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On Variable-Metric Methods for Sparse Hessians*

By D. F. Shanno

Abstract.   The relationship between variable-metric methods derived by norm minimi-
zation and those derived by symmetrization of rank-one updates for sparse systems is
studied, and an analogue of Dennis's nonsparse symmetrization formula derived.   A
new method of using norm minimization to produce a sparse analogue of any non-
sparse variable-metric method is proposed.   The sparse BFGS generated by this method
is tested against the sparse PSB and variable-memory conjugate gradient methods, with
computational experience uniformly favoring the sparse BFGS.

I.  Introduction.   Extensive analysis, both computational and theoretical, has ver-
ified that variable-metric algorithms are highly successful methods for minimization of
nonlinear functions, both unconstrained and subject to both linear and nonlinear con-
straints.   As expertise in solving these problems has grown, problem size, determined
by the number of variables, has also grown, leading to storage problems on digital com-
puters.  This arises from the fact that variable-metric algorithms generate a sequence of
approximations xk to the minimizer x of a nonlinear function f(x), x an n vector, by

(1) xk+1 = xk - ckHkgk>      Hk+ , = Hk + Dk,

where 77fc is an n x n approximation to the inverse Hessian matrix, gk = VF(xk), the
gradient of/at xk, ck is an appropriately chosen scalar, and Dk is chosen to assure
that 77fc+ j satisfies the quasi-Newton equation

(2) Hk+iyk = Pk'    yk=gk+i-gk,    Pk=xk+i-xk-

Historically, the first known choice of Dk was the DFP (Davidon [4], Fletcher
and Powell [8]).   Dropping the subscript k, and replacing the subscript k + 1 with the
superscript *, the DFP update is defined by

PP      Hyy'H
(3) 77* = 77 + ~-—-.

py    yHy

In recent years, the DFP has been supplanted by the BFGS (Broyden [2],
Fletcher [9], Goldfarb [10], and Shanno [20]) update, defined by

(4) 7r-77    HyP'+Py'H  |   L   ¡y'Hy)PP'.
py \     py I py
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500 D. F. SHANNO

While recent numerical experience suggests that for nonsparse problems the
BFGS is superior to all the known variable-metric methods (Shanno-Phua [22] ), for
sparse problems to other updates, the PSB (Powell [17], Broyden [1]) defined by

77* =77- {rm'(p'Hp)- [vp'H + Hpv,']pHy

(5) + 77pp'77(r7»}/{(T?»(p'77p) - (p'Hy)2 },

n = Hy-p,
and the SRI (Fiacco-McCormick [7] ) defined by

(6) 77* =77+^,
vy

attain increased importance.
The difficulty on large problems is that all four updates (3)-(6) require n2/2

memory locations, which often becomes impractical as n increases.  If the true Hessian
of/is nonsparse, the only alternative is to replace a variable-metric algorithm with a
conjugate gradient algorithm; see, for example, Shanno [21].  If, however, the true
Hessian matrix of/has a known sparsity pattern, and an approximation to the Hessian
rather than the inverse Hessian is stored with only the known nonzero elements approx-
imated, the problem may become computationally tractable.   Denoting 77_1 = B, the
analogues of (3)-(6) can easily be determined as

(7) ^..-*U!¿L-J„GL\¿
py \     py ) py

yy'    Bpp'B
(8) *»FGS - B + p'y " p'Bp '

yp  + py'     y'p pp
(9) 7?*,SB=7* +-;-r—,       y=y-Bp,

PP PPPP
and

77
(10) BÎri=B + — ■IP

Note that the analogue of (2), satisfied by (7)-(10) is

(11) B*p=y.

Clearly, for sparse problems, an approximation to the Hessian rather than inverse Hes-
sian must be computed, as sparsity is not necessarily preserved in the inverse of a
sparse matrix.

Schubert [19] initially proposed a method for updating approximate Jacobian
matrices of nonlinear systems of equations which was a sparse analogue of Broyden's
variable-metric method for nonlinear systems.  Briefly, Broyden [1] proposed the up-
date formula

(y - Bp)p
(12) B* = B + , ,

PP
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ON VARIABLE-METRIC METHODS FOR SPARSE HESSIANS 501

and Schubert noted that this could be decomposed into row-by-row updating by

»       ,(y- Bp)p
(13) B*=B + £ef^    ,VW,

«=i PP
where e¡ is the unit vector with 1 as the rth component.  He then noted that if we
denote by p¡ the vector

(14) Pi = DiP,

where D¡ is the diagonal matrix with the /th diagonal component 1 if By is nonzero,
0 if B¡- is zero, then the update

U5J B* = B + Y eft,-;-
ffi PiP

satisfies (11) and has the desired sparseness.  The method has proved quite successful
for nonlinear equations, but has the drawback for optimization problems that the ma-
trix B* is nonsymmetric.

In recent papers, Toint [24] and Marwil [14] addressed the problem of generat-
ing sparse update formulas with symmetric Hessians.  Toint used variational means,
and Marwil the sequence of symmetrizations of Powell to derive the update formula

(16) B*=B+¿  yíef\ + pf\),
i'=i

where the Xf's satisfy the system of linear equations

(17) Q\ = y-Bp,

where
n

(18) Q= H P\Pe£i + e'iPPfii-
i=i

Inspection verifies that Q has the same sparsity pattern as B if the diagonal elements
of B are updated at each step, and Toint shows that Q is positive definite.  We note
here that the restriction that B always updates diagonal elements, imposed by Toint,
is required only to ensure that Q and B have identical structures.  While in any mini-
mization problem it is assumed B will have strictly positive diagonal elements, these
may be known constants.  Thus, if B0 has these correctly inserted along the diagonal,
one will never wish to update them; and thus, for future updates they will be treated
identically to zero elements.  The formulas (16)—(18) can accomodate this quite easily,
with the above noted exception that Q must have more elements than the correction
matrix, but not more than B.

The above argument, somewhat modified, can be extended to known constant
off-diagonal elements as well, as these may also be fixed and considered as zeros for
future updating.  In this case, these will not affect the size of Q; and Q may actually
contain less nonzero elements than B.

As noted, Toint derived his update formula variationally in a manner introduced
by Greenstadt [12], while Marwil derived his via symmetrization.  Section II will show
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502 D. F. SHANNO

how to generate symmetric sparse updates by a sparse analogue of a symmetrization
method introduced by Dennis [5] for nonsparse matrices.   A numerical instability
arising in general sparse symmetrization will be discussed.

Section III explores an alternative means of using norm minimization to derive
a sparse analogue of any known nonsparse variable-metric method by computing a nor-
mal, nonsparse update and then finding the closest sparse matrix in the Frobenius
norm, and also shows why positive definiteness can not necessarily be maintained.

Section IV discusses variable-memory conjugate gradient methods as stable alter-
natives to sparse variable-metric methods. Finally, Section V contains numerical tests
which show great computational promise for the sparse BFGS derived in Section III.

As a final note on this section, Goldfarb [11] recently proposed an entirely dif-
ferent approach to sparse variable-metric updating based on updating the Cholesky de-
composition of the matrix B.   Unfortunately, the Cholesky decomposition of a sparse
matrix is not necessarily sparse, as is seen by the following example which demon-
strates the well-known difficulty of fill-in which may occur when applying Gaussian
ehmination to sparse matrices.

Let
"4 111"

Then if

B
14 0 0

10 4 0

10 0 4

1

1/4

1/4

1/4

0

1

-1/15

0

0

1

1/15   -1/14    1.
and

7> =

then computation verifies

4

0

0

0

0

15/4

0

0

0

0

56/15

0

B = LDL',

0

0

0

26/7

and L preserves none of the sparsity of B.  In view of this, Goldfarb's method will not
be further considered here, for this paper is concerned solely with storage minimization
by exploiting known sparsity. Clearly, if the LDL' factorization of a sparse matrix is un-
acceptably nonsparse, Gaussian elimination cannot be used to solve linear equations with

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON VARIABLE-METRIC METHODS FOR SPARSE HESSIANS 503

either Q or B.  Rather, either a conjugate gradient method, an iterative method, or
some alternative sparsity-preserving solution technique will have to be used.

II.  Symmetrization for Sparse Systems.  Dennis [5] considered the problem of
symmetrizing rank-one updates of the form

(19) D* = £l££
zy

by

(20) D = D* + D*' - 9zz',

where 0 is chosen to ensure (2) is satisfied.
While (20) is a correction term for the inverse Hessian, analogous updates for the

Hessian can be determined as

nn - (y-Bp)z(21) B=B+ —

and

B =B +-
z'p

O - Bp)z +z(y- Bp)'    (y - Bp)'p zz Ä
(22)       B*=B+--     ,-       , —   =%(B+B')-6zz'.

zp zp       zp

Corresponding to (7)—(10), Schnabel [18] has shown that the choice z =
yy/p'Bp/p'y + Bp in (22) yields the BFGS, while various authors have shown that z =
y, z = y - Bp, and z = p yield, respectively, the DFP, SRI, and PSB updates.

We now examine how a sparse analogue of (25) can be developed.  Marwill [14]
derives the sparse PSB as the limit of an infinite sequence of matrices which are alter-
nately symmetric or which satisfy (11), all of which possess the desired sparsity.  An
alternative method for generating a general sparse symmetric update formula, analo-
gous to (22), can be derived by a reexamination of (22) decomposed in the manner
of Schubert.

Recalling (13), we first note that any variable metric-update can be decomposed
into the sum of its rows.   For example, the BFGS update can be written as

««    D*     „ j. v*      >yy'     yr     'BppB       d j. v-     (e'?   '    e'^P   >»(23)   B* = B + £ efi ~r ~ Z eti ^~   = B + Y. 4~ y - ~-p B
i=i      py    ,= i       pBp ,= i    \py       pBp

A general form of (23) can be defined to be

(24) B* =B+ £ e,.w;..
i=i

Note that in (23), 7?* is symmetric due to the choice of wf's, but for general w¡'%, (24)
may not be.  However, an interesting variant of Dennis's symmetrization may be
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504 D. F. SHANNO

applied to (24).  Let

(25) B*=B+¿  ßfaw', + w¿.),
ï= i

where the pVs are chosen to assure B*p = y.   Clearly, this update is the most general
possible, as defining

f\
(26)

allows for any symmetric matrix to be represented by the correction term of (25).
An interesting relationship between (25) and Dennis's derivation of (22) exists.

Again, let
(y-Bp)z

(27)
and

(28)

B = B +
zp

5SYM  - B +
(y - Bp)z +z(y- Bp)'

zp

Clearly (28) is symmetric, but fails to satisfy (11).   Rewriting (29) as (13), and sym-
metrizing as in (28), we can write

(29)

n    /    i(y-Bp)z'     z(y-Bp)'       \

*SYM = B + £ f ' ~7p— + -7p—e«)
» (y - Bp)'e¡

= b+Z «v + "<).    f, = —;—l-
1= i ZP

Now as 7ÎS y m fàk t0 satisfy (11), we modify the ff's to ensure that (11) is satisfied
as follows:

Let

(30) B* = B + Z tti + 5iW + »^i=i
when the 5's are to be chosen to satisfy (11).  Then

(31) B*p=Bp + (y- Bp) + (z'pß + (t'p + 8 'p)z

= y+(z'p)8+(t'p + 8'p)z,

where

5 = f =
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ON VARIABLE-METRIC METHODS FOR SPARSE HESSIANS 505

Now since (11) must be satisfied, (31) yields

(32) KP + 5'P>
(zp)       '

or ô = rz for some constant r.   Substituting in (32) and solving for r, we obtain

2z'p

and by (29) and (30)

(33) r = _

(34) b*-B        -^zz'-B        -(V"^)'P —

But (34) is exactly (22), and hence Dennis's symmetrization and the method (30) are
identical for nonsparse systems.

We also note that (30) is completely equivalent to

n
(35) B* = B + ¿ afep + ze[),

i=i

where a is chosen so that B*p = y. This follows trivially from the fact that if S is the
solution to (11) for (30) and a is the solution for (35), a = ô 4- f by the linearity of
this system.  Also, we note that B* is independent of the length of z, as is B* defined
by (22), again due to the linearity of the system.

Thus, from the above analysis, we can easily extend Dennis's symmetrization to
sparse Hessians using Schubert's method of guaranteeing sparseness.

In the manner of (15), we note that the nonsymmetric update B can be written

(36) a " , efy-Bp)K    > B = B+Z W,      a,- =-;-,       z,. = D.z;
i= i PiP

and we thus symmetrize exactly as above by

(37) B*=B + ¿ a,.(e¿. + z¿),
i=i

where again the a(.'s are chosen to satisfy (11).  By the symmetry of B*, B* clearly
satisfies the sparseness requirements whenever each z, satisfies the sparseness require-
ments for the ith row (or column).

Further, a satisfies

(38) Sa = y- Bp,

where

(39) S=t Wl + «¡PVÍi=i
which reduces precisely to the system (17)—(18) if z¡ = p¡ is substituted.  Thus, the
sparse PSB can be derived directly by symmetrization, as well as by Marwil's symmetri-
zation and by norm minimization, as can a larger class of updates.
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While symmetrization in this form appears to provide an attractive means of
generating a symmetric analogue to any known variable-metric method, a serious dif-
ficulty arises from the fact that while it is not obvious in the form of Eq. (39), there
is an implied denominator in the update matrices which is implicitly defined in the
a(-'s.  For example, for the nonsparse BFGS, before symmetrizing (21) we have in the
denominator p'(y\/p'Bp/p'y + Bp).  While linear search criteria for nonsparse problems
guarantee that this is significantly different from zero, when sparsity is introduced,
this is no longer necessarily so.  The PSB, however, has an implied denominator of
p\p, which is positive, and in fact maximizes the denominator over all possible z given
the sparsity conditions.   In practice, the sparse BFGS derived directly from (37)
proved totally unsatisfactory due entirely to this numerical instability, while the sparse
PSB performed reasonably.  This feature casts serious doubt as to whether symmetri-
zation techniques can prove suitable for the generation of sparse variable-metric meth-
ods, and the problem of finding suitable weighting matrices make it doubtful if norm
minimization can be used to derive in a reasonable fashion sparse analogues to the
BFGS of DFP.

In view of this, the next section examines an alternative way to use norm mini-
mization to generate sparse analogues of any nonsparse variable-metric method.

III.   The New Method.   In this section we show a new way to use norm minimi-
zation to generate a sparse analogue to any variable-metric update, and the computa-
tional results of Section V will demonstrate that the sparse BFGS generated in this
fashion has superior performance to the sparse PSB update generated by minimizing
the norm of the correction matrix.

We now consider the problem of generating a sparse analogue to the BFGS up-
date, and note that the technique developed for this will apply to any variable-metric
update in a straightforward manner.

We first note that even if B has the desired sparsity pattern, B* defined by (8)
will not.  In order to modify B* so that it has the desired sparsity, we first denote by
K the set of ordered pairs of integers (i, /') such that if (/', /') E K, B„ = 0.  We then de-
fine

(40) B* =B* + E,

and consider the problem

(41 ) minimize II E II = H Tr(7í 'E)

subject to

(42a) Ep = 0,

(42b) Etj = -B*,      (i, j) E K,

(42c) E = E?.

Clearly, any solution to (41) possesses the desired sparsity pattern, and is the
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ON VARIABLE-METRIC METHODS FOR SPARSE HESSIANS 507

closest sparse matrix to the BFGS in the Frobenius norm.  In order to solve (41) we
define the Lagrangian 0 by

HE, p, A, X) = iâTx(E'E) - Tx(Epu) - Tv(A(E - E'))

- E    hi Tr(£ + B*ye¿
(U)<SK

(43) = lÁTv(E'E) - lt(Epu) - Tï(A(E - E'))

- Tr(A'(7i + B*)),

where A is a matrix which is 0 if (/', j) £ K, and Xf ■ if (/, /) E K.
Differentiating (43), we obtain

dé
(44) — = E-\xp' + A + A - A = 0,

bE

or

(45) E = pp' + A + A - A',

and

(46) É = pp + A' + A' - A.

UtiUzing (42c), we obtain

(47) E - É = pp' - pp + A - A' + 2(A - A') = 0

or

(48) (A - A') = 14(-hp' + pp + A' - A),

and

(49) E = tt(pp' + pp + A' + A).

Now we use (42b) to obtain

(50) e'iEei = J4(e^p'ey + e'ipp'ej + X/;. + X„.) = -7?*,

and

(51 ) Xi;. + X„. = -2Bfr e\pp'e. - e'&i'e,,      (i, /) € K.

Equation (51) can be written in matrix form as

(52) A + A' = -27?*-¿  efi'frft + pft),i=i
where B% = B*, (i, /) E K, B% = 0 otherwise, and p¡ = D¡p, p.¡ = D¡p, where D¡ is
the diagonal matrix which is the complement of D¡, i.e. D¡ has diagonal l's where D¡
has 0's and vice versa.
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We now note from (49) and (52) that

E = *4  £ e¡e'fy¡p' + pp) - 277* - £ ef\(pp\ + pp¡)
(53) V=1

/ n
x* Z ^x^; + PU;) - 25*- ,i=i

where p,. = 7),.p, p¡ = D¡p.
Then by (42a)

(54) Ep = fc/ ¿ e,.e;(Mp; + pp!) - 27?* j p = 0,

and

(55) X ef'iißp'iP + PPjP) = 2B\p.

But (55) can be rewritten as

(56> Z PfïiPi + Pf'dP = 2B%p,i'=i
which is a system of linear equations in the Lagrange multipliers p¡.  Further, the coef-
ficient matrix is exactly Toint's coefficient matrix [24], which has the same sparsity
pattern as 77 and is positive definite.  Thus, (56) can be solved for the p¡'s exactly as
in Toint's method.

We now note that the full matrix 77* need never be stored.  Clearly, the nonzero
elements of 77* must be computed and stored in 77* so that (40) may be used for up-
dating.  The elements which correspond to zeros of-77* must be computed, but need
not be stored, as (56) demonstrates that all that need be stored is the vector r defined
by

(57) r = 277£p.

Thus, as each element of BK is computed, r is updated, and the element immediately
discarded, and the method uses no more storage than the sparse PSB.   Also, note
that once (56) has been solved for the p¡'$, B* is defined by

(58) ¿*=B*+Z pfcp'i + pf[),
1=1

where £*. = Bff, (i, j) ^ K, 77? = 0 otherwise.  Thus, at no time is any nonsparse ma-
trix required to be stored.

In a private communication, R. Schnabel has pointed out that the BFGS so de-
rived can be derived using the least norm projection technique of Dennis and Schnabel
[6], and thus updates of the form proposed here fall into the general category of least
norm updates.

The update formula (58) was derived using an unweighted Frobenius norm. If
a positive definite weighting matrix W is used instead, so that we minimize Tr(WE'WE),
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ON VARIABLE-METRIC METHODS FOR SPARSE HESSIANS 509

analogous to (49), we obtain

(59) E = %(z(p'M) + (Mp)z  + M(A + A')M),

where M = W~x and z = Mu. This yields the solution

(60) ß* = ß*+£ Zi(e.(Mp)'. + (Mp)f\),      (Mp\ = Dt{Mp),
i=i

z¡ solving the system

¿ z,.(e,.(Mp)(: + (Mp)^ = 277£p,
í=i

if and only if M(A + A')M has the identical sparsity pattern to A + A', as will happen
when, for instance, M is diagonal.  Otherwise, no straightforward solution for A and z
is known.

Experimental results in this work have used only IV = 7.   It is possible that dif-
ferent choices of W may produce better updates, but it is not clear how an appropriate
W might be chosen.  This remains for further study.

In all events, choosing W = I here still yields a matrix which reduces to the
BFGS matrix when 77 is nonsparse, whereas using W - I in Toint's method reduces to
the PSB update when 77 is nonsparse.  In view of the known superiority of the BFGS
update, this appears to be a more reasonable means of using norm minimization to
obtain sparse updates, and the computational results of Section V bear this out.

Analytically, this method is also appealing, as both 77* and 77* behave identically
when multiplied by the vector p, as Tip = 0 is a condition imposed on E to ensure
that the quasi-Newton equation 77*p = y is satisfied.  As p is the direction in which we
have obtained information about the function, this means that 77* and 77* both retain
the same information along this direction.

Finally, we note that unlike the BFGS, the matrix B* need not be positive defi-
nite, nor need it minimize a quadratic in n dimensions in at most n updates with exact
line searches.   Indeed, no general sparse variable-metric update which satisfies 7i*p =
y can be guaranteed to be positive definite.

To see this, let f(x, y) = -e~x   + y2, and let 77 be diagonal.  Then if 770 = 7,
and exact searches (to four decimal places) are used, with x0 = l,y0 = 100,

/-.3679\ / -1120
(61) p= and   y = [

\-100.0/ \-200.0

Thus, the only diagonal 77* satisfying 77*p = y is

(62) B* ["-.3044 0"|

which is clearly indefinite.  Thus, if positive definite updates are desired, 77*p = y
must be abandoned.

As the results of Section V show, the indefiniteness of 77* appears to pose little
problem for unconstrained problems, and maintaining the quasi-Newton condition
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while modifying search strategy should prove sufficient.   If a positive definite matrix
is desired, however, as for example as the Hessian of a quadratic object function for a
quadratic programming algorithm, some means of suitably modifying 77*, such as add-
ing positive elements to the diagonal matrix must be devised.  Acceptable methods of
modification remain for further research.

IV.  Variable Memory Conjugate Gradient Algorithms.   In an attempt to conserve
storage while maintaining a positive definite approximation to the Hessian while satis-
fying the quasi-Newton equation, a variable-storage conjugate gradient method proposed
by Buckley [3], using the conjugate gradient vector proposed by Shanno [21], has
been programmed and tested.

Basically, the method stores two past vectors pt and yt, and for / + t the general
conjugate gradient vector is calculated by

(63) // _ P'ty' (i    Pty>t + ytPt | W* PtPt \ | PtPt
y'tyt \      p'tyt      p'tyt p'tyt j  p\y¡

(64) mmñ->?'p+*ri Jx+&\*át
p¡yj \     P¡y, ¡pp,

(65) p* = -77 *g*.

In [21] it is shown how p* can be calculated so that no matrices are stored.
Further, p* is clearly a descent direction determined as a variable-metric algorithm
with information from only two past points.  When / = t, only (63) is used in calculat-
ing (65).

Buckley [3] suggests keeping m past points, where m is determined by storage
availability.   He notes storing p; and H-y¡ as well as the scalars p'-y¡ and y'¡Hjy,- for each
point allows the recursive calculation for Hy and —H*g* defined by

(66) »_* + £_£V(+(I+!&£_!iaV
1=1    py, \       P¡y¡   Py,     py,J

and
7*N(67) -ft. . -*. ♦ f Ä B,, -    , +^4l-^L]p,

1=1    PPi \ P?i      P?i PVi   J

with

(68)
py        \     py py     py

Clearly, as m increases, a better approximation to the inverse Hessian occurs, and
the convergence rate should improve.

A difficulty with the scheme occurs when m past vectors have been stored.  At
this point, to store information at a more recent point, information at a past point must
be discarded. However, doing this changes the matrix 77¿ for all i, i = 1, . . . , m, and
thus the remaining stored vectors H¡y¡ no longer contain correct information, as the
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ON VARIABLE-METRIC METHODS FOR SPARSE HESSIANS 511

77/'s have been altered. Correcting these requires the vectors y¡, which have not been
stored. Thus once m vectors have been stored, all must be discarded and the method
restarted.

It should be noted that this can be overcome by storing p¡ and y¡, rather than
H¡y¡ at each step.  In this case, however, the complexity of recalculating H¡y¡ at each
step becomes large, and can dominate the computation time for the algorithm.  As
function and gradient calculations would have to be extremely expensive in order to
make this computation practicable, it was not tested here.  Rather, the scheme de-
scribed above, with m chosen to make the storage requirements of the sparse variable-
metric methods and the conjugate gradient methods as nearly identical as possible was
implemented.  Buckley [3] also discards all prior information whenever the storage
limit has been reached, justifying this strategy on the grounds of numerical stability.

V. Computational Results.  Five algorithms were coded and tested on six test
problems, each problem with varying numbers of variables.  The five algorithms tested
were the sparse BFGS described in this paper (SBFGS), the sparse PSB (SPSB), a pure
BFGS, the conjugate gradient method described in [21] (CONJ), and the conjugate
gradient method with memory (CONJM) described in Section IV.

Both sparse variable-metric updates used the step length determination algorithm
of MINI02 [23].  As the direction need not be a downhill direction, whenever p'g >
0, -p was used rather than p.  This is not necessarily the most satisfactory means of
obtaining a downhill direction at each step.  Toint [25] recommends using Hebden's
[13] method for assuring that a descent direction is found. Moré and Sorensen [16]
suggest another means of obtaining descent directions when an LDL' decomposition of
77 is available.  As noted, an LDL' decomposition need not preserve sparsity, but when
it does, a variant of the Moré-Sorenson scheme, either with the BFGS update described
herein factored in an LDL' form or Goldfarb's sparse BFGS method [11] may prove
practical.

However, as the simple scheme of simply reversing direction when an uphill di-
rection is determined worked so well on all the problems tested it should be reasonable
for a large number of problems, and the more expensive overhead required by the more
sophisticated schemes would appear to be indicated only for particularly difficult prob-
lems.

The BFGS algorithm is MINI02, documented in [23]. It does not use sparsity
and was run simply to determine if allowing for sparseness improved or hurt the rate
of convergence.

The two conjugate gradient algorithms both do one forced cubic interpolation at
each step, thus providing n step termination on quadratic problems and maintaining a
superlinear rate of convergence.

For the three variable-metric algorithms, convergence was attained when each
element of the gradient was less than .00001 in absolute value.  For the conjugate
gradient algorithms, convergence was attained when g'g < (.00001)2(max(l, x'x)).
While these are not totally equivalent, on the problems tested they are so close as to
make no difference in interpreting the results.
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The six test functions were a tridiagonal quadratic function (TRIDIA) defined by

(69) f(x)=f K2xi-xi_ï)2
1=1

with starting point x0 = (1, . . . , 1), Toint's modified Rosenbrock (TROSEN) func-
tion [11], the extended Rosenbrock (EROSEN) function defined by

(70) /(*) = £ íooí^.-x^+O-*!)2
i=i

with initial estimates x0 = (-1, . . . , - 1), Toint's [25] variant on Broyden's seven
diagonal function (TBROY), the boundary value function (with five diagonals) defined
by Moré, Garbow, and Hillstrom [15] (BV), and a nondiagonal variant of Rosenbrock's
function (NONDIA) defined by

(71) /(*)= £  WXi-xfy+il-x,)2
1=2

with starting estimates x0 = (-1, . . . , - 1).
The results are contained in Table I, where ITER is the number of iterations,

IFUN the number of function and gradient evaluations, M the number of nondescent
directions found, and K the number of past points stored.

Table I

SBFGS SPSB BFGS CONJ CONJM

ITER  IFUN   M  ITER  IFUN M  ITER  IFUN  ITER  IFUN  ITER  IFUN  K

TRDSEN

10
25

20
23

27
36

22
25

31
39

33
44

36
48

31
41

66
90

33
49

68 1
99 1

EROSEN

5
10

95
635

113  2
744  23

149  238  55
725 1183 322

98
678

113
865

94   220
683  1489

98  213  1
896 1906 1

TRIDIA

n = 10
n - 20
n = 30

13
17
26

16 0
21 1
33  3

14
23
32

17 0
26 0
40   3

21
33
42

24
35
44

10 21
20 41
31   63

10
20
31

21 1
41 1
63 1

TBROY

10
20
30

BV

n = 10
n - 20
n - 30

26
26
23

38
69
30

34 2
31 1
27  0

44 6
82 9
35  1

30
27
26

37 2
31 0
31   0

26   35   3
88  104   9

113  137   14

27
35
43

26
55
61

30
38
46

29
58
64

25
36
45

26
55

240

51
74
92

74
141
519

22
34
42

30
59

130

45 5
70 5
86 5

82 3
147 3
297 3

NONDIA

n - 10
n - 20
n - 30

31
33
37

42
42
46

31
36
74

38 0
46 4
76   0

34
30
30

41
40
40

25
22
24

72
61
56

22
22
27

61 1
61 1
66 1
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Three conclusions can be drawn from the results.  First, the sparse BFGS algo-
rithm is virtually uniformly superior to the sparse PSB, with the superiority becoming
more marked as the nonlinearity increases, particularly on the extended Rosenbrock
function.

Second, although the sparse BFGS matrix need not be positive definite, nor does
it necessarily possess quadratic termination, it generally outperforms the nonsparse
BFGS on problems where sparsity is present, and appears never to be much worse even
when it is not quite as efficient.  This is highly encouraging.

Finally, conjugate gradient algorithms are not nearly comparable in efficiency
measured in function and gradient evaluations with sparse variable-metric algorithms.
However, as the overhead of these algorithms is much lower than the sparse variable-
metric algorithms, when function and gradient evaluations are relatively inexpensive
these may prove competitive in terms of machine time.  Also, the results would appear
to indicate that keeping a few additional points is of little, if any, benefit to a conjugate
gradient algorithm.   Hence, Buckley's scheme would appear to be useful only when a
significant number of past points can be retained.

As a final note to this section, all variable-metric algorithms used 770 = 7.   Toint's
results indicate that for convex object functions, performance improves if 770 is esti-
mated using finite differences.   This should equally improve the sparse BFGS.
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