
On Using Genetic Algorithms for Intrinsic
Side-Channel Resistance: The Case of AES

S-Box

No Author Given

No Institute Given

Abstract. Finding balanced S-boxes with high nonlinearity and low
transparency order is a difficult problem. The property of transparency
order is important since it specifies the resilience of an S-box against
differential power analysis. Many S-boxes used today have high trans-
parency order and are therefore intrinsically more susceptible to side-
channel analysis. Better values for transparency order and hence im-
proved side-channel security often imply less in terms of nonlinearity.
Therefore, it is impossible to find an S-box with all optimal values. How-
ever, well-balanced S-boxes with low transparency order and relatively
high nonlinearity present a valuable alternative when implementing sym-
metric ciphers on embedded devices like smart cards. Currently, there
are no algebraic procedures that can give the preferred and complete
set of properties for an S-box. In this paper, we employ evolutionary
algorithms to find S-boxes with desired cryptographic properties. Specif-
ically, we conduct experiments for the 8×8 S-box case as used in the AES
standard. The results of our experiments proved the feasibility of find-
ing S-boxes with the desired properties in the case of AES. In addition,
the results of our preliminary side-channel analysis on different versions
of “improved” S-boxes show the method effective in terms of increasing
DPA resistance.

Keywords: Private-key Cryptography, Block Ciphers, S-Box, Transparency Or-
der, Genetic Algorithms, Side-channel Analysis

1 Introduction

Block cipher algorithms are vulnerable to various kinds of cryptanalysis. Besides
more traditional linear [1] and differential cryptanalysis [2], the most popular
attacks today belong to side-channel analysis (SCA) targeting actual implemen-
tations of cryptography in software or hardware. SCA relies on the physical
leakages from the actual implementation and its efficiency is much greater than
the one of linear or differential cryptanalysis [3]. Through various countermea-
sures such as numerous masking and hiding schemes [4,5] it is possible to make
the algorithm more resilient to SCA. However, this comes with a substantial
cost increase due to the increase of memory requirements and the decrease of
performance of the algorithm implemented.

2

In the design process of block ciphers one usually follows principles of dif-
fusion and confusion as introduced by Shannon [6]. The amount of confusion
in an algorithm is measured with the nonlinearity property of nonlinear parts
of algorithm e.g. Boolean functions and S-boxes. Considering side-channel se-
curity, Prouff [7] defines the transparency order property that characterizes the
resistance of S-boxes to the SCA or more precisely to differential power analy-
sis (DPA) [8]. However, there are still no algebraic methods available to design
S-boxes that have good transparency order and adequately high nonlinearity.
Since the worst transparency order is obtained in the case when bent functions
are used (as bent functions obtain maximal nonlinearity [9]) it implies the fact
that nonlinearity and transparency order are conflicting criteria.

When random generation is used for S-boxes, the results have reduced non-
linearity when compared to many specially constructed S-boxes. This suggests
that the transparency order will be improved. However, this improvement in
transparency order value results in deterioration of other properties. Therefore,
random generation does not present a viable choice in the generation of S-boxes
with good transparency order.

In this paper we follow this intuition but we also do better in terms of mak-
ing good trade-offs among all the properties. We use evolutionary computation
techniques to evolve S-boxes with good transparency order and acceptable non-
linearity values. More precisely, this work makes the first step in using this
powerful method on a very practical cryptographic problem. We aim at finding
better alternatives for S-boxes, as used in block ciphers or other symmetric cryp-
tographic primitives, in terms of improving their resistance against side-channel
analysis without too much deteriorating the security of S-boxes. Our general goal
is to come up with an evolutionary computation framework for finding “proper”
S-boxes that is both, effective and efficient. Naturally, a design method that does
not favour special methods (e.g. algebraic based) also has several downsides. The
most obvious bottleneck is the inability to store S-box in a format different from
a lookup table. From that perspective it is unlikely that the new S-boxes can
be used in every environment. However, on platforms with sufficient area for
the lookup tables and where resilience against SCA is of great importance, we
are confident that our method can be a viable alternative. In this case, as table
lookups are also susceptible to cache attacks, a cache-timing resistant lookup
table could be used e.g. as presented by Bernstein [10].

1.1 Related Work

Relevant previous works use evolutionary computation in different scenarios re-
lated to the design of cryptographic primitives. Here, we mention two important
cases: evolving Boolean functions and evolving S-boxes.

Evolving Boolean functions. Burnett et al. construct two simple heuris-
tic methods to evolve balanced Boolean functions with good nonlinearity and
autocorrelation properties [11]. Also, Aguirre et al. use multi-objective evolution-
ary technique to evolve balanced Boolean functions with high nonlinearity [12].

3

Further examples where evolutionary techniques are used to evolve Boolean func-
tions with cryptographic properties are given in the works of Millan et al. [13] and
Jacob et al. [14]. In each of these papers, some evolutionary technique to evolve
Boolean functions with good cryptographic properties is used. Main difference
is in the set of properties of interest. However, one should note that evolving
S-boxes is much harder than evolving Boolean functions since the solution space
is larger in the case of S-boxes.

Evolving S-boxes. Clark et al. use the principles from the evolutionary
design of Boolean functions to evolve S-boxes with desired cryptographic prop-
erties [15]. They used simulated annealing technique coupled with hill-climbing
algorithm to evolve bijective S-boxes with high nonlinearity. On the other hand,
Burnett et al. use heuristic method to generate MARS-like S-boxes [16]. Such
an approach generates S-boxes that adhere to the all requirements and is com-
putationally fast.

The two papers mentioned above represent successful applications of meta-
heuristics to the creation of S-boxes. However, it is difficult to compare those
works with ours since they did not evolve 8×8 S-boxes nor they investigated the
transparency order property.

Mazumdar et al. design rotation symmetric S-boxes with high nonlinearity
and DPA resistance [17]. Furthermore, they employ those S-boxes in several
hardware implementations and show that their S-boxes have better DPA resis-
tance than the AES S-box.

Our work is the first one to use the techniques of evolutionary computation in
finding cryptographically strong S-boxes that feature also improved side-channel
resilience. More details on our contributions are given below.

1.2 Our Contribution

When using evolutionary computation techniques a special caution is required
as evolutionary algorithms are not magic-solvers for any kind of problem. They
can help in finding viable solutions but to have something feasible or in this case
suitable for real-life applications, all the conditions have to be taken into account
and treated specifically. Wolpert and Macready introduce the “No Free Lunch”
theorem and prove that there is no single best algorithm for every problem [18].
Of course, this theorem is only applicable when we possess no knowledge about
the problem at hand. With a careful choice of evolutionary computation tech-
nique and with adequate settings, evolutionary computation can be used to solve
various real-world problems.

Here we need to reiterate that evolutionary computation should not be re-
garded as the best possible method for solving this problem (or any problem).
Rather, it present a set of generic algorithms that can be successfully applied to
many problems.

In this paper, we use evolutionary computation technique, specifically genetic
algorithm, to evolve S-boxes with low transparency order and relatively high
nonlinearity values. To be able to do that, we experiment with several versions
of evolutionary computation techniques to find the best one. Also we present

4

simple, yet effective fitness function we use to find new S-boxes. The experiments
prove that evolutionary algorithms are a viable option in evolving S-boxes with
low transparency order and high nonlinearity. In addition, we show the results of
practical experiments that confirm our findings. For this purpose, we use power
consumption traces derived from a programmable smart card on which our new
improved S-boxes are implemented. More precisely, we conduct two different
types of the experiments. The first type are experiments to evolve S-boxes, and
the second type are the experiments to evaluate the resistance of evolved S-boxes
to DPA attacks. To avoid the confusion, for the former experiments we use the
name evolutionary experiments and for the latter side-channel experiments.

The remainder of this paper is organized as follows: In Sect. 2 we survey
necessary information about evolutionary computation and cryptographic prop-
erties of S-boxes. In Sect. 3 our evolutionary computation experimental setup
and the results are presented. Sect. 4 contains a discussion about the implemen-
tation of evolved S-boxes and our first results from side-channel analysis. Finally,
in Sect. 5 we conclude the paper.

2 Preliminaries

Here we give necessary information about side-channel analysis, cryptographic
properties of S-boxes and evolutionary computation.

2.1 Side-channel Analysis and DPA

Small cryptographic devices, such as smart cards, RFID tags etc. have become
pervasive in our lives and lots of our security and privacy-sensitive data is stored
on those constrained platforms. Cryptographic algorithms used to preserve the
security and privacy of their users are typically implemented in software or
hardware on those physical devices that interact with and are influenced by their
environments. These devices provide unintentional output channels, often called
side channels. Sometimes, these types of information leakages may be linked
either to the types of operations that the cryptographic algorithm is performing,
or to the data, i.e., the keys being processed. This makes the leakages explorable
by the adversary trying to extract the secret key as she is always looking for
shortcuts in cryptanalysis. Considering the physical information explored there
are several side channels possible. The best known and most commonly used side-
channel is power consumption. If the adversary is able to collect many power
consumption traces, she can use powerful statistical and mathematical methods
to recover the key from the time series data. In this case the attack performed
is called Differential Power Analysis (DPA).

Side-channel attacks are the main security threat for smart cards since the
first academic publications by Kocher et al. [8, 19]. Different sources of side-
channel data, such as electromagnetic emanation [20, 21], timing [19], sound,
and temperature have been used for successful side-channel attacks (for a general
overview see e.g. [5]).

5

2.2 Cryptographic Properties of S-boxes

Here we present the properties that are used in evaluation of S-boxes by evo-
lutionary algorithms. Other relevant cryptographic properties are calculated a
posteriori and presented in Sect. 3.4. Some details about those properties are
given in Appendix A.
The addition modulo 2 is denoted as “⊕ ”. The inner product of vectors ā and
b̄ is denoted as ā · b̄ and equals ā · b̄ = ⊕ni=1aibi.
An (n,m)-function is any mapping F from Fn2 to Fm2 [7]. Such a function F
is called S-box or vectorial Boolean function. If m equals 1 then the function
is called Boolean function. Boolean functions fi, where i ∈ {1, ...,m} are co-
ordinate functions of F and every Boolean function has n variables. Hamming
weight HW of a vector ā, where ā ∈ Fn2 , is the number of non-zero positions in
the vector.

An (n,m)-function is called balanced if it takes every value of Fm2 the same
number 2n−m of times [22]. Balanced (n, n)-functions are permutations on Fn2 .

Nonlinearity NF of an (n,m)-function F equals minimum nonlinearity of all
non-zero linear combinations b̄ ·F , where b̄ 6= 0, of its coordinate functions fi [3].

NF = 2n−1 − 1

2
max ā ∈ Fn

2

v̄ ∈ Fm∗
2

|WF (ā, v̄)| (1)

Here, WF (ā, v̄) represents Walsh transform of F [7].

WF (ā, v̄) =
∑
x̄∈Fn

2

(−1)v̄·F (x̄)⊕ā·x̄ (2)

In 2005, Prouff introduced a new cryptographic property of S-boxes: trans-
parency order [7] which can be defined for a (n,m)-function as follows.

TF = maxβ̄∈Fm
2

(|m−2HW (β̄)|− 1

22n − 2n

∑
ā∈Fn∗

2

|
∑

v̄ ∈ Fm
2

HW (v̄) = 1

(−1)v̄·β̄WDaF (0̄, v̄)|).

(3)
Here, WDaF represents Walsh transform of the derivative of F with respect to
a vector a ∈ Fn2 .

This property is unlike the ones known up to that time (with the exception of
SNR (DPA) (F) property [23]) since it is related with the resistance of the S-boxes
to the DPA attacks. According to Prouff, transparency order has an upper bound
ofm for an (n,m)-function. This bound is achieved if every coordinate function fi
is bent function. In the case F is an affine function, then the transparency order is
zero. The higher the transparency order value is, the lower is the S-box resistance
to the DPA attacks [7]. Since bent functions have maximum nonlinearity, we can
see that high nonlinearity and low transparency order are conflicting criteria.
Carlet also showed that some S-boxes with very high nonlinearity have very bad
transparency orders [3].

6

2.3 Evolutionary Computation and Evolutionary Algorithms

Evolutionary computation (EC) is a subfield of computation intelligence area
that draws inspiration from the process of natural evolution [24]. In that process
it adheres to the theory of Darwinian evolution. In accordance with that, it is
natural that researchers try to develop algorithms that are based on evolutionary
process.

Evolutionary algorithms (EAs) are population based optimization algorithms
that use biology inspired mechanisms to refine a set of solution candidates it-
eratively [25]. From this definition we can see that all evolutionary algorithms
have some common underlying idea behind them. Therefore, it is possible to give
basic evolutionary scheme that is common to all evolutionary algorithms.

Algorithm 1 Basic Evolutionary Algorithm

Input : Parameters of the algorithm
Output : Optimal solution set
t← 0
P (0)← CreateInitialPopulation
while TerminationCriterion do
t← t+ 1
P ′(t)← SelectMechanism (P (t− 1))
P (t)← V ariationOperators(P ′(t))

end while
Return OptimalSet(P)

There are many techniques that are used in evolutionary algorithms. Well
known examples are Genetic Algorithms (GA), Genetic Programming (GP) and
Evolutionary Strategies (ES).

For further information about evolutionary algorithms we refer to [24–27].

Genetic Algorithms. Genetic algorithms are a subclass of evolutionary al-
gorithms where the elements of the search space S are arrays of elementary
types [25]. Today, genetic algorithms represent evolutionary technique that has
been successfully applied to various optimization problems. Usual variation oper-
ators are mutation and crossover (recombination) operators. Mutation operators
are operators that use one parent to create one child by applying randomised
changes to parent. Mutation depends on the mutation rate pm which determines
the probability that a change will occur within individual. Recombination op-
erators work on two or more parents to create offspring from the information
contained within parent solutions. Recombination is usually applied probabilisti-
cally according to a crossover rate pc. Besides variation operators, it is necessary
to decide about selection method. Today, the k-tournament selection method is
widely used for this purpose [25].

7

3 Experimental Settings and Results

In all our evolutionary experiments we use the genetic algorithm that follows
basic algorithm as presented in Section 2.3.

The goal is to evolve balanced bijective S-boxes with high nonlinearity and
low transparency order. We experiment with the 8×8 size S-box as this is the
size of AES S-box which represents the standard for block ciphers.

3.1 Fitness Function, Representation and Parameters

Maximization of the value of a fitness function is the objective in all evolution-
ary experiments. Fitness function represents definition of the problem to solve
with evolutionary algorithm. For fitness function we use a combination of bal-
ancedness, nonlinearity and transparency order properties. Since we require that
the solutions are balanced, we do not add balancedness to the fitness function.
Rather, we set it as a constraint that needs to be fulfilled to evaluate the fitness
value of an individual.

Our fitness function equals the sum of nonlinearity (Nl) and transparency
order (Tr) properties values. Since the transparency order value should be as
low as possible, we subtract the value obtained from the upper bound value for
transparency order.

This fitness function can be easily extended to contain more properties that
are of relevance to the evolutionary experiments.

fitness = max [Nl + (m− Tr)] (4)

In the genetic algorithm we use permutation representation of solutions.

When using permutation representation, the problem of finding good S-boxes
can be informally treated as an special instance of travelling salesman problem
(TSP) [28,29]. In TSP the objective is to find the optimal path between all the
cities in the map (or more generally, objective is to decide on the order of values).
Here, we wanted to find the optimal path between values in S-box lookup tables.
When regarded as a TSP, we can conclude the problem is hard since there is
256!− 2 possible solutions (we neglect solutions where the output of the lookup
table is the same as the input and where AES S-box is a solution). In the
permutation representation, S-box is represented with decimal values between 0
and 255 (256 distinct values) where each of those values is one entry for S-box
lookup table.

Parameters for the evolutionary algorithm are following: the size of (m,n)-
function is 8×8, number of independent runs for each evolutionary experiment is
30 and the population size is 100. Tournament size in steady-state tournament
selection is equal to 3. Mutation probability is set to 0.3 per individual. This
mutation rate is chosen on a basis of a small set of tuning experiments where it
showed the best results on average.

8

3.2 Time and Memory Complexity

The genetic algorithm used in the evolutionary experiments takes constant extra
space as it needs only the space to store the S-box in bitstring format for the
evaluation process. In the case that time is constrained, it is possible to speed
up the evolutionary process. Currently, dominant time in the fitness evaluation
is calculating the transparency order. In our code, that calculation lasts approx-
imately 90% of complete evaluation time. By implementing e.g. the algorithm
presented by Fan et al. fitness function could be calculated faster [30].

Evaluating time complexity of evolutionary algorithm is impractical since
it depends on the number of generations until termination and number of in-
dividuals in the population. It is relevant only to consider time complexity of
evaluation function (fitness function) for one individual. In fitness calculation the
dominant part is the transparency order computation. Our implementation has
time complexity of O

(
23·n), where n is the number of inputs for each coordinate

function of F .

3.3 Evolutionary Process

Next, we give detailed description of genetic algorithm we use.
Once the parameters of GA are set, we can start with the generation of the

initial population. Initial population is created by randomly setting each value
from 0 to 255 as outputs of a lookup table where inputs are in lexicographical
order. When the initial population is generated, genetic algorithm starts with the
evolution process. First step is that it chooses k possible solutions and from those
k solutions destroys the k−2 worst solutions (this selection method also ensures
elitism i.e. the best solutions are propagated to the next generation). From the
2 remaining parents we obtain k − 2 offspring solutions via variation operators.
Goodness of a solution is evaluated with the fitness function as presented in
Equation (4).

For variation operators we use 3 mutation operators and 3 crossover operators
(we chose the operators that are among the most common ones in use today).
It is important to state that in permutation representation operators can not
create a duplicate of a solution. We use insert mutation, inversion mutation and
toggle mutation. Mutation operator works by randomly moving alleles within a
solution, where the probability that some position will change its value equals
pm. For crossover operators we use partially mapped crossover (PMX), position
based crossover (PBX) and order crossover (OX). Crossover operators for per-
mutation based representation must transmit as much as possible of information
contained within parents while maintaining the permutation. Operators are se-
lected uniformly at random between all operators within a class of operators
(mutation and crossover). Further informations about variation operators can
be found in Appendix B and [24]. Such new created offspring solutions together
with the parents form new generation in the evolution process.

Evolution process lasts until the stopping criterion is met, here the stopping
criterion is a certain number of generations without improvement of the best
solution.

9

3.4 Genetic Algorithm Results

Several examples of S-boxes are given in Table 1. First two S-boxes should be
regarded as benchmarks, since first one is the AES S-box and second one is a
randomly created S-box.

S-boxes 1 to 5 are examples of evolved S-boxes. Additionally, we give values
for the following cryptographic properties: algebraic degree (deg) [9,31], correla-
tion immunity (CI) [9,31], signal-to-noise ratio (SNR) [23], global avalanche cri-
terion (GAC) - absolute indicator (∆F) and sum-of-square indicator (σF) [31,32],
differential δ-uniformity (δ-uniformity) [22, 33] and strict avalanche criterion
(SAC) [31,34].

Lookup tables of S-boxes 1 to 5 in hexadecimal format are given in Appendix
C.

Table 1. Cryptographic Properties of S-boxes

S-box Nl Tr SNR δ-unif. ∆F σF

AES S-box 112 7.86 9.599 4 32 133120

Random S-box 92 7.804 10.001 6 96 257152

S-box 1 100 7.716 8.686 6 104 245632

S-box 2 98 7.358 5.825 6 104 341248

S-box 3 98 7.41 6.034 6 112 370816

S-box 4 100 7.53 5.44 6 104 298624

S-box 5 98 7.50 6.547 6 112 356224

All the S-boxes enumerated in the table are balanced so we did not write
that property in the table. Also, all the S-boxes have algebraic degree equal to
7. We omitted correlation immunity property from the table since it must be 0
as evident by Siegenthaler’s inequality [9]. Further, none of the S-boxes satisfy
SAC property so we also omitted it from the table.

In Fig. 1 we displayed some results of evolutionary experiments. Circles repre-
sent one million random S-boxes results, the plus symbol represents AES S-box,
the diamond symbol represents evolved S-box 1, and finally, the triangle symbol
represents evolved S-box 2.

Distribution of the random S-boxes values is also shown in Table 2.
As evident from Table 1 and Fig. 1, finding S-boxes with low transparency

order and high nonlinearity is hard. Low nonlinearity value does not ensures low
transparency order. In fact, it is easy to find S-boxes with nonlinearity below 90
and with transparency order comparable to that of AES S-box. Since we could
not find any S-box with nonlinearity level the same as in AES case and with
significantly lower transparency order, we opted to find S-boxes with nonlinearity
lower than in AES, but also with transparency order significantly lower than in

10

Fig. 1. Nonlinearity versus transparency order for S-boxes

AES case. Since the evolved S-boxes must be implemented through lookup tables
while they have lower transparency value and higher GAC, transparency order
must be low enough to justify it.

Here we can also make distinction between two different hard problems, one
is finding as low as possible transparency order value while maintaining adequate
nonlinearity level, and second problem is to find S-boxes with nonlinearity value
between 100 and 112 while having low transparency order values. In the case of
evolved S-boxes 1 and 2 from Table 1, we consider S-box 2 to be much better
since its nonlinearity is only slightly lower while its transparency order value is
significantly lower than in the case of S-box 1.

S-box 2 was evolved in 2325th generation of genetic algorithm which took
96000 seconds and S-box 4 was evolved in 124th generation and that took 4600
seconds. In the evolution process we used a cluster of computers where the
average machine is Pentium with 2.6 GHz and 2 GB RAM. The algorithm was
implemented in C++ programming language.

Table 2. Distribution of random S-boxes values

Property Max Min Mean Std. dev.

Nonlinearity 98 82 92.65 2.18

Transparency order 7.83 7.77 7.8 0.01

11

4 Implementing Evolved S-boxes and DPA Resistance

Using an S-box which has evolved in a way that is explained in previous sections
of the work can be a quite challenging task when area constrained devices are
concerned. Since the S-box is not generated through algebraic methods but evo-
lutionary methods, the only way to implement these S-boxes is by using lookup
tables (LUTs). When smart cards are considered, a software implementation of
AES would make use of lookup tables. Therefore one of the most important
platforms, where side-channel analysis is considered as a major threat, can be
strengthened by using one of the proposed S-boxes at virtually no additional
cost. Here, one can argue that it is not entirely area friendly to implement a
lookup table for an 8×8 S-box, it should also be considered that side-channel
resistance always comes at cost. Moreover, an additional drawback in hardware
implementations would be the limited choice of options if a masking scheme is
required together with the proposed S-boxes [35]. Therefore, the suitability of
using such S-boxes in hardware implementations remains to be considered.

Aside from evaluating the cryptographic properties of the proposed S-boxes,
we also evaluated side-channel resistance of software implementation of the new
S-boxes. We implemented the new S-boxes on a smart card with an ATMega163
microcontroller. The measurements were collected with a PC oscilloscope at
250 million samples per second sampling rate. A straightforward software im-
plementation of AES is modified to use the proposed S-boxes in side-channel
experiments. For running the attacks, the output of the SubBytes operation is
targeted and Hamming weight model is used to estimate the power consump-
tion. The power estimation for each key candidate is checked for fitness with the
actual power measurements through Pearsonn correlation. The experiment is re-
peated for 10 different keys selected at random, and the success rate is computed
following the methodology proposed by Standaert et al. [36]. The results of our
analysis are presented in Figure 2. The analysis is done on an AES implementa-
tion which processes the 16 S-box lookups in a random order for each execution
of the code. This way, the noise level is increased and therefore the effect of
the transparency order is more visible. Practical experiments are done for two
new S-boxes: one with the lowest transparency order values we have managed to
obtain, and another with the highest nonlinearity and the lowest transparency
order for that nonlinearity. It is evident from the figure that using S-boxes with
lower transparency order values results in an immediate improvement over the
AES S-box in terms of side-channel resistance. However, it is evident that more
experiments and more detailed analysis are needed to evaluate properly the im-
pact of transparency order as defined by Prouff.

We further observe that the effect of transparency order is less obvious when
the level of noise is low. More precisely, the correlation values obtained for the
incorrect key guesses increase when S-boxes with lower transparency order values
are used. This suggests that more experiments with high level of noise and other
countermeasures are interesting for future studies.

When comparing the results obtained in this research with those of Mazum-
dar et al. [17] we can note that their S-boxes have slightly higher nonlinear-

12

ity (102 compared to ours 98 or 100) but our S-boxes have significantly lower
transparency order values (7.76 compared to 7.35). Based on the results from
their hardware implementations on an FPGA board we expect that our S-boxes
would be viable alternatives improving even further side-channel resistance in
those settings.

Fig. 2. Ranking of the correct key byte with number of traces

5 Conclusion

In this work we promote for the first time the use of GAs for evolving S-boxes
with improved side-channel resistance. Our approach shows potential in both
creation of S-boxes as well as in the evaluation. However, we are aware of the
difficulties that lookup table approach could pose. Nevertheless, we do believe
that our results have practical values. In general, one can consider the results
as a proof of existence of S-boxes with desired properties. We expect that the
results can be optimized further but the main goal was to find S-boxes with high
nonlinearity and low transparency order. In this research we used generic GA
but the results can be improved by employing custom made GAs, some other
evolutionary algorithms like Estimation of Distribution Algorithm, or even to
go outside EA area using Swarm Intelligence algorithms and use algorithms like
Particle Swarm Optimization.

Above all, this paper promotes evolutionary computation as a serious tool
for tackling some hard problems in cryptography i.e. evolving S-boxes and their
transparency order. In near future, we expect many more attempts in using those
mature optimization techniques on cryptographic and other security-related prob-
lems.

13

References

1. Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL
cipher. In: Proceedings of the 11th annual international conference on Theory
and application of cryptographic techniques. EUROCRYPT’92, Berlin, Heidelberg,
Springer-Verlag (1993) 81–91

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Proceedings of the 10th Annual International Cryptology Conference on Advances
in Cryptology. CRYPTO ’90, London, UK, UK, Springer-Verlag (1991) 2–21

3. Carlet, C.: On highly nonlinear S-boxes and their inability to thwart DPA at-
tacks. In: Proceedings of the 6th international conference on Cryptology in India.
INDOCRYPT’05, Berlin, Heidelberg, Springer-Verlag (2005) 49–62

4. Akkar, M.L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Proceedings of the Third International Workshop on Crypto-
graphic Hardware and Embedded Systems. CHES ’01, London, UK, UK, Springer-
Verlag (2001) 309–318

5. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer-Verlag New York,
Inc., Secaucus, NJ, US1A (2007)

6. Shannon, C.: Communication theory of secrecy systems. Bell System Technical
Journal 28(4) (1949) 656–715

7. Prouff, E.: DPA Attacks and S-Boxes. In: Fast Software Encryption: 12th In-
ternational Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised
Selected Papers. Volume 3557 of Lecture Notes in Computer Science., Springer
(2005) 424–441

8. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In Wiener, M., ed.:
Advances in Cryptology: Proceedings of CRYPTO’99. Number 1666 in Lecture
Notes in Computer Science, Springer-Verlag (1999) 388–397

9. Braeken, A.: Cryptographic Properties of Boolean Functions and S-Boxes. PhD
thesis, Katholieke Universiteit Leuven (2006)

10. Bernstein, D.J.: Cache-timing attacks on AES (2004)
http://cr.yp.to/papers.html#cachetiming.

11. Burnett, L., Millan, W., Dawson, E., Clark, A.: Simpler methods for generating
better Boolean functions with good cryptographic properties. Australasian Journal
of Combinatorics 29 (2004) 231–247

12. Aguirre, H., Okazaki, H., Fuwa, Y.: An Evolutionary Multiobjective Approach to
Design Highly Non-linear Boolean Functions. In: Proceedings of the Genetic and
Evolutionary Computation Conference GECCO’07. (2007) 749–756

13. Millan, W., Clark, A., Dawson, E.: Heuristic Design of Cryptographically Strong
Balanced Boolean Functions. In: Advances in Cryptology - EUROCRYPT ’98.
(1998) 489–499

14. Clark, J.A., Jacob, J.L., Stepney, S., Maitra, S., Millan, W.: Evolving Boolean
Functions Satisfying Multiple Criteria. In: Progress in Cryptology - INDOCRYPT
2002. (2002) 246–259

15. Clark, J.A., Jacob, J.L., Stepney, S.: The design of S-boxes by simulated annealing.
New Generation Computing 23(3) (September 2005) 219–231

16. Burnett, L., Carter, G., Dawson, E., Millan, W.: Efficient Methods for Generating
MARS-Like S-Boxes. In: Proceedings of the 7th International Workshop on Fast
Software Encryption. FSE ’00, London, UK, UK, Springer-Verlag (2001) 300–314

14

17. Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: Design and implementation of
rotation symmetric S-boxes with high nonlinearity and high DPA resilience. In:
Hardware-Oriented Security and Trust (HOST), 2013 IEEE International Sympo-
sium on. (2013) 87–92

18. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE
Transactions on Evolutionary Computation 1(1) (April 1997) 67–82

19. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS
and other systems. In Koblitz, N., ed.: Advances in Cryptology: Proceedings of
CRYPTO’96. Number 1109 in Lecture Notes in Computer Science, Springer-Verlag
(1996) 104–113

20. Quisquater, J.J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smard Cards. In Attali, I., Jensen, T.P., eds.: Smart Card
Programming and Security (E-smart 2001). Volume 2140 of Lecture Notes in Com-
puter Science., Springer-Verlag (2001) 200–210

21. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In Ç.K. Koç, Naccache, D., Paar, C., eds.: Proceedings of 3rd International Work-
shop on Cryptographic Hardware and Embedded Systems (CHES). Number 2162
in Lecture Notes in Computer Science, Springer-Verlag (2001) 255–265

22. Crama, Y., Hammer, P.L.: Boolean Models and Methods in Mathematics, Com-
puter Science, and Engineering. 1st edn. Cambridge University Press, New York,
NY, USA (2010)

23. Guilley, S., Pacalet, R.: Differential Power Analysis Model and Some Results. In:
In proceedings of CARDIS 2004, Kluwer Academic Publishers (2004) 127–142

24. Eiben, A.E., Smith, J.E. In: Introduction to Evolutionary Computing. Springer-
Verlag, Berlin Heidelberg New York, USA (2003)

25. Weise, T. In: Global Optimization Algorithms Theory and Application. (2009)
http://www.it-weise.de/.

26. Dumitrescu, D., Lazzerini, B., Jain, L.C., Dumitrescu, A. In: Evolutionary Com-
putation. CRC Press, Florida, USA (2000)

27. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs (3rd
ed.). Springer-Verlag, London, UK, UK (1996)

28. Boese, K.D.: Cost Versus Distance In the Traveling Salesman Problem. Technical
report (1995)

29. Whitley, D., Hains, D., Howe, A.: Tunneling between optima: partition crossover
for the traveling salesman problem. In: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation. GECCO ’09, New York, NY, USA,
ACM (2009) 915–922

30. Fan, L., Zhou, Y., Feng, D.: A Fast Implementation of Computing the Trans-
parency Order of S-Boxes. In: Young Computer Scientists, 2008. ICYCS 2008.
The 9th International Conference for. (2008) 206–211

31. Burnett, L.D.: Heuristic Optimization of Boolean Functions and Substitution
Boxes for Cryptography. PhD thesis, Queensland University of Technology (2005)

32. Zhang, X., Zheng, Y.: GAC-the criterion of global avalanche characteristics of
cryptographic functions. Journal of Universal Computer Science 1(5) (1995) 316–
333

33. Nyberg, K.: Perfect nonlinear s-boxes. In: Advances in Cryptology - EUROCRYPT
’91, Workshop on the Theory and Application of of Cryptographic Techniques,
Brighton, UK, April 8-11, 1991, Proceedings. Volume 547 of Lecture Notes in
Computer Science., Springer (1991) 378–386

15

34. Forre, R.: The Strict Avalanche Criterion: Spectral Properties of Boolean Func-
tions and an Extended Definition. In: Advances in Cryptology - CRYPTO ’88, 8th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 21-25, 1988, Proceedings. Volume 403 of Lecture Notes in Computer Science.,
Springer (1988) 450–468

35. Goubin, L., Patarin, J.: DES and Differential Power Analysis (The ”Duplication”
Method). In: Proceedings of the First International Workshop on Cryptographic
Hardware and Embedded Systems. CHES ’99, London, UK, UK, Springer-Verlag
(1999) 158–172

36. Standaert, F.X., Malkin, T., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In Joux, A., ed.: Advances in Cryptology -
EUROCRYPT 2009. Volume 5479 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2009) 443–461

37. Syswerda, G.: Schedule optimization using genetic algorithms. In: Handbook of
Genetic Algorithms. (1991) 332–349

A Appendix A

Algebraic degree deg(f) of a Boolean function f, is defined as the number of
variables in the largest product term of the functions’ algebraic normal form
(ANF) having a non-zero coefficient [31]. Algebraic degree deg(F) of (n,m)-
function F is the minimum value of all non-zero linear combinations of the
coordinate functions of F [9]:

deg(F) = maxb̄∈Fm
2
deg(b̄ · F) (5)

Global avalanche criterion [32] consists of absolute indicator and sum-of-
square indicator. Both criteria of (n,m)-function F equals maximum value of
all non-zero linear combinations of the coordinate functions of F [31]. Absolute
indicator equals:

∆F = maxb̄∈Fm∗
2
|r(b̄ · F)| (6)

where r(b̄ · F) is autocorrelation spectra.
Sum-of-square indicator equals:

σF =
∑
b̄∈Fm

2

r(b̄ · F)2 (7)

Function F satisfies strict avalanche criterion [9,31,34] if all linear combina-
tions of the coordinate functions fi satisfies SAC.

Function F is correlation immune of order t - CI(t) if all linear combinations
of coordinate functions are correlation immune of order t. Correlation immunity
equals

WF (ā, v̄) = 0, for 0 ≤ HW (ā) ≤ t (8)

DPA Signal-to-Noise Ratio is alongside transparency order, second property
that characterize resilience of S-boxes to DPA attack [23].

SNR(DPA)(F) = n · 22·m

(∑
k̄

(
m−1∑
i=0

(̂−1)Fi(k̄)

))
(9)

16

where f̂(k̄) equals

f̂(k̄) =
∑
x̄

(−1)x̄·k̄f(x̄) (10)

Differential delta uniformity δ represents the largest value in the difference
distribution table without counting the value 2n in the first row [2,22,33].

B Appendix B

Insert Mutation. In this mutation operator, two positions inside an individual
are randomly chosen. Then one of those values is moved to the adjacent position
of the other value. Other values are shuffled to make the room for the moved
value [24].

Inverse Mutation. In inverse mutation, two position are randomly chosen
and then all the values between those two positions are shuffled to be in reverse
order [24].

Toggle Mutation. In toggle mutation, two positions are randomly chosen
and the values on those positions are exchanged.

PMX Crossover. First, two crossover positions are chosen randomly, and
the segment between them from the first parent is copied to the offspring. Then,
starting from the first crossover position check elements in that segment of sec-
ond parent that have not been copied. For each of those elements i, check the
offspring to see what elements j has been copied in its place from first par-
ent.Place those values i into the positions occupied j in parent 2. If the place
occupied by j in parent 2 has already been occupied in the offspring by an ele-
ment k, put i in the position occupied by k in parent 2. After all the elements in
crossover segment are finished, the rest of the offspring is filled from parent 2 [24].

PBX Crossover. In this operator first the values in random positions from
the first parent are copied to the same positions in the offspring. Next, values
from the second parent that are not present in the offspring are copied to it
starting from the beginning of the offspring [37].

OX Crossover. Two crossover positions are chosen at random, and the seg-
ment between those positions is copied from the first parent to the offspring.
Starting from the second crossover point in the second parent, copy unused val-
ues to the offspring in the order they appear in the second parent, wrapping
around at the end of te list [24].

17

C Appendix C

S-box 1 = (34, 8b, f6, 7f, d, 2e, d3, e4, 6f, 59, 10, 97, 3e, 3f, f2, 53, 43, 7b, 57, 86,
18, dd, c4, 50, 9, 63, 7a, 5c, 5f, 21, 66, 68, 99, f4, 14 , 4a, 60, 4d, ea, 85, cf, ca, 17,
fc, eb, 8, bb, e5, b1, 5b, 9e, 40, ef, 48, 1e, aa, 51, d6, 1f, b, 75, 49, a9, 2d, f, 41, 67,
82, 8d, 1d, 55, de, ad, 46, c6, f9, a7, 26, 4, 3c, 22, 6c, 47, e7, c2, a8, cd, 3a, d0, c5,
e1, c, 3d, c1, 7, 65, 2b, e2, 19, e0, ac, 3, c3, da, 6b, 0, bf, b2, be, ce, 83, 91, 28, d5,
9d, 52, e, cc, 4f, 80, 64, c8, a, 15, d8, 32, 8a, 54, 25, b6, 2f, 69, 20, 6a, bd, ab, 90,
12, a6, 4e, a4, 7d, 79, 81, 29, d4, b0, df, 6d, b8, 24, b5, 74, a5, 1, e3, cb, e8, 87, 1a,
9f, 8e, b7, f5, 39, 9c, 16, b4, d2, 31, 96, 92, 9a, ec, 35, 8c, 36, 4b, 98, c0, af, ba, d1,
61, 89, 38, ed, 5e, 13, 4c, d7, f7, f0, d9, db, 77, 33, 73, 94, a3, fe, 78, e9, 56, 9b, f1,
a0, 42, 30, 2c, f3, dc, 8f, 37, 72, 95, 7e, 5d, 70, fb, bc, 1c, 45, c7, 5a, 1b, c9, e6, 2, 44,
3b, 62, f8, b9, 7c, 76, 58, ee, 5, 6, b3, 11, 6e, 27, fd, fa, 71, 84, a1, a2, 23, 2a, 88, 93, ff, ae)

S-box 2 = (61, de, f8, 1a, 30, 0, a6, 9f, 25, 7b, 88, 16 , 34, 7e, 6b, 1d, 9c, 6e, c5,
5f, 73, 49, 65, bf, dc, 36, 6d, 64, f6, d, 11, ca, f5, 5, 1f, cc, 7d, e3, 82, fc, 5e, 20, d3,
bd, cd, 42, 45, ba, f7, af, 52, 80, c, b9, be, 2, e, cf, 76, 91, 2a, 6c, c4, 2b, 68, c6, d2,
1b, c0, 5c, a4, 7f, f0, eb, 2c, 8c, a8, 3b, 4b, 5a, 12, 48, e0, 27, 8d, 74, c3, 63, b5, 39,
c2, 46, df, f4, 8a, 40, 26, 32, 43, 67, 47, 99, 71, 8, 3, 70, c7, 31, 66, 4c, 55, 23, 56, 3f,
6, 7a, bc, 33, 4a, d1, 5d, 44, b, f2, 59, 41, ef, b8, 72, 35, 92, fd, ed, 93, f, a0, 78, 8e,
d7, 9d, 4d, c1, 97, b1, d5, a9, 9a, 84, 15, fa, fb, f1, 53, c9, 57, 24, 19, 60, 9e, a7, a1,
c8, 94, 3a, 6a, 18, 83, e7, a5, ff, e9, 62, 7, 1c, ea, 4e, 38, a, ad, b6, 22, 2d, e6, 7c, b3,
bb, 96, d4, e4, ab, 69, dd, 87, a2, 8b, 10, 86, ae, 6f, 9, cb, e2, ec, b0, 50, ac, fe, 1,
d9, a3, 58, b2, d6, 21, db, e8, ee, e1, 75, 3e, da, 81, d8, b4, 79, 4, 13, 1e, 9b, 51, 95,
77, b7, 5b, f9, 3c, 90, 2e, 2f, 54, 28, d0, e5, 17, 89, 4f, 98, 37, 85, 3d, aa, ce, 8f, f3, 29, 14)

S-box 3 = (c5, 69, f4, be, 20, e, f2, 6d, e9, 15, 98, ca, f8, 96, a1, 64, a4, 24, e1, 59,
fa, 5f, c1, 8e, 90, a6, 73, 38, 92, 1b, 47, 9f, 35, d3, 52, ef, 54, ab, 75, b1, 22, 93, 9c, c7,
e0, 4a, fc, cb, 88, c4, 31, f3, 11, 4b, 34, 6f, 74, 23, 40, 3e, 3a, eb, c, 8b, 18, cf, 3b, ae,
61, f0, a8, 7, 10, fd, 5a, f5, 65, ee, 84, 6b, 32, 26, 82, e7, 14, 4d, 30, 4f, 80, a2, a0, 68,
78, d5, bd, ff, 85, 7c, d1, 3d, b3, 7e, ac, c8, 5, 8d, a, bb, 72, 5d, 87, 9e, 42, 2d, 62, 1d,
6c, b, 66, ba, f1, f6, 21, cc, c0, 5e, 91, 5b, 50, 9b, 86, e2, 3f, e3, 4e, 89, 28, 83, b2, c6,
79, 9, b9, de, 9d, 51, 1a, 7d, a9, e6, 39, 77, 7f, da, 97, ed, 2e, e5, 2f, 1, a7, 8c, 76, 6a,
43, 95, 36, dc, d7, 58, b5, db, fb, df, a3, 5c, 7b, d0, e8, 94, a5, d6, f9, 12, 17, 19, bf, 2c,
6, cd, f7, 63, ea, 2, 25, 8, af, 44, 71, dd, 53, b7, 46, 2a, 55, d, 57, 99, 6e, ad, 7a, 13, 27,
e4, b6, 0, d9, 48, c9, 1f, b4, fe, 49, 4, b0, 45, 3c, ce, 1c, c3, b8, c2, ec, 67, f, 8f, 1e, 8a,
70, 81, 16, 33, 56, 3, 37, aa, 4c, 41, d8, 9a, 2b, d2, 29, 60, bc, d4)

S-box 4 = (4b, 3a, 21, 85, b2, 18, 6e, fd, 69, e5, 5b, 27, ff, 39, 62, 8a, da, 50, 75, de,
4, 3c, e0, a4, cd, 9e, fc, 9f, f9, e7, 5c, 63, 52, 48, 51, 31, a7, 3b, 5a, 90, a8, fa, b3, 73,
ee, 67, 4d, ce, 16, 49, 15, d0, 2, be, 99, 94, ac, ec, 3d, a5, 9d, a3, b8, 92, 98, 19, 71, 5f,
1, 1e, 8e, e4, a6, e3, f2, 30, e9, c0, 76, 46, f, 83, b4, 6c, 7, 12, d2, 38, f1, d5, c, 4f, fb,
a1, 2e, bf, 97, e, 86, b5, 82, 5e, cc, e6, aa, 81, b7, d, 79, 43, 58, c4, 6a, 96, 84, 7b, 1c,
9b, e1, 95, e8, ea, 7a, 37, f5, 44, 3, 33, bb, 66, 3f, f3, 64, 6f, 6d, ab, 8, ca, 8f, 2d, c7, 14,
40, ba, ad, ed, 25, 47, 7f, 87, dd, f0, 54, 4c, 7c, a9, d6, b6, a, cb, d1, c5, 2b, 65, af, 7d,
fe, a2, 9, c6, 53, 6b, f8, 70, 42, 5d, db, 88, f4, ef, 20, f7, eb, 5, c3, d8, 7e, b1, 13, 17, 2c,
2f, d3, 8b, 23, 59, bc, 57, 9a, c8, 26, c1, 41, b0, d9, d4, dc, 3e, cf, 68, 10, f6, 36, 61, 91,
80, 78, 34, 1a, 4e, bd, 74, 6, b9, c2, 8c, 24, 89, 45, 29, 1b, 56, 0, c9, 32, 35, 2a, 55, 9c,
4a, 8d, 60, 1d, 1f, a0, 93, e2, 22, b, df, d7, ae, 77, 72, 28, 11)

18

S-box 5 = (db, 59, a9, f7, c0, fb, d, 85, b5, 15, 9c, 26, 21, 77, 34, 1a, 56, 2d, 7b, e4,
81, 63, 53, 44, 1f, 16, 4e, 38, 66, c2, 0, b4, ab, d5, 90, f5, 4b, 8d, 5f, ed, 76, a2, 24, d2,
5b, f6, 7d, b3, 9e, d7, 8f, c, 47, 6f, b7, ef, a0, ba, e8, e, cd, 30, 19, a6, 52, a8, 9b, 3a,
50, 6a, 32, 3d, 8, 1d, ee, b1, a1, f1, 45, 9d, 18, 2a, 12, f0, 29, eb, 33, 40, cb, 49, f9, 60,
69, cf, dd, 5d, 1e, a7, 1b, 78, 93, a5, 5e, e1, 4d, 8b, 5c, 91, ff, aa, 6b, bd, 92, e6, 39, 6,
2f, 7, 73, 2c, 68, f3, 8c, df, dc, fd, 48, 27, d1, bc, 97, 6e, 84, 67, f, c8, 55, 82, 79, b2,
64, bb, b8, 13, 8a, 4c, c7, f4, a3, c9, 86, e7, 88, 7a, 46, 42, a4, 51, 7c, d6, ce, ca, b9, 7f,
d9, f8, d0, 4f, 22, 11, 28, b6, ae, 2b, 57, 61, 94, d4, 5, a, 31, b, e2, ac, 70, 17, ad, 3b, fc,
36, 35, 14, 10, bf, fa, 3e, e9, 74, 83, 8e, ec, 98, af, 1, e5, 3, 9, 87, be, e0, 95, 25, 23, 6d,
96, 72, d8, 89, 6c, c6, 2e, c3, cc, 54, 2, 9a, b0, 7e, 9f, 62, 71, 75, 3c, 41, 1c, da, ea, 99,
e3, c5, f2, 80, 20, fe, 37, 3f, 5a, 4a, c4, 43, c1, d3, 58, de, 65, 4)

