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On Using Norm Estimators for Event-Triggered Control with Dynamic

Output Feedback

Aneel Tanwani Andrew Teel Christophe Prieur

Abstract— For feedback stabilization of a control system
using dynamic output feedback, we consider the problem of
finding two different sequences of time instants at which the
sampled outputs (respectively, control inputs) must be sent to
the controller (resp. the plant). Instead of static inequalities,
the states of so-called norm estimators are used to determine
sampling instants. Using the tools from Lyapunov theory for
hybrid systems and stability of cascaded nonlinear systems, it
is shown that the closed loop system is globally asymptotically
stable. Additional assumptions are required on the controller
and system dynamics to guarantee that the proposed sampling
routines do not lead to an accumulation of sampling times over
a finite interval.

I. INTRODUCTION

Sampled data control of continuous-time dynamical sys-

tems has been a topic of central interest in control community

for a long time. Some of the earlier works were based on

constructing discrete-time approximations of the nonlinear

dynamics, see [15] and the references therein. In the later

works, it is shown that if a stabilizing controller exists

with certain robustness properties, then bounds on sampling

periods for the measurements can be obtained which would

preserve asymptotic stability of the closed-loop system [16],

hence control with periodic sampling is achieved.

Over the past few years, however, event-triggered tech-

niques have regained interest [4], where the measurements

are not sent periodically to the controller, but instead the sam-

pling times are determined based on the current value of the

state. A recent article [12] provides a nice tutorial exposition

into the subject, and sums up most of the work done so far.

A common framework for event-triggered control involves a

stabilizing feedback controller and a triggering mechanism

that determines when to send the updated measurements to

the controller. While the feedback control is usually available

“off-the-shelf,” different strategies and variants are adopted

for triggering mechanism depending upon the particular

problem setup. Initial approaches for event-triggering mech-

anism involve keeping the difference between current value

of the state and the last updated measurement relatively small

[3], [14], [23]. Another technique is to monitor the derivative

of the Lyapunov function associated with the closed-loop

system, and if it starts approaching zero, then we update the

measurement knowing that the new measurement will make

the derivative sufficiently negative [17], [19].
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In the references cited above, the triggering mechanisms

are based on using the full-state measurements and when

it comes to using output (partial state) measurements for

feedback, rather than full-state feedback, then relatively little

has been done. If we directly generalize the techniques based

on keeping the error (between the last sampled output and the

current value of the output) small, then such methods lead to

Zeno phenomenon, where we need to send infinitely many

samples in finite-time and hence the technique is not feasible

for implementation in practice. Some refinements have been

proposed in [6], [13], [24], where instead of asymptotic

stabilization, the authors modify the event function to achieve

practical stabilization so that the trajectories of the closed-

loop system only converge to a ball defined by a design

parameter. Unsurprisingly, that parameter also determines the

minimum inter-sampling time as well.

Asymptotic stability with output-feedback and event-

triggered sampling has also been considered in more recent

works where a certain dwell-time is enforced between two

consecutive sample updates to overcome Zeno phenomenon.

Recently introduced notion of periodic event-triggered con-

trol could be seen as an implementation of this idea [10],

[11] where it is assumed that the continuous-time plant

is already discretized with some fixed sampling-rate, or a

certain sampling period is precalculated to asymptotically

stabilize the system. One then focuses on adding another

level of sampling strategy (which is event-triggered) that

would reduce the sampling rate for measurements even

further. The results appearing in [11] for linear systems

take disturbances into account, and derive minimum inter-

sampling time for full-state feedback case only. The idea

of forcing a certain dwell-time between two consecutive

sample-updates has also been adopted in nonlinear setting

for output feedback laws in [1].

The work discussed so far involves formulating the even

function in terms of the measured system variable, be it

state or output. More recently, we have seen dynamic event

generators where an auxiliary first order dynamical system

is constructed to determine the sampling instants [5], [7]. It

has been shown that adding dynamics results in increased

inter-sampling time compared to the static event-triggering

conditions. However, these works only discuss stabilization

with full state static feedback control laws; sampled-data

feedback with dynamic event-triggering using partial state

measurements, or output feedback has remain unaddressed.

In this paper, we consider the problem of implement-

ing observer-based dynamic output feedback controller for

asymptotic stabilization of nonlinear systems using event-



P :

®
ẋ = f(x, ud)

y = h(x)

C :

ß
ż = g(z, ud, yd)

ud = k(z(τj))

η̇o = a(ηo, y)

η̇c = b(ηc, z)

yd; tk

ud; τj

Fig. 1. Feedback loop where the inputs and outputs are time-sampled
and the sampling instants are determined by the dynamic filters ηc and ηo,
respectively.

triggered sampling with norm estimators, or dynamic event

generators. Another novel aspect of our approach lies in

designing separate first order dynamic filters to determine

sampling instants for control inputs and outputs. Just like the

approach adopted in the state-feedback case, our approach is

also based on keeping the error between the current value

of the output and the last output sample small, and the

difference between the actual output and sampled output

is compared with a certain function of the state of the

norm estimator. The sampling times for control inputs are

generated by an event-triggering rule that depends upon

the state of the controller. In doing so, we do not rely

on precalculating some fixed sampling period between two

output/input sampling times. The controller, using these

sampled outputs, is assumed to be designed based on the

principle of certainty equivalence, that is, an estimate of

the current state is first computed, which is in turn fed

into the control law. A graphical illustration of the control

architecture that we want to realize is given in Figure 1,

in which the dynamics for ηo and ηc are to be designed,

and the sampling times tk for outputs, and τj for inputs, are

determined from the real-time values of ηo and ηc.

The framework of hybrid system [9] is used to describe

the overall closed-loop system and sufficient conditions are

given for asymptotic stability of this system. We develop

these intuitive ideas using Lyapunov-based analysis to show

that the closed-loop system is indeed stable, and that the

major obstacle of the accumulation of sampling times is

also removed. To show that our sampling algorithms are

feasible for implementation, we are able to show that the

output and input sampling times do not accumulate over a

finite interval. A property of the proposed sampling routines

is that the sampling times of the output and control input are

not necessarily synchronized.

II. PROBLEM SETUP

We consider nonlinear dynamical systems of the form

ẋ = f(x, u) (1a)

y = h(x) (1b)

where x, u, y denote the state trajectory, input and the output

respectively. For stabilization of system (1), we choose to

work with the following class of controllers:

ż = g(z, u, y) (2a)

u = k(z). (2b)

In our approach, the dynamical system (2a) plays the role

of state estimator, and the control input u is some function

of the estimated state variable. The problem of stabilization

of nonlinear systems with dynamic output feedback is well-

studied in the literature, see [2] for a survey, or [25] for

various tools developed for solving this problem. In this

article, we are interested in generalizing output feedback

controllers of the form (2) when only the time-sampled

output measurements are available to the controller, and the

input u sent to the plant is also time-sampled. To address this

problem, we first layout some basic hypotheses on system

and controller data (2) that will be used later on.

A. Nominal Output Feedback

We now list certain basic assumptions on system (1) and

the controller (2) which relate to robust (with respect to

measurement errors) asymptotic stabilization of the closed-

loop system.

(H1) The vector fields f : Rn×R
m → R

n and g : Rn×R
m×

R
p → R

n are continuous in each of their arguments.

The function h : R
n → R

p is continuous and there

exists a class K function αh such that

|h(x)| ≤ αh(|x|).
(H2) An ISS state estimator: There exist a continuously

differentiable function Vo : Rn → R≥0, and functions

αo, αo, αo, γo of class K∞, which satisfy the following

inequalities:

αo(|e|) ≤ Vo(e) ≤ αo(|e|) (3a)

〈∇Vo, f(x, u)− g(z, u, y + dy)〉 ≤ −αo(Vo(e)) + γo(|dy|)
(3b)

where e := x− z denotes the state estimation error.

(H3) An ISS control law: There exist a continuously

differentiable function Vc : R
n → R≥0, functions

αc, αc, αc, γc of class K∞, and a state feedback control

law k : Rn → R
m such that

αc(|x|) ≤ Vc(x) ≤ αc(|x|) (4a)

〈∇Vc, f(x, k(x+ de))〉 ≤ −αc(Vc(x)) + γc

Å |de|
2

ã
.

(4b)

(H4) As r → 0+, we have (γc ◦ α−1
o )(r) = O(αo(r)), that

is, there exists a constant M > 0 such that

lim
r→0+

(γc ◦ α−1
o )(r)

αo(r)
≤ M. (5)

Remark 1 (Design methodology): Hypotheses (H2) and

(H3) allow us to decompose the problem of dynamic of

output feedback into two components: first is to design a

state estimator, and then apply a static control law which is

robust with respect to measurement errors. Designing control



laws which are ISS with respect to measurements of state

variable has remained a topic of major interest in the control

community and several techniques now exist depending on

the system class. The state estimators, that one typically

designs for a nonlinear system (using high-gain, or passivity

approach), are robust with respect to output measurement

error but the estimate of the form (3b) is typically not stated

in such works. We refer the reader to a recent paper [20]

which deals with designing estimators of this form.

Remark 2 (Why (H4)?): We will use (H4) in the proof of

stability of closed-loop system which requires the sum of Vc

and a K∞ function of Vo as the Lyapunov function. This

construction is inspired by [21] and it allows us to invoke

arguments related to the stability of the cascaded nonlinear

systems. If the functions αc and γc are quadratic, and αo is

linear, as one would usually obtain in the linear case with

quadratic Vo and Vc, then (H4) is satisfied.

III. SAMPLING ALGORITHMS

We will now use the controller structure given in the

previous section to study the problem of output feedback

stabilization with sampled outputs and inputs. To design

sampling algorithms, we consider the following auxiliary

dynamical system:

η̇o := −βo(ηo) + ρo(|y(t)|) + γo(|y(t)− y(tk)|) (6a)

and on the controller side

η̇c := −βc(ηc) + ρc

Å |z(t)|
2

ã
+ γc(|z(t)− z(τj)|) (6b)

with initial conditions ηo(0) > 0, and ηc(0) > 0. In the

above equations, βo, ρo, ρc, and βc are all functions of class

K, which would be specified later. One may notice that, if

βo(r) = αo(r) and βc(r) = αc(r) are linear, then in the light

of (H2) and (H3), the dynamic filters in (6a) and (6b) play

the role of norm estimators [22] for error dynamics e = x−z,

and the closed-loop dynamics for the state x, respectively.

We use the sample-and-hold strategy for sampling, that

is, the outputs and inputs are updated at certain discrete

times, and in-between updates, they are held constant. The

algorithms that determine the sampling instants for inputs

and outputs, can now be defined as a function of ηo, ηc given

by (6).

a) Output Sampling Rule: It is assumed that the output

sent to the controller is updated at time instants tk, k ∈ N

which is defined inductively as:

tk+1 := inf{tk < t : |y(t)− y(tk)| ≥ σo(ηo(t))} (7)

where σo : R≥0 → R≥0 is some positive definite, non-

decreasing function to be specified later.

b) Input Sampling Rule: The control input u(·) is

updated at time instants τj , j ∈ N, according to the following

rule:

τj+1 := inf{τj < t : |z(t)− z(τj)| ≥ σc(ηc(t))}, (8)

where σc : R≥0 → R≥0 is a positive definite and non-

decreasing function which will be specified later.

IV. STABILITY ANALYSIS

Using the sampling algorithms from the previous section,

the dynamics of the closed-loop system are now written in

the framework of hybrid systems [9], where we specify the

continuous and discrete dynamics, along with their respective

domains. We then invoke tools from the literature related to

the stability of such systems to show that for certain choice

of the design parameters in (6) and appropriately chosen

functions σo, σc in (7), (8), the origin of the closed-loop

system is asymptotically stable.

A. Hybrid model of the system

Using yd and zd to denote the sampled output and

sampled controller state, respectively, we can let x :=
(x, z, ηc, ηo, yd, zd) ∈ R

n, where n = 3n + p + 2, is the

augmented state variable for the closed-loop system. The

flow set C for the state variables (where they all satisfy a

certain ordinary differential equation) is defined as

C := Co ∩ Cc ∩ Cη
where we define

Co := {x : |h(x)− yd| ≤ σo(ηo)}, (9a)

Cc := {x : |z − zd| ≤ σc(ηc)}, (9b)

Cη := {x : ηo ≥ 0 ∧ ηc ≥ 0}. (9c)

The jump set D where the state variables may get reset is

given by:

D := Dc ∪ Do

where

Do := {x : |h(x)− yd| ≥ σo(ηo)} (10a)

Dc := {x : |z − zd| ≥ σc(ηc)}. (10b)

Clearly, the sets C and D are closed. By construction, the

jump set D for the closed-loop hybrid system also allows

for two jumps simultaneously, that is, yd and zd may get

updated at the same time instant. The corresponding set of

differential and difference equation on these sets are:

x ∈ C :







































ẋ = f(x, k(zd))

ż = g(z, k(zd), yd)

żd = 0

ẏd = 0

η̇o = −βo(ηo) + ρo(|h(x)|) + γo(|h(x)− yd|)
η̇c = −βc(ηc) + ρc

Ä
|z|
2

ä
+ γc(|z − zd|)

(11a)

x ∈ Dc :
¶
z+d = z (11b)

x ∈ Do :
¶
y+d = h(x). (11c)

Proposition 1: The closed-loop system (11) satisfies the

basic assumptions listed in [9, Assumption 6.5], and is,

hence, nominally well-posed.

B. Design of sampling functions

The choice of functions σo, σc depends on the construction

of a function q which will also be used to define the



Lyapunov function of system (11). Under assumption (H4), it

is possible to introduce a continuous nondecreasing function

q : R≥0 → R≥0 that satisfies [21, Lemma 2]:

q(s) ≥ 4(γc ◦ α−1
o )(s)

αo(s)
.

The functions βo, βc, σo, σc, ρo and ρc under consideration

should satisfy the following design criteria for the stability

result to follow:

(D1) Let βo and βc two smooth functions of class K;

(D2) Let θ be a function of class K∞ defined as

θo(r) := α−1
o (2γo(r)).

Choose the functions σo and σc in (9) and (10) such

that for some ε ∈ (0, 1), and for each s ≥ 0:

(γo ◦ σo)(s) · [1 + (q ◦ θo ◦ σo)(s)] ≤ (1− ε)βo(s)

2(γc ◦ σc)(s) ≤ (1− ε)βc(s).

(D3) The functions ρo and ρc in (11) are chosen such that

for each s ≥ 0:

0 ≤ (ρo ◦ αh ◦ α−1
c )(s) ≤ (1− 2ε)αc(s),

0 ≤ ρc(s) ≤ min {(1− ε)γc(s), εαc(αc(s))} .

C. Stability result

Theorem 1: Consider the closed-loop system (11) under

the hypotheses (H1), (H2), (H3), and (H4). If the functions

βo, βc, ρo, ρc in (11a) and the functions σo, σc in (9c) are

chosen to meet the design criteria (D1), (D2), and (D3), then

the origin {0} ∈ R
n is globally asymptotically stable (GAS)

for the closed-loop system (11).

Proof: We consider the candidate Lyapunov function

to be

V := l(Vo(e)) + Vc(x) + ηo + ηc (12)

where e = x− z, and l : R≥0 → R≥0 is defined as

l(s) :=

∫ s

0

q(r)dr.

Since q is a continuous nondecreasing function, it follows

that l(·) is a continuously differentiable function of class

K∞. We now compute a bound on the derivative of each

term on the right-hand side of (12) when the state x ∈ C.

By letting yd = y + yd − y in the ż equation, we get

˙̊ �l(Vo(e)) ≤ q(Vo(e)) (−αo(Vo(e)) + γo(|y − yd|))
≤ q(Vo(e)) [−αo(Vo(e)) + γo(σo(ηo))]

≤ −1

2
q(Vo(e))αo(Vo(e)) + q(θ(σo(ηo)))γo(σo(ηo))

where to derive the last inequality, we first consider the case

where γo(σo(ηo)) ≤ 1
2αo(Vo(e)), and then in the second

case

1

2
αo(Vo(e)) ≤ γo(σo(ηo)) ⇔ Vo(e) ≤ α−1

o (2γo(σo(ηo)))

= θ(σo(ηo))

so that q(Vo(e)) ≤ q(θo(σo(ηo))) because q is by construc-

tion nondecreasing. Next, from the description of the set C,

and using (H1), one obtains

η̇o ≤ −βo(ηo) + γo(σo(ηo)) + ρo(αh(α
−1
c (Vc(x))))

and similarly by observing that

ρc

Å |z|
2

ã
≤ ρc

Å |x|+ |e|
2

ã
≤ ρc(|x|) + ρc(|e|)

we get

η̇c ≤ −βc(ηc) + γc(σc(ηc)) + ρc(α
−1
c (Vc(x)))

+ ρc(α
−1
o (Vo(e))).

For computing V̇c(x), we rewrite ẋ as

ẋ = f(x, k(x+ z − x+ zd − z))

to obtain

V̇c(x) ≤ −αc(Vc(x)) + γc(|e|) + γc(|z − zd|)
≤ −αc(Vc(x)) + γc(α

−1
o (Vo(e))) + γc(σc(ηc))

Substituting these bounds in (12) and invoking the conditions

imposed by design in (D2) and (D3), we obtain

V̇ ≤ −ε
[

γc(α
−1
o (Vo(e))) + αc(Vc(x)) + βo(ηo) + βc(ηc)

]

.

At jump instants, it is seen that only the variables zd and yd
are reset which are not part of the definition of V . Hence,

V + = V − at all time instants where the state jumps. Using

this jump equation for V , and the bound derived for V̇ , we

next show that the origin of the closed-loop system is GAS

in following three steps:

Step 1 – Pre-GAS of {0} for truncated systems: For a fixed

initial condition, there exists a compact set Mc such that

(x, z, ηo, ηc) ∈ Mc. Recalling that zd and yd remain constant

during flows, and are reset to z and h(x), which belong

to a compact set, there exists a compact set Md such that

(zd, yd) ∈ Md. Consider the truncation of system (11) to the

set M := R
2n+2 ×Md, which has the flow set CM := C ∩

M, the jump set DM := DM∩M. For this truncated system,

it follows from the invariance principle [9, Corollary 8.9 (ii)]

that the set A1 := {x : (x, z, ηo, ηc) = {0} ∧ (yd, zd) ∈
Md} is pre-GAS. We next invoke the stability result for

cascaded hybrid systems [8, Corollary 19] to claim that the

set A2 := {0} ∈ R
n is pre-GAS for the truncated system.

Indeed, for every system trajectory contained in A1, we have

ηo = ηc = 0, and from the definition of the sets C and D,

we must then have zd = 0 and yd = 0.

Step 2 – Bounded solutions and Pre-GAS of {0} for (11):

As shown in the first step, for each initial condition, there

exist compact sets Mc and Md such that x̄ is contained in

the compact set Mc×Md for all times. Boundedness of the

solutions now allows us to conclude that A2 = {0} is pre-

GAS for the original system (11). To see this, assume that

there exists a solution which does not converge to {0}. Since

all solutions are bounded, there exists a compact set Md

such that this bounded solution eventually coincides with

the solution of the system truncated to R
2n+2 × Md. But,

every solution of the truncated system must converge to {0}.



Hence, for (11), a bounded solution not converging to {0}
cannot exist, proving that A2 = {0} is pre-GAS.

Step 3 – {0} is GAS for (11): To move from pre-

asymptotic stability to asymptotic stability of the compact

set A2 = {0}, we next show that every solution of (11)

is forward complete. This is seen due to the fact that for

each x ∈ C \ D, the solutions would always continue to

flow. Moreover, after each jump the states are reset to the set

C ∪D, making it possible to extend the time domain for the

solutions either by jump or flow. Hence, each solution of the

system is forward complete, proving that the set A2 = {0}
is GAS.

V. EXISTENCE OF INTER-SAMPLING TIMES

We next want to show that the proposed sampling algo-

rithms given in Section III do not lead to the accumulation of

jump times over a finite time interval, and over each compact

interval, there exists a lower bound on inter-sampling times.

Our strategy for showing the existence of minimal inter-

sampling time is primarily based on the approach adopted

in [23]. However, unlike [23], we do not get autonomous

differential inequality that gives uniform lower bounds; in-

stead, we obtain time-varying differential inequalities, and

hence the inter-sampling times depend upon the interval

under consideration.

For the proposed sampling routines, the minimum time

between between two output (respectively, control input)

updates is the time taken by
|y(t)−yd(t)|
σo(ηo(t))

(

resp.
|z(t)−zd(t)|
σc(ηc(t))

)

to go from 0 to 1, after each time yd has been reset to current

value of y (resp. zd has been reset to z). In order to derive

lower bounds on minimal time between updates, we will first

introduce certain assumptions on the gain functions given in

Section II and the ones used to define sampling instants in

Section III.

A. Assumptions on gain functions

(A1) The system dynamics defined by f, h, and the controller

functions g, k are bounded by a linear growth rate,

which allow us to write |f(x, k(x+ de))| ≤ Lfk(|x|+
|de|) and |g(z, k(z+dz), h(x)+dy)| ≤ Lgk(|z|+|dz|)+
Lgh(|x|+dy). Also, ‖∂h/∂x‖ is bounded by a constant.

(A2) The functions αo and αc are linear, and αo(r) < αc(r).
(A3) The function γc◦α−1

o is bounded by a linear growth rate:

There exists Lco > 0 such that γc(α
−1
o (r)) ≤ Lco r.

(A4) The functions σo, σc are same up to multiplication by

a constant C > 0, that is, σo = Cσc. Furthermore,

let σ := min{σo, σc}, and assume there are constants

Cσ,1, Cσ,2 > 0, that satisfy

σ(r) ≥ Cσ,1 max{α−1
c (r), α−1

o (r)} (13a)

σ′(r) · r ≤ Cσ,2 σ(r). (13b)

In addition, there exists a continuous locally integrable

function χ : R≥0 → R≥0 such that for every r, s ≥ 0

σ(r)

σ(s)
≤ χ

(r

s

)

. (13c)

Remark 3 (How restrictive are (A1) – (A4)?): One typi-

cally requires f, g to be locally Lipschitz for existence of

solutions, which would ensure that the linear growth rate

condition holds on every compact set. A global linear bound

(which is satisfied for globally Lipschitz functions) has been

introduced to avoid the semi-global arguments in this article.

For (A2), note that it is always possible to modify the

Lyapunov functions Vo, Vc so that the dissipation functions

αo and αc are linear, see [18, Lemma 12]. However, this

would also modify the gain function γc and one must be

careful in verifying hypothesis (H4). The most restrictive

aspect of our approach is to verify (A4): As one would

usually observe in the linear case, if αc(r) = αo(r) = r2,

then one can choose σ(r) =
√
r (modulo multiplication with

certain constants). In general, having σ(r) = rα, for α > 0,

would satisfy (13b) and (13c). To find a constructive proof

for existence of such σ is a topic of ongoing work.

In the light of these assumptions, we now impose the fol-

lowing additional criteria on the design functions introduced

in (6a), (6b), (7) and (8):

(D4) The functions βo, βc are linear and for each r ≥ 0

βo(r) ≤ αo(r) < βc(r) ≤ αc(r).

(D5) The functions ρo and ρc are chosen such that

max{ρo ◦ α−1
c (r), ρo ◦ α−1

o (r)} ≤ Cρ r

max{ρc ◦ α−1
c (r), ρc ◦ α−1

o (r)} ≤ Cρ r

for some constants Cρ > 0.

The main result on Zeno-freeness now follows. The proof

has been omitted due to space constraints.

Theorem 2: If, in addition to the hypotheses of Theo-

rem 1, assumptions (A1) – (A4) hold and the functions

βo, βc, ρo, ρc satisfy (D4) and (D5), then there is no accu-

mulation point of the sampling times for outputs and inputs

over a compact interval.

VI. EXAMPLE

In order to demonstrate our design, and observe practical

feasibility of our algorithms, we take a nonlinear system

system with globally Lipschitz vector field. The calculations

carried out in this example would carry over to linear systems

with very slight modification. Consider the system

ẋ1 = x2 + 0.25 |x1|
ẋ2 = sat(x1) + u

with y = x1. The notation sat(x1) denotes the saturation

function, that is, sat(x1) = min{1,max{−1, x1}}. The

nominal output feedback controller is:

ż1 = z2 + 0.25 |y|+ l1(y − z1)

ż2 = sat(y) + u+ l2(y − z1)

u = k(z) = sat(z1)− k1z1 − k2z2

where we pick L⊤ := [l1 l2] = [2 2], and K := [k1 k2] =
L⊤. By choosing, Vo(e) = e⊤Poe and Vc(x) = x⊤Pcx,

with Po =
[

2 −1
−1 1

]

and Pc = [ 1 0.5
0.5 0.5 ], hypotheses (H2) and

(H3) hold. Indeed, if the controller is driven by the sampled
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Fig. 2. Simulation results: In the top plot, whenever |y(t)−yd(t)| reaches

the sampling threshold σo

√

ηo(t), yd is updated. The middle plot shows

σc

√

ηc(t) and |z(t) − zd(t)|. The bottom plot shows time evaluation of

Lyapunov functions Vo(e) and Vc(x) which are not always decaying.

output yd, then

V̇o ≤ −αoVo + γo|yd − y|2

where γo := ‖PoL‖2

poλmin(Po)
, and αo + po = 2. Similarly, with

ud = k(zd), the derivative of Vc(x) = x⊤Pcx satisfies

V̇c ≤ −αcVc + γc|zd − z|2 + γc|e|2

where γc :=
2‖PcBK‖2

pcλmin(Pc)
, and αc + pc = 2− ‖P‖.

For sampling algorithms, we can let q(s) = q :=
4γ

c

αoλmin(Po)
to be the constant function and consider the

following dynamic filters which satisfy the design criteria

(D1) – (D3):

η̇o = −αoηo + ρo|y(t)|2 + γo|y − yd|2

η̇c = −αcηc + ρc
|z|2
4

+ γc|z − zd|2

where, in the notation of (6), we have chosen βo(r) =
αo r and βc(r) = αc r for simplicity. Also, we let ρo :=
(1−2ε)λmin(Po)

‖C‖2 and ρc := min{(1−ε)γc, ε αcλmin(Pc)}. The

jump sets for the closed-loop system which determine the

sampling times are now defined as follows:

Do = {x : |h(x)− yd| ≥ σo

√
ηo}

Dc = {x : |z − zd| ≥ σc

√
ηc}

where σo := (1−ε)αo

(1+q)γ
o

, and σc = (1−ε)αc

2γ
c

. From Theorem 1,

asymptotic stability of the closed-loop system with sampled

outputs and inputs now follows. It can also be verified that

(A1) – (A4) hold by construction.

The results of the simulation appear in Figure 2. We

observed that, even though the constants σo and σc are

relatively small in magnitude, it was possible to slow down

the sampling rate by increasing the initial values of ηo,

and ηc. Also, the Lyapunov functions Vo(e) and Vc(x) are

not always decaying but the function V in (12) is indeed

decaying with time.

VII. CONCLUSIONS

We have proposed novel type of sampling algorithms

which use the state-variables of auxiliary designed dynamical

systems. If an output feedback control law which has certain

robustness properties in the ISS sense, then the proposed

sampling algorithms preserve the stability of the closed-loop

system. Under added assumptions on the gains of the ISS

estimate, the proposed event-triggered schemes do not lead

to an accumulation of sampling times over a finite interval

which makes it feasible from implementation point of view.
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