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For many years transfer matrices have been used to eval-

uate the steady-state vibration response of linear rotor bear-

ing systems. More recently, they have been used to evaluate

the steady-state periodic vibration response of nonlinear

rotor bearing systems. For quasi-periodic and chaotic re-

sponse, a transient solution is mandated and transient so-

lution software can also be gainfully used to evaluate the

stability of the above-mentioned periodic solutions. To date,

transient solutions generally necessitate a different lumped

parameter discretization of the rotor and involve solving si-

multaneously the differential equations for every degree of

freedom. This article shows how transient analysis can be

performed while maintaining the transfer matrix lumped

parameter discretization. The technique is illustrated for a

non symmetric unbalanced flexible rotor supported on hy-

drodynamic journal bearings or deep-groove ball bearings.
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INTRODUCTION

Transfer matrix (TM) methods have been widely used to eval-

uate the vibration behavior of rotating machinery where forces

due to nonlinear elements such as hydrodynamic bearings are

approximated by stiffness and damping coefficients, thereby

implicitly assuming that motions are in close proximity to the

steady-state equilibrium position (Lund, 1974). Should motions

deviate significantly from this position, e.g., in the presence of

relatively large unbalance, but nevertheless achieve a steady state

periodic response, it has been possible to use a modified TM ap-

Received 25 June 2002; accepted 1 July 2002.
Address correspondence to A. Liew, WBM Pty. Ltd. (Melbourne),

P.O. Box 604, Collins St. W, VIC 8007, Australia. E-mail: aliew@
wbmpl.com.au

proach to determine this response, using harmonic balance prin-

ciples (Liew et al., 2001; Hahn and Chen, 1994). In such cases,

the stability of the equilibrium solutions needs to be addressed,

and transient solution capability is a powerful means for do-

ing this. Should the response not be periodic but quasi-periodic

or chaotic, a full transient analysis is mandated. Thus, efficient

transient analysis capability is necessary for fully investigating

the vibrations of nonlinear rotor bearing systems. To date, such

analysis generally necessitates a different discretization of the

rotor as dictated by finite element formulation (Nelson, 1980),

and requires solving simultaneously the differential equations

for every degree of freedom, a formidable task which frequently

involves system condensation (such as Guyan reduction) to re-

duce the computational effort. It would therefore be most desir-

able if transient solutions could be achieved while maintaining

the TM model formulation, thereby avoiding the need for model

reformulation and the problems associated with system conden-

sation. This article develops such a transient solution technique

and evaluates its versatility by analyzing flexible rotor bearing

systems with hydrodynamic and rolling element bearings.

While other TM transient solution techniques exist (Gu, 1992;

Rao et al., 1987), they are of a more complex nature than the

technique developed here and utilize different rotor discretiza-

tion and/or additional state variables.

TRANSIENT TRANSFER MATRIX TECHNIQUE

The transient TM method developed here matches the usual

approach for transient solutions in that ordinary differential

equations (ODEs) are formulated and integrated using some

convenient technique (e.g., Runge–Kutta). Typically, the n equa-

tions of motion, namely;

Mẍ + Cẋ + Kx = H(ẋ, x, t) [1]

are reformulated to explicitly determine the accelerations,

ẍ = M−1(H(ẋ, x, t) − Cẋ − Kx) = f (ẋ, x, t) [2]
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These second-order ODEs are then recast into 2n first-order

ODEs, giving:

ẇ =

{

ẋ

ẍ

}

=

{

ẋ

f(ẋ, x, t)

}

= g

({

x

ẋ

}

, t

)

= g(w, t) [3]

The technique presented here follows the same approach in the

formulation of functions f and g. However, rather than simul-

taneously solving the n equations of motion in Equation (1),

transfer matrix relationships are used to solve the four equations

of motion at each rotor station.

The TM approach typically discretizes the rotor into massless

field and point mass elements (Rao, 1996). Figure 1 shows the

forces acting on these elements at the i’th station. Note that such

discretization necessarily assumes a lumped mass model. As in

the traditional rotordynamic TM formulation, one can write the

state vector at the i’th station as:

Si = {−z, θ, My, −Vz, y, φ, Mz, Vy}
T
i [4]

except now the elements of S are time-dependent variables rather

than vibration amplitudes. This state vector is transferred through

massless spans using a field transfer matrix F and across lumped

masses using a point transfer matrix P, namely:

SL
i = Fi × SR

i−1 [5]

and

SR
i = Pi × SL

i [6]

Rao (1996) presents the details of the elements of F and P.

FIGURE 1

Free body diagrams for dynamic equilibrium in the

(a) horizontal x-z plane and (b) vertical x-y plane.

To formulate the function f, system accelerations need to

be calculated from system displacements and velocities. The

first step is to use the displacements and velocities at time t

to calculate shear force and bending moments at time t at the

lumped masses. This is done by rearranging and partitioning the

field transfer equations as follows:

{

sd

sf

}L

i

=

[

Fdd

Ffd

Fdf

Fff

]

i

×

{

sd

sf

}R

i−1

[7]

where

sd = {−z, θ, y, φ}T

[8]
sf = {My, −Vz, Mz, Vy}

T

and F is rearranged appropriately. In this formulation, sd are

known (arguments of function f ) and sf are the required shear

forces and bending moments. Manipulating gives:

{sf}
R
i−1 = F−1

df ×
(

{sd}
L
i − Fdd × {sd}

R
i−1

)

{sf}
L
i = Ffd × {sd}

R
i−1 [9]

+ Fff ×
[

F−1
df ×

(

{sd}
L
i − Fdd × {sd}

R
i−1

)]

Note that the boundary conditions of the ends of the rotor are

also needed. In the examples provided here, there are lumped

masses at the unconstrained ends of the rotor where the shear

forces and bending moments are zero.

Once the shear forces and bending moments are explicitly

expressed as functions of the displacement state variables, the

point transfer matrices are used to determine the system accel-

erations. Rather than using the full point transfer matrices, only

relevant equations are used in order to avoid the problem of

having time-dependent point matrices.

Thus the equations of motion for the i’th lumped mass

become:

VR
zi − VL

zi + Pzi = miz̈i

MR
yi − ML

yi − Ipiωφ̇i = Idiθ̈i
[10]

VR
yi − VL

yi + Pyi = miÿi

MR
zi − ML

zi + Ipiωθ̇i = Idiφ̈i

or upon rearranging,

z̈i = m−1
i

(

VR
zi − VL

zi + Pzi

)

θ̈i = I−1
di

(

MR
yi − ML

yi + Ipiωφ̇i

)

[11]
ÿi = m−1

i

(

VR
yi − VL

yi + Pyi

)

φ̈i = I−1
di

(

MR
zi − ML

zi + Ipiωθ̇i

)

Equation (11) consists of second-order ODEs similar to Equa-

tion (2) and can be solved in the same manner.
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FIGURE 2

Rotor system.

SAMPLE CALCULATIONS

The capabilities of the transient TM technique were evalu-

ated by comparing the transient responses obtained using the

proposed TM-based technique with that obtained by existing

in-house transient analysis software for the simple two bearing

flexible rotor system shown in Figure 2 using both hydrody-

namic journal bearings and rolling element bearings. Fourth-

order Runge–Kutta integration was used for both the standard

and the TM-based solutions. Figure 3 shows the line types used

in Figures 5 through 8 and 10 through 13 which compare the

TM-based solutions with the standard solutions.

Hydrodynamic Journal Bearings

Figure 4 shows the hydrodynamic journal bearing geometry

and the relevant bearing parameters for the two identical bear-

ings. The following assumptions were made.

• External excitation results solely from unbalance and

gravity.
• The short bearing approximation (SBA) to Reynolds

equation (with constant fluid properties) is valid.
• The pressures at the ends of the journal bearing are

atmospheric.
• Only positive pressures contribute to the fluid film forces

(i.e., π film or half Sommerfeld condition).

Note that this example is purely for verification of the solution

technique. For real situations with larger L/D ratios the SBA may

be inappropriate and a more accurate bearing force determina-

tion, such as is obtainable using a finite difference solution to

Reynolds equation, may need to be used. Referring to Figure 4,

are the forces exerted by the bearings on the rotor may then be

FIGURE 3

Key for Figures 5–8 and 10–13.

FIGURE 4

Hydrodynamic journal bearing geometry.

written as (Booker, 1965):

[

fr

fs

]

= −
µDL3ω

2C2

(

ε(ψ ′
−

1/2)

[

I11

I20

]

+ ε′

[

I02

I11

])

, [12]

where:

Imn =

∫ ζ1+π

ζ1

sinm ζ cosn ζdζ

(1 + ε cos ζ )3
,

and

ζ1 = tan−1

(

ε′

ε(ψ ′ − 1/2)

)

A typical periodic response is shown in Figures 5 and 6. The

system is loaded by an unbalance of 1×10−4 kgm applied to the

central disc and run at 300 rad/s. As can be seen, the transient

FIGURE 5

Journal bearing #1 orbit 300 rad/s.
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FIGURE 6

Journal bearing #2 orbit 300 rad/s.

TM technique produces an identical steady-state solution orbit

to the standard transient solution.

Figures 7 and 8 show the transient response with zero ini-

tial conditions for the first 20 rotor cycles. The rotor speed here

is 800 rad/s and no unbalance is applied to the system. Obvi-

ously the system is unstable. Again, the transient TM technique

produces an identical transient to the standard solution.

Rolling Element Bearings

For this calculation the hydrodynamic journal bearings are

replaced by the 7908C ball bearings for which the bearing ge-

ometry and relevant parameters are shown in Figure 9.

FIGURE 7

Journal bearing instability bearing #1.

FIGURE 8

Journal bearing instability bearing #2.

A fairly simple two-degree of freedom rolling element bear-

ing model is used (Fukata et al., 1985). Referring to Figure 9,

the overall contact deformation for the j’th rolling element, δj,

is given by:

δj = y cos φj + z sin φj − c [13]

Summing the contact forces for each rolling element in the y

and z directions gives:

{

fy

fz

}

= Kp

nb
∑

j=1

γjδ
1.5
j

{

cos φj

sin φj

}

[14]

where

γj =

{

1 for δj > 0

0 for δj ≤ 0
and φj =

2π (j − 1)

nb

+ ωct + φ0

[15]

FIGURE 9

Rolling bearing geometry.
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FIGURE 10

Ball bearing #1 orbit 300 rad/s.

Figures 10 and 11 show a predominantly periodic solution ob-

tained at a rotor speed of 300 rad/s with an unbalance of

1×10−4 kgm applied to the central disc while Figures 12 and

13 show the first 20 cycles of a more chaotic solution obtained

at 600 rad/s for the same unbalance. Note that if allowed to run

further than 20 cycles, the orbit at 600 rad/s produces an annulus

shape and the comparison of solutions becomes difficult. Hence

only 20 cycles are plotted from an all zero initial condition.

Figure 14 shows the spectra of the results comparing the more

chaotic solution at 600 rad/s with the more periodic solution at

300 rad/s. 100 cycles were used for the spectra with Hanning

windowing.

DISCUSSION

As shown by the numerical examples, the transient TM

method produces identical solutions to the standard transient

method regardless of the forcing function nonlinearities. There

was little difference in the computational time between the pro-

posed and standard transient approaches, with the TM transient

approach taking slightly longer. On the other hand, storage re-

quirements are reduced as one is dealing with smaller matrices.

The major advantage of the proposed transient TM approach

FIGURE 11

Ball bearing #2 orbit 300 rad/s.

FIGURE 12

Ball bearing #1 orbit 600 rad/s.

is that it complements existing TM techniques using the same

lumped mass discretization.

The disadvantage of the proposed transient TM approach is

its present restriction to lumped mass discretization and hence a

large number of elements may be required for acceptable accu-

racy. Note, however, that this is not expected to result in numer-

ical difficulties as problem size increases (common to standard

FIGURE 13

Ball bearing #2 orbit 600 rad/s.
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FIGURE 14

Displacement spectra at 300 rad/s and 600 rad/s.

TM methods) because there is no continued matrix multipli-

cation. Application to systems with flexible foundations also

requires further development.

CONCLUSIONS

A transient TM technique has been successfully developed

for nonlinear rotor bearing systems and successfully applied to

systems with hydrodynamic journal and rolling element bear-

ings. The major advantage of this technique is its ability to eas-

ily complement existing TM techniques with the same rotor

modeling. While there is no significant difference in computa-

tion time compared with standard transient analysis software,

the advantage of reduced storage requirements inherent to TM

approaches has been maintained. Currently the technique is re-

stricted to lumped mass discretization of the rotor and requires

further development to include foundation effects.
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NOMENCLATURE

C damping and gyroscopic matrix. [Ns m−1]

E Young’s modulus [Pa]

f second-order system function

F field transfer matrix

g first-order system function

G shear modulus [Pa]

H Forcing function containing gravity, unbalance, and non-

linear bearing forces [N]

K stiffness matrix [N m−1]

My,z bending moment about y and z axes, respectively [Nm]

M mass matrix [kg]

n number of system degrees of freedom

Py,z applied load (gravity, unbalance, bearing force) in the y

and z directions, respectively [N]

P point transfer matrix

sd displacement elements of S = {−z, θ, y, φ}T

sf force elements of S = {My , −Vz, Mz, Vy}
T

S state vector = {−z, θ , My, −Vz, y, φ, Mz, Vy}
T

t time [s]

Vy,z shear force in y and z direction, respectively [N]
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x vector of system Degrees Of Freedom (DOF)

w vector of system DOF displacements and velocities

y vertical displacement [m]

z horizontal displacement [m]

θ rotation about y axis [rad]

φ rotation about z axis [rad]

ω shaft speed [rad s−1]

Subscripts

i index referring to the i’th lumped mass i = 0, 1, 2, . . .

Superscripts

L refers to the left of the lumped mass

R refers to the right of the lumped mass

Journal Bearing Notation

C bearing clearance [m]

D bearing diameter [m]

L bearing length [m]

e journal eccentricity [m]

ε eccentricity ratio = e/C

τ dimensionless time = ωt

µ absolute viscosity of bearing fluid [Pa s]

ς angular coordinate along the bearing surface measured

from the point of maximum film thickness [rad]

ς1 value of ς at which the pressure region becomes positive

[rad]

ψ angular position of the line of centers with respect to the

y-axis [rad]
.,’ differentiation with respect to t and τ , respectively

Rolling Element Bearing Notation

c inner to outer race clearance [m]

Db rolling element diameter [m]

Dp bearing pitch diameter [m]

fz,y bearing force in x and y directions, respectively [N]

Kp load-deflection factor for point contact [Nm−1.5]

nb number of rolling elements

δ contact deformation or deflection [m]

φj angular location of the j’th rolling element [rad]

φ0 initial angular location of the rolling elements [rad]

ωc cage angular velocity [rad s−1]
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