From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

On Using KQML for Matchmaking

Daniel Kuokka Larry Harada *
Lockheed Research Labs, 0/96-20, B/255
3251 Hanover Street, Palo Alto, CA 94304

kuokka@aic.lockheed.com, harada®@aic.lockheed.com

Abstract

As agents see more use as entry points to increasingly
complex distributed information networks, agent com-
munication technologies such as the Knowledge Query
and Manipulation Langnage and the SHADE Match-
maker will play an important role. We describe our
experiences with these technologies as applied to two
applications: collaborative engineering and satellite
image retrieval. Based on these experiences, we out-
line the major observed benefits of KQML and match-
making. In addition, we discuss several problematic
issues and potential solutions, including representa-
tional challenges in advertising complex databases, the
need for persistent requests in information brokering,
the dilemma between explicit vs. implicit brokering,
problems in error recovery and response timing, con-
sistency among information providers, and efficiency.

Introduction

Interest in information agents has undergone explosive
growth as wide-area information networks outpace tra-
ditional information sharing and retrieval techniques.
A precise definition for “agent” is still elusive, but
some commonly cited elements of agency include au-
tonomous or semi-autonomous operation, production
and consumption of application-specific information,
and communication and interaction with other agents
to help fulfill goals.

We view the focus on communication and interaction
as being particularly important. We anticipate future
information networks to be extremely large, highly dy-
namic collections of information agents—so dynamic,
in fact, that traditional approaches centered around
querying and updating static, central databases will

*This work was supported by ARPA Contract DAAA
15-91-C0104 (Shared Knowledge-Based Technology for the
Re-Engineering Problem), monitored by the U.S. Army Re-
search Laboratory, Advanced Computational and Informa-
tion Systems Directorate. The views, opinions, and/or find-
ings contained in this report are those of the authors and
should not be construed as an official Department of the
Army position, policy, or decision, unless so designated by
other documentation.

not work. The lifetime of information will be too short-
lived and the sources will be too unpredictable. This
situation is already the norm in large engineering ef-
forts, where many different tools consume and produce
data (Cutkosky et al. 1993).

In order to cope with the dynamic nature of infor-
mation networks, agents will depend much more heav-
ily on expressive communication not only to answer
queries, but also to describe their information capa-
bilities and needs. In order to enable the expressive
communication required, a number of researchers have
been working on knowledge sharing languages (Patil
et al. 1992). One of the major efforts is the definition
of a Knowledge Query and Manipulation Language, or
KQML (Finin et al. 1993), a language in which agents
can express their beliefs, needs, and preferred modali-
ties of communication.

The SHADE project (Kuokka & Harada 1995a;
McGuire et al. 1993) has been exploring the use of
KQML to define an agent infrastructure for collabo-
rative engineering. SHADE has several major foci,
including techniques for defining and using ontolo-
gies, and creating an application programmer inter-
face (API) for KQML. SHADE is also defining facili-
tation agents—middleware agents that assist end-user
agents in information sharing. One of the major fa-
cilitation agents defined by SHADE is called a match-
maker (Kuokka & Harada 1995b).

The SHADE infrastructure has served as the founda-
tion for agent-based services being developed by sev-
eral projects. Therefore, we have compiled a signif-
icant body of experience in using agents and KQML.
In this paper, we outline some of our initial experiences
gained while using KQML and matchmaking for inter-
active agent applications. Where shortcomings have
been identified, we propose solutions and discuss alter-
natives.

Matchmaking and KQML

KQML defines a set of message types (called per-
formatives) that describe the sender’s “attitudes”
about knowledge. KQML messages types include sim-
ple queries and assertions (e.g., ask, stream, and

Kuokka 239

broadcast), persistent queries (e.g., subscribe and
monitor), and information brokering requests (e.g.,
advertise, recommend, recruit, and broker), which
allow information consumers to ask a facilitator to find
relevant information producers. The knowledge carried
by a KQML message is referred to as the content, and
may be in any language. For this discussion, we as-
sume a content language of KIF (Genesereth & Fikes
1992). Also, even though KQML defines many param-
eters such as :language, :ontology, :reply-with, we
include only those parameters vital to the examples.
Much of the power of KQML stems from its bro-
kering performatives, which must be implemented by
a facilitator. Thus, our discussion of agent coopera-
tion must necessarily include facilitators. The SHADE
matchmaker (Kuokka & Harada 1995b) is one such fa-
cilitator, and others such as the ABSI facilitator (Singh
1993) have also heen developed. The matchmaker
serves as a central clearinghouse to which other agents
can advertise their specific information capabilities, re-
quest pointers to providers of information, or even ask
to keep them informed of changes to classes of informa-
tion. The matchmaker is accessed via standard KQML
messages. Advertisements are sent using the KQML
advertise performative. Requests are sent using the
recommend, recruit, and broker performatives. The
matchmaker also supports a variety of other KQML
performatives, such as tell and subscribe.

Experience with KQML and
Matchmaking

The SHADE infrastructure, including KQML and the
matchmaker, has been used as the basis for several ap-
plications including a collaborative engineering testbed
and a satellite imagery clearinghouse. The engineering
testbed is a collaborative environment in which engi-
neers can dynamically locate and share heterogeneous
data. It consists of agent-wrapped versions of several
commercial engineering tools, such as SDRC’s I-DEAS
solid modeler, and research prototypes, such as Lock-
heed’s Parameter Manager (Kuokka & Livezey 1994).

In this testbed, KQML and matchmaking have been
shown to be very effective integration mechanisms. For
example, any number of engineers could have a Param-
eter Manager (ParMan) application running, in which
they state constraints on specific product parameters.
Without the SHADE infrastructure, if the systems en-
gineer decides to add a system-wide constraint, he has
no way of knowing exactly which other ParMan agents
are running, let alone which should be notified of the
new constraint. KQML and matchmaking allow each
ParMan agent to post advertisements and subscrip-
tions for specific parameters of concern. The system
engineer, in turn, need only ask the matchmaker for
those agents having expressed interest in the newly
constrained parameter. Thus, agents can locate the
sources and sinks of information, even though they

240 ICMAS-95

From: PrRgIo 4o Qi At HOWAIRSARUIHN 1o) YSGSR RIRE™ COMAYSdYRRAYAL - 22a10r0). Allights reserved.

A second application of matchmaking is based on a
satellite imagery retrieval system, which allows users
to locate and retrieve variable-resolution satellite im-
agery from multiple dynamic sources. A prototype has
been built using KQML and the matchmaker (as well
as other elements of the SHADE infrastructure). In
this application, the matchmaker has proven invalu-
able because there are multiple sources of data, which
are constantly being updated as satellites circle the
earth. Only an automated system can offer the up-
to-the-minute location of data required. Furthermore,
the image databases have complex schemata and over-
lapping data availability. KQML, with its flexibility of
content languages, allows these databases to be charac-
terized for the matchmaking process, thereby directing
the user to appropriate data sources without excessive
exploration.

KQML and matchmaking have been used by sev-
eral other projects as well, with similar positive re-
sults. The Cosmos project (Mark & Dukes-Schlossberg
1994), which is creating a knowledge-based commit-
ment reasoner to determine impacts of engineering
changes, uses KQML for all message traffic, and de-
pends on the matchmaker to provide indirection be-
tween a set of dynamic clients and the server. The
ARPA Simulation Based Design project (Davis et al.
1993) uses the matchmaker to provide change subscrip-
tion and notification services over its large, object-
oriented product model. In this application, if an ob-
ject for which a subscription has been issued changes,
the user will receive automatic notification. Qther ap-
plications of the matchmaker, such as its use to locate
relevant pages in a large distributed engineering note-
book, are in earlier stages of development.

Finally, several informal contrapositive examples
have been identified from discussions held with archi-
tects of non-agent-based systems, which depend on ad
hoc communication among the components. In these
cases, the architectures have been found to be a barrier
to maintenance and enhancement, since the complex
information flow among components is hardwired and
implicit. In fact, several opportunities to add needed
functionality available for free from other projects had
to be scuttled since the affected subcomponents were
too hardwired to accept input from new sources. These
cases provide compelling examples of the cost of not

using an open, dynamic architecture, such as that en-
abled by KQML and matchmaking.

Issues in using KQML and
Matchmaking

Even though KQML and matchmaking have shown
great promise in several applications, a number of open
issues and problems have reoccurred. These issues have
been grouped into several classes, which are described
below. When promising solution have been identified,
these are also presented.

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Persistent Requests

We use the term request to refer to performatives that
ask the matchmaker to locate another agent that can
provide needed information (e.g., recommend, recruit,
and broker). Our experience with these messages has
revealed a significant shortcoming in the current spec-
ification: the need for persistent requests.

For example, when a consumer agent sends a
recommend to a matchmaker, the matchmaker re-
sponds with the name of one or more producer agents
that have advertised a relevant capability. This works
when all producers have already sent their advertise-
ments, such as when producers are traditional static
databases that run continuously. However, this as-
sumption is often not valid, especially when the in-
formation shared by agents is dynamic. In this case,
information providers may appear dynamically, or an
existing agent may augment its information library dy-
namically. Returning only the currently known pro-
ducers in response to a request clearly limits the po-
tential for information sharing.

The problem is compounded when the assumption
of a consumer/provider dichotomy is relaxed. As in
the case of a set of interoperating ParMan agents, in-
formation consumers can also be providers, in which
case, the network is more a collection of peers rather
than of clients and servers. In such a network, a
scheme without persistent requests would require that
all agents first advertise their capabilities, and only
then issue requests. However, this is impossible, since
peer agents can startup and shutdown independently.
Furthermore, even within a running agent, specific in-
formation capabilities may be added dynamically (for
example, when the user adds a constraint over a new
parameter in ParMan).

To provide a persistent request capability, several
approaches were considered: make requests persistent
by default, add a persistence parameter, or wrap re-
quests within a subscribe. The first option was
ruled out since non-persistent requests are sometimes
needed. The second option is to add an additional pa-
rameter that specifies the persistence of the request.
The :until parameter can assume three values:

now The request performative will be answered with
respect to the current set of advertisements. If
there’s no match, a sorry will be returned to the
sender. This is the current KQML behavior, and is
the default.

once The request is kept until it can be matched;
then it's answered and removed. The request per-
formative will never return a sorry.

forever The request performative is kept forever, re-
sulting in the request being sent to each agent ad-
vertising a relevant capability.
This approach provides great flexibility, but requires
an addition to the KQML specification that violates
the desired orthogonality of parameters.

The third approach is to wrap the request in a
subscribe, which requires no extension to KQML and
appears to be an elegant application of KQML's or-
thogonality. Unfortunately, upon closer consideration,
it is unclear whether the semantics of KQML support
this. Subscribe “indicates that the sender wishes
the recipient to tell it about future changes to what
would be the response(s) to the KQML performative
in the :content parameter.” This would work for
recommend, since the matchmaker simply returns the
name of an agent capable of satisfying the content re-
quest. However, recruit and broker return only an
acknowledgment—their main purpose is to perform a
side effect, namely to forward the content request to a
provider. An agent could use a two-part protocol, first
issuing a subscribe-of-recommend, and once a suitable
agent is found, issue either a recruit or broker to
actually get the data, but this was seen as too cum-
bersome.

Since an immediate solution was desperately needed,
the second approach has been implemented within the
SHADE matchmaker, resulting in a marked change
in system utility and robustness. With this addition,
agents must no longer be carefully started in the cor-
rect order, and restarted when any agent goes down.
Instead, the network of advertisers and requesters or-
ganizes itself. Based on this experience, we conclude
that persistent requests are critical to the utility of the
broker performatives. If the semantic uncertainties of
the current specification can be resolved, KQML may
be found to support this as is. But future matchmakers
must provide support for this feature.

Generality of Advertisements and
Requests

In traditional information retrieval and knowledge-
based query applications, the knowledge base tends to
be a large set of specific assertions, and queries tend
to be relatively specific. In order to advertise such a
database in KQML, the naive approach would be to
send a message such as:

(advertise :sender P :content
(ask :content (and (mass payload 12)
(mass bus 7) ...)))

A consumer might, in turn, send a request like:

(recommend :sender C :content
(ask :content (mass payload ?mass)))

In this case, determining whether or not the request
matches the advertisement can proceed as a traditional
logical database query.

However, it is impractical for the provider to adver-
tise its whole database. Instead, information producers
might send advertisements such as:

(advertise :sender P :content
(ask :content (mass ?component ?mass)))

Kuokka 21

Unfortunately, this advertisement is certainly over
general, since the provider does not know the mass of
all components. A solution would be to include further
constraints on the advertisement:

(advertise :sender P :content
(ask :content
(and (mass 7component ?mass)
(subcomp ?7component satellite))))

However, this approach requires that the match-
maker has sufficient knowledge to determine if the
subcomponent condition is true, which either forces
the matchmaker to contain domain-specific knowledge,
or to request domain specific knowledge at a signifi-
cant performance cost. Thus, the cost of performing
more careful matchmaking may outweight the bene-
fit. There is also a representation problem in that the
single :content field does not make it clear that the
matchmaker should view the subcomponent predicate
as a constraint over valid values for ?component, as op-
posed to an advertised pattern. The second problem
has resulted in a proposal for a :content-constraint
parameter, which separates the content pattern from
the constraints, but the ramifications of this proposal
are still under investigation.

These problems can be partially addressed by requir-
ing the constraints to be universal predicates, such as
basic mathematical relations. This would allow adver-
tisements of the form:

(advertise :sender P :content
(ask :content
(and (mass 7component ?mass)
(date 7component ?date)
(>= 7?date 941201))))

In this case, whereas the producer cannot limit the
advertisement to those subcomponents of the satellite,
it can limit its advertised information to components
manufactured after a certain date, since the match-
maker can verify this simple mathematical constraint.
The advertisement is still over general, so spurious
matches are still possible, but constraining advertise-
ments in this way has proven very useful in charac-
terizing certain databases, especially in the satellite
imagery domain.

Finally, even if the advertisement is not over general,
seemingly spurious matches may still be found in the
case of recommend. Consider the following advertise-
ment and request:

(advertise :sender P :content
(ask :content (mass payload 12)))

(recommend :sender C :content
(ask :content (mass 7comp ?mass)))

In this case, the advertisement is extremely spe-
cific, but since the consumer made a very general re-
quest, the match succeeds. Unfortunately, the con-
sumer might conclude that the producer can answer

22 ICMAS-95

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

queries about any component, and so might ask the
producer about the mass of other components (notice
that this confusion is less likely in the case of recruit
and broker, since an answer is returned to the con-
sumer based on the original request). This underscores
that matchmaking locates possible sources of informa-
tion, not guaranteed sources.

Only partial solutions to the problems of overgen-
eral advertisements and requests have been identified.
However, based on our experiences, the advantages of
succinctly specifying a large database generally out-
weight the costs of extra matches. When spurious
matches are returned, the consumer will, at worst, re-
ceive a sorry from the producer.

Error Recovery

In a dynamic environment, agents may intentionally
or unintentionally stop receiving and sending messages
for arbitrary lengths of time. Ideally, the matchmaker
should support clients that want to suspend their op-
erations or recover from crashes. Likewise, the match-
maker should allow agents to reconnect if the match-
maker itself crashes.

There are three classes of transients that the match-
maker should handle. First, if an agent suspends itself
or otherwise gracefully shuts down, the matchmaker
should be notified of this event so it can take appropri-
ate action. For example, in the ParMan application,
the deny performative is sent to cancel advertisements
whenever a ParMan agent shuts down. This is ade-
quate when the agent is shutting down permanently,
but if the agent is only suspending temporarily, some
messages that would have been delivered may get lost.

In the Simulation-Based Design application, agents
can send a suspend to the matchmaker, which then
queues subscription notifications for the suspended
clients. These notifications are later forwarded to the
client when an update performative is received by the
matchmaker from the re-awakened client. This mech-
anism is somewhat unsatisfactory since it relies on two
ad hoc extensions to KQML: suspend and update.
However, it does illustrate the usefulness of a simple
high-level protocol to prevent messages from being lost.

The second class of transients are those where an
agent unexpectedly dies or loses communication with
the matchmaker. In our experiences with SHADE,
this class of transients is very common, and intro-
duces many problems. To cope with this situation,
two alternatives present themselves. A high-level solu-
tion would require each agent to acknowledge received
messages with a reply performative. Failure to ac-
knowledge would be taken as an indication that the
message should be resent. A low level solution would
require the transport level protocols to indicate that
a message had failed to be delivered. For example,
the SHADE KQML API returns an error code when a
message can not be sent. The former approach places
additional burdens on the agents and on the communi-

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

cation bandwidth, while the latter makes assumptions
about the communication medium.

In either case, the action to be taken by the match-
maker is unclear. Should the matchmaker queue mes-
sages for the affected agent, preventing any messages
from being lost (this assumes that the recovering agent
sends a message to the matchmaker upon restart).
Or should the matchmaker assume that the agent has
shuatdown for good. As a corollary, what if an agent
comes up with the same name as an agent that was
previously employing the matchmaker’s services? Did
the original agent crash and restart, is this a new in-
stantiation of the same agent not interested in the old
services, or is this a name conflict? Our experience
with these issues has revealed significant holes in the
KQML specification relating to transactions and reli-
able services.

Finally, the third class of transients is when the
matchmaker, itself, gracefully shuts down or crashes.
Since the matchmaker acknowledges all KQML mes-
sages that have :reply-with tags, client agents that
do not receive acknowledgements can safely assume
that the message was not received. Thus, unexpected
matchmaker crashes are noticed by each client agent.
In the case of a graceful shutdown, the matchmaker
should send a suspend message to its current clients
so they don’t have to determine the matchmaker’s un-
availability for themselves. But KQML does not pro-
vide a convenient mechanism for doing this; the match-
maker must explicitly cancel each of its services. Fi-
nally, the matchmaker must certainly maintain a per-
sistent knowledge base of clients, which can be recov-
ered upon restart. Otherwise, all the advertisement
and request context would be lost.

A related issue is that of timeouts. When a consumer
sends a request to a producer, the time to compute
the answer can be arbitrarily long, potentially caus-
ing the consumer to assume the producer (or match-
maker) went down. In general, consumers may want
to know how long it will take to satisfy a request, or at
least determine its status. There are several potential
solutions. First, an advertisement could include the
computation time required for the advertising agent to
satisfy the request. Of course, such a value will be
an estimate, since the actual value may depend on the
parameters of the request, machine load, and other fac-
tors. Second, producers might support queries about
the timing and status of their processing. This would
require developing an ontology of terms to talk about
queries.

The third alternative involves establishing a request
initiation protocol, managed by a matchmaker. In-
stead of simply forwarding the request to the producer,
the process would proceed as follows: 1) The match-
maker would “ping” the producer with the request,
asking “Are you prepared to answer this request?” and
“How long will it take?” 2) If the producer is prepared
to answer the request, the time to complete the re-

quest is returned to the consumer. 3) If the consumer
approves the request time, the request is finally for-
warded to the producer. 4) The answer is returned
to the consumer (or matchmaker). A protocol such
as this involves developing an ontology to talk about
requests. Since both agents have approved the query
prior to its start, there should be no need to cancel
the request. However, the actual computation may
take significantly longer than estimated; thus, status
request and cancellation mechanisms would be useful.

The above proposals not withstanding, based on our
experience, KQML does not include sufficient provi-
sions for error recovery and suspending operations.
Furthermore, it is not clear how an atomic transaction
model can or should be implemented. Before KQML
can be used extensively in real applications, these issue
must be addressed.

Specification of Content-Based Routing

The request performatives allow the consumer take
a proactive role in information exchange, in that the
consumer ultimately takes responsibility for querying
for the data. Another useful paradigm, however, is
for information providers to take the lead and as-
sert information as it changes. KQML supports this
truth-maintenance capability via the subscribe and
monitor performatives, which allow a consumer to be
kept informed automatically about information. As
conceived, the consumer sends a subscribe directly to
a producer, since the producer knows when its infor-
mation changes. Unfortunately, this requires that the
consumers know all possible producers, and that the
producers send individual messages to possibly many
interested consumers.

A useful variant of this approach is for the consumer
to send a subscribe to a central facilitator. Produc-
ers, in turn, send updates to the facilitator. This al-
lows each agent to be concerned with only one clearing-
house. This approach is called content-based routing,
and has proven extremely useful in many applications.
A content-based router does not have a knowledge base
like other agents since it does not store the union of all
it hears—it just forwards tells on to other interested
agents. In most cases, this does not matter, since to
a consumer, the matchmaker will appear as if it does
contain in its knowledge base all the information. In
fact, the KQML specification explicitly allows such be-
havior, since it uses the term “virtual knowledge base.”

However, if the consumer sends an ask message, the
matchmaker will not be able to respond since it only
passes along messages. Thus, the matchmaker has the
peculiar property of being able to satisfy subscribe-of-
ask-x but not ask-x! (In fact, it has been the subject of
debate as to whether or not a subscribe-of-ask should
implicitly include the first ask.) To address this prob-
lem, the content-based router could send an ask to
the real information producers in response to an ask
from a consumer. With this enhancement, the content-

Kuckka 243

based router is presenting a facade that it can answer
queries, but it really gets the information from other
agents and simply takes credit (much like managers
and politicians).

One might view such an agent as a useful abstrac-
tion, but note that identical behavior can be requested
explicitly by wrapping the asks and subscribes in-
side of a broker. Since this transparent mechanism
exists, should a content-based router that presents an
opaque facade be used? Beyond a moral concern about
misleading advertising, if agents take credit for others’
information, loops could easily develop in which agent
A depends on agent B which depends on agent C which
depends on A. Rather than attempting to restrict the
behavior of agents, the network could rely on addi-
tional facilitators that detect when another agent is
really providing second hand information at a markup,
or detect when information services are being abused
or participating in a loop.

A second more practical concern is that content-
based routing, as implemented to date, depends on
producer agents “babbling” about about updates.
This raises the questions: when do producers bab-
ble, and what causes them to babble? As agent
communities grow in size and dynamiticity, unnec-
essary messages could easily bog down the network.
Conversely, new agents with information of interest
to a content-based router may not know about the
router, and therefore wouldn’t know to babble. Both of
these problems can be fixed by requiring the content-
based router, upon receipt of a subscription, to issue a
subscribe to the original providers, which must have
advertised their relevant information. Thus, only those
agents that have been requested to provide information
babble.

To summarize, content-based routing has been
found to be an extremely useful agent communica-
tion paradigm, but the messages required are some-
what more complex than initially believed. In addi-
tion, there is an interesting philosophical dilemma as to
whether a content-based router should make explicit its
behavior or present an opaque facade for other agents.

Other issues

Several other issues and techniques have been identified
with respect to matchmaking. First, consistency may
become a problem as agents rely on second-hand infor-
mation sources. If multiple agents can answer a query,
it is possible that their answers will be inconsistent.
If producers assert overtly contradictory facts, prob-
lems are, of course, inevitable. However, in complex
domains, even if producers are correct, it is likely that
they will be subtly inconsistent. For example, different
simulations may produce slightly different answers. If
the same simulation agent is used throughout a com-
putation, such errors may not be significant. How-
ever, since matchmaking does not guarantee that the
same agent will answer subsequent requests, normal

24 ICMAS-95

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

mutual inconsistencies may cause problems for a con-
sumer (e.g., “why did this value change so much when
I only changed this one parameter?”). Such problems
can be avoided by using the recommend performative,
which gives the consumer control over which producer
is used, but this may be overly restrictive.

Another issue that will become critical as agent net-
works increase in size is efficiency. As many agents de-
pend on a central matchmaker to route messages and
broker information, the matchmaker could easily be-
come overwhelmed, creating a bottleneck. There are
several potential solutions to this problem. The first
solution is the use of performatives, such as recommend,
that force the bulk of the communication burden on in-
dividual agents. This approach uses matchmaking to
make the initial connection only, not for subsequent
higher-bandwidth communication. Another solution
is to construct communities of matchmakers in which
different individual matchmakers are used to serve dif-
ferent clients. Thus, as demands on the matchmaker
grow, the capacity of the distributed matchmaker also
grows. Matchmaking is ideal for distributed processing
since its workload is naturally partitioned according to
the client agents. Finally, the granularity of messages
can make a large difference in efficiency. Rather than
issuing many very specific advertisements or requests,
agents should take advantage of the expressivity of the
content language to issue fewer, more general adver-
tisements and requests.

An inconvenience that has become apparent in our
experiments is that there are common co-occurring sets
of messages, but KQML does not provide for their con-
venient grouping. For example, when an agent adver-
tises its willingness to fulfill subscribes, it typically
also advertises its willingness to deny (or cancel) that
subscribe. This can only be done currently via a sec-
ond verbose message whose content is largely a dupli-
cation of the first. A mechanism that permits multiple
performatives to refer to the same content would re-
duce the volume of message traffic as well as reduce
redundancy and errors.

Whereas the above is focused on the efficiency of
matchmaking, the efficacy of matchmaking, i.e., identi-
fying relevant matches and avoiding spurious matches,
is also an issue. As discussed previously, matchmak-
ing efficacy depends on the producer and consumer
agents carefully crafting correct content fields. How-
ever, an intriguing feature being investigated is to al-
low matchmaker clients to provide feedback about the
matches found, e.g., a consumer might tell the match-
maker that this was a bad recommendation. Based
on this feedback, the matchmaker could learn better
descriptions of the various producers’ capabilities and
consumers’ needs. Even if client agents don’t provide
explicit feedback, the matchmaker could infer when in-
correct matches are made based on required messages
such as the KQML sorry performative, which is sent
when an agent cannot satisfy another’s request.

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

Conclusions

In their use as core infrastructure elements supporting
several diverse applications, KQML and the SHADE
matchmaker have proven extremely valuable. KQML
provides a much needed language for encapsulating
domain-specific information. Without KQML, dis-
tributed applications, at best, create their own lan-
guage of messages, and at worst, depend on completely
ad hoc or hardwired exchanges. The specific perfor-
matives defined by KQML support many important
and useful mechanisms allowing distributed agents to
discover and share information dynamically. We have
found the brokering performatives (e.g., subscribe,
advertise, recommend, recruit, and broker), as im-
plemented by the matchmaker, to be particularly im-
portant in the dynamic network of agents support by
the SHADE infrastructure.

However, based on our experiments with matchmak-
ing and KQML, there are numerous areas in which ad-
ditional work is needed. Persistent brokering requests
must be supported, there is inadequate support for
transactions, error recovery and status checking, the
use of subscribe to implement content-based routing
carries several dangers, and consistency of information
is placed at risk when the actual sources are abstracted
from the consumers. Also, the efficiency and efficacy
of KQML message traffic has not been analyzed suffi-
ciently for large systems of agents. Finally, represen-
tational adequacy for advertising large, complex infor-
mation bases is a continuing challenge. (Since KQML
is indifferent to content language, this is not really an
indictment, but it is an important concern in the use
of KQML).

Before KQML can grow into a widely used language
for agent interaction, and before matchmaking can be-
come a useful service in emerging information net-
works, these and other issues must be addressed. In
addition, KQML must be actively merged with other
common messaging standards such as CORBA. Oth-
erwise, the global information infrastructure may pass
by, noting an interesting but irrelevant attraction on
the side of the road. Based on our initial trials, how-
ever, KQML and matchmaking promise to fulfill a very
important need as the information landscape grows
and becomes populated with agents.

Acknowledgments

We gratefully acknowledge the insights and assistance
of Jim McGuire, Brian Livezey, and our colleagues in
PACT and the ARPA Knowledge Sharing Initiative.
This work was supported by ARPA prime contract
DAAA15-91-C0104, monitored by the U.S. Army Re-
search Laboratory. We thank Morton Hirschberg for
his invaluable support.

References
Cutkosky, M.; Engelmore, R.; Fikes, R.; Gruber, T.;
Genesereth, M.; Mark, W.; Tenenbaum, J.; and We-

ber, J. 1993. Pact: An experiment in integrating con-
current engineering systems. IEEE Computer 26(1).

Davis, M.; Evans, R.; Davis, G.; and Jones, G.
1993. Simulation based design for submarines. In
Proceedings of the Submarine Technology Symposium,
JHU/APL.

Finin, T.; Weber, J.; Wiederhold, G.; Genesereth, M.;
Fritzson, R.; McKay, D.; McGuire, J.; Pelavin, R.;
Shapiro, S.; and Beck, C. 1993. Draft specification of
the KQML agent-communication language. Techni-
cal report, The ARPA Knowledge Sharing Initiative
External Interfaces Working Group.

Genesereth, M., and Fikes, R. 1992. Knowledge Inter-
change Format, version 3.0 reference manual. Tech-
nical Report Logic-92-1, Computer Science Depart-
ment, Stanford University.

Kuokka, D., and Harada, L. 1995a. A communication
infrastructure for concurrent engineering. Journal of
Artificial Intelligence in Engincering, Design, Analy-
sts, and Manufacturing.

Kuokka, D., and Harada, L. 1995b. Matchmaking for
information agents. In International Joint Conference
on Artificial Intelligence.

Kuokka, D., and Livezey, B. 1994. A collaborative
parametric design agent. In Proceedings of the Na-
tional Conference on Artificial Intelligence, 387-393.
Menlo Park, CA: AAAI Press.

Mark, W., and Dukes-Schlossberg, J. 1994. Cos-
mos: A system for supporting engineering negotia-
tion. Concurrent Engineering: Research and Appli-
cations 2(3).

McGuire, J.; Kuokka, D.; Weber, J.; Tenenbaum, J.;
Gruber, T.; and Olsen, G. 1993. SHADE: Technology
for knowledge-based collaborative engineering. Con-
current Engineering: Research and Applications 1(3).
Patil, R.; Fikes, R.; Patel-Schneider, P.; McKay, D.;
Finin, T.; Gruber, T.; and Neches, R. 1992. The
DARPA Knowledge Sharing Effort: Progress report.
In Proceedings of the Third International Conference
on Principles of Knowledge Representation and Rea-
soning. Morgan Kaufmann.

Singh, N. 1993. A CommonLisp API and facilitator
for ABSI (revision 2.0.3). Technical Report Logic-93-
4, Stanford University Computer Science Department
Logic Group.

Kuokka 245

