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Abstract

When designing programs or software for the implementation of Monte Carlo (MC) hypothesis tests,
we can save computation time by using sequential stopping boundaries. Such boundaries imply
stopping resampling after relatively few replications if the early replications indicate a very large or
very small p-value. We study a truncated sequential probability ratio test (SPRT) boundary and
provide a tractable algorithm to implement it. We review two properties desired of any MC p-value,
the validity of the p-value and a small resampling risk, where resampling risk is the probability that
the accept/reject decision will be different than the decision from complete enumeration. We show
how the algorithm can be used to calculate a valid p-value and confidence intervals for any truncated
SPRT boundary. We show that a class of SPRT boundaries is minimax with respect to resampling
risk and recommend a truncated version of boundaries in that class by comparing their resampling
risk (RR) to the RR of fixed boundaries with the same maximum resample size. We study the lack
of validity of some simple estimators of p-values and offer a new simple valid p-value for the
recommended truncated SPRT boundary. We explore the use of these methods in a practical example
and provide the MChtest R package to perform the methods.
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1 Introduction

This paper is concerned with designing Monte Carlo implementation of hypothesis tests.
Common examples of such tests are bootstrap or permutation tests. We focus on general
hypothesis tests without imposing any special structure on the hypothesis except the very
minimal requirement that it is straightforward to create the Monte Carlo replicates under the
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null hypothesis. Thus, for example, we do not require either special data structures needed to
perform network algorithms (see, e.g., Agresti, 1992) nor knowledge of a reasonable
importance sampling function needed to perform importance sampling (see, e.g., Mehta, Patel,
and Senchaudhuri, 1988, or Efron and Tibshirani, 1993).

Let any Monte Carlo implementation of a hypothesis test be called an MC test. When using an
MC test with a fixed number of Monte Carlo replications, often one will know with high
probability, before completing all replications, whether the test will be significant or not. Thus,
it makes sense to explore sequential procedures in this situation. In this paper we propose using
a truncated sequential probability ratio test (SPRT) for MC tests. This is simply the usual SPRT
except we define a bound on the number of replications instead of allowing an infinite number.

For estimating a p-value from an MC test, we show that the simple maximum likelihood
estimate or the more complicated unbiased estimate (Girshick, Mosteller, and Savage, 1946),
are not necessarily the best estimators since they do not produce valid p-values. We show how
for any finite MC test (i.e., one with a predetermined maximum number of replications) we
can calculate a valid p-value. The method depends on the calculation of the number of ways
to reach each point on the stopping boundary of the MC test, and we present an algorithm to
aid in the speed of that calculation for the truncated SPRT boundary.

Fay and Follmann (2002) explored MC tests and defined the resampling risk as the probability
that the accept/reject decision will be different from a theoretical MC test with an infinite
number of replications. Here we show that based on Wald’s (1947) power approximation there
exists a class of SPRT tests which are minimax with respect to the resampling risk. This
improves upon Lock (1991) who explored the SPRT for use in MC tests but made
recommendations for SPRT’s which were not minimax. Then we propose truncating the chosen
SPRT to prevent the possibility of a very large replication number for the MC test. For a similar
truncated SPRT, Armitage (1958) has outlined a method for calculating exact confidence
intervals for the p-value, and here we show how our algorithm is used in that situation also.

The paper is organized as follows. In Section 2 we present the problem and introduce notation.
We review the SPRT in Section 3 and some results for finite stopping boundaries in Section
4. In Section 5 we discuss validity of the p-values from the MC test. In Section 6 we discuss
the resampling risk and show that a certain class of SPRT boundaries are minimax with respect
to the resampling risk. We compare truncated SPRT (tSPRT) boundaries with the associated
fixed boundary having the same maximum resample size and recommend a specific tSPRT
boundary when the significance level is 0.05. In Section 7 we show the lack of validity of some
simple p-value estimators when used with truncated SPRT boundaries and propose a simple
valid p-value for use with the recommended tSPRT boundary. In Section 8 we compare the
use of a truncated SPRT boundary and a fixed resample size boundary in some examples. We
explore the timings and p-values from both methods. In Section 9 we discuss some additional
issues related to MC tests.

2 Estimating P-values by Monte Carlo Simulation

Consider a test statistic, T, for which larger values indicate more unlikely values under the null
hypothesis. Let T0 = T (d0) denote the value of the test statistic applied to the original data,
d0. The Monte Carlo test may be represented as taking repeated independent replications from
the data (e.g., bootstrap resamples, or permutation resamples), say d1, d2, …, and obtaining
T1 = T (d1), T2 = T (d2),…. Under this Monte Carlo scheme the Ti are independent and
identically distributed (iid) random variables from some distribution such that Pr[Ti ≥ T0|d0]
= p(d0) for all i, where the p(d0) is the p-value that would be obtained if an infinite Monte Carlo
sample or a complete enumeration was taken. So our problem may be reduced to the familiar
problem of estimating a Bernoulli parameter p ≡ p(d0), from many iid binary random variables
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Xi = I(Ti ≥ T0), where I(A) is the indicator of an event A. Let . Then Xi has a Bernoulli
distribution with success probability of p for each i, and Sn has a binomial distribution with
parameters n and p for a fixed n. However, we are interested in more general stopping rules to
achieve a more efficient decision, and allow the number of Monte Carlo samples, N, to be a
random variable.

We want to satisfy two properties of an estimator of p. First, we want the estimator to produce
a valid p-value for the Monte Carlo test. Second, we want to minimize in some way both the
probability that we conclude that p > α when p ≤ α and the probability that we conclude that
p ≤ α when p > α, where α is the significance level of the Monte Carlo test. Before discussing
these two properties in Sections 5 and 6 we review SPRT stopping boundaries in Section 3 and
finite stopping boundaries (i.e., boundaries with a known maximum possible resample size) in
Section 4.

3 Review of the Sequential Probability Ratio Test

Consider the sequential probability ratio test. We formulate the MC test problem in terms of a
hypothesis test: H0: p > α versus Ha: p ≤ α. Note that the equality is in the alternative, since
traditionally we reject in an MC test when p = α. This is a composite hypothesis, and the
classical solution (Wald, 1947) is to transform the problem to testing between two simple
hypotheses based on two parameters pa < α < p0, and then perform the associated SPRT. Let
λN be the likelihood ratio after N observations. The SPRT requires choosing constants A and
B such that we stop the first time either λN ≤ B (in which case we accept H0: p = p0) or λN ≥
A (in which case we reject H0). Equivalently, the SPRT says to stop the first time either

(then accept H0: p = p0) or

(then reject H0) where , C1 = log (B)/log (r) , C2 = log (A)/log (r), and r =
{pa(1 − p0)}/{p0(1 − pa)}. Note that the SPRT is overparametrized in the sense that there are
4 parameters p0, pa, A and B, but the SPRT can be defined by 3 parameters C0, C1, and C2. In
other words, we can define equivalent SPRT for different pairs of p0 and pa by changing A and
B accordingly as long as C0 remains fixed. For example, the following pairs of (p0, pa) all give
C0 = 0.05: (.061, .040), (.077, .030), and (.099, .020). We show contours of potentially
equivalent SPRT in Figure 1.

The SPRT minimizes the expected sample size both under the null, p = p0, and the alternative,
p = pa, among tests with the same size and power for testing between those two simple point
hypotheses (see e.g., Siegmund, 1985). Wald (1947) has shown that in order to approximately
bound the type I error (conclude p = pa when in fact p = p0) at some nominal level, say α0, and
the type II error (conclude p = p0 when in fact p = pa) at some nominal level, say β0, then one
should use A = (1 − β0)/α0 and B = β0/(1 − α0). These approximate boundaries are called the
Wald boundaries (see e.g., Eisenberg and Ghosh, 1991). Note that α0 (the nominal level for
the type I error of null hypothesis H0: p = p0 from the SPRT) is different from α (the significance
level of the MC test).

Wald (1947) gave approximation methods for estimating the power function at any p and the
expected [re]sample size. We reproduce those approximations and use them in Section 6.
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4 Finite Stopping Boundaries

Now consider finite stopping rules which may be represented by the stopping boundary denoted
by a b × 2 matrix,

We continue with the Monte Carlo resampling (creating S1, S2,…) until N = Nj and SN = Sj for
some j, at which time the Monte Carlo simulation is stopped. We consider only boundaries for
which when resampling is done as described above, the probability of stopping on the boundary
is one for any p. Following Girshick, Mosteller, and Savage (1946) we call such boundaries
closed. Further, we write the boundaries minimally, such that for any 0 < p < 1 the probability
of stopping at any boundary point is greater than 0.

Figure 2 shows two finite boundaries. The boundary depicted by the dotted line represents the
boundary of Besag and Clifford (1991) where we stop if SN = smax or if N = nmax. The boundary
depicted by the solid line is the focus of this paper, the truncated sequential probability ratio
test boundary. In that case most values of Nj on B are not unique, appearing on both the “upper”
and the “lower” boundaries. The decision at any stopping point will be based on the estimated
p-value at that point, and we discuss p-value estimation later.

Let (SN, N) be a random variable representing the final value of the Monte Carlo resampling
associated with the finite boundary, B, and a p-value, p. We can write the probability
distribution of (SN, N) as

(1)

where Kj(B) is the number of possible ways to reach (Sj, Nj) under B.

In this situation, the simplest estimator of p is the maximum likelihood estimator (MLE),
p ̂MLE(SN, N) = SN/N; however, the MLE is biased. Girshick, Mosteller, and Savage (1946,
Theorem 7) showed that the unique unbiased estimator of p for all the boundaries considered
in this paper (i.e., boundaries that are finite and simple, where simple in this case means that
for each n the set of possible values of Sn which denote continued resampling must be a set of
consecutive integers) is

Where  is the number of possible ways to get from the point (1, 1) to reach (Sj, Nj), and
recall Kj(B) is the number of ways to get from (0, 0) to (Sj, Nj). Once we have an estimator of
p and a boundary it is conceptually straightforward (although computationally difficult) to
calculate the exact confidence limits associated with that estimator (Armitage, 1958, see also
Jennison and Turnbull, 2000, pp. 181–183). Let p̂(SN, N; B) be an estimator of p, such as
p ̂MLE, whose cumulative distribution function associated with the boundary evaluated at any
fixed value q ∈ (0, 1) (i.e., Pr[p̂(SN, N) ≤ q; p, B]) is monotonically decreasing in p. Then the
associated 100(1 − γ) percent exact confidence limits for p at the point (s, n) under the boundary
B, are the values pL(s, n) and pU (s, n) which solve
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and

The hardest part in finding the confidence limits is the calculation of Kj(B), and an algorithm
for doing that calculation is provided in the Appendix. Similar algorithms for calculating
probabilities were done by Schultz, et al (1973) (see Jennison and Turnbull, 2000, pp. 236–
237).

5 Validity

Consider the validity of the p-value as estimated by the MC test. Let p ̂(SN, N; B) be an arbitrary
estimator of p using B. The most important property we want from our estimator of the p-value,
say p̂, is not that it is the MLE or that it is unbiased but that it is valid. We say a p-value estimator
is valid if we can use it in the usual way such that we reject at a level γ when p ̂ ≤ γ, creating an
MC test that conserves the type I error at γ for any γ ∈ (0, 1). In other words, following Berger
and Boos (1994), p̂ is valid if

(2)

In our situation the probability is taken under the original null hypothesis of the MC test (not
the null hypothesis H0: p > α), so that p is represented by P, a uniformly distributed random
variable on (0, 1). Note that under the original null hypothesis, the distribution of P is often
not quite uniform on (0, 1) (for example, when the number of possible values of Ti is finite and
ties are allowed), but the continuous uniform distribution provides a conservative bound (see
Fay and Follmann, 2002). Using P ~ U(0, 1) we obtain a cumulative distribution for any
proposed estimator p ̂ (SN, N; B) as,

(3)

where

Note that for any closed boundary the maximum likelihood estimator of p, p̂MLE(SN, N) = SN/
N, is not a valid p-value because there is a non-zero probability that p̂MLE = 0.

We can create a valid p-value given only a finite boundary B and an ordering of the points in
the boundary. The ordering of the boundary points indicates an ordering of the preference
between the hypotheses, and we define higher order as a higher preference for the null
hypothesis and lower order as a higher preference for the alternative hypothesis. A simple and
intuitive ordering is to order the boundary points by the ratio Sj/Nj, since this is a simple
estimator of the p-value and lower values would indicate a preference for the alternative
hypothesis. This ordering is the MLE ordering. Although for clinical trials a stage-wise
ordering may make sense (see Jennison and Turnbull, 2000, Sections 8.4 and 8.5), for the
boundaries studied in this paper that stage-wise ordering is not appropriate. Other orderings
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mentioned in Jennison and Turnbull (likelihood ratio and score test) give similar, if not
equivalent, orderings to the MLE ordering, so we only consider the MLE ordering in this paper.

Using the Sj/Nj (i.e., MLE) ordering, we define our valid p-value when Sn is a boundary point
as p̂v(Sn, n) = Fp ̂MLE (Sn/n). Note that p ̂v has the same ordering as p̂MLE, where we define “the
same ordering” as follows: any two estimators p̂1 and p̂2 have the same ordering if p̂1(Si, Ni)
< p ̂1(Sj, Nj) implies p ̂2(Si, Ni) < p̂2(Sj, Nj). Let p ̂ALT be an alternative p-value estimator having
the same ordering as p ̂v and p̂MLE. Then if p̂ALT (Sn, n) < p̂v(Sn, n) for some (Sn, n), then
p ̂ALT is not valid. To show this, first note that since p̂MLE and p̂ALT have the same ordering, Pr
[p ̂ALT (SN, N) ≤ p ̂ALT (Sn, n)] = Pr[p̂MLE(SN, N) ≤ p̂MLE(Sn, n)] ≡ p ̂v(Sn, n). Thus, when p̂ALT

(Sn, n) < p̂v(Sn, n) then Pr[p ̂ALT (SN, N) ≤ p̂ALT (Sn, n)] = p̂v(Sn, n) > p̂ALT (Sn, n), and equation
2 is violated. The definition of p ̂v requires calculation of the Kj(B) (see equation 3), and hence
the algorithm in the Appendix is useful for this calculation as well.

Note that for some boundaries, p ̂v(Sj, Nj) simplifies considerably. For example with a fixed
boundary (i.e., when Nj = n and Sj = j − 1 for j = 1,…, n + 1), then

(4)

Another example is the simple sequential boundary of Besag and Clifford (1991) for which
sampling continues until either SN = smax or N = nmax (see Figure 2). For this boundary it can
be shown that p ̂v is equal to the p-values derived by Besag and Clifford (1991),

(5)

Besag and Clifford (1991) noted that in order to obtain exactly continuous uniform p-values,
one can subtract from p ̂v(Sj, Nj) the pseudo-random Uniform value, Uj, defined as continuous
uniform on [0, p̂v(Sj, Nj) − p̂v(Sj−1, Nj−1)], where here we order the stopping boundary such
that p̂v(S1, N1) < p ̂v(S2, N2) < … < p ̂v(Sb, Nb) and define p̂v(S0, N0) ≡ 0. For simplicity, we do
not explore subtracting pseudo-random Uniform values in this paper.

6 Resampling Risk

We now discuss the task of minimizing in some way both the probability that we conclude that
p > α when p ≤ α and the probability that we conclude that p ≤ α when p > α. Closely following
Fay and Follmann (2002) define the resampling risk at p associated with the null hypothesis
H0: p > α as

where Pow(p) = Pr[Reject H0|p]. Note that RRα(p) is the probability of making the wrong
accept/reject decision given p.

When Pow(p) is a continuous decreasing function of p, then by inspection of the definition of
RRα(p), we see that RRα(p) is increasing for p ∈ [0, α] and decreasing for p ∈ (α, 1]. Consider
3 types of (continuous decreasing) power functions:

1. power functions where Pow(α) < .5,
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2. power functions where Pow(α) > .5, and

3. power functions where Pow(α) = .5.

For the first type, RRα(p) is maximized at p = α and the maximum is > .5, and for the second
type, RRα(p) has its supremum at p just after α and this supremum is also > .5, and for the third
type, the maximum is at p = α and is .5. Thus, for minimax estimators we want power functions
of the third type, where Pow(α) = .5. That is the strategy we use in the next subsection.

In Section 6.1 we work with a (non-truncated) SPRT where the rejection regions are defined
by the two different boundaries, while in Section 6.2 we work with a truncated SPRT and use
the valid p-values as described in Section 5 to define the rejection regions (i.e., p̂v ≤ α denotes
reject the MC test null).

6.1 Using the SPRT

In this section we use the resampling risk function and Wald’s (1947) power approximation
for the SPRT and show that if that approximation were exact, we can find a class of minimax
estimators (see e.g., Lehmann, 1983) among the SPRT estimators.

First we give Wald’s power approximation. Let A = (1 − β0)=α0 and B = β0=(1 − α0), and
recall that p0 and pa are the values of p under the simple null and simple alternative of the
SPRT, with pa < α < p0. Although there is no closed form expression of the power
approximation, it may be written as a function of a nuisance parameter, h. For any h ≠ 0 then
the power approximation at p(h) is Pow(p(h)), where

and

(6)

Further, taking limits as h → 0 Wald showed that

and

(7)

Note from Section 3 that p(0) = C0, where C0 is the slope of both stopping lines of the SPRT.

Now Pow(p), of equations 6 and 7, is a continuous decreasing function of p (see e.g., Wald,
1947), where Pow(0) = 1 and Pow(1) = 0. Thus, we want to choose from the class of SPRT
estimators for which Pow(α) = .5. This class is too large so we restrict ourselves even further
to SPRT with α0 = β0 < .5. In this case, by equation 7, Pow(p) = .5 at p(0). Thus, we want p
(0) = α, or
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(8)

Thus, for example, when α = 0.05 then SPRT estimators using any of the values of p0 and pa

on the contour with C0 = 0.05 of Figure 1 will be in the class of minimax estimators.

Lock (1991) explored the use of the SPRT for Monte Carlo testing and recommended using
p0 = α + δ and pa = α − δ for some small δ and using B = 1/A for “fairly small” A. This
recommendation is reasonable but does not meet the minimax property of the RRα(p) (unless
α = 0.5 which will not occur in practice). Note that the Lock (1991) recommended parameters
are not far from the minimax. For example, with α = .05, δ = .01, A = 1/20 and B = 20 we get
that the maximum RR.05 using Wald’s approximation is .547, which is slightly larger than the .
5 that can be obtained using p0 and pa that solve (8). When δ= .001 and keeping the other
parameters the same, then the maximum RR.05 is .505. Nevertheless, since the proposed method
of using SPRT’s that satisfy (8) is slightly better, we only consider that method in this paper.

When picking the values of A and B (or α0 and β0 for the Wald boundaries), we have a tradeoff
between smaller resampling risk and larger expected resample size, E(N). The expected
resample size at p is E(N; p) and can be approximated by (see Wald, 1947, p. 99)

We see this tradeoff in Figures 3, where we plot the resampling risk at p (i.e., RRα(p)) and E
(N; p) for some different SPRT tests in the minimax class. Note that the RRα(.05) = .5 for all
members of this class. Also, the SPRT with the largest E(N) also have the smallest RR.

6.2 Using a Truncated SPRT

In practice, we use a predetermined maximum N, say m. A simple truncation would be to use
a SPRT except stop when N = m. We create a slight modification of this truncation by stopping
at the curtailed boundary associated with m. In other words, we stop as soon as we either cross
the SPRT boundary or the boundary with SN ≥ α(m + 1) or N − SN ≥ (1 − α)(m + 1). In this
paper we will only explore this second type of truncated SPRT (or tSPRT). The details of the
algorithm used to calculate the Kj values are given in the Appendix.

In Figures 4 we plot RR.05(p) by p and E(N|p) by p for the fixed boundary with m = 9999 and
several truncated SPRT boundaries with m = 9999, pa = .04, and p0 = 0.0614 (giving C0 = .
05). These calculations are based on using valid p-values as described in Section 5 and both
RR.05(p) and E(N|p) are exact, calculated using the Kj values from the algorithm in the
Appendix. We see that the fixed boundary has the lowest resampling risk and the highest E
(N). Notice we have a similar tradeoff as with the SPRT boundaries, as α0 and β0 get smaller
the boundary widens (i.e., imagining the tSPRT boundary as a pencil shape [see Figure 2], the
thickness of the pencil increases as α0 and β0 get smaller) and the resampling risk decreases
while the E(N) increases. Note that RR.05(p) can be larger than .5 and slightly asymmetrical;
this is due to discreteness and the slightly conservative nature of the valid p-values, p ̂v.

In the above we have held m constant, but we can also increase m, which will decrease the
resampling risk and increase the E(N). But recall from Figure 3a that even with infinite m (i.e.,
a SPRT), the decrease in resampling risk is slight when going from α0 = β0 = .001 to α0 = β0

= .0001, so we expect that further reductions in α0 and β0 will not result in much reduction in
RRα per added E(N). Thus, we recommended the tSPRT boundary with α0 = β0 = .0001 and
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m = 9999 as a practical boundary for testing α = .05. In Figure 5 we show for this recommended
boundary how the confidence intervals for the p-values are tightest close to p̂v = 0.05.

7 Are the Simple P-value Estimators Valid?

We have already shown the p ̂MLE is not valid for any finite boundary. Since we have the
software and algorithm to calculate the Kj values, we can calculate p ̂v; we can then try to find
simple estimators of p similar to (4) and (5) that are valid.

Consider the tSPRT with m = 9999, pa = 0.0400, p0 = .0614, and α0 = β0 = .0001. This is
equivalent to the tSPRT with m = 9999 and either pa = 0.0466, p0 = .0535 and α0 = β0 = .05;
or pa = 0.0490, p0 = .0510 and α0 = β0 = .3. We consider two simple estimators, p ̂MLE(SN, N)
= SN =N and p̃(SN, N) = (SN + 1)/(N + 1). In Figure 6a we plot p̂MLE − p ̂v vs. p̂v, and in Figure
6b we plot p̃ − p ̂v vs. p̂v. We see that since both simple estimators drop below p ̂v for low p-
values, and since for low p-values all three estimators have the same ordering, following the
argument in Section 5, p ̂ and p̃ are not valid. Notice that p̃ is closer to p ̂v for small p̂v while
p ̂MLE is closer to p̂v for larger p ̂v. This is similar to the boundary of Besag and Clifford
(1991) which has p̂v equal to p̂MLE for larger p-values and p̃ for smaller p-values.

We propose a simple ad hoc estimator for p-values from this tSPRT boundary. Let

(9)

For the boundary of Figure 6c, p̂A is valid since we can check every point in the boundary and
show that p̂A > p̂v. For example, when N − SN = max(Nj − Sj) then p ̂v(SN, N) ∈ (.04910, .04997),
so defining all p̂A values as .04997 for those (SN, N) values produces valid p-values. The utility
of p ̂A is that it may be calculated without first calculating the Kj values. Note that p ̂A produces
a valid p-value for only this one tSPRT boundary. It is an unsolved problem to define simple
valid p-values for all tSPRT boundaries, although, as previously described, valid p-values may
be calculated using the algorithm of the Appendix.

8 Application and Timings

Before applying the MC test with the tSPRT boundary to example data sets, there is some
computation time that is required to set up the boundary. For example, on a personal computer
with a Xeon 3.00GHz CPU with 3.5 GB of RAM, it took 73 minutes to calculate the tSPRT
boundary with m = 9999, pa = .04, p0 = .0614, and α0 = β0 = .0001. This includes the time it
took to calculate the 99% confidence intervals for each p-value. We call this boundary the
default tSPRT boundary. Note, once that boundary is created and saved, then we can save
computational time on a specific application of a MC test.

Now consider the application which motivated this research. Kim, et al (2000) developed a
permutation test to see if there are significant changes in trend in cancer rates. Here we present
the most basic application of the method. Figure 7 presents the standardized cancer incidence
rates for all races and both sexes on a subset of the U.S. for either (a) brain and other nervous
system cancer, (b) bones and joints cancer, or (c) eye and orbit cancer (SEER, 2006). For each
type of cancer we plot a linear model, and the best joinpoint model (also called segmented line
regression, or piecewise linear regression) with one joinpoint and joins allowed only on the
years. We wish to test whether the joinpoint model fits significantly better than the linear model.
To do this we perform an MC test, where the T0 and T1, T2, … are defined as follows:
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1. Start with the observed data, letting d = d0.

2. Calculate T(d) as follows:

• Fit the linear regression model on d.

• Do a grid search for the best joinpoint regression model on d with one
joinpoint in terms of minimizing the sum of squares error (SSE), where joins
are allowed only at the years (1976,1977,…,2002).

• Calculate the statistic, T(d) equal to the SSE for the linear model over the
SSE for the best joinpoint model on d.

3. Sequentially create permutation data sets by taking the predicted rates from the linear
model on d0, and adding the permuted residuals from the linear model also from d0.
Let these permutation data sets be denoted d1, d2, ….

4. Sequentially calculate T(d1), T(d2), … following Step 2.

Notice that this MC test requires a grid search for each permutation.

When we apply the MC test on the brain and other nervous system cancer rates using a fixed
MC boundary with m = 9999 we get a p-value of p = 0.0001 with 99% confidence intervals on
the p-value (0.00000, 0.00053). This took 24.6 minutes on the computer described above
programmed in R. For this example, no attempt was made to optimize the computer code, since
the timings will only be used to relatively compare the fixed boundary to the tSPRT boundary,
and faster code, written in C++ with a graphical user interface, is freely available (Joinpoint,
2005). For the default tSPRT boundary, using the same random seed we get a p-value of p =
0.00244 with 99% confidence intervals on the p-value (0.00000, 0.01290). This took 1.0
minutes on the same computer (using precalculated Kj values and confidence intervals). Now
apply the MC test on the bones and joints cancer rates. For the fixed MC boundary with m =
9999, we get a p-value of p = 0.308 with 99% confidence intervals on the p-value (0.296,
0.320), and it takes 24.6 minutes. For the default tSPRT boundary, using the same random seed
we get a p-value of p = 0.369 with 99% confidence intervals on the p-value (0.222, 0.528).
This took 9.8 seconds on the same computer. Applying the MC test on the eye and orbit cancer,
it took 24.7 minutes to get a p-value of p = .0555 with 99% confidence intervals (0.0497,
0.0616) using the fixed MC boundary with m = 9999, and it took 3.6 minutes to get a p-value
of 0.0634 with 99% confidence interval (0.0475, 0.0814) using the default tSPRT boundary.
In all cases using the tSPRT boundary resulted in a savings in terms of time (not counting the
set-up time) at the cost of precision on the p-value. In the third example there was less savings
in time because the p-value was closer to 0.05.

The advantage of the tSPRT boundary over the fixed type boundary is apparent when each
application of the test statistic is not trivially short. Then the tSPRT boundary automatically
adjusts to take few replications when the p-value is far from α giving fairly large confidence
intervals on the p-value, but takes many replications when the p-value is close to α giving
relatively tight confidence intervals. Thus, for example, the tSPRT boundary is very practical
for applying the joinpoint tests repeatedly to many different types of cancer rates.

9 Discussion

We have explored the use of truncated sequential probability ratio test (tSPRT) boundaries
with MC tests. We related the p-value from an MC test to some classical results on sequentially
testing of a binomial parameter, and provided an algorithm useful for calculating many of those
results. Using that algorithm, we have shown how to calculate valid p-values and confidence
intervals about those p-values. We have shown the form of a minimax SPRT boundary with
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respect to the resampling risk for α (RRα). Among that class of minimax boundaries, we have
shown (at least with resample sizes around 104 for α = 0.05) that a reasonable tSPRT uses pa

= 0.04 and α0 = β0 = 0.0001 for the Wald parameters. Other reasonable tSPRT boundaries may
have α0 ≠ β0, and we leave the exploration of the relative size of those parameters for future
research.

There are other methods that may be used to decide among the tSPRT boundaries from within
the minimax class even with α0 = β0 (or equivalently (C1 = −C2). Here we mention three. First
one could choose C1 = −C2 such that the minimum possible p-value is less than some value,
pmin. Note that the minimum p-value for the tSPRT boundary occurs when Sj = 0. Let that point
be (Sb = 0, Nb). Then p̂v(0, Nb) = 1/(Nb + 1) and Nb = [−C2/α], where [x] is the smallest integer
greater than or equal to x. For the default tSPRT (i.e., with parameters m = 9999, pa = .04, p0

= .0614, and α0 = β0 = .0001) we have that Nb = 408 and the minimum p-value is p = 0.0024.

A second method for choosing tSPRT parameters was suggested by the associate editor. Let
mf be the resample size for a fixed boundary that gives an acceptable width confidence interval
at p̂ = .05. Set m for the tSPRT boundary at some multiple of mf, say m = 1.5mf, then solve for
α0 = β0 so that the tSPRT confidence interval at p ̂ = .05 has approximately the same width as
the fixed boundary with mf.

Finally, another way to choose an MC boundary, is to minimize the resampling risk among a
set of distributions for the p-value as proposed by Fay and Follmann (2002). We briefly outline
that approach, which adds an extra level of abstraction. Note from Figure 4a that the resampling
risk varies widely throughout p. It would be nice to summarize RRα(p) by taking the mean over
all p. To do this we assume a distribution for the p-value. Let P be a random variable for the
p-value, whose distribution is induced by the test statistic and the data. Define the random
variable Z = g {T(D0)}, where D0 is a random variable representing the original data, and g(·)
is an unknown monotonic function. Note that Z is a random variable, whose randomness comes
from the data, while in much of paper, the original data, d0, was treated as fixed and the only
randomness came from the Monte Carlo resamplings. Suppose there exists some g(·) (possibly
the identity function) such that under the null Z ~N(0, 1) and under the alternative Z ~N(μ, 1).
We can rewrite μ in terms of α and the power of the test, 1 − β, as μ = Φ−1(1 − α) − Φ−1(β).
Because of the central limit theorem many common test statistics induce random variables Z
of this form. Then the distribution of the p-value under the alternative is FP (x; μ) = 1 − Φ
{Φ−1(1 − x) − μ}. Fay and Follmann (2002) defined the resampling risk in terms of distributions
for P as RRα(FP) = ∫RRα(p)dFP (p). They estimated FP with beta distributions, F̂P, then looked
for the F̂P which gave the largest RRα(F̂P) for fixed boundaries of different sizes over all
possible values of β. They found through a numeric search that 1 − β equal to about .47 gave
the largest RR0.05(F̂P) for fixed boundaries. We have found through numeric search that 1 −
β = .47 also gave the largest RRα(F̂P) for fixed boundaries when α = 0.01. Let the distribution
associated with 1 − β = .47 be F̂*. Thus, another method for choosing tSPRT would be to
choose a maximum allowable RRα(F̂*), say γ, then either (1) fix a suitable α0 and β0 and increase
m until RRα(F̂*) < γ, or (2) fix a suitable m and decrease α0 = β0 until RRα(F̂*) < γ. The term
suitable applied to the fixed parameters above denotes that RRα(F̂*) < γ is possible by changing
the other parameter(s). Note that RRα(F̂*) = 0.0041 for the recommended tSPRT boundary
with m = 9999; p0 = .04, p1 = 0.0614, and α0 = β0 = 0.0001.

We have not discussed other classes of boundaries such as the IPO boundary recommended
by Fay and Follmann (2002) for bounding RRα(F̂*). We simply note that the IPO boundary is
intractable for values of RRα(F̂*) smaller than 0.01, and in cases we studied where it is tractable,
the IPO performs similarly to tSPRT boundaries (results not shown).
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Note that there have recently been many advances in group sequential methods especially for
use in monitoring clinical trials (see Jennison and Turnbull, 2000, and Proschan, Lan, and
Wittes, 2006). We briefly show how these methods relate to the truncated SPRT. For group
sequential methods, we specify a sample size for the certain end of the trial then specify either
(1) how many looks at the data will be taken and which monitoring procedure will be used or
(2) how the type I error will be spent by picking a spending function. To study both approaches
for the MC test situation we first write the tSPRT as a B-value (Lan and Wittes, 1988). Suppose
that we specify that the trial will continue until at most m observations and each observation
is binary. Let Zm be the statistic for testing whether p = α or not given a sampling of m
observations:

Similarly we can define ZN after N observations. At the N th observation, we are  of the

way through the trial in terms of information. The B-value at the trial fraction  is,

If we are taking an fixed number of equidistant looks at the data, at say

, then using the standard recommended O’Brien-Fleming

procedure we stop before tk = 1 if either  or  for any i < k, or equivalently
at ni = N < m stop if

or if

With m looks at the data we get the tSPRT minimax boundary that we have proposed. There
has been some work on optimizing the group sequential methods (see Jennison and Turnbull,
2000, p. 357–359 and references there), but the added complexity does not seem worthwhile
for MC tests where we allow stopping after each replicate. The spending function approach
mentioned above just adds more flexibility so that the looks do not need to be at predetermined
times. Unlike a clinical trial were it is logistically difficult to perform many analyses on the
data as the trial progresses, there is very little extra cost in checking after each observation for
an MC test.

Finally, we note that the algorithm listed in the Appendix may be used for calculating exact
confidence intervals following a tSPRT for a binary response. The estimator of p in this case
need not be p̂v, and an appropriate estimator may be either the MLE or the unbiased estimator
(which also uses the algorithm of the Appendix in its calculation).

An R package called MChtest to perform the methods of this paper is available at CRAN
(http://cran.r-project.org/).
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Appendix: Algorithm for Calculating Kj

Here we present an algorithm for calculating the number of ways to reach the jth boundary
point, Kj, for a tSPRT design. Modifications to the algorithm may be needed to apply it to
different designs and are not discussed here.

First we define the ordering of the indices of the design. Let Rj = Nj − Sj for all j. The first
point in the design has S1 = N1 and R1 = 0. The next set of points has R2 = 1, R3 = 2, … but
including only those points with Sj/Nj > α. At Sj/Nj = α we order the points by decreasing values
of Sj until we reach the last point at Sb = 0. In the following let the rows from i to j of B be
denoted B[i:j].
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Now here is the algorithm:

• Start with the smallest curtailed sampling design (see e.g., Fay and Follmann, 2002)
that is surrounded by the proposed design B. In other words each point on the curtailed
sampling design is either a member of the proposed boundary, B, or it is on the interior
of B. Let B(1) denote this curtailed design. Let Rj = Nj − Sj for all j, and similarly

define . Because it is a curtailed design, every point in this design has either

 (the “top” of the design) or  (the “right” of the design).
Then for each point, (s, n), on the top of this curtailed design the K-value is

. For each point, (s; n), on the right of the design the K-value is

.

• Keep iterating from B(j) to B(j+1) until B(j+1) = B. Within the iterations we define 3

indexes, i1 ≤ i2 ≤ i3. The index  is the largest index i such that . The

index  is the top index for B(j), i.e., i2 is the smallest value of i such that

. The index  is the smallest index that i such that ,
where s is the number of rows in B and s(j) is the number of rows in B(j). This means
that there are s(j) − i3 + 1 rows that match at the end of B(j) and B.

1. Keep moving up the top row until all of the top of B(j+1) equals the beginning
of the top of B, then go to 2. To move up the top row, do the following:

– Start from the design B(j) with corresponding count vector
denoted K(j).

Let

and

Then K(j+1) is equal to
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2. Keep moving right the right hand-side of the design until all of the right of
B(j+1) equals the end of the right of B, if B(j+1) ≠ B go to 1. To move over
the right of the design, do the following:

– Start from the design B(j) with corresponding count vector
denoted K(j). We want to move the portion of the right hand side of

B(j) that is not already equal (i.e., ) over 1 position to
the right. Then

and

Then K(j+1) is

and

To avoid overflow, we do not store the Kj values, but instead store
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Figure 1.

Contours of values of p0 and pa with equivalent values of C0.
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Figure 2.

Plot of two stopping boundaries: truncated sequential probability ratio test (tSPRT) boundary
with m = 9999, pa = .04 and p0 = .0614 (so that C0 = .05) using the Wald boundaries with α0

= β0 = .0001 (solid black), and Besag and Clifford (1991) boundary with smax = 499 and
nmax = 9999 (dotted gray).
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Figure 3.

Properties of SPRT with pa = .04 and p0 = .0614 (so that C0 = .05) using the Wald boundaries
with α0 and β0 both equal to either 0.1, 0.01, 0.001 or 0.0001 (this corresponds to the
parametrizations with C1 = −C2 equal to either 4.862, 10.168, 15.283 or 20.380 respectively).
Figure 3a is resampling risk and Figure 3b is E(N), where both are calculated using Wald’s
(1947) approximations.
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Figure 4.

Properties of truncated SPRT with m = 9999, pa = .04 and p0 = .0614 (so that C0 = .05) using
the Wald boundaries with α0 and β0 both equal to either 0.1, 0.01, 0.001, or 0.0001 (this
corresponds to the parametrizations with C1 = − C2 equal to either 4.862, 10.168, 15.283 or
20.380 respectively). Figure 4a is RR.05(p) and Figure 4b is E(N), where both are calculated
exactly using the algorithm in the appendix.
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Figure 5.

Plot of p̂v vs. each of the 99% confidence limits minus p ̂v for the default tSPRT boundary with
m = 9999, pa = .04 and p0 = .0614 (so that C0 = .05) using the Wald boundaries with α0 = β0

= .0001.
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Figure 6.

Validity of simple p-value estimators for the truncated SPRT with m = 9999, pa = .04 and p0

= .0614 with α0 = β0 = .0001. Figure 6a shows SN =N − p ̂v vs. p̂v, and Figure 6b shows (SN +
1)/(N + 1) − p̂v vs. p ̂v. Figure 6c shows p̂A − p ̂v vs. p ̂v, where p̂A is defined by (9). In both Figures
6a and 6b the difference falls below the line at 0, while in Figure 6c the difference never falls
below 0, therefore, p ̂A is the only valid p-value of the three.
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Figure 7.

Cancer incidence rates, standardized using the US 2000 standard (SEER, 2006). Solid line is
the best linear fit and dotted line is the best 1-joinpoint fit, with joins allowed only exactly at
each year.
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