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Abstract. With a view toward a numerical solution by means of the finite-element
method, we give here a variational statement for large elastic deformations at finite
strains which involves independent variation of the displacement, the (nonsymmetric
first Piola-Kirclihoff) stress, and the deformation-gradient fields, and which includes
both the boundary and the jump conditions. Then we present, for small deformations
superimposed on the large, three variational statements, each involving three independent
fields and each including both the boundary and the jump conditions. These statements
are such that the first variation of the corresponding functional yields the field equations
which characterize the equilibrium of the finitely-deformed state considered and also
the field equations that pertain to the incremental deformations. Several specializations
of these results are discussed. By way of illustration, finally, we present a finite-element
formulation of the large deformation problem, using three independent fields, where
each field is approximated by a piecewise-linear function within each element.

I. Introduction. It appears that a variational statement in which both the dis-
placement and the stress fields are given independent variation was first developed by
Hellinger [1, Sec. 7e, Eqs. (21) and (22a, b)], for finite elastic deformation problems.
Hellinger uses a nonsymmetric stress tensor which is now commonly referred to as the
first Piola-Kirchhoff (or Lagrangian) stress tensor (denoted in the present work by Trja),
together with the deformation gradient (denoted here by xa,A). In the first two chapters
of his encyclopedic article he discusses the virtual work theorem for the statics and
dynamics of one-, two-, and three-dimensional continua, including the case of polar
(oriented) media, and presenting results in terms of both what is now commonly referred
to as the Eulerian and the Lagrangian formulation. In the third chapter of his paper,
Hellinger introduces the assumption of potential loads and the strain-energy function,
developing the above-mentioned variational theorem in Sec. 7e. However, he does not
include explicitly in his variational functional the boundary conditions. Hellinger's
results, with further generalization and clarification, are presented in Sees. 231-238 of [2]
in a more modern notation. A more general statement of a variational theorem for
finite elasticity was given independently by Reissner [3] who formulates his results in
terms of what is now commonly referred to as the symmetric Piola-Kirchhoff stress
tensor (denoted here by SAB) and the Lagrangian strain tensor (denoted here by EAB).
In this regard, therefore, Reissner's formulation is essentially different from that of
Hellinger. Moreover, he includes explicit boundary data in his formulation by permitting

* Received February 10, 1971.
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the independent variation of the surface tractions. Koppe1 [4], on the other hand, recasts
Reissner's formulation in terms of the field quantities used by Hellinger, and hence
arrives at a more general result than Hellinger's [1], A yet more general statement
occurs in Washizu [5] where the same variables as those considered by Reissner are
used, but where, in addition to the displacement and stress fields, the strain field is
also given independent variation.

A short historical account of the subject matter is given by Reissner in [6, Sec. 4].
It appears that Prange [7] was the first to give a variational theorem for the linear
elasticity problem in which the displacement and the stress fields are given independent
variations, and which also explicitly included the boundary data. Prange's work, however,
remained unknown, since it was not published. Thus it appears that the first general
variational statement of the kind mentioned above was published by Reissner [8].
In 1955, Hu [9] published a paper in which he developed variational methods for small
strain problems, which involved arbitrary variations of the displacement, the stress,
and the strain fields. Similar results were independently reported by Washizu [10], and
later on more general statements for linear problems were given by Naghdi2 [11] and
Prager [12]. For linear elasticity without couple stresses, the most general discussion
is given by Prager, who not only permits independent variations of displacement, strain,
and stress fields, but also gives all the boundary and the jump conditions as the Euler
equations and the boundary data of the corresponding variational statement.

For the problem of small elastic deformations superimposed on the large, it appears
that variational methods of the generality mentioned above have not been considered,
although the work of Biot [14], [15] and Washizu [5, Chapter 5] should be mentioned.
Biot considers an independent displacement field only, while Washizu considers varia-
tional statements in the presence of initial strain and initial stress.

The use of variational theorems for the numerical solution of elasticity problems
has recently been stressed by a number of authors (see for example, [12], [16-22]).
For finite elasticity, however, it is the incremental formulation that appears to be more
effective. Moreover, from a purely computational point of view, different formulations
of the corresponding variational theorems would lead to different numerical results.
In this connection it therefore appears useful to present various possible variational
theorems concerning the incremental deformations of nonlinear elasticity problems.
This is one of the aims of the present work.

In Sec. 2 we define our basic notation, and in Sec. 3 we give a variational statement
for large elastic deformations, which has the same generality as that given by Prager [12]
for the linear case. Here we use the (nonsymmetric) first Piola-Kirchhoff stress tensor
and the deformation gradient. We permit independent variation for displacement,
stress, and deformation-gradient fields, and include both the boundary and the jump
conditions. Moreover, we compare this functional with the one which is expressed in
terms of the second Piola-Kirchhoff stress tensor and the Green deformation tensor.
In Sec. 4 we consider three formulations of the problem of small deformation super-
imposed on the large, namely the Lagrangian, the Eulerian, and a mixed, giving the
corresponding variational statements with three independent fields and including both
the boundary and the jump conditions. These functionals are such that their first

1 I am indebted to Professor Reissner for calling my attention to Koppe's paper.
1 Here a reference should also be made to [13].
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variation yields the field equations characterizing the equilibrium of the finitely-deformed
state considered and also the field equations pertaining to the incremental deformations.
Here several specializations of the results are also considered. By way of illustration,
we present, in Sec. 5, a finite-element formulation of the large deformation problem,
using three independent fields, where each field is approximated by a piecewise-linear
function within each element.

2. Statement of problem and notational preliminaries. We consider a body ®
with the regular boundary d® which in its initial (virgin) state occupies the volume V
having a regular surface S. We assume that the body is deformed from this initial con-
figuration C0 to a deformed configuration Q by means of a set of applied dead body
forces F prescribed per unit mass, and the following set of boundary conditions: on the
surface S which bounds the solid, some components of the dead surface tractions, Ta ,
and the complementary components, W„ , of the surface displacements, are defined;
the prescribed components of the tractions will be denoted by the subscript a, and the
prescribed components of the surface displacements by the subscript a. For example, if
on a part of the boundary the components Ti, W2, and W3 are given, then Ta denotes
and Wa represents W2 and W3 . We note that we do not exclude cases in which surface
tractions T are prescribed on a portion Sr , and surface displacements W on the re-
maining part St, of S. Although our results will hold for a certain class of conservative
loads, we confine our attention to dead-loads only, since for other surface loads which
may depend on the local deformations of the material neighborhood on which they act
one is in general not able to define a unique work function (or a potential), as has been
discussed by Sewell [23] and this writer [24].

We use a fixed rectangular Cartesian coordinate system, and denote the particle
positions in the initial configuration e0 by XA and those in the deformed configuration
6 by xa . We assume that xa can be defined in terms of XA , and hence we write xa =
xJXA), A, a = 1, 2, 3. Furthermore, we suppose that the configuration S0 can be divided
into a finite number of regular subregions in each of which the mapping defined above
is one-to-one and invertible so that XA = XA(xa). Hence, in each domain of regularity,
the Jacobian J = det |a;„iA| is neither zero nor infinity, where a comma followed by a
subscript index letter denotes partial differentiation with respect to the corresponding
coordinate. We let these regions of regularity be separated from each other by discon-
tinuity surfaces across which some components of the traction and some components
of the displacement vector (at a point on a discontinuity surface no more than six jumps
can be prescribed) may suffer finite discontinuities or jumps. If 2 is the collection of all
these discontinuity surfaces in the reference configuration Qn , we denote by N its
unit normal which points outward from one domain of regularity, say domain 1, toward
the adjacent subregion, say domain 2, and define the jump (q) of a field quantity q at
a point P on 2 by (q) = qa) — g<2), where qu' and q'"' are the limiting values of q at P
as this point is approached along N from the interior of domains 1 and 2, respectively.

We confine our attention to cases in which the body (B consists of an elastic material
which admits a strain-energy-density function defined by 3> = $(CAB), where CAB =
xa. Axa: b is the Green deformation tensor and where the summation convention on
repeated indices is used and will be employed all through the rest of this paper. For
future use, we express this strain-energy density function as $ = <f>(a;a,A), but it should
be carefully noted that $ depends on the deformation-gradient xa,A in a special manner,
as defined above.
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To define the state of stress in © we may employ any one of the three stress tensors3
Sab , T]L , and Tab, which are respectively called the second Piola-Kirchhoff (or Kirch-
hoff), the first Piola-Kirchhoff (or Lagrangian), and the Cauchy (or the true) stress
tensor. We have = d$/dCAB , TAa = d$/dxa,A , and Tab = (1/J)xa,ATAb .

For our incremental formulation we consider the increments fa of body forces, ta of
surface tractions, and iva of surface displacements, all expressed in terms of the particle
positions in e„ , and denote the increment of the displacement, the displacement gra-
dient, the first Piola-Kirchhoff stress tensor, and the second Piola-Kirchhoff stress
tensor, respectively, by v„ , v„,A , tAa , and sAB , which are also regarded as functions
of XA .

In what follows we shall have occasion to consider the displacement, the deformation
gradient, and the stress tensors as independent fields with arbitrary variation. When
the deformation gradient x„,A is obtained from the displacement field U„ by differentia-
tion, we shall say that it corresponds to this displacement field. In this case the variation
in the deformation gradient is given, once the variation in the displacement field is
defined. On the other hand, when the deformation gradient does not correspond to the
displacement field, we shall denote it by xaA (without a comma between a and A) and
observe that it may have an independent variation. Similar remarks hold in connection
with the stress tensor and the corresponding deformation gradient, or the strain tensors.
For example, when TAa corresponds to the deformation gradient xaA , we have TAa =
d$/dxaA ; otherwise TAa will be regarded as an independent field with arbitrary variation.

In the next section we shall present a variational theorem for finite deformations
with discontinuous fields which has all the simplicity associated with the linear elasticity
theory. Then in Sec. 4 we shall give for the incremental loading three new variational
statements which not only yield all the field equations of small deformations super-
imposed on the initial finitely-deformed state of the solid, but also give the equilibrium
equations for that state.

3. A variational theorem with discontinuous fields. The simplest and perhaps
the most general variational statement in finite elasticity results if we use the first
Piola-Kirchhoff stress tensor TAa , the deformation gradient xaA , and the displacement
Ua , as our independent fields with arbitrary variations, and consider the following
functional:

= [ [$(xaA) — PoFaUa\ dV — [ Taa[xaA — xa,A] dV
J-u J'u

- J T.U. ds - J (Ta)Ua d? (1)

- [ Ta(Ua - WR) d§> - f TA(Ua) - (Wa)] dZ,
J S J 2

where (T„) denotes the prescribed jump on the components of the tractions across the
discontinuity surfaces 2, (lFa) represents the prescribed jump of the components of
the displacements across these surfaces, and p0 is the initial mass density. In (1), the a
repeated subscript is to be summed over only the prescribed components of the surface
tractions, while the a's are to be summed over the prescribed displacement components.
Observe that in (1) TAa and Ta may be regarded as the Lagrangian multipliers. Taking

1 For simplicity, we choose to refer to a tensor by its Cartesian components.
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the first variation of £F, using the Gauss theorem, and noting that Sxa = 5Ua, we obtain

55 =• f ~ T*° Sx°* dv ~ f W*-* + P°FJ SU- dv
JV L OXaA J J'u

- [ [xaA - xa,A] bTRAa dV

(2)

- f [T. - TrmNa\ SUa dS- [ [(T.) - (TRAaNA)} 8Ua d?
J s J s

f [U. - TFa] 8Ta dS - [ [<£/„> - (JFa)]
J& •/ s

STa d2.

We observe that the consequence of the arbitrariness of the variation of the deformation
gradient xaA , displacement Ua , stress field TAa , the surface displacements U„ corre-
sponding to the prescribed components of the tractions, and the tractions Ta corre-
sponding to the prescribed components of surface displacements, respectively, is the
definition of the first Piola-Kirchhoff stress tensor, equations of equilibrium, the defini-
tion of the deformation gradient, the prescribed traction boundary data, and the pre-
scribed displacement boundary data. In addition, in the fifth integral, the arbitrariness
of the variation of the displacement components U, of points on the discontinuity
surfaces 2 yields the jump condition on the corresponding traction components. Simi-
larly, the jump condition on the components of the displacement vector on 2 is given
by the last integral in (2). If the jumps (T0) and (IFa) are prescribed to be zero, then
the corresponding integrals in Eq. (2) yield, respectively, the continuity conditions
on the tractions and the displacements across 2, i.e. {TAaNA) = 0 and (C/a) = 0.

A variational theorem with the generality of the one just given but with prescribed
zero jump conditions on interior surfaces 2 has been given by Prager [12] for linear
elasticity. The most general variational theorem for nonlinear elasticity, which includes
boundary conditions but neither the definition of strain (as given by the third integral
in the right-hand side of (2)) nor the jump conditions, was first given by Reissner [3]
who used the complementary energy functional together with the second Piola-Kirchhoff
stress tensor (here denoted by Sab) and the Lagrangian strain (here given by EAB =
h{CAB — SAB), where 5AB is the Kroneclcer delta). Reissner's variational theorem gen-
eralizes that of Hellinger [1] who, however, did not give the boundary conditions ex-
plicitly; Reissner's results have been rewritten by Koppe [4] in terms of the field quan-
tities used by Hellinger. A more general statement is found in Washizu's book [5, Sec. 3.9]
which is expressed in terms of the same quantities as that of Reissner, and which also
considers the variation in the strain field, but does not include the jump conditions.

For the sake of completeness and in order to permit comparison in the finite-element
applications, we now rewrite functional (1) in terms of the second Piola-Kirchhoff
stress tensor SAB and the Green deformation tensor CAB as follows:

S = [ WCts) PoF aU a\ dV f — SAb[CAb , B ] dV
J v £

-[ TaUadS - [ (Ta)Ua d2 (3)

- [ Ta(U> - IFa) dS - f Ta[<t/a> - <TFa)] d2.
J & J 2
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The vanishing of the first variation of g for arbitrary fields SAB , CAB , and Ua in V and
for J7„ and T» on S and 2 yields all the field equations, boundary conditions, and jump
conditions for the equilibrium of the body ffi. (Observe here that SAB and Ta in (3)
may again be regarded as the Lagrangian multipliers.) Since these field equations will
occur subsequently in connection with the incremental formulation of the problem,
we shall not report them here (see Eq. (7)).

In certain situations one may wish to deal with a variational statement in which
only the displacement and the stress fields, but not the strain field, are considered as
independent with arbitrary variation. For finite elasticity, one then considers the varia-
tional theorem given by Hellinger [1] and its extension given by Koppe [4, Eq. (15)], or
that given by Reissner [3], depending on whether the first or the second Piola-Kirchhoff
stress tensor is employed. To obtain these formulations, however, one must invoke the
Legendre transformation, and thus the corresponding formulation is valid only where
such transformation is applicable. For the sake of completeness, we shall now briefly
consider this.

To this end we regard the strain-energy-density function 5 as a function of the
Lagrangian strain EAB and note that SAB = d$/dEAB . This equation may now be
regarded as defining the Lagrangian strain EAB as a function of the stress tensor SAB .
We write

H = SabEab $,

where H is now viewed as a function of SAB . We then have

Eab = dH/dSAB-

With Ua and SAB as independent fields, we write

Si — f [SABEAB H PoFaUa] dV
J-U

- f TaE/„ dS - [ (Tt)U. d?
J i J 2

- f Ta(Ua - WJ d&- [ T>[(Ua) - (W.)] dX,
•is J r

whose first variation is given by

s9, = L [Eab ~ aS sSab dv

- [ [(SABxa.A).B + p0FJ 5U. dV - B.C. - J.C. ,
J1)

where B.C. and J.C. denote, respectively, the boundary and the jump conditions which
can readily be obtained by analogy with Eq. (2) (see also Eq. (7)). In the above equation
we have used the fact that EAB = i(xa,Axa,B — SAB). A similar expression can be ob-
tained if we use the first Piola-Kirchhoff stress tensor. For this, however, we refer the
reader to Eq. (15) of [4].

4. Incremental variational statements. We shall now consider incremental small
deformations superimposed on a finitely deformed configuration 6, and, using the
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notation defined in Sec. 2, we write the following incremental functional:

f = f I V"A + \ a 3 T— vaAvbB eft) — [ p0(Fa + /„>„ dnj
Jv LU%aA £ OXaA OXbB J Jv

- [ [Tla + t*Aa](paA - va,A) dV - f [TRAa + tU(xaA - xa,A) dV
J'U Jv

- [ (T. + ta)v. d& — f (T. + t.)v. dX (4)
J s J 2

- f (T. + 01 (U. + fa) - (Wa + W.)} dS,
Js

- f (r. + Q[(ua +».) - (W> + w.>] dz.
J 2

In this equation the quantity inside the first integral may be interpreted as the change
in the strain-energy for the increment in the displacement gradient vaA , where one
assumes that $ is sufficiently smooth so that the expansion indicated is valid. The
quantities TA„ + tAa and Ta + <„ may be regarded as the Lagrangian multipliers. We
note that the variations of these multipliers are given by 5tAa and 5<a, respectively, since
T'ja and !Ta have zero variation. Now, the first variation of f, for the independently
variable fields va , vaA , tAa , va , and t. , gives

«f = {/ - Tl] SvaA dV - j [TAa,A + poFa] Sva dV

- f [xaA - x.,A] StAa dV
J V

- [ [T. - TRA.NA) Sv. dS- [ [(T.) - (T*.NA)] Sv.
«/S J 2

- / [17. - Wm] 5t> dS - f [<E/a> - (Wa)] St. ds)
(5)

+ {LhxadAtbBVbB - c°] 8v°Adv

- [ [tAa.A + Po/.] Sva dV - f [vaA - va,A] StAa dV
J'U Jv

- f It. - t*.NA] Sva dS - [ [(<«) - (tA.NA)] Sv. dS
J s J r

- J [»• — wa] 5£a dS — J [(»a) — (ie,)] 8ta dsj-

We observe that the quantity inside of the first braces in the right-hand side of (5)
corresponds to the field equations that characterize the equilibrium condition of the
finitely deformed configuration 6, as can be seen by comparison to Eq. (2). The vanishing
of the integrals inside of the second braces for arbitrary variations in the corresponding
field quantities, on the other hand, yields all the field equations, boundary data, and
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jump conditions across discontinuity surfaces 2 for the small incremental deformations
superimposed on configuration Q. For this reason the incremental functional f given
by (4) appears to be useful for the numerical solution (by the aid of the finite-element
method, see for example [21]) of finite deformation problems in which a sequence of
incremental loading is considered.

If one assumes that the field equations corresponding to configuration 6 are iden-
tically satisfied, then the functional (4) can be simplified to yield the incremental field
equations only. To this end one needs to consider the first variation of the following
expres' ion:

fl lv [2 dxaA dxbB VaAVbB PojaV\ dV

(5a)
— [ tRAa(vaA - va,A) dV

J U

— [ tava d§> — [ (t„)va d2
J S J 2

— / <a(fa — «>a) dS, — / ts[{va) — (w„)] dZ,.
Js J s

This variation is, of course, given by the quantity inside the second braces in the right-
hand side of Eq. (5).

We now give an alternative representation for the variational statement defined
by Eqs. (4) and (5), using the second Piola-Kirchhoff stress tensor, the Lagrangian
strain tensor, and their increments. Referring again to Sec. 2 for the definition of the
notation, we consider the functional

c r 3$ 1 s2$ ~i r
g = L CAB + 2 dC^dc7E CabCdeJ dv ~ I P°(F° + u)v°dv

~ \ Jv (-Sab + Sab^Cab ~ (x°'aV°'b + a)] dv (6)

— | J (SAB + sAB)[CAB — xa,Axa,B + v„,Ava,B] dV — B.C. — J.C.

where, for simplicity in presentation, we have denoted the boundary and the jump
conditions by B.C. and J.C., respectively. These conditions are the same as those occur-
ring in the right-hand side of Eq. (4). In Eq. (6) cAB denotes the components of the
increment of the Green deformation tensor CAB . The first variation of g, for the inde-
pendently variable fields va , cAB , sAB in V, and i\ and <a on S, is given by

5g = g 'S'abJ Scab dV J [('5>ab£<i,a),b -|- p0Fa\ 8va dV

2 f \CAB xa%Axa,B\ SsAB dV
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J [I1 a SABXa ,aNb\ Sva (is

- J [Ut - Wa\ St. ds - J.C.j

+ I /* ^7; Cde isAB ScAB dV (7)
W"U LOl^AB oLde J

~~ / {[('Sab + SAB)va,B + SABXa,A\,B + p0/<,}
J 1)

~ \ Iv ^Cab ~ (X°-aV°>-a + X°.bV„.a)] SsAb dV

- / {<0 - [((S^B + sAB)va,A + sABxa,A]NB}
J s

5va dV

Sv. dS>

L[ya — wa\ 8td d$ — J.C.

where the jump conditions are not written down explicitly but may readily be obtained
by analogy with Eq. (5). As is clear, the vanishing of the quantity inside of the first
braces in the right-hand side of (7) yields all the field equations corresponding to the
equilibrium configuration C, and the vanishing of the second braces provides us with
the corresponding incremental field equations. We observe that the field equations
given by the quantity in the first braces correspond to those that would result from
59 = 0; see Eq. (3).

So far we have used the so-called Lagrangian variables, and have hence developed
all our results with reference to the initial configuration e0. Although for the numerical
solution of the elasticity problems (by means of an incremental method) this is most
suitable, we shall now present an Eulerian variational counterpart in which the current
configuration C is used for the purpose of referencing. To this end we denote by u„
and tat displacement and the Cauchy stress tensor, and by F„, T„ , and Wa , respectively,
the body forces, the prescribed surface tractions, and the prescribed surface displace-
ments, all expressed as functions of the particle positions xa in the current configuration Q.
Furthermore, we denote by the lower-case Italic letters the incremental quantities that
are expressed as functions of xa , so that v0 , tal , f0 , wa , and t„ , are, respectively, the
increments of displacement, stress tensor referred to configuration B, body forces,
prescribed components of surface displacements, and finally the prescribed components
of the surface tractions. With the additional notation

o = A dfr r = _P    ( )
n r)r h,A ' aChd n !)r At Xc.AXd.B ) \°)P 0 OX a, A Po OXa,A OXi,B

where p is the mass density in configuration e and where and VacM are viewed as
functions of the particle positions in this configuration, we now write
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dvh = J [ft„i,v,,6 + §ro6cdvo6vc<,] dv — J p(F„ + f0)v„

- / (tab + tai,)(v0i, — va,b) dv
«/v

- [ (T. + t0)va ds - f (Ta + t„)v„ da (9)
J a J a

- f (Ta + ta)[(ua + vfl) - (Wa + wa)] ds
8

- f (Ta + ta)[(ua + va) - <Wa + wa)] da,
J a

where v and s are, respectively, the volume and the surface of ® in configuration <3,
and a denotes the discontinuity surfaces in this configuration. The first variation of h
for the independently variable fields va , tab , vab , t,a , and v„ now yields

5h = [C2ab — U\ 8vab dv — ^ [tab:b + pF„] 8va dv

- f [T„ - tabnb] 8va ds - f [(T„) - (t,bnb)]
J s J a

- J [ua - Wa] Sta ds - [(ua) - (Wa)] 5ta doj

+ {/.[r abcd^cd ^a&] 5Va& C^V

— J [t„i,.!> + pf„] 8va dv

— J [v„6 - v„,i] 5ta6 dv - B.C. — J.C.j ,

5v. da

(10)

where nb denotes the components of the exterior unit normal to s and where, as before,
B.C. and J.C. stand for the boundary and jump conditions. As is evident, the vanishing
of the first and second sets of braces in the right-hand side of (10) yields, respectively,
the field equations corresponding to the equilibrium of configuration & and the field
equations for the incremental deformation superimposed on this configuration. These
equations are all expressed in terms of the particle positions in C. Note that the incre-
mental Lagrangian (or nominal [25]) stress tensor to!> is given by

tab = TabcdVcd = [t bd Sac I "yabcd\Vcd ; (-ll*^)
where

. p d2$ 1kn
*Yabde 4 rj/'Y /"Y , A%b , B%d, D%e , E ;

P0 U^AB OL/DE

and where yabde is the so-called tangent elastic modulus tensor. Hence the configuration 6
is stable as long as the functional

J [tobVcaVcb + 7abc*VabVcd] dv
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is positive-definite. For further discussion of this question, see [21], [24], [25].
We note that, if only the incremental field equations are needed, the functional h

should be modified to read

hi = / [|ra6c<ivotvcJ - pf„v„] dkv - / to6(voi, - v„.i) dv
J v J v

— J t„va ds — J t,(vg — w,) ds — J.C.
(12)

The first variation of this functional is, of course, given by the quantity inside the second
braces in the right-hand side of (9).

5. Application. As has been pointed out before, the variational theorems discussed
in the previous sections can be used most effectively in the numerical treatment of finite
elasticity problems by means of the so-called finite-element technique. While it is not
our purpose to develop here systems of equations which would result from the application
of the various variational statements considered above, for the purpose of illustration
we shall briefly discuss one case. It should, however, be noted that although the various
variational theorems developed here are formally equivalent, from the computational
point of view they lead to totally different systems of equations which may involve
different computational errors.

In the finite-element technique one divides the body into a finite number of sub-
regions and uses a given function containing some unknown parameters to describe a
certain field quantity in each subregion. The unknown parameters are then calculated
in such a manner that the corresponding field equations are satisfied. When a variational
method is used, one obtains these parameters by minimizing the corresponding functional.
In finite deformation problems, one may subdivide either the initial configuration C0
or the final one <3. In the latter case, which has been discussed by Felippa4 [26], one is
dealing with a continually changing sequence of configurations, and hence one must
update these configurations during the process of calculation. On the other hand, in the
former case, which has been considered by a number of writers (see, for example, [21],
[22], [27] for further references), the fixed initial configuration is used throughout the
analysis, leading to a much more convenient and effective numerical scheme. In the
following, we shall deal with this latter case.

Let us divide the configuration G„ into a finite number of tetrahedra, and consider
a typical tetrahedron, say Si , witli four vertices Pi , P2 , P3 and Pt , For the node
(vertex), say, Pi of Si , let us define a unit field as

yp.s, = AP,S, + ap,s,Xb ) B = 1, 2, 3, (13)

and calculate the four constants in this linear equation by requiring that ^PxSt have the
value 1 at the node Pi and vanish at the other three vertices of tetrahedron Si . If there
are n tetrahedra meeting at node Pi , we define the corresponding unit field by

■q,p> = (14)
a *= 1

The displacement field Ua , for example, may now be approximated by a piecewise-

1 Felippa's results are not, however, quite correct, as has been pointed out in [21],
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linear function as

Ua = a = 1,2, 3, a = 1, 2, • • • , M, (15)
where it is assumed that there are a total of M nodes for the entire body. Here the U °
denotes the displacement vector at node a, and summation on a is implied.

In a similar manner, piecewise-linear approximations of stress and strain tensors
can be obtained. Since each one of these fields can be regarded as independent in the
corresponding (suitable) variational statement, the assumption that both the displace-
ment and the strain fields have linear variations in each element is not contradictory.
The contradiction arises only if we demand that they should correspond to each other.
As has been demonstrated by Dunham and Pister [20] for linear plane strain elasticity
problems, the use of independent displacement and stress fields may lead to more
accurate results. Here we propose that all three fields, namely the displacement, the
stress, and the corresponding strain fields, be regarded as independent with arbitrary
variations. We therefore write, for example, in connection with functional 9,

Sab = SAB1'a, CAB = C"AB<f", (16)

where SAB and CAB at each node a represent, respectively, the six (since they are sym-
metric) components of the nodal values of the second Piola-Kirchhoff stress and the
Green deformation tensors. To obtain an approximate expression for xa,A we note that
x„ = Ua + XB SaB , where 5oB is the Kronecker delta. Hence, from (15) we calculate

2^ = + 5oA . (17)

The approximate fields (15) and (16) are all continuous over the entire body, and
therefore, if there are no prescribed jumps within the considered continuum, the integrals
corresponding to these jumps would not occur in functional (3). Upon substitution
from (15), (16), and (17), into (3), we obtain

9 = f - PoFoU:**] dv
Jv

-It - (u„vA + s.jcu:*?* + soB)] dv - [ Ta u:*- (18)
A J<0 J s

a, A, B = 1, 2, 3, a, j8, y = 1, 2, • • • , M,

where we have assumed that the approximate displacement field (15) is a priori adjusted
so as to satisfy the prescribed displacement boundary data. It should be observed that,
since the unit field ^ is completely defined as soon as the coordinates of all the nodes
are known,5 all the integrals in (18) can be calculated explicitly, and hence 9 becomes an
explicit function of the nodal values of the displacement field , stress field S^B , and
the deformation tensor CAB . To arrive at the system of discretized equations which
can then be used to calculate the above nodal values, we minimize 9 given by (18)
by considering

= -^- = 0, « = 1,2, ,M, a, A, B = 1, 2, 3, (19)
*»TTa «\C!a
aUa cikjab

' Explicit expression of this unit field in terms of the nodal coordinates can be found in [21].
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which are the required equations for the corresponding unknowns. These equations,
however, are nonlinear and therefore require a special computational technique for their
solution. If attention is focused on a precritical response analysis, an iterative Newton-
Raphson technique may be employed. In general, however, one must consider an incre-
mental formulation together with these equations. The results obtained by the incre-
mental, step-by-step calculations can be accumulated, and in this manner one arrives
at approximate expressions for U™ , S^B and C^B . One then employs these approximate
expressions to initiate the iteration process required for the solution of (19).

The incremental equations are obtained in a manner similar to that discussed above.
The increments of the displacement field, the stress tensor, and the corresponding
deformation tensor are expressed in terms of the same unit field and in this manner
the incremental functional, say g in Eq. (6), is reduced to a function of the nodal values
of the above-mentioned fields. Setting the derivative of this function, with respect to
the unknown nodal values of the field quantities, equal to zero, one then obtains a system
of linear equations which are to be solved for the unknown nodal quantities. Since a
detailed study of these equations for specific problems would carry us far beyond the
purpose of this article, we shall postpone it to a future report.
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