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ABSTRACT

Context. The so-called shift parameter is related to the position of the first acoustic peak in the power spectrum of the temperature
anisotropies of the cosmic microwave background (CMB). It is an often used quantity in simple tests of dark energy models. However,
the shift parameter is not directly measurable from the cosmic microwave background, and its value is usually derived from the data
assuming a spatially flat cosmology with dark matter and a cosmological constant.
Aims. To evaluate the effectiveness of the shift parameter as a constraint on dark energy models.
Methods. We discuss the potential pitfalls in using the shift parameter as a test of non-standard dark energy models.
Results. By comparing to full CMB fits, we show that combining the shift parameter with the position of the first acoustic peak in the
CMB power spectrum improves the accuracy of the test considerably.

Key words. cosmology: theory – cosmological parameters

1. Introduction

Comparing cosmological models to current observational data
can be cumbersome and computationally intensive. Large multi-
dimensional parameter spaces cannot be probed by grid-based
methods but more sophisticated approaches are required, for ex-
ample Monte Carlo Markov Chains (MCMC) (Gamerman &
Lopes 2006; Lewis & Bridle 2002). Of the most commonly used
cosmological data sets available today, cosmic microwave back-
ground (CMB) and large-scale structure (LSS) observations in
particular require computational effort in parameter estimation.
Given computing time and patience, this is not a problem, at
least in principle, when testing models in which the evolution of
linear density perturbations is well understood and hence calcu-
lable. However, for several of the more imaginative dark energy
models the situation is more complicated. In cases where the
model is specified by an action, like the DGP model (Dvali et al.
2000), one should in principle be able to set up the equations
for linear perturbations, but in practice this has turned out to be
difficult and it is only recently that progress in this direction has
been made in this particular case (Koyama & Maartens 2006;
Koyama 2006; Sawicki et al. 2006; Song et al. 2006). And even
though the equations are known, they may be so complicated
to treat numerically as to make it practically impossible to ex-
plore the parameter space of the model in MCMC. In addition,
there are a large number of dark energy models, based on phe-
nomenological considerations, that lack the detail to allow one to
proceed with well-defined calculations. Examples of such mod-
els include the various proposed modifications of the Friedmann
equation, where the model is simply not specified well enough
to allow the calculation of the density perturbations (see e.g.
Freese & Lewis 2002; Gondolo & Freese 2003). The justifi-
cation of such models may be questioned, but the state of our

understanding of dark energy argues for keeping an open mind.
One would like to have some means of testing both groups of
models, incorporating as much empirical information as pos-
sible, but avoiding the need to calculate the behaviour of den-
sity perturbations. In practice, this means restricting the obser-
vational tests to those involving the age and distance scale, in
particular the luminosity distance-redshift relationship as probed
by supernovae of type Ia (SNIa). Important as the supernova data
are, they are still not very restrictive if one allows for e.g. non-
zero spatial curvature or a time-varying equation of state for dark
energy (Riess et al. 1998; Perlmutter et al. 1999; Tonry et al.
2003; Barris et al. 2004; Riess et al. 2004; Astier et al. 2006;
Clocchiatti et al. 2006; Wood-Vasey et al. 2007; Miknaitis et al.
2007; Davis et al. 2007).

To tighten up constraints on dark energy models, a common
approach is therefore to include additional information about the
distance scale from the CMB in the form of the so-called shift
parameter (Efstathiou & Bond 1999) that is related to the po-
sition of the first acoustic peak in the power spectrum of the
temperature anisotropies (Amarzguioui et al. 2006; Barger et al.
2007; Elgarøy & Multamäki 2005; Davis et al. 2007; Fairbairn
& Goobar 2006; Fairbairn & Rydbeck 2007; Lazkoz et al. 2006;
Nesseris & Perivolaropoulos 2007; Rydbeck et al. 2007; Wang
& Mukherjee 2006; Xia et al. 2006; Zhao et al. 2005, 2006).

Recently, after the baryon acoustic oscillations (BAO) where
observed in the SDSS Luminous Red Galaxy sample (Eisenstein
et al. 2005), it has also become common to include the informa-
tion about the angular scale of the oscillations (Davis et al. 2007;
Wright 2007). What one should bear in mind, however, is that
these distance scales are not directly measured quantities, but
are derived from the observations by assuming a specific model,
usually the flat ΛCDM model or a slight variation thereof. Care
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needs to be exercised when using these derived quantities to test
more exotic dark energy models.

Here we consider the shift parameter in more detail by com-
paring its predictions to those obtained from full CMB fits for
different types of cosmological models. We identify the limita-
tions of using such a measure and advocate using a combination
of the acoustic peak scale along with the shift parameter as a
more accurate probe of the CMB power spectrum. Such a com-
bination is quick and easy to implement and should be included
in tests of dark energy models where it is either cumbersome or
unknown how to calculate the full CMB and matter power spec-
trum.

2. Theory

The use of the shift parameter as a probe of dark energy is based
on the observation that different models will have an almost
identical CMB power spectra if all of the following criteria are
satisfied (Efstathiou & Bond 1999): ωc = Ωch2 and ωb = Ωbh2

are equal, primordial fluctuation spectrum is unchanged, and the
shift parameter,

R = ω
1/2
m

ω1/2
k

sinnk(ω1/2
k y), (1)

where sinn(x) = {sin(x), x, sinh(x)} for k = +1, 0,−1 respec-
tively, with

y =

∫ 1

ar

da√
ωma + ωka2 + ωΛa4 + ωQa1−3w

(2)

is constant. In this original definition of the shift parameter, the
universe is considered to be filled with matter (dark and bary-
onic), ωm = Ωmh2, ωb, curvature, ωk = Ωkh2, cosmological
constant ωΛ = ΩΛh2 and a dark energy component ωQ = ΩQh2

with a constant equation of state w. The density parameter Ωi is
the ratio of the present-day density of component i to the density
of a spatially flat universe, ρc = 3H2

0/8πG, and h is the dimen-
sionless Hubble constant defined by H0 = 100 h km s−1 Mpc−1.
Integration is carried out from recombination, ar, until today
a = 1.

In a spatially flat universe (k = 0), the shift parameter
reduces to

R = √
Ωm

∫ zr

0

dz
E(z)
, (3)

where E(z) ≡ H(z)/H0 and H(z) is the Hubble parameter.
The sound horizon at recombination for three massless neu-

trinos is given by (Efstathiou & Bond 1999)

rs =
c√
3H0

Ω−1/2
m

∫ ar

0

da√
(a + aeq))(1 + R(a))

≈ 19.8 Mpc√
ωbωm

ln

⎛⎜⎜⎜⎜⎜⎝
√

R(ar) + R(aeq) +
√

1 + R(ar)

1 +
√

R(aeq)

⎞⎟⎟⎟⎟⎟⎠ , (4)

where R(a) = 30496ωba and aeq = 1/(24185ωm) and the
recombination redshift can be calculated by using the fitting
formulae (Hu & Sugiyama 1996):

zr = 1048(1 + 0.00124ω−0.738
b )(1 + g1ω

g2
m ) (5)

g1 = 0.0783ω−0.238
b /(1 + 39.5ω0.763

b )

g2 = 0.560/(1+ 21.1ω1.81
b ).

The mth Doppler peak has the comoving wave number (Hu &
Sugiyama 1996) mπ = kmrs(ar), and hence the location of the
first peak in multipole space is approximately given by

�a ≈ πdA(zr)
rs(ar)

, (6)

where dA = cR/H0ω
1/2
m is the angular diameter distance.

Rewriting Eq. (6), we have

�a ≈ 151πω1/2
b R

⎛⎜⎜⎜⎜⎜⎝ln
⎛⎜⎜⎜⎜⎜⎝
√

R(ar) + R(aeq) +
√

1 + R(ar)

1 +
√

R(aeq)

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠
−1

· (7)

The location of the first peak is hence a combination of the shift
parameter and the size of the sound horizon at recombination,
as is expected on physical grounds. Even though the relation
between �a and R is linear, the two parameters are not degen-
erate and in fact complement each other well in constraining
models, as is shown later. Note that the analytical expressions
above were derived for the ΛCDM class of models. For more
general models, the relevant quantities should be calculated nu-
merically, although in some cases analytical results have been
derived (Grupposo & Finelli 2006).

The best fit value calculated from the WMAP-team provided
MCMC chains for the shift parameter in the standard flatΛCDM
model is

R = 1.71+0.03
−0.03, (8)

which is in good agreement with Wang & Mukherjee (2006).
This result is practically equal for the ΛCDM and wCDM mod-
els with or without dark energy perturbations. The acoustic peak
position as measured by Eq. (7) calculated from the same data is

�a = 303.6+1.1
−1.2. (9)

One should always bear in mind the conditions for the shift pa-
rameter to be applicable. If one wants to use the shift param-
eter as a constraint on a dark energy model, then first of all
the distribution of the shift parameter has to be derived from
the CMB data. This cannot be done without assuming a model.
Since one is only looking for a constraint on the expansion his-
tory of the universe, it is easy to forget that one is also mak-
ing assumptions about the primordial power spectrum of density
fluctuations, since these form the basis for calculating the CMB
anisotropies. In effect, one is therefore always making implicit
assumptions about inflation, even though what one wants to test
is the kinematics of the dark energy model under scrutiny.

In order to demonstrate the significance of these underly-
ing assumptions, we show the distributions of the shift parame-
ter in Fig. 1 derived from MCMC chains for the ΛCDM model
with four different primordial power spectra: the standard power-
law version, power-law with running scalar spectral index, with
tensor modes, and with both tensor modes and running scalar
spectral index. The distributions for R are visibly different in the
four cases. Therefore, whenever one uses the shift parameter one
should be clear about the assumptions made in deriving its distri-
bution from the CMB data. The acoustic scale �a, also shown in
Fig. 1, varies significantly less when changing the assumptions
about the primordial power spectrum.

In Fig. 2 we show the distributions for R and �a when we
assume a power-law primordial power spectrum, but make dif-
ferent assumptions about the matter and energy content of the
Universe. Here the distributions are less scattered, and again
we note that the acoustic scale exhibits less variation than the
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Fig. 1. The distribution of the shift parameter R a) and the acoustic scale
�a b) derived from MCMC chains with the WMAP data for four differ-
ent types of primordial perturbations: power-law with no running scalar
spectral index and no tensor modes (red solid line), power-law with
tensor modes (green dotted line), running spectral index and no tensor
modes (blue dashed line), and both tensor modes and running spectral
index (purple dot-dashed line).

shift parameter. As a demonstration of using the shift parameter
blindly, we also plot the distribution of R and �a when we allow
for massive neutrinos. This is clearly wrong since the size of the
sound horizon is now changed and hence the basis of using the
shift parameter is no longer valid. This is important to take note
of, because we know that neutrinos do have a mass that should
always be included as a free parameter in cosmological parame-
ter estimation.

3. Examples

Using the values of R and �a calculated from the MCMC chains
for the power-law wCDM model, we can compare the resulting
confidence contours with those arising from doing the full CMB
fit.

3.1. wCDM model

In Fig. 3 we show the 68%, 95% and 99% confidence levels
arising from using the shift parameter and the acoustic peak posi-
tion for the flat wCDM model. In calculating the confidence lim-
its using the acoustic peak position, we have chosen a flat prior
h = 0.73±0.03 and marginalized over h. We have kept the baryon
density fixed at the WMAP value ωb = 0.0223 which we use
throughout the paper unless otherwise stated. Comparing this
with the probability density plot from the full MCMC chains,
e.g., for the wCDM model with no dark energy perturbation
shown in th same figure, we see that the shift parameter gives
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Fig. 2. The distribution of the shift parameter R a) and the acoustic scale
�a b) derived from MCMC chains with the WMAP data for four differ-
ent models: ΛCDM (red solid line), dark energy with constant equa-
tion of state and dark energy perturbations (green dotted line), open
CDM (blue dashed line), and ΛCDM with massive neutrinos (purple
dot-dashed line).
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Fig. 3. The 68%, 95% and 99% confidence levels calculated from the
shift parameter a) and acoustic peak position b). In both panels we also
show the probability density calculated from the WMAP 3-year data
(red solid curves).
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Fig. 4. Comparison of different methods: probability density from the
wCDM MCMC chains (solid red lines in both figures), confidence con-
tours (dotted green lines) calculated using �a a) and the combined R, �a
contours b).

a good approximation to the CMB data while the acoustic peak
position does not. Note that even though ωb is fixed, R and �a
contours have fundamentally different shapes, demonstrating the
importance of the sound horizon size in calculating �a.

The fact that the shift parameter approximates the full CMB
contours so well for the wCDM model is not surprising since
the value of the shift parameter has been calculated from a chain
that assumes that the cosmology is of the wCDM type. In other
words, we first assume a model and then calculate chains that
best fit the data from which we derive a quantity. Following the
same prescription one can in fact construct other quantities that
also well approximate the full CMB contours, but are not physi-
cally motivated.

3.2. Role of the Hubble parameter

In the WMAP chains, the Hubble parameter typically has a
fairly large prior, 0.5 < h < 1.0. If the value of h is con-
strained by other observations, e.g., the Hubble Key Project re-
ports h = 0.72 ± 0.08 (Freedman et al. 2001), the contours in
the (Ωm, w)-plane look quite different. In Fig. 4, we show the
normalized probability density for the wCDM model from the
WMAP provided chains (no dark energy perturbations) with a
tight h constraint, h = 0.73 ± 0.01, along with the confidence
contours calculated by using �a with and without the shift param-
eter. The shift parameter is independent of hă and hence the con-
fidence contours are unchanged and shown in Fig. 3. From the
figure one can conclude that the combination ofR and �a appears
to be a good approximation to the full CMB data when h is con-
strained by independent observations. This is further supported
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Fig. 5. The 68%, 95% and 99% confidence levels calculated from the
combination of the shift parameter and �a (dotted green lines) and
wCDM probability density, h = 0.5–1.0.

when we consider the confidence contours arising from using
the (R, �a) combination with h = 0.5–1.0 (flat prior), shown in
Fig. 5 along with probability density calculated from the WMAP
chains with appropriate cuts. We see that also in this case, the
combination of R and �a is a reasonably good approximation to
the results obtainable from doing the full CMB fit.

3.3. Role of baryons

In the previous calculations, we have kept the baryon density
fixed at the WMAP 3-year value, ωb = 0.0223. This value is de-
rived assuming theΛCDM model and hence when using theR or
�a to study other cosmologies, one should be somewhat cautious
when using this value. A more robust, with respect to changing
cosmology, measure of ωb comes from Big Bang nucleosynthe-
sis (BBN), which gives 0.017 ≤ ωb ≤ 0.024 (95% confidence
level) with three massless neutrinos. We find that changing the
baryon density within the 95% limits from BBN has only a small
effect on the results. In particular, when compared to the effect
of changing the Hubble parameter, the significance of varying
the baryon density within the BBN limits is negligible.

4. Non-standard cosmologies

The shift parameter is particularly useful as a quick measure of
how a given cosmological model fits the CMB data. In order to
assess the validity of this approach, we compare here the param-
eter constraints arising from the shift parameter and from doing
the full CMB fit on a non-standard model, namely on a general
Friedmann equation. Such a model is generalization of the stan-
dard Friedmann equation and as such serves as a useful generic
no-standard model. We also consider the use of the acoustic peak
position as an useful approximation to the full CMB data fit.

4.1. Modified Friedmann equation

Modified Friedmann equations arise, e.g., in alternative theories
of gravity. As an example, in the well known DGP model (Dvali
et al. 2000), the Friedmann equation on the brane is of the form

H2 ± H
rc
=

8πG
3
ρm, (10)

where ρm is the matter density on the brane and rc is the cross-
over scale at which gravity starts to feel the effects of the fifth
dimension.
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Here we will consider modifications to the Friedmann equa-
tion with no spatial curvature in the spirit of (Dvali & Turner
2003; Elgarøy & Multamäki 2005). A generalized Friedmann
equation can be written as

f (H,Hc) = H2
0Ωm(1 + z)3, (11)

where instead of modifying the matter content we consider mod-
ifications of gravity by having an arbitrary function f . The crit-
ical scale, Hc, is close to the present Hubble parameter, H0, and
determines when modifications from the standard Friedmann
equation start to have an effect. At early times, when H � Hc,
we know from BBN constraints that f (H) ≈ H2. Keeping this
mind and expanding in terms of Hc/H gives

H2

⎡⎢⎢⎢⎢⎢⎣1 +
∞∑

n=1

cn

(Hc

H

)n
⎤⎥⎥⎥⎥⎥⎦ = H2

0Ωm(1 + z)3, (12)

from which it is clear that non-standard effects only start to have
an effect at late times when H ∼ Hc. Expanding the sum gives

H2

[
1 + c1

Hc

H
+ c2

(Hc

H

)2

+ ...

]
= H2

0Ωm(1 + z)3. (13)

In this form, one can interpret the cosmological constant as a
second order correction to the Friedmann equation while the first
order correction corresponds to the DGP model. Generally, the
nth order correction for a flat universe is hence(

H
H0

)2

= Ωm(1 + z)3 + (1 − Ωm)

(
H
H0

)α
, (14)

where α = 2 − n. The leading correction to the Friedmann equa-
tion was previously studied using current CMB, SNIa and LSS
data by Elgarøy and Multamäki (2005).

4.2. Confidence contours

The CMB spectrum arising within the context of the modified
Friedmann equation, Eq. (14), can be straightforwardly calcu-
lated by using, e.g., CMBFAST (Seljak & Zaldarriaga 1996) (see
Elgarøy & Multamäki 2005, for a detailed description) and fitted
to the WMAP 3 year data. The resulting confidence contours are
shown in Fig. 6 along with contours from using the shift param-
eter and the acoustic peak position (h = 0.73 ± 0.03, flat prior).
Again, we find that the combination of the acoustic peak along
with the shift parameter gives a reasonable approximation to the
full CMB fit.

5. Conclusions

In this work we have reconsidered the use of the shift parameter
as a quick and easily implementable probe of dark energy. We
find that while it gives an excellent measure of the CMB spec-
trum for theΛCDM model, with ωb andωc fixed, caution should
be exercised when using the shift parameter to compare and con-
strain non-standard cosmological models. Another paper (Wang
& Mukherjee 2007) advocating the combination of R and �a as
a constraint on dark energy models appeared after we had sub-
mitted the present paper. Our results seem to be consistent with
theirs, but they put more emphasis on models with curvature,
and less on the model-dependence of the shift parameter.

Even when using R to constrain more standard type models,
such as the wCDM model, careful consideration should be given
to the value of the Hubble parameter, h. Since the shift parameter
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Fig. 6. The 68%, 95% and 99% confidence levels in the Ωm-α plane
calculated from the shift parameter a) and the acoustic peak position b)
and their combination c) (dotted green lines). The parameter α defines
the correction term in the modified Friedmann equation, Eq. (14). We
also show the results from fitting to the full WMAP 3yr TT data (red
solid lines) in all figures.

is independent of h, but the full CMB spectrum fit is most def-
initely not, the shift parameter can be misleading when applied
blindly.

The shift parameter is a geometrical measure as it measures
the size of apparent sound horizon at recombination. Keeping
the sound horizon size fixed, different cosmological models lead
to different background expansion and hence the shift parameter
can be used to compare and constrain different models. However,
also the sound horizon size changes when varying cosmological
parameters, most notably changing the matter density, Ωm and
the Hubble parameter, h. In addition, massive neutrinos will also
have an effect. Hence, in general the shift parameter will not
be an accurate substitute for the CMB data and may in princi-
ple give misleading results when used to constrain non-standard
results.
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In addition, the value of the shift parameter used to con-
strain different dark energy models is derived by first assuming
the ΛCDM model, fitting the model to the data and then cal-
culating the value of R. Again, for a general model, using the
value obtained in this manner is questionable since for a differ-
ent model one may expect the shift parameter to be different,
while the CMB spectrum can fit well with observations.

In order to enhance the effectiveness of using the shift pa-
rameter as a cosmological tool, we have considered adding infor-
mation from the location of the first CMB peak, �a. Combining
these two easily calculable observables, allows one to encom-
pass information from both the size of the sound horizon at re-
combination and the angular diameter distance to it. As such, it
more effectively constrains the allowed parameter space, includ-
ing the Hubble parameter that is not fixed when using only the
shift parameter. A possible caveat is, again, the fact that the nu-
merical value of both of these parameters is calculated within
the ΛCDM framework, but by comparing to different models,
we see that the combination proves to be a good and efficient
probe of non-standard cosmologies.
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