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Abstract

Estimating and optimizing Mutual Informa-

tion (MI) is core to many problems in machine

learning; however, bounding MI in high dimen-

sions is challenging. To establish tractable and

scalable objectives, recent work has turned to vari-

ational bounds parameterized by neural networks,

but the relationships and tradeoffs between these

bounds remains unclear. In this work, we unify

these recent developments in a single framework.

We find that the existing variational lower bounds

degrade when the MI is large, exhibiting either

high bias or high variance. To address this prob-

lem, we introduce a continuum of lower bounds

that encompasses previous bounds and flexibly

trades off bias and variance. On high-dimensional,

controlled problems, we empirically characterize

the bias and variance of the bounds and their gradi-

ents and demonstrate the effectiveness of our new

bounds for estimation and representation learning.

1. Introduction

Estimating the relationship between pairs of variables is a

fundamental problem in science and engineering. Quan-

tifying the degree of the relationship requires a metric

that captures a notion of dependency. Here, we focus

on mutual information (MI), denoted I(X;Y ), which is

a reparameterization-invariant measure of dependency:

I(X;Y ) = Ep(x,y)

[

log
p(x|y)

p(x)

]

= Ep(x,y)

[

log
p(y|x)

p(y)

]

.

Mutual information estimators are used in computational

neuroscience (Palmer et al., 2015), Bayesian optimal exper-

imental design (Ryan et al., 2016; Foster et al., 2018), un-

derstanding neural networks (Tishby et al., 2000; Tishby &

Zaslavsky, 2015; Gabrié et al., 2018), and more. In practice,

estimating MI is challenging as we typically have access to
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Figure 1. Schematic of variational bounds of mutual information

presented in this paper. Nodes are colored based on their tractabil-

ity for estimation and optimization: green bounds can be used

for both, yellow for optimization but not estimation, and red for

neither. Children are derived from their parents by introducing

new approximations or assumptions.

samples but not the underlying distributions (Paninski, 2003;

McAllester & Stratos, 2018). Existing sample-based esti-

mators are brittle, with the hyperparameters of the estimator

impacting the scientific conclusions (Saxe et al., 2018).

Beyond estimation, many methods use upper bounds on

MI to limit the capacity or contents of representations. For

example in the information bottleneck method (Tishby et al.,

2000; Alemi et al., 2016), the representation is optimized to

solve a downstream task while being constrained to contain

as little information as possible about the input. These

techniques have proven useful in a variety of domains, from

restricting the capacity of discriminators in GANs (Peng

et al., 2018) to preventing representations from containing

information about protected attributes (Moyer et al., 2018).

Lastly, there are a growing set of methods in representation

learning that maximize the mutual information between a

learned representation and an aspect of the data. Specif-

ically, given samples from a data distribution, x ∼ p(x),
the goal is to learn a stochastic representation of the data

pθ(y|x) that has maximal MI with X subject to constraints

on the mapping (e.g. Bell & Sejnowski, 1995; Krause et al.,

2010; Hu et al., 2017; van den Oord et al., 2018; Hjelm

et al., 2018; Alemi et al., 2017). To maximize MI, we can

compute gradients of a lower bound on MI with respect to

the parameters θ of the stochastic encoder pθ(y|x), which

may not require directly estimating MI.
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While many parametric and non-parametric (Nemenman

et al., 2004; Kraskov et al., 2004; Reshef et al., 2011; Gao

et al., 2015) techniques have been proposed to address MI

estimation and optimization problems, few of them scale

up to the dataset size and dimensionality encountered in

modern machine learning problems.

To overcome these scaling difficulties, recent work com-

bines variational bounds (Blei et al., 2017; Donsker & Varad-

han, 1983; Barber & Agakov, 2003; Nguyen et al., 2010;

Foster et al., 2018) with deep learning (Alemi et al., 2016;

2017; van den Oord et al., 2018; Hjelm et al., 2018; Belghazi

et al., 2018) to enable differentiable and tractable estima-

tion of mutual information. These papers introduce flexible

parametric distributions or critics parameterized by neural

networks that are used to approximate unkown densities

(p(y), p(y|x)) or density ratios (
p(x|y)
p(x) = p(y|x)

p(y) ).

In spite of their effectiveness, the properties of existing

variational estimators of MI are not well understood. In this

paper, we introduce several results that begin to demystify

these approaches and present novel bounds with improved

properties (see Fig. 1 for a schematic):

• We provide a review of existing estimators, discussing

their relationships and tradeoffs, including the first

proof that the noise contrastive loss in van den Oord

et al. (2018) is a lower bound on MI, and that the

heuristic “bias corrected gradients” in Belghazi et al.

(2018) can be justified as unbiased estimates of the

gradients of a different lower bound on MI.

• We derive a new continuum of multi-sample lower

bounds that can flexibly trade off bias and variance,

generalizing the bounds of (Nguyen et al., 2010;

van den Oord et al., 2018).

• We show how to leverage known conditional structure

yielding simple lower and upper bounds that sandwich

MI in the representation learning context when pθ(y|x)
is tractable.

• We systematically evaluate the bias and variance of

MI estimators and their gradients on controlled high-

dimensional problems.

• We demonstrate the utility of our variational upper and

lower bounds in the context of decoder-free disentan-

gled representation learning on dSprites (Matthey et al.,

2017).

2. Variational bounds of MI

Here, we review existing variational bounds on MI in a

unified framework, and present several new bounds that

trade off bias and variance and naturally leverage known

conditional densities when they are available. A schematic

of the bounds we consider is presented in Fig. 1. We begin

by reviewing the classic upper and lower bounds of Bar-

ber & Agakov (2003) and then show how to derive the

lower bounds of Donsker & Varadhan (1983); Nguyen

et al. (2010); Belghazi et al. (2018) from an unnormal-

ized variational distribution. Generalizing the unnormalized

bounds to the multi-sample setting yields the bound pro-

posed in van den Oord et al. (2018), and provides the basis

for our interpolated bound.

2.1. Normalized upper and lower bounds

Upper bounding MI is challenging, but is possible when the

conditional distribution p(y|x) is known (e.g. in deep repre-

sentation learning where y is the stochastic representation).

We can build a tractable variational upper bound by intro-

ducing a variational approximation q(y) to the intractable

marginal p(y) =
∫

dx p(x)p(y|x). By multiplying and di-

viding the integrand in MI by q(y) and dropping a negative

KL term, we get a tractable variational upper bound (Barber

& Agakov, 2003):

I(X;Y ) ≡ Ep(x,y)

[

log
p(y|x)

p(y)

]

= Ep(x,y)

[

log
p(y|x)q(y)

q(y)p(y)

]

= Ep(x,y)

[

log
p(y|x)

q(y)

]

−KL(p(y)‖q(y))

≤ Ep(x) [KL(p(y|x)‖q(y))] , R, (1)

which is often referred to as the rate in generative models

(Alemi et al., 2017). This bound is tight when q(y) =
p(y), and requires that computing log q(y) is tractable. This

variational upper bound is often used as a regularizer to limit

the capacity of a stochastic representation (e.g. Rezende

et al., 2014; Kingma & Welling, 2013; Burgess et al., 2018).

In Alemi et al. (2016), this upper bound is used to prevent

the representation from carrying information about the input

that is irrelevant for the downstream classification task.

Unlike the upper bound, most variational lower bounds on

mutual information do not require direct knowledge of any

conditional densities. To establish an initial lower bound

on mutual information, we factor MI the opposite direction

as the upper bound, and replace the intractable conditional

distribution p(x|y) with a tractable optimization problem

over a variational distribution q(x|y). As shown in Barber

& Agakov (2003), this yields a lower bound on MI due to

the non-negativity of the KL divergence:

I(X;Y ) = Ep(x,y)

[

log
q(x|y)

p(x)

]

+ Ep(y) [KL(p(x|y)||q(x|y))]

≥ Ep(x,y) [log q(x|y)] + h(X) , IBA,

(2)



On Variational Bounds of Mutual Information

where h(X) is the differential entropy of X . The bound is

tight when q(x|y) = p(x|y), in which case the first term

equals the conditional entropy h(X|Y ).

Unfortunately, evaluating this objective is generally in-

tractable as the differential entropy of X is often unknown.

If h(X) is known, this provides a tractable estimate of a

lower bound on MI. Otherwise, one can still compare the

amount of information different variables (e.g., Y1 and Y2)

carry about X .

In the representation learning context where X is data and

Y is a learned stochastic representation, the first term of

IBA can be thought of as negative reconstruction error or

distortion, and the gradient of IBA with respect to the “en-

coder” p(y|x) and variational “decoder” q(x|y) is tractable.

Thus we can use this objective to learn an encoder p(y|x)
that maximizes I(X;Y ) as in Alemi et al. (2017). However,

this approach to representation learning requires building

a tractable decoder q(x|y), which is challenging when X

is high-dimensional and h(X|Y ) is large, for example in

video representation learning (van den Oord et al., 2016).

2.2. Unnormalized lower bounds

To derive tractable lower bounds that do not require a

tractable decoder, we turn to unnormalized distributions for

the variational family of q(x|y), and show how this recovers

the estimators of Donsker & Varadhan (1983); Nguyen et al.

(2010).

We choose an energy-based variational family that uses a

critic f(x, y) and is scaled by the data density p(x):

q(x|y) =
p(x)

Z(y)
ef(x,y), where Z(y) = Ep(x)

[

ef(x,y)
]

.

(3)

Substituting this distribution into IBA (Eq. 2) gives a lower

bound on MI which we refer to as IUBA for the Unnormal-

ized version of the Barber and Agakov bound:

Ep(x,y) [f(x, y)]− Ep(y) [logZ(y)] , IUBA. (4)

This bound is tight when f(x, y) = log p(y|x)+c(y), where

c(y) is solely a function of y (and not x). Note that by

scaling q(x|y) by p(x), the intractable differential entropy

term in IBA cancels, but we are still left with an intractable

log partition function, logZ(y), that prevents evaluation or

gradient computation. If we apply Jensen’s inequality to

Ep(y) [logZ(y)], we can lower bound Eq. 4 to recover the

bound of Donsker & Varadhan (1983):

IUBA ≥ Ep(x,y) [f(x, y)]− logEp(y) [Z(y)] , IDV. (5)

However, this objective is still intractable. Applying

Jensen’s the other direction by replacing logZ(y) =
logEp(x)

[

ef(x,y)
]

with Ep(x) [f(x, y)] results in a tractable

objective, but produces an upper bound on Eq. 4 (which is it-

self a lower bound on mutual information). Thus evaluating

IDV using a Monte-Carlo approximation of the expectations

as in MINE (Belghazi et al., 2018) produces estimates that

are neither an upper or lower bound on MI. Recent work

has studied the convergence and asymptotic consistency of

such nested Monte-Carlo estimators, but does not address

the problem of building bounds that hold with finite samples

(Rainforth et al., 2018; Mathieu et al., 2018).

To form a tractable bound, we can upper bound the log parti-

tion function using the inequality: log(x) ≤ x
a
+ log(a)− 1

for all x, a > 0. Applying this inequality to the second term

of Eq. 4 gives: logZ(y) ≤ Z(y)
a(y) + log(a(y))− 1, which is

tight when a(y) = Z(y). This results in a Tractable Unnor-

malized version of the Barber and Agakov (TUBA) lower

bound on MI that admits unbiased estimates and gradients:

I ≥ IUBA ≥ Ep(x,y) [f(x, y)]

− Ep(y)

[

Ep(x)

[

ef(x,y)
]

a(y)
+ log(a(y))− 1

]

, ITUBA. (6)

To tighten this lower bound, we maximize with respect to the

variational parameters a(y) and f . In the InfoMax setting,

we can maximize the bound with respect to the stochastic

encoder pθ(y|x) to increase I(X;Y ). Unlike the min-max

objective of GANs, all parameters are optimized towards

the same objective.

This bound holds for any choice of a(y) > 0, with sim-

plifications recovering existing bounds. Letting a(y) be

the constant e recovers the bound of Nguyen, Wainwright,

and Jordan (Nguyen et al., 2010) also known as f -GAN

KL (Nowozin et al., 2016) and MINE-f (Belghazi et al.,

2018)1:

Ep(x,y) [f(x, y)]− e−1
Ep(y) [Z(y)] , INWJ. (7)

This tractable bound no longer requires learning a(y), but

now f(x, y) must learn to self-normalize, yielding a unique

optimal critic f∗(x, y) = 1 + log p(x|y)
p(x) . This requirement

of self-normalization is a common choice when learning

log-linear models and empirically has been shown not to

negatively impact performance (Mnih & Teh, 2012).

Finally, we can set a(y) to be the scalar exponential moving

average (EMA) of ef(x,y) across minibatches. This pushes

the normalization constant to be independent of y, but it

no longer has to exactly self-normalize. With this choice

of a(y), the gradients of ITUBA exactly yield the “improved

MINE gradient estimator” from (Belghazi et al., 2018). This

provides sound justification for the heuristic optimization

1ITUBA can also be derived the opposite direction by plugging
the critic f ′(x, y) = f(x, y)− log a(y) + 1 into INWJ.
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procedure proposed by Belghazi et al. (2018). However,

instead of using the critic in the IDV bound to get an estimate

that is not a bound on MI as in Belghazi et al. (2018), one

can compute an estimate with ITUBA which results in a valid

lower bound.

To summarize, these unnormalized bounds are attractive

because they provide tractable estimators which become

tight with the optimal critic. However, in practice they

exhibit high variance due to their reliance on high variance

upper bounds on the log partition function.

2.3. Multi-sample unnormalized lower bounds

To reduce variance, we extend the unnormalized bounds

to depend on multiple samples, and show how to re-

cover the low-variance but high-bias MI estimator proposed

by van den Oord et al. (2018).

Our goal is to estimate I(X1, Y ) given samples from

p(x1)p(y|x1) and access to K − 1 additional samples

x2:K ∼ rK−1(x2:K) (potentially from a different distri-

bution than X1). For any random variable Z independent

from X and Y , I(X,Z;Y ) = I(X;Y ), therefore:

I(X1;Y ) = ErK−1(x2:K) [I(X1;Y )] = I (X1, X2:K ;Y )

This multi-sample mutual information can be estimated us-

ing any of the previous bounds, and has the same optimal

critic as for I(X1;Y ). For INWJ, we have that the optimal

critic is f∗(x1:K , y) = 1 + log p(y|x1:K)
p(y) = 1 + log p(y|x1)

p(y) .

However, the critic can now also depend on the addi-

tional samples x2:K . In particular, setting the critic to

1 + log ef(x1,y)

a(y;x1:K) and rK−1(x2:K) =
∏K

j=2 p(xj), INWJ

becomes:

I(X1;Y ) ≥ 1 + Ep(x1:K)p(y|x1)

[

log
ef(x1,y)

a(y;x1:K)

]

− Ep(x1:K)p(y)

[

ef(x1,y)

a(y;x1:K)

]

, (8)

where we have written the critic using parameters a(y;x1:K)
to highlight the close connection to the variational parame-

ters in ITUBA. One way to leverage these additional samples

from p(x) is to build a Monte-Carlo estimate of the partition

function Z(y):

a(y;x1:K) = m(y;x1:K) =
1

K

K
∑

i=1

ef(xi,y).

Intriguingly, with this choice, the high-variance term in INWJ

that estimates an upper bound on logZ(y) is now upper

bounded by logK as ef(x1,y) appears in the numerator and

also in the denominator (scaled by 1
K

). If we average the

bound over K replicates, reindexing x1 as xi for each term,

then the last term in Eq. 8 becomes the constant 1:

Ep(x1:K)p(y)

[

ef(x1,y)

m(y;x1:K)

]

=
1

K

K
∑

i=1

E

[

ef(xi,y)

m(y;x1:K)

]

= Ep(x1:K)p(y)

[

1
K

∑K
i=1 e

f(xi,y)

m(y;x1:K)

]

= 1, (9)

and we exactly recover the lower bound on MI proposed

by van den Oord et al. (2018):

I(X;Y ) ≥ E

[

1

K

K
∑

i=1

log
ef(xi,yi)

1
K

∑K
j=1 e

f(xi,yj)

]

, INCE,

(10)

where the expectation is over K independent samples from

the joint distribution:
∏

j p(xj , yj). This provides a proof2

that INCE is a lower bound on MI. Unlike INWJ where

the optimal critic depends on both the conditional and

marginal densities, the optimal critic for INCE is f(x, y) =
log p(y|x) + c(y) where c(y) is any function that depends

on y but not x (Ma & Collins, 2018). Thus the critic only

has to learn the conditional density and not the marginal

density p(y).

As pointed out in van den Oord et al. (2018), INCE is upper

bounded by logK, meaning that this bound will be loose

when I(X;Y ) > logK. Although the optimal critic does

not depend on the batch size and can be fit with a smaller

mini-batches, accurately estimating mutual information still

needs a large batch size at test time if the mutual information

is high.

2.4. Nonlinearly interpolated lower bounds

The multi-sample perspective on INWJ allows us to make

other choices for the functional form of the critic. Here we

propose one simple form for a critic that allows us to nonlin-

early interpolate between INWJ and INCE, effectively bridg-

ing the gap between the low-bias, high-variance INWJ estima-

tor and the high-bias, low-variance INCE estimator. Similarly

to Eq. 8, we set the critic to 1 + log ef(x1,y)

αm(y;x1:K)+(1−α)q(y)

with α ∈ [0, 1] to get a continuum of lower bounds:

1 + Ep(x1:K)p(y|x1)

[

log
ef(x1,y)

αm(y;x1:K) + (1− α)q(y)

]

− Ep(x1:K)p(y)

[

ef(x1,y)

αm(y;x1:K) + (1− α)q(y)

]

, Iα.

(11)

By interpolating between q(y) and m(y;x1:K), we can re-

cover INWJ (α = 0) or INCE (α = 1). Unlike INCE which is

2The derivation by van den Oord et al. (2018) relied on an
approximation, which we show is unnecessary.
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upper bounded by logK, the interpolated bound is upper

bounded by log K
α

, allowing us to use α to tune the tradeoff

between bias and variance. We can maximize this lower

bound in terms of q(y) and f . Note that unlike INCE, for

α > 0 the last term does not vanish and we must sample

y ∼ p(y) independently from x1:K to form a Monte Carlo

approximation for that term. In practice we use a leave-one-

out estimate, holding out an element from the minibatch for

the independent y ∼ p(y) in the second term. We conjecture

that the optimal critic for the interpolated bound is achieved

when f(x, y) = log p(y|x) and q(y) = p(y) and use this

choice when evaluating the accuracy of the estimates and

gradients of Iα with optimal critics.

2.5. Structured bounds with tractable encoders

In the previous sections we presented one variational upper

bound and several variational lower bounds. While these

bounds are flexible and can make use of any architecture or

parameterization for the variational families, we can addi-

tionally take into account known problem structure. Here

we present several special cases of the previous bounds that

can be leveraged when the conditional distribution p(y|x)
is known. This case is common in representation learning

where x is data and y is a learned stochastic representation.

InfoNCE with a tractable conditional.

An optimal critic for INCE is given by f(x, y) = log p(y|x),
so we can simply use the p(y|x) when it is known. This

gives us a lower bound on MI without additional variational

parameters:

I(X;Y ) ≥ E

[

1

K

K
∑

i=1

log
p(yi|xi)

1
K

∑K
j=1 p(yi|xj)

]

, (12)

where the expectation is over
∏

j p(xj , yj).

Leave one out upper bound.

Recall that the variational upper bound (Eq. 1) is mini-

mized when our variational q(y) matches the true marginal

distribution p(y) =
∫

dx p(x)p(y|x). Given a mini-

batch of K (xi, yi) pairs, we can approximate p(y) ≈
1
K

∑

i p(y|xi) (Chen et al., 2018). For each example xi

in the minibatch, we can approximate p(y) with the mixture

over all other elements: qi(y) =
1

K−1

∑

j 6=i p(y|xj). With

this choice of variational distribution, the variational upper

bound is:

I(X;Y ) ≤ E

[

1

K

K
∑

i=1

[

log
p(yi|xi)

1
K−1

∑

j 6=i p(yi|xj)

]]

(13)

where the expectation is over
∏

i p(xi, yi). Combining

Eq. 12 and Eq. 13, we can sandwich MI without intro-

ducing learned variational distributions. Note that the only

difference between these bounds is whether p(yi|xi) is in-

cluded in the denominator. Similar mixture distributions

have been used in prior work but they require additional

parameters (Tomczak & Welling, 2018; Kolchinsky et al.,

2017).

Reparameterizing critics.

For INWJ, the optimal critic is given by 1 + log p(y|x)
p(y) , so it

is possible to use a critic f(x, y) = 1 + log p(y|x)
q(y) and opti-

mize only over q(y) when p(y|x) is known. The resulting

bound resembles the variational upper bound (Eq. 1) with a

correction term to make it a lower bound:

I ≥ Ep(x,y)

[

log
p(y|x)

q(y)

]

− Ep(y)

[

Ep(x) [p(y|x)]

q(y)

]

+ 1

= R+ 1− Ep(y)

[

Ep(x) [p(y|x)]

q(y)

]

(14)

This bound is valid for any choice of q(y), including unnor-

malized q.

Similarly, for the interpolated bounds we can use f(x, y) =
log p(y|x) and only optimize over the q(y) in the denom-

inator. In practice, we find reparameterizing the critic to

be beneficial as the critic no longer needs to learn the map-

ping between x and y, and instead only has to learn an ap-

proximate marginal q(y) in the typically lower-dimensional

representation space.

Upper bounding total correlation.

Minimizing statistical dependency in representations is a

common goal in disentangled representation learning. Prior

work has focused on two approaches that both minimize

lower bounds: (1) using adversarial learning (Kim & Mnih,

2018; Hjelm et al., 2018), or (2) using minibatch approxima-

tions where again a lower bound is minimized (Chen et al.,

2018). To measure and minimize statistical dependency,

we would like an upper bound, not a lower bound. In the

case of a mean field encoder p(y|x) =
∏

i p(yi|x), we can

factor the total correlation into two information terms, and

form a tractable upper bound. First, we can write the total

correlation as: TC(Y ) =
∑

i I(X;Yi)− I(X;Y ). We can

then use either the standard (Eq. 1) or the leave one out

upper bound (Eq. 13) for each term in the summation, and

any of the lower bounds for I(X;Y ). If I(X;Y ) is small,

we can use the leave one out upper bound (Eq. 13) and INCE

(Eq. 12) for the lower bound and get a tractable upper bound

on total correlation without any variational distributions or

critics. Broadly, we can convert lower bounds on mutual

information into upper bounds on KL divergences when the

conditional distribution is tractable.

2.6. From density ratio estimators to bounds

Note that the optimal critic for both INWJ and INCE are

functions of the log density ratio log p(y|x)
p(y) . So, given a log

density ratio estimator, we can estimate the optimal critic

and form a lower bound on MI. In practice, we find that
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Figure 2. Performance of bounds at estimating mutual information. Top: The dataset p(x, y; ρ) is a correlated Gaussian with the

correlation ρ stepping over time. Bottom: the dataset is created by drawing x, y ∼ p(x, y; ρ) and then transforming y to get (Wy)3

where Wij ∼ N (0, 1) and the cubing is elementwise. Critics are trained to maximize each lower bound on MI, and the objective (light)

and smoothed objective (dark) are plotted for each technique and critic type. The single-sample bounds (INWJ and IJS) have higher

variance than INCE and Iα, but achieve competitive estimates on both datasets. While INCE is a poor estimator of MI with the small training

batch size of 64, the interpolated bounds are able to provide less biased estimates than INCE with less variance than INWJ. For the more

challenging nonlinear relationship in the bottom set of panels, the best estimates of MI are with α = 0.01. Using a joint critic (orange)

outperforms a separable critic (blue) for INWJ and IJS, while the multi-sample bounds are more robust to the choice of critic architecture.

training a critic using the Jensen-Shannon divergence (as

in Nowozin et al. (2016); Hjelm et al. (2018)), yields an

estimate of the log density ratio that is lower variance and

as accurate as training with INWJ. Empirically we find that

training the critic using gradients of INWJ can be unstable

due to the exp from the upper bound on the log partition

function in the INWJ objective. Instead, one can train a log

density ratio estimator to maximize a lower bound on the

Jensen-Shannon (JS) divergence, and use the density ratio

estimate in INWJ (see Appendix D for details). We call

this approach IJS as we update the critic using the JS as

in (Hjelm et al., 2018), but still compute a MI lower bound

with INWJ. This approach is similar to (Poole et al., 2016;

Mescheder et al., 2017) but results in a bound instead of an

unbounded estimate based on a Monte-Carlo approximation

of the f -divergence.

3. Experiments

First, we evaluate the performance of MI bounds on two

simple tractable toy problems. Then, we conduct a more

thorough analysis of the bias/variance tradeoffs in MI esti-

mates and gradient estimates given the optimal critic. Our

goal in these experiments was to verify the theoretical re-

sults in Section 2, and show that the interpolated bounds

can achieve better estimates of MI when the relationship

between the variables is nonlinear. Finally, we highlight

the utility of these bounds for disentangled representation

learning on the dSprites datasets.

Comparing estimates across different lower bounds.

We applied our estimators to two different toy problems, (1)

a correlated Gaussian problem taken from Belghazi et al.

(2018) where (x, y) are drawn from a 20-d Gaussian distri-

bution with correlation ρ (see Appendix B for details), and

we vary ρ over time, and (2) the same as in (1) but we apply

a random linear transformation followed by a cubic nonlin-

earity to y to get samples (x, (Wy)3). As long as the linear

transformation is full rank, I(X;Y ) = I(X; (WY )3). We

find that the single-sample unnormalized critic estimates

of MI exhibit high variance, and are challenging to tune

for even these problems. In congtrast, the multi-sample

estimates of INCE are low variance, but have estimates that

saturate at log(batch size). The interpolated bounds trade

off bias for variance, and achieve the best estimates of MI

for the second problem. None of the estimators exhibit low

variance and good estimates of MI at high rates, supporting

the theoretical findings of McAllester & Stratos (2018).

Efficiency-accuracy tradeoffs for critic architectures.

One major difference between the critic architectures used

in (van den Oord et al., 2018) and (Belghazi et al., 2018) is

the structure of the critic architecture. van den Oord et al.

(2018) uses a separable critic f(x, y) = h(x)T g(y) which

requires only 2N forward passes through a neural network

for a batch size of N . However, Belghazi et al. (2018) use

a joint critic, where x, y are concatenated and fed as in-

put to one network, thus requiring N2 forward passes. For

both toy problems, we found that separable critics (orange)
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Figure 3. Bias and variance of MI estimates with the optimal

critic. While INWJ is unbiased when given the optimal critic, INCE

can exhibit large bias that grows linearly with MI. The Iα bounds

trade off bias and variance to recover more accurate bounds in

terms of MSE in certain regimes.

increased the variance of the estimator and generally per-

formed worse than joint critics (blue) when using INWJ or

IJS (Fig. 2). However, joint critics scale poorly with batch

size, and it is possible that separable critics require larger

neural networks to get similar performance.

Bias-variance tradeoff for optimal critics.

To better understand the behavior of different estimators,

we analyzed the bias and variance of each estimator as a

function of batch size given the optimal critic (Fig. 3). We

again evaluated the estimators on the 20-d correlated Gaus-

sian distribution and varied ρ to achieve different values of

MI. While INWJ is an unbiased estimator of MI, it exhibits

high variance when the MI is large and the batch size is

small. As noted in van den Oord et al. (2018), the INCE

estimate is upper bounded by log(batch size). This results

in high bias but low variance when the batch size is small

and the MI is large. In this regime, the absolute value of the

bias grows linearly with MI because the objective saturates

to a constant while the MI continues to grow linearly. In

contrast, the Iα bounds are less biased than INCE and lower

variance than INWJ, resulting in a mean squared error (MSE)

that can be smaller than either INWJ or INCE. We can also

see that the leave one out upper bound (Eq. 13) has large

bias and variance when the batch size is too small.

Bias-variance tradeoffs for representation learning.

To better understand whether the bias and variance of the

estimated MI impact representation learning, we looked

at the accuracy of the gradients of the estimates with re-

spect to a stochastic encoder p(y|x) versus the true gradient

of MI with respect to the encoder. In order to have ac-

cess to ground truth gradients, we restrict our model to

pρ(yi|xi) = N (ρix,
√

1− ρ2i ) where we have a separate

Figure 4. Gradient accuracy of MI estimators. Left: MSE be-

tween the true encoder gradients and approximate gradients as a

function of mutual information and batch size (colors the same as

in Fig. 3 ). Right: For each mutual information and batch size, we

evaluated the Iα bound with different αs and found the α that had

the smallest gradient MSE. For small MI and small size, INCE-like

objectives are preferred, while for large MI and large batch size,

INWJ-like objectives are preferred.

correlation parameter for each dimension i, and look at the

gradient of MI with respect to the vector of parameters ρ.

We evaluate the accuracy of the gradients by computing

the MSE between the true and approximate gradients. For

different settings of the parameters ρ, we identify which

α performs best as a function of batch size and mutual in-

formation. In Fig. 4, we show that the optimal α for the

interpolated bounds depends strongly on batch size and the

true mutual information. For smaller batch sizes and MIs,

α close to 1 (INCE) is preferred, while for larger batch sizes

and MIs, α closer to 0 (INWJ) is preferred. The reduced

gradient MSE of the Iα bounds points to their utility as an

objective for training encoders in the InfoMax setting.

3.1. Decoder-free representation learning on dSprites

Many recent papers in representation learning have focused

on learning latent representations in a generative model that

correspond to human-interpretable or “disentangled” con-

cepts (Higgins et al., 2016; Burgess et al., 2018; Chen et al.,

2018; Kumar et al., 2017). While the exact definition of

disentangling remains elusive (Locatello et al., 2018; Hig-

gins et al., 2018; Mathieu et al., 2018), many papers have

focused on reducing statistical dependency between latent

variables as a proxy (Kim & Mnih, 2018; Chen et al., 2018;

Kumar et al., 2017). Here we show how a decoder-free

information maximization approach subject to smoothness

and independence constraints can retain much of the repre-

sentation learning capabilities of latent-variable generative

models on the dSprites dataset (a 2d dataset of white shapes

on a black background with varying shape, rotation, scale,

and position from Matthey et al. (2017)).

To estimate and maximize the information contained in the

representation Y about the input X , we use the IJS lower

bound, with a structured critic that leverages the known
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stochastic encoder p(y|x) but learns an unnormalized vari-

ational approximation q(y) to the prior. To encourage in-

dependence, we form an upper bound on the total correla-

tion of the representation, TC(Y ), by leveraging our novel

variational bounds. In particular, we reuse the IJS lower

bound of I(X;Y ), and use the leave one out upper bounds

(Eq. 13) for each I(X;Yi). Unlike prior work in this area

with VAEs, (Kim & Mnih, 2018; Chen et al., 2018; Hjelm

et al., 2018; Kumar et al., 2017), this approach tractably

estimates and removes statistical dependency in the repre-

sentation without resorting to adversarial techniques, mo-

ment matching, or minibatch lower bounds in the wrong

direction.

As demonstrated in Krause et al. (2010), information maxi-

mization alone is ineffective at learning useful representa-

tions from finite data. Furthermore, minimizing statistical

dependency is also insufficient, as we can always find an

invertible function that maintains the same amount of infor-

mation and correlation structure, but scrambles the repre-

sentation (Locatello et al., 2018). We can avoid these issues

by introducing additional inductive biases into the repre-

sentation learning problem. In particular, here we add a

simple smoothness regularizer that forces nearby points

in x space to be mapped to similar regions in y space:

R(θ) = KL(pθ(y|x)‖pθ(y|x+ ǫ)) where ǫ ∼ N (0, 0.5).

The resulting regularized InfoMax objective we optimize is:

maximize
p(y|x)

I(X;Y ) (15)

subject to TC(Y ) =

K
∑

i=1

I(X;Yi)− I(X;Y ) ≤ δ

Ep(x)p(ǫ) [KL(p(y|x)‖p(y|x+ ǫ))] ≤ γ

We use the convolutional encoder architecture from Burgess

et al. (2018); Locatello et al. (2018) for p(y|x), and a two

hidden layer fully-connected neural network to parameterize

the unnormalized variational marginal q(y) used by IJS.

Empirically, we find that this variational regularized info-

max objective is able to learn x and y position, and scale, but

not rotation (Fig. 5, see Chen et al. (2018) for more details

on the visualization). To the best of our knowledge, the only

other decoder-free representation learning result on dSprites

is Pfau & Burgess (2018), which recovers shape and rotation

but not scale on a simplified version of the dSprites dataset

with one shape.

4. Discussion

In this work, we reviewed and presented several new bounds

on mutual information. We showed that our new interpo-

lated bounds are able to trade off bias for variance to yield

better estimates of MI. However, none of the approaches

we considered here are capable of providing low-variance,

Figure 5. Feature selectivity on dSprites. The representation

learned with our regularized InfoMax objective exhibits disen-

tangled features for position and scale, but not rotation. Each row

corresponds to a different active latent dimension. The first column

depicts the position tuning of the latent variable, where the x and y

axis correspond to x/y position, and the color corresponds to the

average activation of the latent variable in response to an input

at that position (red is high, blue is low). The scale and rotation

columns show the average value of the latent on the y axis, and the

value of the ground truth factor (scale or rotation) on the x axis.

low-bias estimates when the MI is large and the batch size is

small. Future work should identify whether such estimators

are impossible (McAllester & Stratos, 2018), or whether

certain distributional assumptions or neural network induc-

tive biases can be leveraged to build tractable estimators.

Alternatively, it may be easier to estimate gradients of MI

than estimating MI. For example, maximizing IBA is fea-

sible even though we do not have access to the constant

data entropy. There may be better approaches in this set-

ting when we do not care about MI estimation and only

care about computing gradients of MI for minimization or

maximization.

A limitation of our analysis and experiments is that they

focus on the regime where the dataset is infinite and there

is no overfitting. In this setting, we do not have to worry

about differences in MI on training vs. heldout data, nor do

we have to tackle biases of finite samples. Addressing and

understanding this regime is an important area for future

work.

Another open question is whether mutual information maxi-

mization is a more useful objective for representation learn-

ing than other unsupervised or self-supervised approaches

(Noroozi & Favaro, 2016; Doersch et al., 2015; Dosovit-

skiy et al., 2014). While deviating from mutual information

maximization loses a number of connections to informa-

tion theory, it may provide other mechanisms for learning

features that are useful for downstream tasks. In future

work, we hope to evaluate these estimators on larger-scale

representation learning tasks to address these questions.
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