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Abstract—The elastic properties of diatomic crystals are considered. An approach is proposed
that permits calculating the elastic characteristics of crystals by using the interatomic interaction
parameters specified as many-particle potentials, i.e., potentials that take into account the effect of
the environment on the diatomic interaction. The many-particle interaction is given in the general
form obtained in the framework of linear elastic deformation. It is shown that, by expanding in series
in small deformation parameters, a group of nonlinear potentials frequently used to model covalent
structures can be reduced to this general form. An example of graphene and diamond lattices is used
to determine how adequately these potentials describe the elastic characteristics of crystals.
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1. INTRODUCTION

It is necessary to know the elastic characteristics of crystals in order to analyze materials, systems,
and structures at nanolevel. However, quite often, many physical characteristics are known with higher
accuracy than the simple mechanical properties. Such physical characteristics underlie the notion of
empirical interaction potentials, which are widely used in computer simulation but often without proper
analysis of the quality of modeling the elastic properties of solids. In the present paper, we use an
approach that, in the framework of linear deformation, permits calculating the elastic characteristics
of some crystals by using the parameters of a wide class of interaction potentials.

A crystal lattice for which the displacement by any vector connecting lattice nodes is an identical
transformation is said to be simple (monatomic). Otherwise, the lattices is said to be polyatomic. In
the present paper, we consider diatomic lattices, which are a special case of polyatomic lattices and
can be represented as a combination of two embedded sublattices. The elementary cell of a diatomic
lattice contains two atoms. As examples of such crystals, we consider graphene and diamond, whose
description requires special approaches. This is due to the fact that interaction in such crystals occurs
through covalent bonds, and taking account of their direction is a rather nontrivial problem. Graphene—
a monolayer of a graphite lattice—was first obtained quite recently [1, 2], but the number of publications
devoted to this material is enormous. This is because of its extraordinary physical properties, which
potentially permit using it in electronic devices (such as field-effect transistors, nanoresonators, etc.).
The mechanical properties of graphene are of interest for several reasons. First of all, creating composite
materials on the basis of graphene seems to be very promising. Graphene composites are dispersed in
the matrix, which then acquires increased strength, rigidity, and electro- and thermal conductivity [3].
Graphene has great potential in the production of electrodes. Finally, carbon nanotubes, which are more
and more widely used in engineering and medicine, are nothing more than graphene layers wrapped
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in some way. Thus, there exist several possibilities for using the mechanical properties of graphene.
Therefore, studying these properties is an important and topical problem.

The constantly increasing interest in the properties of materials with diamond structure is also caused
by the development of nanotechnologies. Nanodiamonds attract attention as antifriction materials,
elements of nanoelectronics, structural materials used to obtain polycrystal diamonds, abrasive materials
for special purposes in surface polishing and diamond film manufacturing, and also as oil additives
and for obtaining diamond-metal hardening coatings. Their use as modifiers in the production of new
composites and in creating new organic materials is also in progress [4]. Moreover, there also exist
several other materials having a diamond-like crystal structure (for example, silicon and germanium
crystals as well as boron nitride crystals). It is difficult to overestimate their importance in micro- and
nanoelectronics, and boron nitride is used as an abrasive material many of whose characteristics exceed
those of diamond.

2. EXPERIMENTAL DETERMINATION OF ELASTIC PROPERTIES
OF GRAPHENE AND DIAMOND

Since the van der Waals interaction of carbon atoms between layers in graphite is significantly weaker
than the interatomic covalent interactions inside a layer, it seems quite obvious that the elastic properties
of graphene and graphite should be similar in the reference plane. In particular, this means that the
elastic moduli C11, C22, and C44 of these materials are very close to one another. The experiments with
graphite performed until 1970 mainly allowed the determination of only the moduli C33 and C44 and
were based on studying the compressibility and specific heat capacity of graphite [5], the methods of
neutron scattering, and resonance and ultrasonic tests. The other moduli either remained undetermined
at all or were determined indirectly. Apparently, the first experimental data containing the complete set of
elastic properties of graphite were presented in [6]. As the object of studies, the authors considered small
crystals of pyrolytic α-graphite, which have close orientations along the axis c and a large scattering of
orientations along the perpendicular directions. The ultrasonic tests were used to determine the elastic
constants C11, C12, C33, and C44; the methods of static compression, tension, and torsion of graphite
samples were used to determine the compliance coefficients S11, S12, S13, S33, and S44. The flexural free
oscillations of rods were used to determine the moduli 1/S11 and C44, and the shear modulus C44 was
also determined by studying the torsional oscillations of oscillatory systems made on the basis of graphite
disks. For almost forty years, these data underlay the theoretical studies of graphite and graphene as well
as single-walled and multi-walled nanotubes, although other experimental studies were also performed.
Pyrolytic graphite irradiated with neutrons was studied in [7]. It was discovered that the only constant
that significantly differs from the data in [6] was C44, although the constant C33 also varied slightly. Some
data on pyrolytic graphite was obtained in [8] based on the methods of nonelastic neutron scattering.
The dependence of elastic properties of pyrolytic graphite on pressure and temperature was investigated
in [9], and an refined value of the modulus C44 obtained on the basis of the Mandelstam–Brillouin
scattering is presented in [10]. In 2007, new data on the elastic constants of graphite was obtained by
the nonelastic X-ray scattering method in [11]. The X-ray scattering overcomes the difficulties arising in
neutron irradiation, specifically, the restrictions on the sample dimensions and the energy transfer, and,
as compared to the ultrasonic methods, is not so sensitive to the material defect structure. A drawback of
this method is the impossibility of exact determination of the coefficient C13 because of large structural
anisotropy; however, the authors assume that this modulus is close to zero [11]. The new data is close to
that given in [6] but can be assumed to be more precise, except for the modulus C13.

Since, in laboratory conditions, graphene was obtained quite recently, there are not so many papers
published on the experimental determination of its elastic properties. The main experimental method
for studying graphene and stacks of graphene layers is the atomic force microscopy (AFM). In [12],
this method is used to study the elastic properties of an object that is a stack of graphene layers (less
than five) settled on a silicon dioxide substrate with grooves etched by a photolithographic method.
The microscope probe presses on the graphene over a groove, the probe displacement is measured, and
the measurements are used to determine the rigidity of the graphene layers. The authors associate the
object under study with an elastic rod fixed at both ends and thus determine Young’s modulus to be
equal to 0.5 TPa. A similar approach is used in [13], where several layers of graphene are located over
circular indentations on the substrate and a membrane is used as the continuum model. The membrane
rigidity is determined by AFM measurements. A similar experiment was also performed with a graphene
monolayer [14], and Young’s modulus of the order of 1 TPa was determined as a result.
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Table 1

C11 C12 C44 K Source

950 390 430 580 Bhagavantam and Bhimasenachar (1946), [15]

932 411 416 416 Hearmon (1946), [16]

1100 330 440 590 Prince and Wooster (1952), [17]

1076 125 576 442 McSkimin (1957), [18]

1076 275 519 542 Markham (1965), [20]

1079 124 578 442 McSkimin (1972), [19]

1076 125 577 442 Grimsditch and Ramdas (1975), [21]

1076 125 576 — Shutilov (1980), [22]

1080 125 577 443 Gilman (2002), [23]

Thus, the differences between the data for the graphene elastic characteristics obtained by different
approaches are rather significant. Apparently, the most reliable data concerning the tensile modulus was
the data obtained in experiments with graphite. This is due to large errors in experiments with graphene,
which are still of great interest from the standpoint of determining the flexural characteristics.

The experimental properties of diamond have been studied much better than those of graphene, but
there is also a large scatter in them. Apparently, the elastic properties of diamond were first measured
in 1946 using ultrasonic methods [15]. Later on, they were also measured by X-ray diffraction and
precision acoustic methods (see, e.g., [16–19]). The experimental results from different sources are given
in Table 1 (in GPa).

The table shows that, starting from 1957, the elastic characteristics obtained are very close, except
for the data of [20] dating back to 1965.

3. MATHEMATICAL AND COMPUTER SIMULATION OF CARBON NANOSTRUCTURES

After nanotubes were discovered by Iijima [24], the study of the elastic properties of carbon com-
pounds received a strong stimulus because the investigators predicted several unique properties of
nanotubes and because modeling of new carbon compounds and materials based on them began. The
nanotubes, and then other nanostructures, became the object of studies by numerous analytical and
numerical methods, which were soon classified into the hierarchy of multiscale modeling [25–27]. At the
lowest step of this hierarchy, which corresponds to the least dimensions and simulation times, there are
ab initio methods (calculations “from first principles,” the theory of the density functional). Then follow
the molecular dynamics method and its generalization (the particle dynamics method), the structural
methods (discrete-continuum models), and finally the continuum mechanics methods.

The particle dynamics method seems to be most natural in modeling microstructures, because
each particle models an atom of the system. In this case, an important role is played by the potential
determining the particle interaction. These potentials can be obtained both purely empirically and on
the basis of quantum mechanical computations. For close-packed lattices, the pair potentials of force
interaction such as the Lenard–Jones potential and the Morse potential can be used successfully.
However, for the majority of crystals with non-close-packed lattices, this simplest model (in what
follows, it will be called the force model), where the atoms are represented by material points, is
insufficient. First of all, this concerns covalent crystals. However, it is the covalent bonds that are
typical of many nanostructures such as graphene, fullerenes, carbon nanotubes, and organic molecules,
and hence the use of paired laws of force interaction for them encounters serious difficulties related to
ensuring the stability and satisfying the experimental values of elastic moduli [28]. By the way, paired
interaction models can be constructed [29, 30] in choosing various laws of interaction with atoms of
different coordination spheres, and such models are successfully used to solve practical problems.

Traditionally, covalent bonds are modeled by using many-particle interaction potentials that depend
on the relative position of several particles (atoms). In [31, 32] and then [33, 34], it was suggested
to model carbon compounds by using many-particle potentials taking account of the angles be-
tween bonds. The family of MM-potentials (in particular, the MM3-potential [35]), the AMBER
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force field [36, 37], and other force fields have been effectively used to model carbon structures both
abroad [38, 39] and in Russia [40].

The parameters of the above-listed potentials are chosen so as to satisfy the known physical
characteristics. Most often, these are different energy and geometric characteristics of the lattice, such
as the energy and the length of an interatomic bond the vacancy formation energy. The majority of the
widely used force fields, such as AMBER, CHARMM, MM3, and OPLS, were developed by experts in
the field of quantum and biological chemistry and were intended for the calculation of the energy forces of
large molecular systems such as proteins, nucleic acid, etc. To a lesser extent, they were intended for the
calculation of the mechanical properties of materials, but attempts to describe the mechanical behavior
of carbon nanostructures by using these potentials can still be encountered in the literature no less
frequently. An advantage of the potentials of the Tersoff–Brenner family is the fact that they were also
chosen by authors so as to satisfy the elastic moduli. In [32], the potential parameters are chosen so as
to satisfy the interatomic distance and the bulk modulus for diamond, and it is claimed that the potential
can be used to model amorphous carbon and even graphite (graphene) with high accuracy. However,
nothing is said about the method for calculating the elastic characteristics. Since the microstructures
are similar, most of the methods for calculating the elastic properties developed for nanotubes can also be
used for graphene. Indeed, attempts to use multi-particle potentials in such calculations were made, for
example, in [42, 43]. However, these papers do not take into account that the crystal lattices under study
are complex, and this results in an incorrect determination of the rigidity tensor. A overview of different
potentials used to model graphene can be found in [38] and a similar overview for nanotubes is given
in [39]. It follows from these papers that the values of Poisson’s ratio and Young’s modulus obtained by
computer simulation can differ by several times.

Computer simulation is widely used to describe the properties of crystals at the microlevel. However,
it is necessary to have theories that can bridge the gap between the microparameters (physical and
geometric parameters of crystal lattices and parameters of effective potentials of interaction) and the
macroparameters (elastic moduli, natural frequencies, etc.). To this end, it is necessary to have models,
called discrete (also discrete-continuum or structural), that rely adequate description of the material
microstructure. In these models, interaction at the microlevel can be described in the framework of
classical mechanics (without taking into account the quantum mechanical effect), which is sufficient for
studying the elastic deformation of the majority of crystalline solids. To model the interatomic interaction
in crystal lattices, one must first introduce some interaction models and then, depending on the type of
the model, pass to the macroscopic description of the material.

In [44], a structural approach (also called rod or discrete-continuum approach) was suggested
to describe the interaction between carbon atoms. In this case, a paired force model with different
interaction laws for the first and second coordination spheres was introduced. The simples (linear)
interaction law is used; i.e., in fact, the interatomic bonds are replaced by linear springs with different
spring constants. In the above paper and in the subsequent literature [29, 30, 38], these springs are called
rods, although the flexural rigidity typical of rods is not taken into account in these models. Generally
speaking, such models were also considered earlier, but it is the paper [44] that attracted attention of a
wide scientific audience to this approach. In Russia, this approach was developed in [30, 45]. An obvious
merit of the rod model is that a simple and descriptive mechanical analogue was suggested for carbon
bonds. Therefore, it is increasingly used [29], although this model has certain drawbacks (in particular,
it does not permit obtaining the correct value of Poisson’s ratio for graphene [28]). Somewhat different
structural models for nanostructure modeling, where the interatomic bonds are modeled by rods with
flexural rigidity were suggested, in particular, in [46, 47].

Taking account of the rod flexural rigidity reflects the orientation of the covalent bond, for which the
interaction forces are not central; i.e., a transverse force arises along with the longitudinal force. From
the general viewpoint, such interactions can be described by taking into account the contribution of the
paired moment between particles in addition to the force contribution. In this case, the potentials depend
on the relative positions and rotations of two interacting particles [48–50]. In [28], it is shown that this
permits removing the restriction on Poisson’s ratio of graphene arising in the force model. In particular,
the moment approach for modeling graphene was used in [51, 52]. An example of the moment approach
used to model diamond is given in [52].

It should be noted that the continuum methods are now widely used to model nanostructures.
For example, it seems quite natural to model a nanotube by an equivalent thin shell neglecting its
microstructure. However, in this case, it is necessary to introduce a formal adjustable parameter that
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has no physical meaning, namely, a wall thickness. When passing to the continuum theory of elasticity,
the principle arbitrariness in determining the dimension of a nanoobject (in this case, its thickness) leads
to an ambiguity in determining its elastic characteristics [53, 54]. For nanotubes, this phenomenon was
called the “Jacobson paradox” shortly after the publication of the paper [55]. A great role in constructing
continuum models is played by the anisotropy of nanoobjects [56]. Thus, in construction of continuum
models, one must to take the material microstructure into account is one or another way.

Clearly, the gap between the discrete and continuum descriptions of materials is still quite large.
Therefore, the potentials used in models at the microlevel are often not properly analyzed of whether they
adequately describe the macro characteristics of the material In the present paper, we try to fill this gap.

4. GENERAL FORM OF RIGIDITY TENSOR OF DIATOMIC LATTICE

We consider an ideal (defect-free) complex crystal lattice. A lattice is said to be complex if there are
nodes such that the displacement by the vector connecting them is not an identical transformation. We
consider complex lattices whose elementary cells contain two atoms. For example, diamond, graphite,
and hexagonal close-packed (HCP) crystals have such lattices. We consider the interaction only with
the nearest neighbors and adjacent bonds. We denote the nearest neighbors of a given atom and the
corresponding bonds by the indices α, β, and γ. We consider only the case of small linear deformations
and represent the energy per volume occupied by a single atom as follows:

W =
1
V0

[
G1

∑
α

κ2
α + G2

∑′

α,β

ξ2
αβ + G3

∑′

α,β

(κα + κβ)ξαβ + G4

∑′

α,β,γ

ξαβξαγ

]
. (4.1)

Here V0 denotes the volume of the elementary cell, κα and κβ are the strains of bonds α and β, and ξαβ

is the change in the angle between the bonds. The summation sign labeled with a prime denotes the
summation over adjacent bonds only. It is assumed that the relations α �= β �= γ hold for each individual
term.

The interaction form (4.1) containing four independent parameters Gk is quite general to be used to
describe the particle interaction in the system. Many potentials in computer simulation of materials can
be reduced to this form. Earlier, it was shown [57] that the form containing only two parameters (the first
two terms in (4.1)) satisfies some force fields used in modeling. However, two parameters are insufficient
for comparing the form of the interatomic interaction with the family of Tersoff–Brenner potentials widely
used to model carbon compounds. Therefore, the form (4.1) contains two additional terms, one of which
connects the bond linear strain and the change in the angle between two bonds and the other term is
responsible for the change in the angles at the two bonds adjacent to the given bond. In what follows, we
will show that this form completely satisfies the class of Tersoff–Brenner potentials, and hence it does
not seem necessary to add terms, for example, of the form κακβ to (4.1).

If the interaction is implemented by linear springs with constant c and by angular springs with
constant γ, then

G1 = 1
2 ca2, G2 = 1

2 γ, G3 = 0, G4 = 0, (4.2)

where a is the length of the linear spring.
It is well known that any complex diatomic lattice can be represented as a combination of two simple

sublattices. We assume that the crystal deformation is composed of homogeneous small deformations of
its both sublattices. The configuration thus obtained is not in equilibrium but tends to equilibrium at the
expense of a shift of one sublattice with respect to the other by a certain discrepancy vector ζ. Therefore,
the strain energy, which, on one hand, is a quadratic form of the strain tensor, can be represented as a
quadratic form of the strain tensor and the discrepancy vector:

W = 1
2 ε ·· 4C ·· ε = 1

2 ε ·· 4C∗ ·· ε + 1
2 ζ ·C · ζ + ζ · 3C ·· ε. (4.3)

We assume that the crystal has a uniform strain ε. In this case, the discrepancy vector must ensure a
shift of sublattices, at which the strain energy minimum is attained, that permits relating it to the strain
tensor

∂W

∂ζ
= 0 ⇒ C · ζ + 3C ·· ε = 0 ⇒ −C−1 · 3C ·· ε. (4.4)
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We use the last relation to express the rigidity tensor as
4C = 4C∗ − 3CT · C−1 · 3C. (4.5)

The deformations of the bonds and angles can be represented as

κα = nαnα ·· ε+nα · ζ, καβ = nαnβ ·· ε+ 1
2 (nα + nβ) · ζ, ξαβ =

(κα+κβ) cos ϕ − 2καβ

sinϕ
. (4.6)

We substitute formulas (4.6) into (4.1). Comparing with (4.3) and summing over three indices, we can
determine the rigidity tensors of different ranks, which can be written as sums of two terms:

4C∗ = 4C̃∗ + 4Ĉ∗,
3C = 3C̃ + 3Ĉ, 2C = 2C̃ + 2Ĉ. (4.7)

Here the terms with tildes correspond to the contribution of the first three terms of (4.1) into the total
rigidity tensor, and the terms with hats correspond to the contribution obtained by taking account of the
adjacent angles, i.e., the last term in (4.1). With (9.12)–(9.19) we obtain

4C̃∗ =
2
V0

[
H1

∑
α

nαnαnαnα + H2

∑′

α,β

nαnαnβnβ + H2

∑′

α,β

(nαnβnβnα + nαnβnαnβ)
]
,

3C̃∗ =
1
V0

H4

∑
α

nαnαnα, 2C̃∗ =
2
V0

H5

∑
α

nαnα,

(4.8)

where the constant coefficients Hk are expressed as

H1 = G1 − 6M1G2 cot2 ϕ − 2M1G3 cot ϕ, H2 = 2G2 cot2 ϕ + 2G3 cot ϕ, H3 = 2G2(1 + cot2 ϕ),

H4 = 2G1 + 4G2M1
cot ϕ

sinϕ
(1 − cos ϕ)2 + 2G3M1

1
sin ϕ

(cos 2ϕ − cos ϕ),

H5 = G1 + 2G2M1(1 − cos ϕ) − 2G3M1 sin ϕ.

(4.9)

We introduce the notation

P = cos2 ϕ − sin2 ϕ

d − 1
, P̃ = cos2 ϕ +

sin2 ϕ

d − 1
, Q =

M1M sin2 ϕ

d(d − 1)
, (4.10)

where M is the number of the nearest neighbors of a given atom, M1 is the number of bonds adjacent
to it, and d = 2, 3 is the space dimension. Then the terms responsible for taking account of the adjacent
angles have the form

4Ĉ∗ =
2
V0

G4

[
R

∑
α

nαnαnαnα + TJ1 + U(J2 + J3)
]
,

3Ĉ =
1
V0

G4W
∑
α

nαnαnα, 2Ĉ =
2
V0

G4V
∑
α

nαnα,

(4.11)

R = M1

[
(M1 − 1)(1 + 3P ) cot2 ϕ + 4P

cot ϕ

sin ϕ
+ 4P̃

1
sin2 ϕ

]
,

T = Q

[
3(M1 − 1) cot2 ϕ + 4

cot ϕ

sin ϕ

]
, U = − 2Q

sin2 ϕ
,

W = M1(M1 − 1)[2 + 3(P + cos ϕ)] cot2 ϕ − 2(M1 − 1)(M1P + 1)
cot ϕ

sin ϕ
+

4
sin2 ϕ

,

V = M1(M1 − 1)(1 + 3 cos ϕ) cot2 ϕ + (3M1 − 2)
cot ϕ

sin ϕ
.

(4.12)

By Jk we denote the isotropic tensors of rank four,

J1 = ekekenen = EE, J2 = ekenenek, J3 = ekeneken, (4.13)

where ek are vectors of some orthonormal basis; from now on, the summation is performed over the
repeated Latin index.
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Formulas (4.11)–(4.12) were derived under the assumption that, for both graphene and diamond, the
following relations are satisfied:

M1 cos ϕ = M1P = −1. (4.14)

Formulas (4.8)–(4.12) were obtained using (9.26)–(9.31). With (9.16) and (9.19) taken into account,
we obtain

2C =
2M(H5 + G4V )

V0d
E, 3CT · 3C =

(H4 + G4W )2

V 2
0

(
d + 1

d

∑
α

nαnαnαnα − M2

d3
J1

)
,

4C∗ =
2
V0

{
[H1 + M1P (H2 + 2H3) + RG4]

∑
α

nαnαnα

+ (H2Q + TG4)J1 + (H3Q + UG4)(J2 + J3)
}

.

(4.15)

Substituting formulas (4.15) into (4.5), we obtain the expression for the rigidity tensor of a complex
lattice:

4C = κ′
∑
α

nαnαnαnα + λ′J1 + μ′(J2 + J3), (4.16)

κ′ =
2
V0

[H1 + M1P (H2 + 2H3) + RG4] −
1

2(H5 + V G4)
(H4 + WG4)2

V0
,

λ′ =
2
V0

(QH2 + TG4) +
(d + 1)(H4 + WG4)2

2d2(H5 + V G4)V0
, μ′ =

2
V0

(QH3 + UG4).
(4.17)

Let us consider the tensor
∑

α nαnαnαnα. For an orthotropic material with cubic symmetry, it can
be represented as [28]: ∑

α

nαnαnαnα = Mκekekekek + Mμ(J1 + J2 + J3), (4.18)

where ek are unit vectors of the cubic sublattice in the case of crystals with cubic symmetry or unit
vectors of an arbitrary orthonormal basis in the case of isotropic elastic properties; Mκ and Mμ are
dimensionless coefficients determined by the formulas

Mκ = 2
1 − ηc

d(dηc + 2)
M, Mμ =

ηc

d(dηc + 2)
M, (4.19)

where ηc is the anisotropy parameter of the tensor
∑

α nαnαnαnα, which coincides with the anisotropy
parameter of the rigidity tensor of the material under study in the case of pure force interaction. Thus, in
the anisotropic case, we have

4C = κekekekek + λJ1 + μ(J2 + J3), κ = κ′Mκ, λ = κ′Mμ + λ′, μ = κ′Mμ + μ′, (4.20)

where κ, λ, μ are generalized Lamé coefficients.
In conclusion, we present the rigidity tensor for isotropic materials. In this case, we have ηc = 1,

κ = 0, and
4C = λJ1 + μ(J2 + J3). (4.21)

Then the Lamé coefficients become

λ =
M

d(d + 2)
κ′ + λ′, μ =

M

d(d + 2)
κ′ + μ′. (4.22)

As a result, we have obtained the rigidity tensors for materials whose elementary cells of crystal
lattices contains two atoms. The rigidity tensor was calculated under the assumption that only the
bonds adjacent to the given bond contribute to the binding energy of two atoms. This condition is always
satisfied for graphene and diamond all whose bonds are always adjacent. The elastic characteristics of
these materials can be obtained from the general form of the rigidity tensor.
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5. COMPUTATION OF ELASTIC CONSTANTS OF GRAPHENE AND DIAMOND
If we consider a two-dimensional isotropic material such as a graphene layer, then

d = 2, M = 3, Mκ = 0, Mμ =
3
8

, ηc = 1, V0 =
3
√

3
2

a2. (5.1)

In this case, the elastic characteristics are calculated by the formulas:

C11 = λ + 2μ, C12 = λ, C44 = μ, K = λ + μ, E =
4μ(λ + μ)

λ + 2μ
, ν =

λ

λ + 2μ
. (5.2)

We substitute formulas (4.17) and (4.22) into (5.2) to determine the elastic characteristics of the
graphene lattice as follows:

E =
36G1(2G1G2 − G1G4 − G2

3)
V0(G2

1 + 18G1G2 − 9G1G4 − 6G2
3 − 2

√
3G1G3)

,

ν =
G2

1 − 6G1G2 + 3G1G4 + 6G2
3 − 2

√
3G1G3

G2
1 + 18G1G2 − 9G1G4 − 6G2

3 − 2
√

3G1G3

, K =
3G1

2V0
.

(5.3)

It is easy to pass to the two-parameter model if we assume that the interaction occurs according
to (4.2). Then, using the notation cγ = γ/a2, we obtain from the two-parameter model for graphene:

E = 8
√

3
ccγ

c + 18cγ
, ν =

c − 6cγ

c + 18cγ
, K =

√
3

6
c. (5.4)

An example of using a two-parameter model in graphene modeling is given in [57].
Diamond and materials with diamond-like crystal lattice (e.g., silicon and germanium) are examples

of orthotropic materials with cubic symmetry. For them,

d = 3, M = 4, Mκ = − 8
9

, Mμ =
4
9

, ηc → ∞, (5.5)

and the elastic constants can be found by the formulas

C11 = κ + λ + 2μ, C12 = λ, C44 = μ, K =
κ + 3λ + 2μ

3
. (5.6)

We substitute formulas (4.17) and (4.22) into (5.6). This allows us to determine the elastic characteris-
tics of diamond with the effect of conjugate angles between bonds taken into account:

C11 =
8
9

G1 + 12G2 − 12G4

V0
, C12 =

8
9

G1 − 6G2 + 6G4

V0
,

C44 =
16(G1G2 − G2

3)
V0(G1 + 8G2 − 4G3

√
2)

, K =
8G1

9V0
.

(5.7)

The volume of the elementary cell for the diamond crystal lattice is V0 = 16
√

3/9a3, where a is the
interatomic distance for carbon. Using the two-parameter model for diamond, we obtain

C11 =
√

3
12a

(c + 12cγ), C12 =
√

3
12a

(c − 6cγ), C44 =
3
√

3
2a

ccγ

c + 8cγ
, K =

√
3

12a
c. (5.8)

As one could expect, the bulk modulus in (5.3) and (5.7) depends only on the bond tensile rigidity and
is independent of the rigidities of angular interaction G2, G3, and G4.

6. LINEARIZATION OF THE TERSOFF POTENTIAL
BY EXPANDING IN A SERIES IN SMALL STRAINS

We represent the total energy of a system consisting of finitely many interacting atoms as

E =
∑

i

Vi =
1
2

∑
i�=j

Πij , (6.1)
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where the summation is performed over all atoms, Vi is the interaction energy per atom of the system,
and Πij is the interatomic bond energy. The coefficient 1/2 takes into account the fact that each bond
connects two atoms. In 1988, Jerry Tersoff suggested the following form for the binding energy [31]:

Πij = fC(rij)[aijfR(rij) + bijfA(rij)]. (6.2)

The indices i and j run through all interacting atoms. Here

fR(r) = A exp(−λ1r), fA(r) = −B exp(−λ2r). (6.3)

According to [32], we assume that for carbon atoms, interacting at distances less than 1.8A
◦

, we have
fC ≡ 1 and aij ≡ 1. This condition holds for both graphene and diamond. The function bij has the form

bij = (1 + βnζn
ij)

− 1
2n , (6.4)

ζij =
∑
k �=i,j

G(Θijk) exp[λ3
3(rij − rik)3], G(Θ) = 1 +

c2

d2
− c2

d2 + (h − cos Θ)2
. (6.5)

In the above formulas, A, B, λ1, λ2, β, n, c, d, and h are the potential parameters that depend on the
modeled material, and rij and Θijk are the distance and the angle between the atoms specified by the
subscripts.

The problem considered in this section is to linearize the Tersoff potential taking into account only
the interaction between the nearest neighboring atoms and preserving the terms up to the second order
of smallness inclusively. To simplify the notation, we introduce the function

h(x) = exp(λ3
3x

3) ⇒ exp[λ3
3(rij − rik)3] = h(rij − rik). (6.6)

We number the atoms as follows. To a given atom we assign the index 0, and to a nearest atoms, the
index α. Obviously, α varies from 1 to M , where M is the number of the nearest neighbors of the given
atom.

As an example, we consider one of the bonds connecting atoms 0 and 1. For this bond, we have

ζ01 =
M∑

β=2

G(Θ01β)h(r01 − r0β). (6.7)

To simplify the notation, we omit the first index when we deal with a specific atom. So we have

ζ1 =
M∑

β=2

G(Θ1β)h(r1 − rβ). (6.8)

Thus, we can introduce the new way of designation

ζij → ζα, ζα =
∑
β

G(Θαβ)h(rα − rβ), bij → bα ≡ b(ζn
α). (6.9)

In the above formulas, it is assumed that j �= i, and the index α now specifies the bond number.
Thus, the energy of bond α for any ith atom is equal to

Πi
α = fR(rα) + bαfA(rα). (6.10)

In the new notation, (6.1) takes the form

Vi =
1
2

∑
α

Πi
α, E =

∑
i

Vi. (6.11)

Since to each atom of the system there corresponds a volume equal to half the elementary cell volume,
we obtain the following relation between the potential and the interaction energy:

W =
1
V0

∑
α

Πα. (6.12)
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Let us consider the difference

rα − rβ = a(κα − κβ), (6.13)

where a is the initial bond length and κα and κβ are the strains of the respective bonds. The strain
difference is a quantity of the first order of smallness. We expand the function h in (6.6) in a series in this
quantity,

h(rα − rβ) � 1 + λ3
3a

3(κα − κβ)2. (6.14)

The strain difference in the expansion is raised to the third degree and can be neglected compared to 1.
Thus,

h(rα − rβ) ≡ 1, ζα =
∑
β

G(θαβ). (6.15)

Instead of the function G, we introduce a function g that depends on cos Θ rather than Θ. Then we have

ζα =
∑
β

g(cos Θαβ) =
M∑

β=2

g(cos(Θ0 + ξαβ)), (6.16)

where Θ0 = 2π/3 for graphene and Θ0 = arccos(−1/3) for diamond.
Finally, we use (6.12) to determine the energy per atom of the system

Wi =
1
V0

[
u0 + u1

∑
α

κα + u2

∑′

α,β

ξαβ + G1

∑
α

κ2
α + G2

∑′

α,β

ξ2
αβ

+ G3

∑′

α,β

(κα + κβ)ξαβ + G4

∑′

α,β,γ

ξαβξαγ

]
, α �= β �= γ. (6.17)

Here we have used the fact that the energy of each bond of an atom (for example, of the first) can be
expanded in a series in small strains preserving the second-order terms:

Π1(r1,Θ1α) = Π1(a + aκ1,Θ0 + ξ1α) = Π1(a,Θ0) +
∂Π1

∂r1
aκ1 +

∂Π1

∂Θ12

∑
α

ξ1α +
1
2

∂2Π1

∂r2
1

a2κ2
1

+
∂2Π1

∂r1∂Θ12
aκ1

∑
α

ξ1α+
1
2

∂2Π1

∂Θ2
12

∑
α

ξ2
1α+

1
2

∂2Π1

∂Θ1α∂Θ1β

∑
α,β

ξ1αξ1β, α �=β, α, β=2, . . . ,M. (6.18)

Here it is taken into account that the dependence of Π1 on Θα is the same for all α and assume that all
the derivatives are calculated at r1 = a and Θα = Θ0. Similarly, we can expand the functions Πα, where α
varies from 2 to M . With (6.12) and (6.17) taken into account, we obtain

u0 = MΠ1(a,Θ0,Θ0),

G1 =
1
2

∂2Π1

∂r2
1

a2, G2 =
1
2

(
∂2Π1

∂(cos Θ2)2
sin2 Θ0 −

∂Π1

∂(cos Θ2)
cos Θ0

)
,

G3 = − 1
2

a
∂2Π1

∂r1∂(cos Θ2)
sin Θ0, G4 =

1
2

∂Π1

∂(cos Θ2) cos ∂Θ3
sin2 Θ0,

u1 =
∂Π1

∂r1
a, u2 = − 1

2
∂Π1

∂(cos Θ2)
sin Θ0.

(6.19)

When calculating these coefficients, we use the potential parameters suggested in [32]:

A = 1393.6 eV, B = 346.74 eV, λ1 = 3.4879 A
◦ −1, λ2 = 2.2119 A

◦ −1,

β = 1.5724 · 10−7, n = 0.72751, c = 38049, d = 4.3484, h = −0.57058.
(6.20)

We note that these parameters were suggested by J. Tersoff to calculate different carbon polytypes
and were chosen according to the bulk modulus and interatomic binding energy of diamond. Thus,
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the problem of how adequately these parameters can be used to calculate the elastic characteristics of
graphene is very important. In particular, it is clear that they do not ensure an equilibrium configuration of
the graphene lattice, and hence the lattice is forced to deform. Since all atoms are equivalent, the angles
between bonds must remain unchanged. This implies that the only possibility for ensuring a minimum of
the energy, i.e., the transition to an equilibrium configuration, is the bulk compression or extension of the
lattice along interatomic bonds. We easily obtain the following condition for calculating an equilibrium
bond length:

∂Π1

∂r1

∣∣∣∣
r1=a,Θ2,3=Θ0=0

. (6.21)

Thus, the equilibrium condition means that the coefficient u1 is equal to zero, which is equivalent to
the condition that the resultant of all forces acting on the body in equilibrium must be zero and must
identically be satisfied for any potential.

We note that for any changes in the angles adjacent to the atom, their sum remains unchanged. This
means that ∑

α

ξα = 0, (6.22)

i.e., the coefficient u2 always has a zero multiplier.
It follows from conditions (6.21) and (6.22) that the interaction energy (6.17) must be a quadratic

form of the bond strains and changes in the angles between bonds. The term u0 does not play any role,
the derivatives of the atom energy with respect to the strains rather than the energy itself are of physical
interest. Thus, we see that the form (6.17) can be reduced to the form (4.1) by using the Tersoff–Brenner-
type potentials. For graphene (gr) and diamond (diam), condition (6.12) result in the following value of
the bond length:

agr = 1.46051 A
◦
, adiam = 1.54396 A

◦
, (6.23)

which differs from the experimental value agr = 1.42 A
◦

for graphene but coincides with the experimental
value adiam = 1.54 A

◦
for diamond.

Using (6.19) and taking (6.20) and (6.23) into account, we obtain the values of the desired coeffi-
cients. For graphene,

G1 = 40.568 eV, G2 = 9.2607 eV, G3 = 3.2795 eV, G4 = −3.7687 eV, (6.24)

and for diamond,

G1 = 33.887 eV, G2 = 3.3137 eV, G3 = 3.7386 eV, G4 = −2.7442 eV. (6.25)

Thus, we have used the Tersoff potential to expand the energy per atom contained in the system with
respect to small parameters, the bond strains and the deformations of the angles between bonds. We
have determined the coefficients of this expansion G1, . . . , G4. These coefficients will be used in the
subsequent sections to calculate the elastic characteristics of the crystal lattice.

7. LINEARIZATION OF THE FAMILY OF BRENNER POTENTIALS
BY EXPANDING IN A SERIES IN SMALL STRAINS

In 1990, taking the Tersoff potential as the basis, D. Brenner suggested his potential for calculating
carbon and hydrocarbon compounds [33]. The Brenner potential structure is similar to that of the Tersoff
potential but differs in the form of the specific functional dependences contained. The Brenner potential
was specially designed to model carbons; it became very common in the 1990s because of increasing
interest in carbon nanostructures. In 2002, this potential was refined by Brenner and his colleagues so
as to be used for modeling hydrocarbons [34]. In the Western literature, it was named the “second-
generation Brenner potential” in contrast to the preceding first-generation potential. At present, it is the
second-generation potential that is mainly used. Both potentials permit representing the energy of the
bond between the ith and jth atoms as

Πij = fR(rij) − B̄ijfA(rij). (7.1)
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The functions responsible for the attraction and repulsion of atoms in the case of the first-generation
potential have the form

fR(rij) =
Dij

Sij − 1
exp

[
−

√
2Sij βij(rij − Rij)

]
,

fA(rij) =
DijSij

Sij − 1
exp

[
−

√
2

Sij
βij(rij − Rij)

]
.

(7.2)

For the second-generation potential, they are

fR(rij) = fC(rij)
(

1 +
Q

rij

)
A exp(−αrij),

fA(rij) = fC(rij)
∑

n=1,3

Bn exp(−βnrij).
(7.3)

The symmetrized multiplier B̄ij is responsible for changes in the angle between bonds:

B̄ij =
Bij + Bji

2
. (7.4)

The multiplier Bij for the first-generation potential has the form

Bij =
(

1 +
∑

k �=(i,j)

Gi(Θijk)fik(rik) exp{λijk[(rij − Rij) − (rik − Rik)]}
)−δ

, (7.5)

G(Θ) = a

[
1 +

c2

d2
− c2

d2 + (1 + cos Θ)2

]
. (7.6)

For the second-generation potential, it is

Bij =
[
1 +

∑
k �=(i,j)

Gi(Θijk)fik(rik) exp(λijk)
]−1/2

. (7.7)

The analytical form for the function Gi(cos Θijk) is not determined; therefore it is constructed as a
polynomial in the values of the function and its derivatives for the angle value Θijk = 2π/3 for graphene
and Θijk = arccos(−1/3) for diamond, which are given in [34]:

Ggr(cos Θ) = 0.05280,
dGgr

d(cos Θ)
= 0.17000,

d2Ggr

d(cos Θ)2
= 0.37000,

Gdiam(cos Θ) = 0.09733,
dGdiam

d(cos Θ)
= 0.40000,

d2Gdiam

d(cos Θ)2
= 1.98000.

(7.8)

In the above formulas, Dij , Sij , Rij , A, Q, Bn, a, c, d, α, βn, and fC , λijk, fik are potential parameters;
they depend on the material under study. According to [33, 34], we can take λijk ≡ 0, fij ≡ 1, and fC ≡ 1
for graphene and diamond in the equilibrium configuration. Then the forms of the above functions, in
particular, that of the multiplier Bij become significantly simpler. In the reference configuration, all the
angles between bonds are the same, and hence Gijk is equivalent for any k, which implies B̄ij = Bij .
Following the method proposed in the preceding section, we pass from calculating the quantities per
bond to the quantities per atom of the system. Then, by analogy with (6.10)–(6.12), we obtain

Πα = fR(rα) − B̄αfA(rα), Vi =
1
2

∑
α

Πα, E =
∑

i

Vi. (7.9)

To calculate the numerical values of the coefficients vi in expansion (6.17) with the first-generation
Brenner potential, we use the potential parameters suggested in [33] for carbon atoms:

RCC = 1315 A
◦
, DCC = 6.325, SCC = 1.29, βCC = 1.5 A

◦ −1,

δCC = 0.80469, a = 0.011305, c2 = 192, d2 = 2.52.
(7.10)
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Condition (6.21) implies the following value for the equilibrium bond length:

agr = 1.45068 A
◦
, adiam = 1.54055 A

◦
, (7.11)

which, just as the value obtained for the Tersoff potential, differs from the experimental value for
graphene (1.42 A

◦
) but coincides with the experimental value for diamond (1.54 A

◦
). Finally, substituting

(7.10)–(7.11) into (6.17), we obtain

G1 = 45.634 eV, G2 = 1.5905 eV, G3 = 3.1089 eV, G4 = −0.13979 eV (7.12)

for graphene and

G1 = 38.323 eV, G2 = 1.0123 eV, G3 = 3.1112 eV, G4 = −0.16670 eV (7.13)

for diamond. Let us calculate the same coefficients using the parameters of the second-generation
Brenner potential, which are given in [34]:

B1 = 12388.8 eV, β1 = 4.72045 A
◦ −1, B2 = 17.5674 eV, β2 = 1.43321 A

◦ −1,

B3 = 30.7149 eV, β3 = 1.38269 A
◦ −1, Q=0.313460 A

◦
, A=10953.5 eV, α=4.74654 A

◦ −1.
(7.14)

For these parameters, condition (6.21) implies the following value of the equilibrium bond length:

agr = 1.42038 A
◦
, adiam = 1.54401 A

◦
. (7.15)

Out of the three potentials considered above, only the last one satisfies the experimental values in
both cases. The expansion coefficients for graphene take the values:

G1 = 43.945 eV, G2 = 1.5601 eV, G3 = 3.6373 eV, G4 = −0.13773 eV. (7.16)

For diamond, we obtain

G1 = 35.187 eV, G2 = 4.1248 eV, G3 = 4.4724 eV, G4 = −0.39410 eV. (7.17)

Thus, it has been shown that the formulas obtained in the preceding section with the Tersoff potential
can be used for any potential of the same group, in particular, for the Brenner potential. These formulas
have been used to determine the coefficients of the expansion of the potential energy per atom.

8. COMPUTATION OF THE ELASTIC CHARACTERISTICS OF GRAPHENE
AND DIAMOND USING THE PARAMETERS OF INTERACTION POTENTIALS

We use the formulas obtained above to calculate the elastic characteristics of graphene and diamond
lattices by applying the Tersoff and Brenner potentials.

To this end, we substitute the coefficients Gk obtained in the preceding sections into (5.3) and (5.7).
The numerical results for the elastic moduli of graphene are given in Table 2. Recall that they correspond
to the two-dimensional theory; i.e., Young’s modulus is measured in N/m, while the experimentally
determined values of graphene rigidities correspond to the three-dimensional theory, and hence are
measured in Pa = N/m2. Therefore, the experimental characteristics have been recalculated using
the known distance between the graphene layers in graphite h = 0.34 nm, which is the coefficient of
proportionality between the two- and three-dimensional moduli of elasticity. The volume of the three-
dimensional elementary cell of a graphite crystal is equal to the product of h by the volume of the two-
dimensional elementary cell of a graphene layer. In the table, we use the following notation: TP stands
for the Tersoff potential, BP-1, for the first-generation Brenner potential, and BP-2, for the second-
generation Brenner potential.

As follows from Table 2, the discrepancy between the experimental and theoretical data is very
significant. It is paradoxical that the Tersoff potential gives a negative value of Poisson’s ratio. A much
better coincidence with experimental data is obtained for Young’s modulus and the bulk modulus. The
latter is 176 N/m for the Tersoff potential. For the first- and second-generation Brenner potentials, the
bulk moduli are 201 N/m both, i.e., they are much closer to the current experimental values than the
other moduli given in the table. We note that the data for the Brenner potential completely coincides
with similar data given in [58], which was also obtained by comparing the energy at the micro- and
macrolevels but by a somewhat different method based on the use of the continuum theory of finite
strains at the macrolevel and special consideration of internal degrees of freedom at the microlevel.
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Table 2

K, N/m E, N/m ν Method Source

176 407 −0.158 TP, 1988 Present paper

201 236 0.412 BP-1, 1990 Present paper

201 236 0.412 BP-1, 1990 M. Arroyo et al., 2004 [58]

194 227 0.416 BP-2, 2002 C.D. Reddy et al., 2006 [59]

201 243 0.397 BP-2, 2002 Present paper

201 243 0.397 BP-2, 2002 M. Arroyo et al., 2004 [58]

240 360 0.249 Experiment J.C. Bowman et al., 1958 [5]

211 350 0.170 Experiment O.L. Blakslee et al., 1970 [6]

212 371 0.125 Experiment A. Bosak et al., 2007 [11]

Table 3

K C11 C12 C44 Method

426 1337 −31 566 Tersoff potential, 1988

485 664 395 230 Brenner potential-1, 1990

442 1123 101 670 Brenner potential-2, 2002

442 1079 124 578 MsSkimin (1972), [19]

442 1076 125 577 Grimsditch and Ramdas (1975), [21]

442 1076 125 576 Shutilov (1980), [22]

443 1080 125 577 Gilman (2002), [23]

Note that in [60], the results E = 227 N/m and ν = 0.416 were obtained by a computer simulation
based on the use of the second-generation Brenner potential, and these results are close to the data
presented by the author of the present paper and to the data given in [58]. Moreover, in [60], the
computations were performed after the minimization of the potential energy of a graphene sheet by
determining an equilibrium configuration. Apparently, this resulted in a significant decrease in the error
arising due to the necessity of considering the internal degrees of freedom of the lattice.

Possibly, the large error in the description of the elastic moduli by the potentials under study
originates from the fact that the authors of these potentials, when trying to fit them to experimental
data, did not take account of the internal degrees of freedom that correspond to shifting of sublattices in
the crystal. In particular, it was shown in [58] that if Young’s modulus and Poisson’s ratio of graphene
are calculated without taking into account the shift, then the values 337.8 N/m and 0.1580 are obtained,
respectively, which are close to the experimental data. Apparently, the same result can be obtained by
setting the second term in (4.5) to zero.

The numerical results for the elastic moduli of diamond are given in Table 3 (in GPa). It follows
from the table that the discrepancy with the experimental data for all three potentials is significant, just
as in the case of graphene. The Tersoff potential gives a negative value of the modulus C12, a similar
effect was also observed for graphene. The values obtained by using the second-generation Brenner
potential are the closest to the experimental data and this is especially true for the bulk modulus. The
first-generation Brenner potential is the most inexact; apparently, this is because Brenner did not include
the constants C11, C12, and C44 in the set of experimental data used in the parametrization [59].

It follows from the above that, to describe the elastic characteristics of crystals more adequately, it
is required either to refine the existing potentials or to use different approaches; for example, moment
interaction should be used, whose parameters have a clear mechanical meaning, which makes it easier
to ensure the correspondence between the mechanical characteristics of crystals [28, 50–52].
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9. SOME RELATIONS FOR DETERMINING STRAINS OF INTERATOMIC BONDS
AND COMPONENTS OF THE RIGIDITY TENSOR

In this section, we derive some relations, which were used earlier. At the first reading of the paper,
this section can be omitted.

Consider the deformation of the bonds of a given particle with the nearest neighbors; let us label these
bonds with the index α. In the actual configuration, the bond vectors Aα are expressed as

Aα = aα + uα − u + aζ, (9.1)

where aα is the bond vector between the given particle and particle α in the reference configuration, uα

and u are the displacement vectors of particle α and the given particle, and aζ is the discrepancy vector
(a is the bond length in the reference configuration).

Taking the long-wave approximation into account, we can write

uα − u = aα · ∇u. (9.2)

Then, omitting the small terms, we obtain from (9.1):

Aα = aα + aα · ∇u + aζ, A2
α = a2

α + 2aαaα ·· ε + 2aα · aζ. (9.3)

We express the magnitude of the bond vector in the actual configuration as

Aα � a(1 − nαnα ·· ε + nα · ζ). (9.4)

Then the value of the bond strain is equal to

κα =
Aα − aα

aα
= nαnα ·· ε + nα · ζ. (9.5)

Let us estimate the change in the angle ϕ between the bonds. Denote the small increment in the angle
between bonds α and β by ξαβ and write

cos(ϕ + ξαβ) =
Aα ·Aβ

A2
= cos ϕ − sin ϕξαβ . (9.6)

Taking into account that cos ϕ = (aα · aβ)/a2 and

Aα · Aβ = aα · aβ + 2aαaβ ·· ε + 2(aα + aβ) · aζ, (9.7)

we arrive at the relation

cos ϕ − sin ϕξαβ = (cos ϕ + 2καβ)(1 − κα)(1 − κβ). (9.8)

Here we have introduced the notation

καβ = nαnβ ·· ε + 1
2 (nα + nβ) · ζ. (9.9)

Transforming (9.8), we finally obtain

ξαβ =
(κα + κβ) cos ϕ − 2καβ

sin ϕ
. (9.10)

Thus, we have determined the strains of the interatomic bonds. Further, we present a method for
determining the components of the rigidity tensor.

Consider the unit vectors nα and nβ determining the directions of two adjacent bonds. We repre-
sent nβ as the sum of two terms, parallel and perpendicular to nα:

nβ = nα cos ϕ + nb
a sin ϕ, (9.11)

where nb
a is the unit vector perpendicular to nα. We assume that, by the lattice symmetry, the following

identities are satisfied:∑
β(α)

nb
a = 0,

∑
β(α)

nb
an

b
a =

M1

d − 1
(E − nαnα),

∑
α

nαnα =
M

d
E, (9.12)

where the summation over β(α) implies the summation over all bonds adjacent to nα; d = 2, 3 is the
space dimension, E is the unit tensor corresponding to the space dimension, M is the number of the
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nearest neighbors of the given atom, and M1 is the number of the bonds adjacent to the given bond.
These identities hold for the graphite lattice and also, at least, for the following crystal lattices: triangular,
square, simple cubic, and BCC. Using formulas (9.11)–(9.12), we obtain

∑
β(α)

nβnβ = M1Pnαnα +
M1

d − 1
E, P = cos2 ϕ − sin2 ϕ

d − 1
. (9.13)

Then the following tensors can be transformed as∑′

α,β

nαnαnβnβ = M1P
∑
α

nαnαnαnα + QJ1,

∑′

α,β

(nαnβnαnβ + nαnβnβnα) = 2M1P
∑
α

nαnαnαnα + Q(J2 + J3),
(9.14)

where Jk are isotropic tensors of rank four,

J1 = ekekenen = EE, J2 = ekenenek, J3 = ekeneken, (9.15)

where ek are the vectors of some orthonormal basis; here and henceforth, we use the summation over
the repeated Latin index. We have introduced the notation

Q =
M1M sin2 ϕ

d(d − 1)
. (9.16)

In deriving formulas for the rigidity tensor, the following useful identities will be useful:∑′

α,β

nαnαnαnα = M1

∑
α

nαnαnαnα,
∑′

α,β

nαnαnα = M1

∑
α

nαnαnα,

∑′

α,β

nαnα = M1

∑
α

nαnα,
∑′

α,β

nαnαnαnβ = M1 cos ϕ
∑
α

nαnαnαnα,

∑′

α,β

nαnαnβ = M1 cos ϕ
∑
α

nαnαnα,
∑′

α,β

nαnβ = M1 cos ϕ
∑
α

nαnα.

(9.17)

Using the lattice symmetry, it is easy to see that

am · an =

⎧⎨
⎩

a2, μ = ν,

− a2

d
, μ �= ν,

⇔ am · an =
1
d

a2[(d + 1)δmn − 1] (9.18)

where δmn is the Kronecker delta. The use of formula (9.18) allows us to calculate the product
∑
α

nαnαnα ·
∑
α

nαnαnα =
d + 1

d

∑
α

nαnαnαnα − 1
d

(∑
α

nαnα

)(∑
α

nαnα

)
. (9.19)

In what follows, we derive several relations that will be useful for calculating the rigidity tensor with
adjacent bonds taken into account. Let us consider the terms with G4 in (4.1):

ξαβξαγ = (κ2
α + κακβ + κακγ + κβκγ)

cos2 ϕ

sin2 ϕ

− 2 cos ϕ

sin2 ϕ
[καβ(κα + κγ) + καγ(κα + κβ)] +

4
sin2 ϕ

καβκαγ . (9.20)

Obviously, the following relations are satisfied:∑′

α,β,γ

κ2
α =

∑
α

κ2
α,

∑′

α,β,γ

(κακβ + κακγ) =
∑
α,β

κακβ,
∑′

α,β,γ

κακγ =
1
2

∑
β,γ

κβκγ ,

∑′

α,β,γ

κα(καβ + καγ) =
∑
α,β,γ

κακαβ ,
∑′

α,β,γ

καβκαγ =
1
2

∑
α,β,γ

καβκαγ .

(9.21)
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Using them, we obtain
∑′

α,β,γ

ξαβξαγ = cot2 ϕ

(∑
α

κ2
α +

∑
α,β

κακβ +
1
2

∑
β,γ

κβκγ

)

− 2
cot ϕ

sin ϕ

(∑
α,β

κακαβ +
∑
α,β,γ

καβκγ

)
+

2
sin2 ϕ

∑
α,β,γ

καβκαγ . (9.22)

Everything written above holds for both the two-dimensional and three-dimensional spaces.
Consider the first bracket in (9.22). Note that, for both graphite and diamond, each bond has an

adjacent bond. This implies the relation ∑
β,γ

κβκγ =
∑
α,β

κακβ, (9.23)

which significantly simplifies the summation.
Let us consider the last term in (9.22). To take the symmetry of the rigidity and strain tensors into

account explicitly, we use the relation

καβκαγ = 1
4 (καβκαγ + καβκγα + κβακαγ + κβακγα). (9.24)

Substituting relations (4.6) into (9.20) and using (9.21)–(9.24), we arrive at tensors of ranks two, three,
and four, in which it is required to sum over the indices α, β, and γ. Using the lattice symmetry, we can
show that, finally, it is possible to pass from the summation over two or three indices to the summation
over a single index. Let us illustrate this for the required relations.

Consider the unit vectors nα and nβ determining the directions of two adjacent bonds. We repre-
sent nβ as the sum of two terms, parallel and perpendicular to nα:

nβ = nα cos ϕ + nb
a sin ϕ, nγ = nα cos ϕ − nb

a sin ϕ, (9.25)

where nb
a is the unit vector perpendicular to nα. Assume that, by the lattice symmetry, the following

identities hold: ∑
β(α)

nb
a = 0,

∑
β(α)

nb
an

b
a =

M1

d − 1
(E − nαnα),

∑
α

nαnα =
M

d
E, (9.26)

where the summation over β(α) implies the summation over all bonds adjacent to nα, d = 2, 3 is the
space dimension, E is the unit tensor corresponding to the space dimension, M is the number of the
nearest neighbors of the given atom, and M1 is the number of the bonds adjacent to the given bond.
Using formulas (9.25)–(9.26) and taking into account that∑

α,β

nαnαnαnα = M1

∑
α

nαnαnαnα,
∑
α,β

nαnαnαnβ = M1 cos ϕ
∑
α

nαnαnαnα, (9.27)

we obtain the following relations:∑
α,β

nαnαnβnβ = M1P
∑
α

nαnαnαnα + QJ1,

∑
α,β,γ

nαnαnγnγ =
∑
α,β,γ

nβnγnαnα = M1P̃
∑
α

nαnαnαnα − QJ1,

1
4

∑
α,β,γ

(nαnβnγnα + nαnβnαnγ + nβnαnγnα + nαnβnαnγ)=M1P̃
∑
α

nαnαnαnα−
Q

2
(J2 + J3),

(9.28)

P = cos2 ϕ − sin2 ϕ

d − 1
, P̃ = cos2 ϕ +

sin2 ϕ

d − 1
, Q =

M1M sin2 ϕ

d(d − 1)
. (9.29)

Here Jk denotes isotropic tensors of rank four:

J1 = ekekenen = EE, J2 = ekenenek, J3 = ekekeken, (9.30)
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where ek are the vectors of some orthonormal basis; here and henceforth, we use the summation over
the repeated Latin index.

Proceeding similarly, we obtain the following relations for tensors of rank three:∑
α,β

nαnβnβ = M1P
∑
α

nαnαnα,
∑
α,β,γ

nαnβnγ = M1P̃
∑
α

nαnαnα. (9.31)

To derive the last relation, we have used the relation
∑

α nα = 0, which holds for many crystal lattices,
in particular, for graphite and diamond.

10. CONCLUSION
In this paper, we have proposed an approach which, in the framework of linear elastic deformation,

allows one to uniquely connect the elastic characteristics of graphene and diamond with the parameters
of several widely known interaction potentials. This approach has been tested by the calculation of the
elastic characteristics of graphene using the Tersoff and Brenner parameters. The moduli thus obtained
are in a good agreement with the data obtained by other investigators using different methods for
calculating the elastic characteristics on the basis of the same potentials. An advantage of the approach
proposed in the present paper is the possibility to calculate the elastic characteristics of diamond in
addition to those of graphene. The calculated elastic moduli significantly differ from the experimental
values. Thus, the interaction potentials proposed by Tersoff and Brenner, when applied to problems of
mechanics, can be used to obtain qualitative estimates but cannot pretend to give quantitative results.
There are several reasons for this. Firstly, the potentials are very difficult to parameterize; it is often
impossible to choose parameters so as to satisfy different materials with good accuracy. Secondly, the
potentials do not allow one to taking account of the internal degrees of freedom (shift of sublattices) in
model calculations in a correct way. Without any doubt, this does not depreciate the merits of the work
by Tersoff, Brenner, and their colleagues. The breakthrough in the field of computational physics caused
by these potentials is very significant. At the same time, it is necessary to deal very carefully with the
quantitative estimates of the mechanical characteristics obtained with these potentials. For researchers
in mechanics, the importance of the approach proposed in the present paper is that it permits adjusting
the potential parameters so as to obtain better agreement with the experimental data.

This approach has been developed in the framework of studying adjacent bonds. For graphene and
diamond lattices all whose bonds are adjacent, this assumption is justified. Apparently, for other diatomic
lattices not all of whose bonds are adjacent (for example, for hexagonal closely packed and FCC lattices),
this approach can also be used, but one should pay special attention to the estimation of the errors arising
in this case. Moreover, as was noted in the preceding section, if, in the expression for the rigidity tensor,
we omit the term related to the internal degrees of freedom, then the above methods can be used to
calculate the elastic properties of simple lattices.
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