```
VOL. 34 (1986) 447-459
```


ON VARIANTS OF A SEMIGROUP

J.B. Hickey

If S is a (multiplicative) semigroup and $a \in S$, the binary operation 0 defined on the set S by $x \circ y=x a y$ is associative and the resulting semigroup is called a variant of S. We study the congruence α defined on S by saying that two elements are α-related if and only if they determine the same variant of S. Certain quotients of variants are used to provide an arbitrary semigroup with a generalised local structure. The variant formulation of Nambooripad's partial order on a regular semigroup is used to show that the order possesses a certain property (involving D-equivalence).

If S is a (multiplicative) semigroup and $\alpha \in S$, the binary operation o defined on the set S by $x \circ y=x a y$ is associative; the resulting semigroup is denoted (S, a) and called a variant of S [4]. In this paper we investigate the congruence α defined on a semigroup S by saying that two elements of S are α related if and only if they determine the same variant of S. We consider also, for $a \in S$, a congruence δ^{a} on (S, a), and show that the quotients $(S, a) / \delta^{a}$ generalise (up to isomorphism) to an arbitrary semigroup the local

Received 5 February 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ 22.00+0.00$

447
subsemigroups in a semigroup with idempotents. Finally, Nombooripad's partial order on a regular semigroup (in its variant formulation [4,1]) is considered and shown to possess a certain 'local' property.

In Section 2 we show that, for an arbitrary semigroup with an idempotent, the α-class of each idempotent is an ideal extension of a rectangular sub-band of S by a semigroup U satisfying $U^{3}=0$. If S is regular then the $\alpha-c l a s s$ of an idempotent e is a rectangular sub-band of S contained in $V(e) \cap E(S)$ (the containment being strict, in general); in particular, α is idempotent-determined here.

The congruence δ^{a} is defined in section 3. (It was introduced in the context of sandwich semigroups by symons [10] and was further studied in [7].) We see that δ^{a} is contained in the congruence α on (S, a) and that these two congruences coincide if a is regular in S. The quotient semigroups $(S, a) / \delta^{a}(a \in S)$ are considered: it is shown that $(S, e) / \delta^{e} \cong e S e$ when $e \in E(S)$ and that, if a and b are D equivalent in S, then $(S, a) / \delta^{a} \cong(S, b) / \delta^{b}$.

In the final section we consider the subsets $\downarrow x$ of a regular semigroup S defined by $\psi x=\{s \in S: s \leq x\}$, where \leq denotes Nambooripad's partial order on S. Using the variant formulation of \leq, we show that, if x and y are D-equivalent elements of S then ψx is orderisomorphic to ψy.

1. Preliminaries.

The notation of $[5,2]$ will be used throughout.
We first recall some ideas and results from [4, 1]. If (S, .) is a semigroup and $a \in S$, the variant (S, a) of S is the semigroup obtained by taking the set S under the binary operation \circ defined by $x \circ y=x a y(x, y \in S)$ [4]. We adhere to the convention that, if it is stated or implied that S (or a subset of it) is a semigroup, then the multiplication in question will be that in (or inherited from) (S,.).

Let a be an element of a semigroup S. By a pre-inverse of a we mean an element $b \in S$ satisfying $a b a=a$ [4]. We shall denote the set of preinverses[inverses] of a by $\operatorname{Pre}(a)[V(a)]$.

By a mididentity in a semigroup S we mean an element u with the property that $x u y=x y$ for all $x, y \in S$. If u is a mididentity in S then clearly the variant (S, u) coincides with S.

Nambooripad's partial order \leq on a regular semigroup S is defined in [9]. We shall use the following equivalent formulation of it [4, Theorem 5.1], where $E(S, a)$ denotes the set of idempotents of (S, a):

$$
x \leq y \Longleftrightarrow\left\{\begin{array}{c}
\text { there exists } a \in S \text { with } x, y \in E(S, a) \\
\text { and } x=x \circ y=y \circ x .
\end{array}\right.
$$

The following lemma shows that, in order to determine whether or not the statement $x \leq y$ is true in S, we may choose any pre-inverse y^{\prime} of y and calculate in (S, y^{\prime}).

LEMMA 1.1 [1]. Let x, y be elements of a regular semigroup and let $y^{\prime} \in \operatorname{Pre}(y)$. Then
$x \leq y \Longleftrightarrow\left(x \in E\left(S, y^{\prime}\right)\right.$ with $x=x \circ y=y^{\circ} x$ in $\left.\left(S, y^{\prime}\right)\right)$.
We note that this partial order \leq on a regular semigroup S extends the usual partial order on $E(S)$.

For a congruence ρ on a regular semigroup S we shall need the following definitions: ρ is said to be strictly compatible [9] if

$$
(\forall x, y \in S) \quad x \rho y \text { and } x \leq y \Rightarrow x=y,
$$

and to be idempotent-determined [3] if the ρ-class of each idempotent consists entirely of idempotents.

By the local subsemigroups of a semigroup S we mean the subsemigroups of S of the form eSe ($e \in E(S)$) [6].

LEMMA 1.2 [8]. If e and f are D-equivalent idempotents in a semigroup S then $e S e \cong f S f$.

We will close this section with an example, constructed by McAlister [6] for use in a context somewhat different from the present one. First we need to describe a certain type of regular semigroup.

Let S be a regular semigroup, let I, Λ be sets and let P be a $\Lambda \times I$ matrix over S. Then the set of all triples $(i, s, \lambda) \in I \times S \times \Lambda$ is a semigroup under the multiplication

$$
(i, s, \lambda)(j, t, \mu)=\left(i, s p_{\lambda j} t, \mu\right)
$$

This semigroup is not regular, in general, but the set of regular elements in it forms a regular semigroup. This latter semigroup is denoted by $R M(S ; I, \Lambda ; P)$ and termed a regular Rees matrix semigroup over $S[6]$.

EXAMPLE 1.3 [6]. Let S be the chain semilattice $\{1, a, b, 0\}$ with $1>a>b>0$. Let $I=\Lambda=\{1,2\}$ and let P be the 2×2 matrix $\left(\begin{array}{ll}1 & a \\ b & 0\end{array}\right)$. Then $R M(S ; I, \Lambda ; P)$ contains precisely eleven elements, namely

$$
\begin{array}{llll}
(1,1,1), & & \\
(1, a, 1), & (2, a, 1), & \\
(1, b, 1), & (1, b, 2), & (2, b, 1), & (2, b, 2), \\
(1,0,1), & (1,0,2), & (2,0,1), & (2,0,2) .
\end{array}
$$

The element $(2, b, 2)$ is the only non-idempotent in the semigroup.

2. The congruence $\boldsymbol{\alpha}$.

Let S be a semigroup. The relation α defined on S by

$$
(x, y) \in \alpha \Leftrightarrow s x t=s y t \text { for all } s, t \in S
$$

is a congruence on S, as is readily verified. Clearly, two elements x, y are α-related in S precisely when the variants (S, x) and (S, y) coincide.

When two or more semigroups are being discussed we may write $\alpha(S)$ instead of α in order to avoid confusion; also, we will denote the congruence α on (S, a) by $\alpha(S, a)$.

If a, b are two regular elements in S that are α-related then the set of mididentities [idempotent mididentities] in (S, a) coincides with the set of mididentities [idempotent mididentities] in (S, b) . Thus $\operatorname{Pre}(a)=\operatorname{Pre}(b)[V(a)=V(b)]$ by [4, Lemma 3.1]. It follows that α is the equality relation on an inverse semigroup.

Two α-related idempotents in a semigroup S must be mutually inverse, as is easily proved. Suppose again that a, b are regular elements that are α-related in S, and let $x \in \operatorname{Pre}(a)=\operatorname{Pre}(b)$. Then $(a x, b x) \in \alpha$, since α is a congruence. But $a x, b x \in E(S)$ and so these elements are mutually inverse. We now have $a R a x$, $a x D b x$, $b x R b$. It follows that $a D b$. In particular, if S is a regular
semigroup then $\alpha \subseteq D$.
When S is a monoid, α is clearly the equality relation 1_{S} on S; a stronger result in the same vein, however, is the following.

LEMMA 2.1. Let a and b be regular elements of a semigroup S. Then $\alpha \cap(a S b \times a S b)$ is the equality relation on $a S b$.

Proof. Let $a^{\prime} \in \operatorname{Pre}(a), b^{\prime} \in \operatorname{Pre}(b)$. Then, for $x, y \in S$,

$$
(a x b, a y b) \in \alpha \Rightarrow a a^{\prime}(a x b) b^{\prime} b=a a^{\prime}(a y b) b^{\prime} b
$$

$$
\Rightarrow \quad a x b=a y b
$$

The result follows.
LEMMA 2.2. Let S be a semigroup. Then $\alpha \cap H=1_{S}$.
Proof. Let $(x, y) \in \alpha \cap H \quad(x, y \in S)$ and suppose that $x \neq y$. Then $x=y s, y=t x \quad$ for some $s, t \in S$. So $t x s=x$, tys $=y$. But txs $=$ tys since $(x, y) \in \alpha$, giving $x=y$, a contradiction. This proves the lemma.

LEMMA 2.3. Let S be a regular semigroup and let $x, y, z \in S$ be such that $x \leq z$ and $y \leq z$. Then $(x, y) \in \alpha \Rightarrow x=y$.

Proof. Suppose $(x, y) \in \alpha$ and let $z^{\prime} \in \operatorname{Pre}(z)$. Then, by Lemma 1.1, $x=x z^{\prime} z=z z^{\prime} x$, so $x=z z^{\prime} x z^{\prime} z$. Similarly $y=z z^{\prime} y z^{\prime} z$. Since $(x, y) \in \alpha$, we have $x=y$, as required.

We immediately have
COROLLARY 2.4. For a regutar semigroup the congruence α is strictly compatible.

Let S be a regular semigroup and let $e \in E(S)$. Then Corollary 2.4 and [9, Theorem 2.8] tell us that the α-class $e \alpha$ is a completely simple subsemigroup of S; further, by Lemma 2.2, ea has trivial H classes and so is a rectangular sub-band of S. In particular, α is idempotent-determined.

In the next result we take an arbitrary semigroup S containing an idempotent and improve on the results stated in the previous paragraph.

We recall [2, Section 4.4] that if I is an ideal of a semigroup T then T is said to be an ideal extension of I by the (Rees quotient) semigroup T / I.

For any semigroup S, let $\operatorname{Reg}(S)$ denote the set of regular elements of S.

THEOREM 2.5. Let S be a semigroup and let $e \in E(S)$. Write $T=e \alpha, I=e \alpha \cap \operatorname{Reg}(S)$. Then I is a rectongular sub-band of S and T. is an ideal extension of I by a semigroup U satisfying $U^{3}=0$.

Proof. We note at the outset that T is a subsemigroup of S, being a congruence class of an idempotent. Suppose now that $x \in I$ and that $x^{\prime} \in \operatorname{Pre}(x)$. Then $\left(x, x^{2}\right) \in \alpha$, so $x x^{\prime}, x, x^{\prime} x=x x^{\prime} \cdot x^{2}, x^{\prime} x$, that is $x=x^{2}$. Thus $I \subseteq E(S)$.

Now let $x, y \in I$. Then $(x y)^{2}=x y x y=x y y y=x y$, so that $x y$ is regular and hence belongs to I. Thus I is a subsemigroup of S. Further, for $x, y \in I$, we have $x y x=x x x=x$, so I is a rectangular band [5, Chapter IV, Proposition 3.2].

If $x \in T, y \in I$ then we argue as above to get that $(x y)^{2}=x y$, $(y x)^{2}=y x$, so that $x y, y x \in I$. Thus I is an ideal of T. Finally, if $x, y, z \in T$, then

$$
(x y z)^{2}=x y z x y z=x e^{4} z=x e z=x y z
$$

so that $x y z \in I$. This shows that the Rees quotient semigroup $U=T / 1$ satisfies $U^{3}=0$. The theorem is now proved.

The next result follows from Theorem 2.5 and the fact that $\alpha-$ equivalent idempotents are mutually inverse.

COROLLARY 2.6. Let S be a regular semigroup and let $e \in E(S)$. Then the congmence class ea is a rectangular sub-band of S contained in $V(e) \cap E(S)$.

The containment in the statement of Corollary 2.6 is strict in general: in the semigroup of Example 1.3 the idempotents ($1, a, 1$) and (2, $a, 1$) are mutually inverse but are not α-related, since, for example,

$$
(1, b, 2)(1, a, 1)(1, b, 2)=(1, b, 2),(1, b, 2)(2, a, 1)(1, b, 2)=(1,0,2)
$$

In fact this semigroup has just one non-trivial a-class, namely

$$
\{(1,0,1),(1,0,2),(2,0,1),(2,0,2)\}
$$

The next result shows that α-equivalence of regular elements is
closely linked to that of related idempotents. The proof is straightforward and is omitted; it uses the fact, noted earlier, that if two regular elements a, b in a semigroup are α-equivalent then $\operatorname{Pre}(a)=\operatorname{Pre}(b)$.

THEOREM 2.7. Let a, b be regular elements in a semigroup. Then $(a, b) \in \alpha \Leftrightarrow$ there exists $x \in \operatorname{Pre}(a) \cap \operatorname{Pre}(b)$ such that $(a x, b x) \in \alpha$ and $(x a, x b) \in \alpha$.
3. A generalization of local structure.

Let S be a semigroup. For each $a \in S$ we define a relation δ^{a} on the set S by the rule

$$
x \delta^{a} y \Leftrightarrow a x a=a y a
$$

This relation was one of three congruences introduced in the context of sandwich semigroups (where it was denoted d) by Symons [10]; it was studied further in [7].

LEMMA 3.1. Let S be a semigroup and let $a \in S$. Then
(i) δ^{a} is a congruence on (S, a) and $\delta^{a} \subseteq \alpha(S, a)$,
(ii) if a is regular in S then $\delta^{a}=\alpha(S, a)$.

Proof. (i) Clearly δ^{a} is an equivalence relation on the set S. Suppose $x \delta^{a} y \quad(x, y \in S)$ and let $z \in S$. Then $a z a x a=a z a y a$, that is $a(z \circ x) a=\alpha(z \circ y) a$, where \circ denotes multiplication in (S,a) . So $z \circ x \delta^{a} z \circ y$. Similarly $x \circ z \delta^{a} y \circ z$. Thus δ^{a} is a congruence on (S, a). Further suppose $x \delta^{a} y(x, y \in S)$. Then, if $s, t \in S$,

$$
s \circ x \circ t=s a x a t=s a y a t=s \circ y \circ t,
$$

so $(x, y) \in \alpha(S, a)$. This proves (i).
(ii) Now let a be a regular in S. Let $x, y \in S$ be such that $(x, y) \in \alpha(S, a)$. Then, for all $s, t \in S, s \circ x \circ t=s \circ y \circ t$, that is $s(a x a) t=s(a y a) t$. Thus $(a x a, a y a) \in \alpha(S)$, so $a x a=a y a$ by Lemma 2.1. Thus $\alpha(S, a) \subseteq \delta^{a}$, and hence $\alpha(S, a)=\delta^{a}$, by part (i). This completes the proof.

For S a semigroup, the quotients $(S, a) / \delta^{a}(a \in S)$ provide a generalisation of (semigroups isomorphic to) the local subsemigroups of S, as the following lemma shows.

LEMMA 3.2. Let S be a semigroup and let $e \in E(S)$. Then $(S, e) / \delta^{e} \cong e S e$

Proof. The mapping $\psi: S \rightarrow e S e$ defined by $x \psi=e x e$ is a homomorphism from (S, e) onto $e S e$, and $\psi \circ \psi^{-1}=\delta^{e}$. The result follows.

THEOREM 3.3. Let S be a semigroup and let a, b be D-related e Zements of S. Then $(S, a) / \delta^{a} \cong(S, b) / \delta^{b}$.

Proof. Since $a D b$ in S we can find $c \in S$ such that $a R c$, $c L b$. Then there exist elements $s, s^{\prime}, t, t^{\prime} \in S^{1}$ such that

$$
\begin{equation*}
a s=c, c s^{\prime}=a, \quad t c=b, t^{\prime} b=c \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
a s s^{\prime}=t^{\prime} t a=t^{\prime} b s^{\prime}=a, b s^{\prime} s=t t^{\prime} k=b \tag{2}
\end{equation*}
$$

We may now define a mapping $\theta:(S, a) / \delta^{a} \rightarrow(S, b) / \delta^{b}$ y y the rule $\left(x \delta^{a}\right) \theta=\left(s^{\prime} x t^{\prime}\right) \delta^{b}$. For suppose that $x \delta^{a}=y \delta^{a}(x, y \in S)$. Then $a x a=a y a$ and, using (1), we get

$$
\begin{aligned}
b\left(s^{\prime} x t^{\prime}\right) b & =t c s^{\prime} x c=t a x a s=t a y a s \\
& =t c s^{\prime} y c=b\left(s^{\prime} y t^{\prime}\right) b
\end{aligned}
$$

This shows that the mapping θ is well-defined.
Similarly the rule $\left(x \delta^{b}\right) \phi=(s x t) \delta^{a} \quad(x \in S)$ defines a mapping $\phi:(S, b) / \delta^{b} \rightarrow(S, a) / \delta^{a}$. Now, for $x \in S$,

$$
\left(x \delta^{a}\right) \theta \phi=\left[\left(s^{\prime} x t^{\prime}\right) \delta^{b}\right] \phi=\left(s s^{\prime} x t^{\prime} t\right) \delta^{a}
$$

But $a\left(s s^{\prime} x t^{\prime} t\right) a=a x a$, by (2), and so $\left(x \delta^{\alpha}\right) \theta \phi=x \delta^{a}$. Similarly we may show, using (2), that $\left(x \delta^{b}\right) \phi \theta=x \delta^{b}$ for $x \in S$, and so θ, ϕ are mutually inverse bijections.

Finally, for $x, y \in S$, consider the product $\left(x \delta^{a}\right) \circ\left(y \delta^{a}\right)$ in $(S, a) / \delta^{a}$. We have

$$
\begin{aligned}
\left(x \delta^{a}\right) \circ\left(y \delta^{a}\right) & \left.=(x \circ y) \delta^{a} \text { (where } \circ \text { is multiplication in }(S, a)\right) \\
& =(x a y) \delta^{a},
\end{aligned}
$$

and so

$$
\left[\left(x \delta^{a}\right) \circ\left(y \delta^{a}\right)\right] \theta=\left(s^{\prime} x a y t^{\prime}\right) \delta^{b} .
$$

Then, in $(S, b) / \delta^{b}$,

$$
\begin{aligned}
& {\left[\left(x \delta^{a}\right) \theta\right] \circ\left[\left(y \delta^{a}\right) \theta\right]=\left[\left(s^{\prime} x t^{\prime}\right) \delta^{b}\right] \circ\left[\left(s^{\prime} y t^{\prime}\right) \delta^{b}\right]} \\
& \left.=\left[\left(s^{\prime} x t^{\prime}\right) \circ\left(s^{\prime} y t^{\prime}\right)\right] \delta^{b} \quad \text { (where } \circ \text { is multiplication in }(S, b)\right) \\
& =\left(s^{\prime} x t^{\prime} b s^{\prime} y t^{\prime}\right) \delta^{b}=\left(s^{\prime} x a y t^{\prime}\right) \delta^{b} \quad \text { (using (2)). }
\end{aligned}
$$

Thus $\left[\left(x \delta^{a}\right) \circ\left(y \delta^{a}\right)\right] \theta=\left[\left(x \delta^{a}\right) \theta\right] \circ\left[\left(y \delta^{a}\right) \theta\right]$, and so θ is an isomorphism. This proves the result.

The following is an obvious consequence of Theorem 3.3 and Lemma 3.2.

COROLLARY 3.4. Let a be a regular element of a semigroup S and Let $e \in E(S)$ be such that $e 0$ a in S. Then $(S, a) / \delta^{a} \cong e S e$.

We note that Corollary 3.4 implies Lemma 1.2 .
THEOREM 3.5. Let S be a semigroup ond let $a \in S$. Then, for $x \in S, x \delta^{a}$ is regular in $(S, a) / \delta^{a} \Leftrightarrow a x a$ is regular in S; consequently, $(S, a) / \delta^{a}$ is regular $\Leftrightarrow a S a \subseteq \operatorname{Reg}(S)$.

Proof. We use 0 to denote the operation in (S, α) and also that in $(S, a) / \delta^{a}$. Let $x \in S$. Then

$$
\begin{aligned}
x \delta^{a} \text { is regular in }(S, a) / \delta^{a} & \Leftrightarrow(\exists y \in S)\left(x \delta^{a}=\left(x \delta^{a}\right) \circ\left(y \delta^{a}\right) \circ\left(x \delta^{a}\right)\right) \\
& \Leftrightarrow(\exists y \in S)\left((x, x \circ y \circ x) \in \delta^{a}\right) \\
& \Leftrightarrow(\exists y \in S)(a x a=a x a y a x a) \\
& \Leftrightarrow a x a \text { is regular in } S,
\end{aligned}
$$

proving the first assertion. The second assertion follows immediately.
COROLLARY 3.6. In a regular semigroup S each quotient $(S, a) / \delta^{a}$ ($a \in S$) is a regular monoid.

This is a consequence of Corollary 3.4 and Theorem 3.5; alternatively, it follows from Corollary 3.4 and the well-known fact that the
local subsemigroups of a regular semigroup are regular.
The relations $\alpha(S, a)$ and δ^{a} coincide when a is a regular element in a semigroup S (by Lemma 3.1 (ii)). We will frame the final results of this section in terms of $\alpha(S, a)$ rather than δ^{a}.

COROLLARY 3.7. (i) Let S be a monoid with identity element 1. Then, for $a l l a \in D_{1},(S, a) / a(S, a) \cong S$.
(ii) If u is an idempotent mididentity in a semigroup S then $S / \alpha(S) \simeq u S u$.

Proof. (i) follows from Corollary 3.4; to prove (ii) we use Lemma 3.2 and note that, for a mididentity u in a semigroup S, the semigroups (S, u) and S coincide, so $\alpha(S, u)=\alpha(S)$.

Note. Let S be the full transformation semigroup $T(X)$ on a set X. Then Symons [10, Theorem 1.7] has shown that, for $\theta \in S$, $(S, \theta) / \delta^{\theta} \cong T(X \theta)$. It follows from this (and known properties of $T(X)$) that, for $\theta, \phi \in S$,

$$
(S, \theta) / \delta^{\theta} \cong(S, \phi) / \delta^{\phi} \Leftrightarrow \theta D \phi \text { in } S
$$

(see also [7, Theorem 3.2].)
In an arbitrary regular semigroup S, however, we may have $(S, a) / \delta^{a}$ and $(S, b) / \delta^{b}$ isomorphic $(a, b \in S)$ without a and b being D-related. For example, let E be a uniform semilattice (that is a semilattice with the property that $E e \cong E f$ for all $e, f \in E$) with $|E|>1$. Then for all e,f $f E$ we have $e E e \cong f E f$, that is $(E, e) / \delta^{e} \cong(E, f) / \delta^{f}$ (by Lemma 3.2). However, no two distinct elements of E are D-related.
4. Nambooripad's order.

Let S be a regular semigroup and let \leq denote Nambooripad's partial order on S. For $x \in S$ write

$$
\psi x=\{s \in S: s \leq x\},
$$

and, for $A, B \subseteq S$, write $A \cong B$ to mean that A and B are orderisomorphic under \leq.

The following lemma is an easy consequence of the results Proposition $1.2(d)$ and Corollary 1.3 of [9]; alternatively our Lemma 1.1 can be used to prove it.

LEMMA 4.1. Let S be a regular semigroup and let $e \in E(S)$. Then $t e=E(e S e)$.

LEMMA 4.2. Let a be an element of a reguzar semigroup S, let $a^{\prime} \in \operatorname{Pre}(a)$ and let $e=a a^{\prime}$. Then taœte.

Proof. We have a mapping $\phi: \downarrow a \rightarrow t e$ defined by the rule $x \phi=x a^{\prime}$ $(x \in \downarrow a)$. To check that ϕ maps $\downarrow a$ into te, suppose that $x \leq a$. Then, by Lemma 1.1, we can work in (S, a^{\prime}) to get

$$
\begin{aligned}
& x=x \circ x=x \circ a=a \circ x \\
& x=x a^{\prime} x=x a^{\prime} a=a a^{\prime} x
\end{aligned}
$$

that is
Then $\left(x a^{\prime}\right)^{2}=x a^{\prime}$, that is $x \phi \in E(S)$. Also,

$$
x a^{\prime} \cdot a a^{\prime}=a a^{\prime} \cdot x a^{\prime}=x a^{\prime}
$$

so that $x \phi \leq e$. Thus ϕ does indeed map ta into te.
Similarly we may show that the rule $f \psi=f a(f \in \downarrow e)$ defines a mapping $\psi: \downarrow e \rightarrow \downarrow a$. Further, if $x \in \downarrow a, x \phi \psi=x a^{\prime} a=x$, and if $f \in$ te, $f \psi \phi=f a a^{\prime}=f e=f$, and so ϕ, ψ are mutually inverse bijections.

Suppose next that $x, y \in+a$ with $x \leq y$. Thus $x \leq y \leq a$. Since $y \leqslant a$ we have, by Lemma $1.1, y \in E\left(S, a^{\prime}\right)$, that is $y a^{\prime} y=y$. So $a^{\prime} \in \operatorname{Pre}(y)$ and, by Lemma 1.1 again, we may express the inequaltiy $x \leq y$ in $\left(S, a^{\prime}\right)$. We thus have

$$
x=x a^{\prime} x=x a^{\prime} y=y a^{\prime} x
$$

So $\quad\left(x a^{\prime}\right)\left(y a^{\prime}\right)=\left(y a^{\prime}\right)\left(x a^{\prime}\right)=x a^{\prime}$, that is $x \phi \leq y \phi$.

$$
\text { Finally, suppose that } f \leq g(f, g \epsilon+e) \text {. Then, calculating in }
$$

$\left(S, a^{\prime}\right)$, we get
and, similarly, $\begin{aligned}(g a) \circ(g a) & =g a . \text { Also, } \\ (f a) \circ(g a) & =f a a^{\prime} g a=f e g a=f a,\end{aligned}$
and, similarly, we have $(g a) \circ(f a)=f a$. Thus $f \psi \leq g \psi$.

We have thus shown that ϕ is an order-isomorphism from $\ddagger a$ to te and the lemma is proved.

We can now state the main result of this section.
THEOREM 4.3. If a and b are two D-equivalent elements of a reguzar semigroup then $\downarrow a \cong \downarrow b$.

Proof, Let S be a regular semigroup and let $a D B(a, b \in S)$. Let $e=a a^{\prime}, f=b b^{\prime}\left(a^{\prime} \in \operatorname{Pre}(a), b^{\prime} \in \operatorname{Pre}(b)\right)$. Then a, b, e, f are all 0 -related in S. The subsemigroups $e S e$ and $f S f$ are isomorphic and so, under the ordering of idempotents, $E(e S e)$ is order-isomorphic to $E(f S f)$. Thus

```
\downarrowa\cong &e by Lemma 4.2
    =E(eSe) by Lemma 4.1
    \congE(fSf)
    = \downarrowf by Lemma 4.1
    \cong $b by Lemma 4.2.
```

This proves the result.

References

[1] T. S. Blyth and J. B. Hickey, "RP-dominated regular semigroups", Proc. Roy. Soc. Edinburgh Sect. A 99 (1984), 185-191.
[2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, (Vol. 1, Math. Surveys No. 7, Amer. Math. Soc. Providence, R.I., 1961).
[3] D. G. Green,"Extensions of a semilattice by an inverse semigroup", Bull. Austral. Math. Soc. 9 (1973), 21-31.
[4] J. B. Hickey, "Semigroups under a sandwich operation", Proc. Edinburgh Math. Soc. 26 (1983), 371-382.
[5] J. M. Howie, An introduction to semigroup theory, (Academic Press, 1976).
[6] D. B. McAlister, "Regular Rees matrix semigroups and regular DubreilJacotin semigroups", J. Austral. Math. Soc. (A) 31 (1981), 325-336.
[7] K. D. Magill, Jr., P. R. Misra and U. B. Tewari, "Symons' dcongruence on sandwich semigroups", Czechoslovak Math. J. 33 (1983), 221-236.
[8] W. D. Munn, "The idempotent-separating congruences on a regular O-bisimple semigroup", Proc. Edinburgh Math. Soc. (2) 15 (1967), 233-240.
[9] K. S. S. Nambooripad, "The natural partial order on a regular semigroup", Proc. Edinburgh Math. Soc. (2) 23 (1980), 249-260.
[10] J. S. V. Symons, "On a generalization of the transformation semigroup", J. Austral. Math. Soc. (A) 19 (1975), 47-61.

Department of Mathematics
University of Glasgow
GLASGOW Gl2 8QW.

