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On Using Oracles That Compute Values

関数のオラクルを用いた計算

Stephen Fenner(南メイン大)* Steve Homer ( ボストン大) \dagger

Mitsunori Ogiwara(荻原光徳 電気通信大)\ddagger Alan L. Sehnan(ニューヨーク州立大)\S

Abstract

This paper focuses on complexity classes of partial functions that are computed in

polynomial time with oracles in NPMV, the class of all multivalued partial functions

that are coinputable nondeterministically in $1$) $olynomial$ time. $(_{-}-$ oncerning deterniinistic

polynomial-time reducibilities, it is shown that

1. A multivalued $pa\iota\cdot tial$ function is polynomial-time computable with $k$ adaptive

quet ies to NPMV if $\omega\iota do11$ ]} if it $i_{\mathfrak{d}}$ poly nomial-tinre $Com_{1)utable}$ via $2^{k}-1$ non-

adaptive quet ies to NPMV.

2. A characteristic function is polynomial-time computable with $k$ adaptive queries

to NPMV if and only if it is polynomial-time computable with $k$ adaptive queries

to NP.

3. Unless the Boolean hierarchy collapses, $k$ adaptive (nonadaptive) queries to NPMV

is different than $k+1$ adaptive (nonadaptive) queries to NPMV for every $k$ .

Nondeterministic reducibilities, lowness and the difference hierarchy over NPMV are

also studied. The difference hierarchy for ]$T81^{\cdot}tial$ functions does not $collapt,\sim\neg e$ unless the

Boolean hierarchy collapses, but, $su1^{\cdot}p_{1}\cdot i_{S1I1}gly$ , the levels of the difference and bounded

query hierarchies do not interleave (as is th $e$ case $fo1^{\cdot}$ sets) unless the polynomial hier-

archy collapses.
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1 Introduction

In this paper we study classes of partial functions that can be computed in polynomial

time with oracles in NPMV and NPSV; namely, we study the classes $PF^{NPMV}$ and $PF^{NPSV}$ .

NPMV is the set of all partial multivalued functions that are computed nondeterminis-

tically in polynomial time, and NPSV is the set of all partial functions in this class that are

single-valued. NPMV captures the complexity of computing witnesses to problems in NP.

For example, let sat denote the partial function defined by -scxt $(x)$ maps to a value $y$ if and

only if $x$ encodes a formula of propositional logic and $y$ encodes a satisfying assignment of

$x$ . Then, sat belongs to NPMV, and the domain of sat (i.e., the set of all words $x$ for which

the output of sat $(\backslash \iota\cdot)$ is non-empty) is the NP-conrplete satisfiability problem, SAT. Also,

NPMV captures the complexity of inverting polynomial time $1_{1O11}est$ functions. To wit, the

inverse of every polynomial time honest function belongs to NPMV, and the inverse of every

one-one polynomial time honest function belongs to NPSV.

The class of partial functions with oracles in NP, namely, $PF^{NP}$ has been well-studied

[Kre88], as have been the corresponding class of partial functions that can be computed

nonadaptively with oracles in NP, viz. $PF_{tt}^{NP}$ [Se192], and the classes of partial functions

that are obtained by limiting the number of queries to some value Ar $\geq 1$ , namely, $PF^{NP[k]}$

and $PF_{tt}^{NP[k]}$ [Bei91]. A rich $bod$ } of $1^{\cdot}esult,-\backslash$ is $]_{\backslash no\backslash \{}\cdot n$ about $\iota 1\iota e\overline{\backslash }e$ cla. $\backslash ^{\neg}se\backslash \neg$ .

Here we raise the question, “what is the difference between computing with an oracle

in NPMV versus an oracle in NP.” The $ans\backslash ver$ is not $obviou\backslash$ . If the partial function sat is

provided as an oracle to some polynomial-time computation $\lrcorner 1l$ . then on a query $x$ , where

$x$ encodes a satisfiable formula of propositional logic, the oracle will return some satisfying

assignment $y$ . However, if the oracle to A4 is the NP-compete set SAT, then to this query

$x$ , the oracle will only return a Boolean vaJue‘yes.” On the other hand, by the well-known

self-reducibility of SAT, $M$ could compute $y$ for itself by judicious application of several

adaptive queries to SAT. Indeed $Theore\ln 1.1$ states that unbounded access to an oracle in

NPMV is no more powerful than such an access to an oracle in NP. However, in Section 3

we will see that the situation for bounded query classes is much more subtle. In general,

function oracles cannot be replaced by set oracles–but set oracles are still useful. We will

show that every partial function in $PF^{NPMV[k]}$ can be computed b.v a partial function of the

form $fog$ , where $f$ is in NPMV and $jC$ belongs to $PF^{NP[k]}$ . Moreover, most surprisingly,

the relationship between access to an oracle in NPMV and acce,$\backslash -\backslash \neg$ to an oracle in NP is

tight regarding set recognition; that is, $P^{NPM\vee[\Lambda\cdot]}=P^{NP[\lambda\cdot]}$ . This means that when we are

computing characteristic functions, $k$ bounded queries to an oracle in NPMV give no more

information than the same number of queries to an oracle in $\wedge\nwarrow^{\tau}$ P.
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We will show that the levels of the nonadaptive and adaptive bounded query hierarchies

interleave (for example, $k$ adaptive queries to a partial function in NPMV is equivalent to
$2^{k}-1$ nonadaptive queries to a partial function in NPMV), and we will show that these

bounded query hierarchies collapse only if the Boolean hierarchy collapses.

In Section 4 we study nondeterministic polynomial time reductions to partial functions

in NPMV. Unlike the case for deterministic functions, we will see that just one query to

an NP oracle can substitute for an unbounded number of queries to any partial function in

NPMV. The hierarchy that is formed by iteratively applying NP reductions is an analogue

of the polynomial hierarchy, and we will sho $\backslash \iota$

. that this hierarchy collapses if and only if

the polynomial hierarchy collapses.

In Section 5 we will study the difference hierarchy over NPMV. We define $f-g$ to be a

partial function that maps $x$ to $y$ if and only if $f$ maps $x$ to $y$ and $g$ does not lnap $x$ to $y$ , and

we define NPMV$(k)=$ { $f_{1}-(f_{2}-(\cdot\cdot-f_{k}))$ : $f_{1},$
$\cdots,$ $f_{k}\in$ NPMV}. Since the properties

of the bounded query hierarchies over NPMV are largely similar to those over NP, one

might hope that the same thing happens here–that the query hierarchy over NPMV and

the query hierarchy over NP are similar. However, the contour of this hierarchy is, to our

astonishment, totally different than its analogy for NP. Although BH $=\cup kNP(k)\subseteq P^{NP}$ ,

with no assumption, we will show that NPMV(2) is included in $PF^{NPMV}$ if and only if

PH $=\triangle_{2}^{P}$ . Also, in this section we will introduce the notion of NPMV-lowness, and we will

give a complete characterization of NPMV-lowness.

Consideration of reduction classes with oracles in NPSV, to be studied in Section 6,

is motivated in part by a desire to understand how difficult it is to compute satisfying

assignments for satisfiable formulas. The following technical notions will help to make this

clear. Given partial multivalued functions $f$ and $g$ , define $g$ to be a refinement of $f$ if

$dom(g)=dom(f)$ and for all $x\in do\uparrow 7x(g)$ and all $y$ , if $y$ is a value of $g(x)$ , then $y$ is a value

of $f(x)$ . Let $\mathcal{F}$ and $\mathcal{G}$ be classes of partial multivalued functions. Purely as a convention, if

$f$ is a partial multivalued function, we define $f\in_{c}\mathcal{G}$ if $\mathcal{G}$ contains a refinement $g$ of $f$ , and

we define $\mathcal{F}\subseteq_{C}\mathcal{G}$ if for every $f\in \mathcal{F},$ $f\in_{c}\mathcal{G}$ . Let PF denote the class of partial functions

that are computable deterministically in polynomial time. The assertion “NPMV $\subseteq_{c}$ PF”

would mean that every partial multivalued function in NPMI’v has a refinement that can be

computed efficiently by some deterministic polynomial time transducer. It is well-known

that.$-$

; $at$ $\in_{c}$ PF if and only if NPMV $\subseteq_{(}- PF$ if and $on$ ] $y$ if $P=$ NP [Se192]. Thus, one

does not expect that $sat\in_{c}$ PF. Is sat computable in some larger single-valued class of

partial functions? It is shown in [Se192] that PF $\subseteq$ NPSV $\subseteq PF_{tt}^{NP}$ . and it is an open

question whether $sat\in_{c}$ NPSV or whether $\underline{\overline{:}}at\in_{c}PF_{tt}^{NP}$ . X $l\cdot e$ will consider classes of the

form $PF^{NPSV[k]}$ and $PF_{tt}^{NPSV[k]}$ , where $k\geq 1$ , and we will show that the adaptive and the
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nonadaptive classes form proper hierarchies unless the Boolean $hiel\cdot al\cdot chy$ collapses. Thus,

these classes form a finer classification in $n$ hich to study the central question of whether

sat has a refinement in some interesting class of single-valued partial functions.

Finally, we note in passing that the complexity theory of decision problems, i.e., of sets,

is extremely well developed. Although the computational problems in which we are most

interested are naturally thought of as partial multivalued functions, the structural theory

to support classification of these problems has been slight. By introducing several natu-

ral hierarchies of complexity classes of partial multivalued functions. with strong evidence

supporting these claims, we intend this papeI to make significant steps in correcting this

situation.

2 Preliminaries

We fix $\Sigma$ to be the finite alphabet $\{0,1\}$ . Let $f$ : $\Sigma^{*}\mapsto\Sigma^{*}$ be a partial multivalued

function. We write $f(x)-fy$ , if $y$ is a value of $f$ on input string $x$ . Define graph$(f)=$

$\{\{x, y\}|f(x)-y\},$ $do\uparrow$)$x(f)=\{x|\exists y(f(.\iota\cdot)-y)\}$ , and $\uparrow((’\iota ge.(f)=\{y|\exists x(f(x)\mapsto ry)\}$ .

We will say that $f$ is undefined at $x$ if
$\cdot$

$\tau\cdot\not\in do\prime 7t(f)$ .

A transducer $T$ is a nondeterministic Turing machine $\backslash vith$ a read-only input tape, a

write-only output tape, and accepting states in the usual manner. $T$ computes a value $y$

on an input string $x$ if there is an accepting computation of $T$ on.i: for which $y$ is the

final content of $T’ s$ output tape. (In this case, we $wil1\backslash \iota^{r}1^{\cdot}iteT(x)-y.$ ) Such transducers

compute partial, multivalued functions. (As transducers do not typically accept all input

strings, when we write : “, “partial function” is $a1n$.ays intended. If a function $f$ is

total, it will always be explicitly noted.)

. NPMV is the set of all partial, multivalued functions computed by nondeterministic

polynomial time-bounded transducers;

. NPSV is the set of all $f\in$ NPMV that $aI^{\cdot}e$ single-valued:

. PF is the set of all partial functions computed by deterministic polynomial time-

bounded transducers.

$PF^{NP}$ is the class of functions computed in polynoinial $ti_{1}l$ ) $e$ with oracles in NP. $PF_{tt}^{NP}$

is the class of functions that can be coinputed nonadaptiv ely with $01^{\cdot}acles$ in NP; that is,

a partial function $f$ is in $PF_{tt}^{NP}$ if there is an oracle Turing machine transducer $T$ such

that $f\in PF^{NP}$ via $T$ with an oracle $L$ in NP and a polynomial time computable function
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$f$ : $\{0,1\}^{*}-r(c\{0,1\}^{*})^{*}$ such that, for each input $x$ to $T,$ $T$ onlv makes queries to $L$ from

the list $f(x)$ .

Now we describe oracle Turing machines with oracles that compute partial functions.

For the moment, we assume that the oracle is a single-valued partial function. Let $\perp$ be a

symbol not belonging to the finite alphabet $\Sigma$ . In order for $-t’I$ to access a partial function

oracle, $M$ contains a write-only input oracle tape, a separate read-only output tape, and a

special oracle call state $q$ . When $M$ enters state $q$ , if the string currently on the oracle input

tape belongs to the domain of the oracle partial function, then the result of applying the

oracle appears on the oracle output tape, and if the string currently on the oracle input tape

does not belong to the domain of the oracle partial function, then the $symbol\perp$ appears on

the oracle output tape. Thus, if the oracle is some partial function $g$ , given an input $x$ to

the oracle. the oracle, if called, returns a value $g(x)$ if one exists, and returns $\perp$ otherwise.

The oracle may not provide its own input, so that any change to the oracle input must be

made by M. (It is possible that $M$ may read only a portion of the oracle’s output if the

oracle’s output is too long to read with the resources of $M.$ )

If $g$ is a single-valued partial function and AI is a deterministic oracle transducer as just

described, then we let $M[g]$ denote the $single-\backslash \cdot alue(1$ partial {unction computed by $M$ with

oracle $g$ .

Definition 1 Let $f$ and $g$ be multivalued partial $fu$ nction.-. $f$ is Turing reducible to $g$ in

polynomial time, $f\leq_{T}^{P}g$ , if for some deterministic oracle tran.sdzt $cerM$ , for every single-

valued refinement $g’$ of $g,$ $J/l[g’]$ is $a$ $sinc$)le-valned refinement of $f^{1}$

Let $\mathcal{F}$ be a class of partial multivalued functions. $PF^{\mathcal{F}}$ denotes the class of partial

multivalued functions $f$ that are $\leq_{T}^{P}$-reducible to some $g\in \mathcal{F}$ . $PF^{\mathcal{F}[k\cdot]}$ (respectively, PF$iF[\log]$ )

denotes the class of partial multivalued functions $f$ that $al\cdot e\leq_{T}^{P}$ -reducible to some $g\in \mathcal{F}$

via a machine that, on input $x$ , makes $k$ adaptive queries ( $1^{\cdot}e-\backslash$ pectively, $\mathcal{O}(\log|x|)$ adaptive

queries) to its oracle.

$PF_{tt}^{F}$ denotes the class of partial multivalued functions $f$ that are $\leq_{T}^{P}$ -reducible to some

$g\in \mathcal{F}$ via an oracle Turing machine transducer that queries its oracle nonadaptively. $PF_{tt}^{\mathcal{F}[k]}$

1 A notion of polynomial-time Turing reducibility between $pa\iota\cdot tial$ functions is defined in [Se192]. It is

important to note that the definition given here is different than the one in [Se192]. Here the oracle “knows“

when a query is not in its domain. In the earliel$\cdot$ definition, $thi\backslash$ is not the case. The authors recommend that

the reducibilitv defined in [Se192] should in the future be denoted as $\leq^{P_{1}.P},$ $\iota\backslash hic1_{1}$ is the conimon notation for

reductions between $proI11i\backslash _{-}eP^{ro)}|$] $eI11S$ . We make this $1^{\cdot}ecoIllltlendation$ [) $eca\backslash \iota h_{-}e$ conceptually and technically

this reducibility between functions is equivalent to a promise $P^{lobleI11}$ reduction. Also, we note that the

reducibility defined in [Se192] is not useful for $oU1^{\cdot}$ purposes $hel\cdot e$ . In $pa\iota tic$ nla l
$\cdot$ . it is easv to see that iterating

reductions between functions in NPMV does not gain anvthing new unless $t$ he $01^{\cdot}acle$ is endowed with the

ability to know its domainl
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denotes the class of partial multivalued functions $f$ that are $\leq_{T}^{P}$ -reducible to some $g\in \mathcal{F}$

via a machine that makes $k$ nonadaptive queries to its oracle.
$P^{\mathcal{F}},$ $P^{F[k]},$ $P^{\mathcal{F}[\log]},$ $P_{tt}^{\mathcal{F}}$ and $P_{tt}^{\mathcal{F}[k]}$ , respectively, denote the classes of all characteristic

functions contained in $PF^{\mathcal{F}},$ $PF^{F[k]},$ $PF^{\mathcal{F}[\log]},$ $PF_{tt}^{\mathcal{F}}$ and $PF_{tt}^{\mathcal{F}[k]}$ .

For a class of sets $C$ , we may say that $PF^{C}$ denotes the class of partial single-valued

functions that are $\leq_{T}^{P}$-reducible to the characteristic function of some set in C. (Note that

functions in $PF^{C}$ are single-valued.) $PF^{C[k]}$ . $PF^{C[\log]}$ . $P\Gamma_{tt}^{C}\prec$ . $PF_{tt}^{C[A\cdot]}$ . $P^{C},$ $P^{C[k]},$ $P^{C\beta og]},$ $P_{tt}^{C}$ , and
$P_{tt}^{C[k]}$ are defined similarly.

Obviously $PF^{NP}\subseteq PF^{NPMV}$ . Conversely, for a function $f\in$ NPMV, define $f’$ to be a

function such that $f’(x)= \min\{y:f(x)\mapsto y\}$ . $f’$ is a single-valued refinement of $f$ and in
$PF^{NP}$ . Therefore, the following theorem holds.

Theorem 1 $PF^{NPMV}\subseteq_{c}PF^{NP}$ . That is, every $f\dot{n}nction$ in $PF^{NPMV}$ has a single-valued

refinement in $PF^{NP}$ .

Consider the function maxclique that on input a graph $C_{1^{1}}$ outputs a clique of maximum

size, if $G$ has a clique. Then, maxclique is a multivalued partial function that belongs to

$PF^{NPMV}$ . Similarly, the following function maxTsat is a multivalued partial function that

belongs to $PF^{NPMV}$ .

$maxTsat(x)rightarrow y$ , if $y$ is a satisfying assignment of $x$ with the maximum number of true’s.

Let $f$ be a function that maps a pair $(x, n)$ to $y$ if and only if $y$ is a satisfying assignment

of $x$ with $n$ true’s. Since the number of variables in a formula is bounded by its length,

it holds that maxTsat(x) $=f(x, n_{x})$ , where $n_{x}$ is the largest $\uparrow\iota,$ $1\leq n\leq|x|$ such that

$(x, n)\in dom(f)$ . This implies that $\prime naxTsat\in PF_{tt}^{NPMV}$ .

We should note that several of the classes we investigate here seem to capture the

complexity of finding witnesses to NP-optimization problems. This observation is explored

by Chen and Toda [CT92] and by Wareham [War92].

Theorem 1 states that unbounded access to an oracle in NPMV is no more powerful

than such an access to an oracle in NP.

3 Bounded Query Classes

Now we state our main results; proofs are given in the full draft paper. General

techniques developed in this section are reminiscent of the \langle mind-change‘‘ technique of

[Bei91, KSW87].
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Theorem 2 For eve $r\cdot yk\geq 1,$ $PF^{NPMV[k]}=PF_{tt}^{NPMV[2^{k}-1]}\subseteq_{C}$ NPMV $oPF^{NP[k]}\subseteq NPMVo$

$PF_{tt}^{NP[2^{k}-1]}\subseteq PF^{NPMV[k+1]}=PF_{tt}^{NPMV[2^{k+1}-1]}$ .

For general bounded query classes, it is not known whether $PF^{NPMV[k]}\subseteq {}_{c}PF^{NP[k]}$ . But,

for reduction classes of sets, this type of equivalence holds.

Theorem 3 For every $k\geq 1,$ $P^{NPMV[k]}=P^{NP[k]}$ .

Theorem 4 For every $k\geq 1,$ $P_{tt}^{NPMV[k]}=P_{tt}^{NP[k]}$ .

We denote the k-th level of the Boolean hierarchv as $NP(k)$ . By definition,

. NP(1) $=NP$ , and

. for every $k\geq 2,$ $NP(k)=NP-NP(k-1)$ .

The Boolean hierarchy over NP, denoted by BH is the union of all $NP(k),$ $k\geq 1$ .
The following theorems give evidence to show that bounded query hierarchies do not

collapse.

Theorem 5 Let $k\geq 1$ . If $PF^{NPMV[k+1]}=PF^{NPM\backslash [k]}f$ then BH collapses to its $2^{k}$ -th level.

Theorem 6 Let $k\geq 1$ . If $PF_{tt}^{NPMV[k+1]}=PF_{tt}^{NPM\lambda^{\gamma}[k]}$ . then BH collapses to its $(k+1)- st$

level.

Analogous to the theorems stated so far, the following theorems hold for reduction

classes that make logarithmic many queries to partial functions in NPMV.

Theorem 7 1. $PF^{NPMV[\log]}=PF_{tt}^{NPMV}$ .

2. NPMV $oPF^{NP[\log]}=$ NPMV $oPF_{tt}^{NP}$ .

3. $PF^{NPMV[\log]}\subseteq_{c}$ NPMV $oPF^{NP[\log]}$ .

4. NPMV $oPF^{NP[\log]}\subseteq PF^{NPMV[\log]}$ .

Theorem 8 $P^{NPMV[\log]}=P_{tt}^{NPMV}=P^{NP[\log]}=P_{tt}^{I\backslash \mathfrak{s}p}$ .
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4Nondeterministic Polynomial-Time Reductions

We define nondeterministic reductions between partial functions so that the access mech-

anism is identical to that for deterministic reductions. Namely, let $f$ be a single-valued

partial function and $N$ be a polynomial-time nondeterministic oracle Turing machine. $N[f]$

denotes a multivalued partial function computed by $N$ with oracle $f$ in accordance with the

following mechanism:

. when $N$ asks about $y\in dom(f),$ $f$ returns $f(y)$ and

. when $N$ asks about $y\not\in dom(f),$ $f$ answers a special symbol $\perp$ .

Let $f$ and $g$ be multivalued partial functions. We $\overline{\backslash }a\backslash \sim$

. that $f$ is nondeterministic

polynomial-time Turing reducible to $g$ , denoted by $f\leq_{T^{P}}g$ if there is a polynomial-time

nondeterministic Turing machine $N$ satisfying the $follon\cdot ing$ conditions: for every $x$ and for

every single-valued refinement $g’$ of $g$ ,

. $x\in dom(f)$ if and only if $x\in dom(N[g’])$ and

. if $N[g’]$ maps $x$ to $y$ , then $f$ maps $x$ to $y$ .

In other words, $N[g’]$ is a refinement of $f$ .

Let $\mathcal{F}$ be a class of partial multivalued functions. $NPM\backslash ;F$ denotes the class of partial

multivalued functions that are $\leq_{T}^{NP}$ -reducible to some $g\in \mathcal{F}.$ NPMI’ denotes the class

of partiaJ multivalued function,$\backslash$ that are $\leq_{1}^{N_{-}P}$ -reducible to $\backslash 0|1\iota eg\in \mathcal{F}$ via a machine that

makes $k$ adaptive queries to its $01^{\cdot}acle$ .

$NPMV_{tt}^{\mathcal{F}}$ denotes the class of partial multivalued functions that are $\leq_{T}^{NP}$ -reducible to

some $g\in \mathcal{F}$ via a machine that makes nonadaptive queries to its oracle. $NPMV_{tt}^{F[k]}$ denotes

the class of partial multivalued functions that are $\leq_{T}^{NP}$ -reducible to some $g\in \mathcal{F}$ via a

machine that makes $k$ nonadaptive queries to its oracle.

For a class of sets $C$ , we write $NPMV^{C}$ to denote the class of multivalued partial func-

tions that are computed by an nondeterministic Turing machine relative to an oracle in $C$ .
$NPM\backslash \gamma C[k]NPMV_{tt}^{C}$ and $NPMV_{tt}^{C[k]}a.re_{NPM\vee}defined$ similarly.

For $k\geq 1,\underline{\backslash ^{\backslash }}Ml_{k}’$ denotes
$\frac{NPM\backslash /}{k}$

.

Lemma 1 For every $k\geq 1,$ $\Sigma MV_{k}=$ NPMV $\Sigma_{k-1}^{\rho}[1]m|.rl$

for $\epsilon L^{\backslash }C’$

}$yf\in\Sigma M\backslash I_{k}dom(f)\in$

$\Sigma_{k}^{p}$ .

From this lemma we yield the following theorent.
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Theorem 9 Let $f$ be a partial multivalued func tion. For $\epsilon\iota\cdot\epsilon\uparrow\cdot yk\geq 1_{i}$ the following state-

ments are equivalent:

(i) $f$ is in $\Sigma MV_{k}$ ;

(ii) $f$ is polynomially length-bounded, do $7?\iota(f)\in\Sigma_{k}^{p}$ , and $g7^{\cdot}c\iota ph(f)\in\Sigma_{k}^{p}$ ;

(iii) $f$ is polynomially length-bounded and $g\uparrow aph(f)\in\Sigma_{k}^{p}$ .

Theorem 10 For every $k\geq 1,$ $\Sigma MV_{k+1}=\Sigma MV_{k}$ if and $0\prime\prime lyiJ^{\cdot}\Sigma_{k+1}^{p}=\Sigma_{k}^{p}$ .

Thus, these classes form function analogues of the polynomial hierarchy, and, unless the

polynomial hierarchy collapses, they form a proper hierarchy.

5 The Difference Hierarchy

Let $\mathcal{F}$ be a class of partial multivalued functions. A partial multivalued function $f$ is in
$co\mathcal{F}$ if there exist $g\in \mathcal{F}$ and a polynomial $p$ such that for $evel\cdot yt\iota$

. and $y$

. $f(x)$ maps to $y$ if and only if $|y|\leq p(|x|)$ and $g(x)$ does not map to $y$ .

Let $\mathcal{F}$ and $\mathcal{G}$ be two classes of partial multivalued functions. A partial multivalued

function $h$ is in $\mathcal{F}\wedge \mathcal{G}$ if there exist partial multivalued functions $f\in \mathcal{F}$ and $g\in \mathcal{G}$ such

that for every $x$ and $y$ ,

. $/\iota(x)$ maps to $y$ if and only if $f(.\iota\cdot)$ maps to $y$ and $g(\tau\cdot)$ maps to $y$ .

A partial multivalued function $h$ is in $\mathcal{F}\vee \mathcal{G}$ if there exis $t$ partial multivalued functions

$f\in \mathcal{F}$ and $g\in \mathcal{G}$ such that for every $x$ and $y$ ,

. $h(x)$ maps to $y$ if and only if $f(x)$ maps to $y$ or $g(x)$ maps to $y$ .

$\mathcal{F}-\mathcal{G}$ denotes $\mathcal{F}\wedge co\mathcal{G}$ .

NPMV $(k)$ is the class of partial multivalued functions defi ned in the following way:

1. NPMV(I) $=$ NPMV, and

2. for $k\geq 2,$ $NPMV(k)=NPMV-NPI\backslash /IV(k-1)$ .

Lemma 2 For every $k\geq 1,$ $f\in NPMV(k)$ if and $0’\iota ly$ if $f$ is polynomially length-bounded

and graph$(f)\in NP(k)$ .

This lemma is proved by induction. $11/^{\vee}e$ use it to obtain the following theorem.
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Theorem 11 For eve $ryk\geq 1,$ $NPMV(k+1)=$ NPMV $(k)$ if and only if $NP(k+1)=$

NP $(k)$ .

Theorem 12 NP $=$ co-NP if and only if NPMV $\subseteq coNP_{\sim}^{1}\backslash 1l’$ if and only if coNPMV $\subseteq$

NPMV.

A function $f$ is said to be NPMV-low if NPMV $f=$ NPMV.

Theorem 13 A function $f$ is NPMV-low if and only if $f\in$ NPMV rvith $dom(f)\in NP\cap$

co-NP.

Theorem 14 NPMV(2) $\subseteq_{C}PF^{NPMV}$ if and $olt./y$ if
$\cdot$

$\Sigma_{2}^{p}=\triangle^{\underline{\rho_{)}}}$ .

Theorem 15 $PF^{NPM\vee[k]}\subseteq$ NPMV $(2^{k+1}-1)$ .

By Theorem 11, the levels of the difference hierarchy of partial functions are distinct if

and only if the same levels of the Boolean hierarchy are distinct. Yet, whereas the Boolean

hierarchy resides entirely within $P^{NP}$ , by Theorem 14, this is unlikely to be true of the

difference hierarchy of partial functions.

6 Reduction classes to NPSV

In this section, we study the reduction classes to NPS $\backslash ^{\sim},$

$P\}^{\neg NPS\backslash }1$ , $PF^{NPSV[k]},$ $PF^{NPSV[\log]}$ ,
$PF_{tt}^{NPS\vee}$ , and $PF_{tt}^{NPS\vee[k]}$ . These classes contain only single-valued functions. The following

proposition is easy to prove.

Proposition 1 1. $PF^{NP}=PF^{NPSV}$ and $PF_{tt}^{NP}=PF_{tt}^{NPS\backslash j}$

2. $PF^{NP[k]}\subseteq PF^{NPSV[k]}\subseteq PF^{NPMV[k]}$ and $PF^{NP[\log]}\subseteq PF^{NPS\backslash [\log]}’\subseteq PF^{NPMV[\log]}$ .

3. $PF_{tt}^{NP[k]}\subseteq PF_{tt}^{NPSV[k]}\subseteq PF_{tt}^{NPM\vee[k]}$ .

4. $P_{tt}^{NP}=P_{tt}^{NPSV}$ and $P^{NP}=P^{NPSV}$ .

5. $P^{NP[k]}\subseteq P^{NPS\vee[k]}\subseteq P^{NPMV[k]}$ and $P^{NP[\log]}\subseteq P^{NPSV[1_{0_{5}^{\circ}}]}\subseteq P^{NPM\backslash [[\log]}$ .

6. $P_{tt}^{NP[k]}\subseteq P_{tt}^{NPSV[k]}\subseteq P_{tt}^{NPMV[k]}$ .

The following theorems follow as corollaries of results proven in the previous sections.

Theorem 16 For every $k\geq 1,$ $P^{NPSV[k]}=P^{NP[k]}$ .
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Theorem 17 For every $k\geq 1,$ $P_{tt}^{NPSV[k]}=P_{tt}^{\aleph^{1P[k]}}$ .

Theorem 18 If $PF_{tt}^{NPSV[k+1]}=PF_{tt}^{NPSV[k]}f\dot{o}\uparrow$ . so nze $k\geq 1$ . th $\xi\prime 7$ BH collapses to its $(k+1)-$

$st$ level.

Theorem 19 If $PF^{NPSV[k+1]}=PF^{NPS\iota^{\gamma}[k]}$ for some $k\geq 1$ . then BH collapses to its $2^{k}$ -th

level.

参考文献

[Bei91] R. Beigel. Bounded queries to SAT and the boolean $hiel\cdot al\cdot chy$ . Theor. Computer

$Sc$ ience, $84(2):199-223$ , 1991.

[CT92] Z. Chen and S. Toda. On the complexity of computing optimal solutions. Depart-

ment of Computer Science and Information Mathematics, University of Electro-

Communications, Chufo-shi, Tokyo 182. Japan, 1992.

[Kre88] M. Krentel. The complexity of optimization $1$)
$1^{\cdot}01$) $letllS$ . J. $Ci’ 0\uparrow 7tp$ zt $ter$ Systems Sci.,

36:490-509, 1988.

[KSW87] J. $K\ddot{o}$blel$\cdot$ , U. Schoning, and K. Wagner. The difference and truth-table hierarchies

for NP. Theotetical Informatic.$-\backslash$ and.4 $p$]) $/ic\cdot c/t/0\prime\prime.\backslash (1i\lrcorner 414RO),$ $21:419-435$ , 1987.

[Se192] A. Selman. A taxonomy of complexity classes of functions. J. C’omput. Sytsem

Sci., 1992. $\ln$ press.

[War92] H. Wareham. Masters thesis. Department of Computer Science, Memorial Uni-

versity of Newfoundland, 1992.


