Y with respect
to X1, . . . , Xn evaluated at x1, . . . , xn. The partial
derivatives c1, . . . , cn are sensitivity coefficients5. The linear
approximation provides the law of propagation of uncertainties
(section 1.2, step 6). Thus, the standard uncertainty u(y)

can be determined from the standard deviations and pairwise
correlation coefficients of X1, . . . , Xn. The result y and
uncertainty u(y) determined in this way are constants that
represent a probability distribution for the values that could
reasonably be attributed to Y . Thus, the measurement equation
Y = f (X1, . . . , Xn) and the procedure of the ISO Guide for
evaluating the result y and uncertainty u(y) are well defined
and consistent from the Bayesian viewpoint.

In the example of section 2, the measurement equation
is Y = Z + C, where Z is a random variable with
Bayesian posterior distribution, which is a scaled-and-shifted
t-distribution with degrees of freedom (m − 1) that has been
scaled by s(zA) and shifted by zA. The correction C is a
variable representing the state of knowledge interpreted as
a Bayesian prior distribution (the ISO Guide, section 4.1.6),
which is assumed to be rectangular on the interval (−a, a).
Thus, the measurement equation Y = Z + C is well defined
and the distribution of Y is identical to that of the random
variable zA + s(zA)T + aR, where T has the t-distribution

5 When the function f is determined experimentally or exists only as an
algorithm, the sensitivity coefficients may be determined experimentally: one
measures the change in Y produced by a change in a particular Xi while
holding the remaining input quantities constant.

with degrees of freedom (m − 1) and R has rectangular
distribution on the interval (−1, 1) (section 2.2). Following
the procedure of the ISO Guide, the result of the measurement
is y = zA + c = zA + 0 = zA and its associated standard
uncertainty is

u(y) =
√

S2(Z) + S2(C) =
√

m − 1

m − 3
× s2(zA) +

a2

3
.

Since the measurement equation Y = Z + C is linear, the result
y is equal to E(Y ) and uncertainty u(y) is equal to S(Y ), and
the distribution represented by y and u(y) is the probability
distribution of Y .

3.1.2. Type A evaluations from classical statistics. Let
us return to the example discussed above and previously in
section 2. Now suppose that the Type A component of the
combined standard uncertainty is evaluated from classical
statistics. Consider the equation Y = zA + C, where zA

is a random variable having sampling distribution (Type A)
with expected value E(zA) = Z and standard deviation
S(zA) = σ/

√
m. The distribution of zA is not a state of

knowledge distribution because Z and σ/
√

m are unknown
constants. The sum Y = zA + C is a random variable with
unknown expected value E(Y ) = Z + c = Z + 0 = Z
and unknown standard deviation S(Y ) =

√
σ 2/m + a2/3.

Therefore, the probability distribution of Y is not a state of
knowledge distribution. In order to estimate E(Y ) and S(Y ),
one would substitute the estimate zA for Z and the estimate
s(zA) = s(z)/

√
m for σ/

√
m. Then, zA would be an estimate

of E(Y ) and
√

s2(zA) + a2/3 would be an estimate of S(Y ).
The equation Y = zA +C and this procedure are not consistent
with the ISO Guide. Also, the uncertainty

√
s2(zA) + a2/3

determined from classical statistics does not agree with the
uncertainty

√
(m − 1)/(m − 3) × s2(zA) + a2/3 determined

from Bayesian statistics.

3.2. Proposed revision of the steps for evaluating the
combined uncertainty

We suggest that the following revision of the eight steps (the
ISO Guide, section 8) for evaluating the combined uncertainty
would make the ISO Guide consistent:

Step 1. Describe the measurement process as a
measurement equation Y = f (X1, . . . , Xn), where the inputs
X1, . . . , Xn may have their own measurement equations. All
input and output quantities are variables with probability
distributions representing states of knowledge. The Type A
state of knowledge distributions are interpreted as Bayesian
posterior distributions and the Type B state of knowledge
distributions are interpreted as Bayesian prior distributions.

Step 2. Determine the results x1, . . . , xn for the input
variables X1, . . . , Xn, respectively. All Type A results
are interpreted as expected values of Bayesian posterior
distributions or their approximations. All Type B results are
interpreted as expected values of Bayesian prior distributions.

Step 3. Determine the standard uncertainties
u(x1), . . . , u(xn) for the input variables X1, . . . , Xn, respec-
tively. All Type A standard uncertainties are interpreted as
standard deviations of Bayesian posterior distributions or their
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approximations. All Type B standard uncertainties are inter-
preted as standard deviations of Bayesian prior distributions.

Step 4. Determine the correlation coefficients r(xi, xj )

for all pairs Xi and Xj of the input variables that may
be significantly correlated, for i, j = 1, . . . , n, i < j .
These evaluations are Type A or Type B depending on
whether they are determined from statistical analysis of current
measurements or by scientific judgement based on other
measurements or published data.

Step 5. Determine the combined result of measurement
y for the value Y of the measurand by substituting the
results x1, . . . , xn for the input variables X1, . . . , Xn in
the measurement equation Y = f (X1, . . . , Xn). Thus,
y = f (x1, . . . , xn).

Step 6. Determine the combined standard uncertainty
u(y) associated with the measurement result y by propagating
the standard uncertainties u(x1), . . . , u(xn) and correlation
coefficients r(x1, x2), . . . , r(x(n−1), xn). A first-order (linear)
Taylor series approximation of the measurement equation
Y = f (X1, . . . , Xn) provides the following law of propagation
of uncertainties:

u2(y) =
∑

i

c2
i u

2(xi) + 2
∑
(i<j)

cicju(xi)u(xj )r(xi, xj ),

where c1, . . . , cn are partial derivatives of Y with respect to
X1, . . . , Xn evaluated at x1, . . . , xn, respectively. The product
u(xi)u(xj )r(xi , xj ) is equal to the covariance u(xi , xj ) for i,
j = 1, . . . , n and i �= j .

Step 7. If it is necessary to express the uncertainty as an
interval, multiply the combined standard uncertainty u(y) by a
coverage factor k to obtain the interval [y ±ku(y)]. Generally,
set the coverage factor k as 2. Use values of k other than 2 in
special cases only.

Step 8. Report the result of measurement y together with
its associated combined standard uncertainty u(y) or expanded
uncertainty interval [y±ku(y)]. Describe how y and u(y) were
obtained. Describe how k was chosen when k is not 2.

4. The coverage factor determined from annex G of
the ISO Guide may be incorrect

Since the procedure of the Guide does not yield a complete
specification of the distribution represented by y and u(y),
the coverage factor k such that the interval [y ± ku(y)] has a
desired coverage probability p, such as 95%, cannot always
be determined. We will illustrate that the coverage factor k

determined from a normal distribution or a scaled-and-shifted
t-distribution with degrees of freedom determined by the
Welch–Satterthwaite formula, as suggested by the ISO Guide
(annex G), may be incorrect.

A convention that has gained popularity is to set the
coverage factor k as 2. The NIST Policy ([4], appendix C)
on the coverage factor is as follows:

Use expanded uncertainty U to report the results of
all NIST measurements other than those for which
uc has traditionally been employed. To be consistent
with current international practice, the value of k to
be used at NIST for calculating U is, by convention,
k = 2. Values of k other than 2 are only to be used
for specific applications dictated by established and
documented requirements.

When the distribution represented by y and u(y) is not
completely determined, the 2-standard-uncertainty interval
[y ± 2u(y)] may be interpreted in terms of its minimum
coverage probability. We will describe the minimum coverage
probability of the interval [y ± 2u(y)] for two classes of
probability distributions represented by y and u(y).

4.1. Linear measurement equation

Suppose the measurement equation Y = f (X1, . . . , Xn) is a
linear function Y = ∑

i aiXi , where a1, . . . , an are constants
and not all pairs of the input variables X1, . . . , Xn may be
independently distributed. If each of the variables X1, . . . , Xn

has a normal distribution, then Y has a normal distribution. It
turns out that the variable Y has a normal distribution if and
only if each of the input variables X1, . . . , Xn has a normal
distribution ([15], theorem 1.1). The input variables that are
corrections for systematic effects are often assumed to have
rectangular or other non-normal distributions. Thus, not all
of the variables X1, . . . , Xn may be normally distributed and
hence the distribution of Y need not be normal. Consequently,
the coverage factor k determined from normal distribution may
be incorrect.

The distribution of Y = ∑
i aiXi is sometimes claimed

to be approximately normal by the CLT. The CLT applies
only when a1X1, . . . , anXn (or X1, . . . , Xn) are all mutually
independent, the standard deviations of a1X1, . . . , anXn are of
similar magnitude, and n is sufficiently large (the ISO Guide,
section G.2). The CLT does not apply in the absence of mutual
independence. Also, the CLT does not apply when the number
n of summands is not sufficiently large for the given standard
deviations of a1X1, . . . , anXn.

The Welch–Satterthwaite formula was developed in a
classical (frequentist) setting. However, the ISO Guide
(annex G) uses it from the Bayesian viewpoint. The Welch–
Satterthwaite formula does not apply when Y = ∑

i aiXi ,
where i = 1, . . . , n, and some pairs of the variables
X1, . . . , Xn are correlated.

Let us discuss the case where Y = ∑
i aiXi

and X1, . . . , Xn are all mutually independent. Suppose
X1, . . . , Xr , for r < n, are evaluated from statistical
methods (Type A) and Xr+1, . . . , Xn are evaluated by scientific
judgement (Type B). Suppose Xi is evaluated from a series
of mi measurements that are mutually independent and
have the same normal distribution, where i = 1, . . . , r

for r < n. Suppose the mean and standard deviation of
the mi measurements are xi and s(xi) with degrees of
freedom (mi − 1), respectively. Then, with non-informative
prior distributions, the variable Xi has a scaled-and-shifted
t-distribution with degrees of freedom (mi − 1) that has been
scaled by s(xi) and shifted by xi (section 2.2). Thus,

E(Xi) = xi and S(Xi) =
√

mi − 1

mi − 3
× s(xi).

Suppose Xi , for i = r + 1, . . . , n, is evaluated by scientific
judgement (Type B) with expected value xi and standard
deviation u(xi) with infinite degrees of freedom each. Then,

E(Y ) =
∑

i

aixi
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and

S(Y ) =
√∑

i

a2
i

mi − 1

mi − 3
s2(xi) +

∑
i

a2
i u

2(xi),

where the first sum is for i = 1, . . . , r and the second
sum is for i = r + 1, . . . , n. According to the ISO
Guide (section 6.3.3 and annex G), the distribution of
Y = ∑

i aiXi can be approximated by a scaled-and-shifted
t-distribution with degrees of freedom νeff that has been scaled

by
√∑

i a
2
i s

2(xi) +
∑

i a
2
i u

2(xi) and shifted by
∑

i aixi , where
νeff is determined from the Welch–Satterthwaite formula (the
ISO Guide, equation (G.2b)). Thus,

νeff =
{√∑

i a
2
i s

2(xi) +
∑

i a
2
i u

2(xi)
}4

∑
i[|ai |s(xi)]4/(mi − 1)

.

The standard deviation of this distribution is
√

νeff/(νeff − 2)×√∑
i a

2
i s

2(xi) +
∑

i a
2
i u

2(xi). This may differ from the
standard deviation

S(Y ) =
√∑

i

a2
i

mi − 1

mi − 3
s2(xi) +

∑
i

a2
i u

2(xi).

Thus, the tail-percentiles of the scaled-and-shifted
t-distribution with degrees of freedom determined from the
Welch–Satterthwaite formula may differ from those of the
distribution of Y = ∑

i aiXi . Hence, the coverage factor
k determined from the Welch–Satterthwaite formula may be
incorrect.

4.2. Non-linear measurement equation

Suppose the measurement equation Y = f (X1, . . . , Xn) is
non-linear. The ISO Guide’s rule for determining the result
y is to substitute the results x1, . . . , xn for the variables
X1, . . . , Xn in the measurement equation Y = f (X1, . . . , Xn).
That is, y = f (x1, . . . , xn). The ISO Guide’s rule
for determining the uncertainty u(y) is to propagate the
uncertainties u(x1), . . . , u(xn). That is,

u2(y) =
∑

i

c2
i u

2(xi) + 2
∑
(i<j)

cicju(xi)u(xj )r(xi, xj ),

where r(xi , xj ) is the correlation coefficient between Xi

and Xj for i, j = 1, . . . , n and i �= j . The result y and
uncertainty u(y) are, respectively, the expected value and
standard deviation of a linear approximation Ylinear of Y , where

Ylinear = f (x1, . . . , xn)+
∑

i

ci(Xi −xi) = y +
∑

i

ci(Xi −xi)

and c1, . . . , cn are, respectively, the partial derivatives of Y

with respect to X1, . . . , Xn evaluated at x1, . . . , xn. The
coverage probability of the interval [y ±ku(y)] is defined with
respect to the distribution of Ylinear. The coverage factor k

determined from annex G of the ISO Guide may be incorrect
for the reasons discussed in section 4.1.

4.3. Minimum coverage probability of the
2-standard-uncertainty interval

According to the Bienayme–Chebyshev inequality [16], the
coverage probability of the interval [y ± ku(y)] is at least

1 − 1/k2 for any distribution that has expected value y

and standard deviation u(y). Thus, the minimum coverage
probability of the 2-standard-uncertainty interval [y±2u(y)] is
75% for any distribution that has expected value y and standard
deviation u(y).

According to the Gauss inequality [16], when a
distribution with expected value y and standard deviation
u(y) is symmetric-unimodal with mode at y, the coverage
probability of the interval [y ± ku(y)] is at least 1 − 4/(9k2).
Thus, the minimum coverage probability of the interval
[y ± 2u(y)] is 89% for any symmetric-unimodal distribution
that has expected value and mode at y and standard
deviation u(y).

Thus, the 2-standard-uncertainty interval [y ± 2u(y)]
encompasses a large fraction of the probability distribution
represented by y and u(y). Since the procedure of the
ISO Guide does not yield a complete specification of the
distribution represented by y and u(y), the concept of
minimum coverage probability of the interval [y ± 2u(y)] fits
with the ISO Guide.

5. Practical issues in using the ISO Guide

In this section, we discuss some of the practical issues in using
the ISO Guide.

5.1. Propagation of uncertainties when the measurement
equation is non-linear

In some applications, the measurement equation is of the type
Y = XaZb. Suppose E(X) = x, E(Z) = z, and y = xazb.
A linear Taylor series approximation of the measurement
equation is

Y − y

y
≈ a

x
(X − x) +

b

z
(Z − z).

Suppose S(Y ), S(X), and S(Z) are, respectively, the standard
deviations of Y , X, and Z and C(X, Z) is the covariance
between X and Z. The ratios S(Y )/y, S(X)/x, and S(Z)/z

are called the relative standard uncertainties denoted by ur(y),
ur(x), and ur(z), respectively, and the ratio C(X, Z)/(x × z)

is called the relative covariance denoted by ur(x, z). From the
linear approximation, we have

u2
r (y) ≈ a2u2

r (x) + b2u2
r (z) + 2abur(x, z).

A measurement equation of the type

Y = X1 + X2

X3 + X4

can be simplified as Z1 = X1 + X2, Z2 = X3 + X4,
and Y = Z1/Z2. A measurement equation of the type
Y = X1/X2 + X3/X4 can be simplified as Z1 = X1/X2,
Z2 = X3/X4, and Y = Z1+Z2. Then, the simplified equations
can be used to propagate the uncertainties.

5.2. Evaluation of the correlation coefficient between two
measurands

When some of the input quantities are common in evaluating
the results and uncertainties for two measurands of values Y1
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and Y2, their correlation coefficient r(y1, y2) must also be
evaluated. Suppose y1 and u(y1) are the result and uncertainty
for Y1 and suppose y2 and u(y2) are the result and uncertainty
for Y2. Suppose Y1 = f (X1, . . . , Xn), Y2 = g(X1, . . . , Xn),
where not all of X1, . . . , Xn may contribute to Y1 and not
all of X1, . . . , Xn may contribute to Y2 but some contribute
to both Y1 and Y2. Let c1, . . . , cn be the partial derivatives
of Y1 and d1, . . . , dn be the partial derivatives of Y2 with
respect to X1, . . . , Xn evaluated at their expected values
x1, . . . , xn. Then,

Y1 ≈ f (x1, . . . , xn) +
∑

i

ci(Xi − xi) = y1 +
∑

i

ci(Xi − xi)

and

Y2 ≈ g(x1, . . . , xn) +
∑

i

di(Xi − xi) = y2 +
∑

i

di(Xi − xi).

Denoting the covariance between Y1 and Y2 by u(y1, y2),
we have u(y1, y2) ≈ ∑

i

∑
j cidju(xi , xj ), where u(xi , xj )

is the covariance between Xi and Xj for i, j = 1, . . . , n

and i �= j . Then, the correlation coefficient r(y1, y2)

is approximately equal to u(y1, y2)/[u(y1)u(y2)]. When
more than two measurands are involved it is easier to do the
calculations in matrix algebra.

5.3. Requirements of the ISO Guide’s formula for a
second-order approximation

The ISO Guide (section 5.1.2) gives a formula for a second-
order approximation of the measurement equation Y =
f (X1, . . . , Xn). However, it does not state the required
conditions. The formula requires three conditions: (1) the
input variables X1, . . . , Xn are independently distributed;
(2) the distributions of X1, . . . , Xn are symmetric about the
corresponding expected values x1, . . . , xn; (3) the coefficients
of kurtosis of X1, . . . , Xn are all equal to 3. The coefficient
of kurtosis is the ratio of the fourth central moment to
the fourth power of standard deviation E[(Xi − E(Xi))

4]/
[
√

E[(Xi − E(Xi))2]]4 [14]. These conditions are satisfied
when X1, . . . , Xn are independent and normally distributed.
When these conditions are not satisfied, the formula given in
the ISO Guide may be a crude approximation.

5.4. Coverage probability, level of confidence, and
confidence level

The ISO Guide uses the term level of confidence as a synonym
for coverage probability. We strongly believe that the term
level of confidence should not be used for the coverage
probability. This nomenclature has no precedence in statistical
literature and it is easy to gloss over the difference between
level of confidence and confidence level6. The ISO Guide’s
definition of coverage probability p is a statement about the
computed interval [y ± ku(y)]. The confidence level of
classical (frequentist) statistics is not a statement about the
computed interval [y ± ku(y)] (section 2.1).

6 Lira and Wöger [11] note that in Spanish and Portuguese the terms ‘level of
confidence’ and ‘confidence level’ are synonyms. Therefore, it was difficult
to translate the ISO Guide, which is an international document.

5.5. Requirement of 95% coverage probability

Many metrologists believe that the ISO Guide requires that the
coverage factor k should be determined such that the coverage
probability of the interval [y ± ku(y)] is 95% (the ISO Guide,
section 8, step 7). The ISO Guide’s method of propagating
uncertainties does not yield a complete specification of the
distribution represented by the result y and uncertainty u(y).
Therefore, the coverage factor k cannot often be determined
such that the coverage probability of the interval [y ± ku(y)]
is 95%. We suggest that one should not claim 95% coverage
probability when such a claim cannot be justified.

Note 1. According to some metrologists, having computed the
result y and standard uncertainty u(y), one is free to view
this information as the only existing information about Y . In
that case, the maximum entropy distribution for Y is the normal
distribution with expected value y and standard deviation u(y).
Then, the coverage factor k = 2 corresponds to about 95%
coverage probability with respect to the maximum entropy
distribution for Y . Mathematically, the maximum entropy
distribution does not apply as long as the data used to compute
y and u(y) are available.

6. Practical issues in justifying the statistical
assumptions about measurement data

An expression of uncertainty is always conditional on the
underlying statistical assumptions. Therefore, the assumptions
must be justified. In this section, we address practical
issues in justifying assumption 1 of section 2, which consists
of the following parts: (1) the measurements z1, . . . , zm

are independently distributed; (2) the experimental standard
deviation s(z) is representative of the standard deviation σ

of the common sampling distribution of z1, . . . , zm; (3) the
common sampling distribution of z1, . . . , zm is approximately
normal. These assumptions are special properties that do not
just happen; they must be designed into the measurement data.

6.1. Independence

Repeat measurements made close together in either time or
in close proximity on a material often tend to be correlated.
Therefore, the measurements should be made sufficiently far
apart in time or on sufficiently distanced samples of the
material to prevent correlation. A useful strategy in some
applications is to turn the instruments of measurements off and
on between successive measurements to induce independence
[17]. Another strategy is to identify important random
influence quantities, treat them as factors of an experiment, and
use a multi-factor experiment plan to make a list of conditions
for measurement. Such a list of conditions is called noise-
array [18, 19]. Then exactly one measurement is made for
each condition in noise-array. The measurements so obtained
may be treated as independent.
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6.2. Representative standard deviation

The dispersion of measurements z1, . . . , zn as quantified by
the experimental standard deviation

s(z) =
√∑

i (zi − zA)2

m − 1

must be representative of the standard deviation σ of all pos-
sible measurements in the given conditions. If the influence
quantities such as time at which measurements are made, oper-
ator, location, measuring instrument, and conditions of use are
to be treated as random, then they must be changed to make the
measurements representative. We quote Youden [20], ‘Repeat
measurements cannot reveal the vicissitudes of measurement
making unless the operator gives the vicissitudes a chance to
occur’. When it is not practical to change the random influ-
ence quantities, they become systematic influence quantities
that must be identified and then accounted for in the combined
standard uncertainty as recommended by the ISO Guide.

6.3. Normality

Justification of the same normal sampling distribution for
z1, . . . , zn requires a demonstration that the measurement
process is in a state of statistical control and that the
measurements appear as random drawings from a normal
distribution. In many physical experiments, it is impractical or
impossible to demonstrate statistical control. The CLT is often
invoked to claim normality of measurements. Such invocation
must be justified (section 2.2, note 5).

7. Summary

The ISO Guide recommends a standardized way of expressing
uncertainty in all kinds of measurements and provides
a comprehensive approach for combining information to
evaluate that uncertainty. The ISO Guide is, however,
not fully consistent. It recommends the use of classical
(frequentist) statistics for evaluating the Type A component
of the combined standard uncertainty u(y) associated with
the result of measurement y. The probabilistic interpretation
of the corresponding uncertainty interval [y ± ku(y)] is
not consistent with the ISO Guide’s definition of coverage
probability (level of confidence). In addition, the measurement
equation and the procedure of the ISO Guide for evaluating
the combined standard uncertainty are not consistent when
the Type A component of the combined standard uncertainty
is evaluated from classical statistics. We suggest that both
problems would disappear if all Type A components are
determined through Bayesian statistics. It turns out that the
estimates from a classical statistical analysis are either equal
or approximately equal to the corresponding estimates from
a Bayesian analysis with non-informative prior probability
distributions. Therefore, the classical (frequentist) estimates
may be used provided they are interpreted from the Bayesian
viewpoint. This proposal is entirely consistent with the ISO
Guide because Bayesian statistical analyses are fully consistent
with the definition of Type A evaluations.

Since by propagating uncertainties one does not obtain
a complete specification of the probability distribution

represented by the result of measurement y and its associated
standard uncertainty u(y), the coverage factor k such that the
interval [y ± ku(y)] has a desired coverage probability p,
such as 95%, cannot often be determined. The coverage
factor determined from a normal distribution or a scaled-and-
shifted t-distribution with degrees of freedom determined by
the Welch–Satterthwaite formula as recommended by the ISO
Guide may be incorrect. When the distribution represented
by y and u(y) is not completely determined, the interval
[y ± ku(y)] may be interpreted in terms of its minimum
coverage probability for an applicable class of probability
distributions.

An alternative to propagating uncertainties is propagating
distributions by numerical simulation of the measurement
equation. Simulation is attractive when it can be done and
is justified. However, it is important to note that when the
measurement equation Y = f (X1, . . . , Xn) is non-linear,
the distribution for Y determined by numerical simulation
is different from the distribution determined by propagating
uncertainties through a linear approximation of Y .
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[10] Lira I and Wöger W 2001 Bayesian evaluation of the standard
uncertainty and coverage probability in a simple
measurement model Meas. Sci. Technol. 12
1172–9

[11] Gleser L J 1998 Assessing uncertainty in measurement Stat.
Sci. 13 277–90

[12] Hoel P G 1971 Introduction to Mathematical Statistics 4th edn
(New York: Wiley)

Metrologia, 40 (2003) 235–248 247



R Kacker and A Jones

[13] Tribus M 1969 Rational Descriptions, Decisions and Designs
(New York: Pergamon)

[14] Evans M, Hastings N and Peacock B 2000 Statistical
Distributions 3rd edn (New York: Wiley)

[15] Mathai A M and Pederzoli G 1977 Characterizations of the
Normal Probability Law (New York: Wiley)

[16] Stuart A and Ord J K 1987 Kendall’s Advanced Theory of
Statistics, Distribution Theory vol 1 (New York: Oxford
University Press)

[17] Easterling R G 2002 Personal communication, Sandia
National Laboratories, Albuquerque, NM

[18] Taguchi G 1987 System of Experimental Design (White Plains,
NY: UNIPUB Kraus International Publications)

[19] Kackar R N 1985 Off-line quality control, parameter design,
and the Taguchi method J. Quality Technol. 17
176–209

[20] Youden W J 1962 Realistic estimates of error ISA J.
Publication of Instrument Society of America, 57–8

248 Metrologia, 40 (2003) 235–248


