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On varieties closed under the

construction of power algebras

A. Shafaat

It is shown that if a variety V of (universal) algebras,

defined by a set E of identities, is closed under the

construction of power algebras then V can be defined by the

subset E' of £ consisting of those identities V = W of I

such that every variable in v = w occurs exactly once on both

sides.

Introduction

Let A be an fl-algebra [2], where A is a set of non-nullary

"operators". By the power algebra of A is meant the ^-algebra P(A)

consisting of a l l subsets of A and with u € ft defined by

(5lf . . . , Sju) = {(8 i s > ; (8l 8n) <S1 x . . . x s j

for a l l S . . . , S cA , where n is the "arity" of w .

We shall say that a class K of fi-algebras is P-closed or closed

under P or closed under the construction of power algebras if A € K

implies P(A) € K .

Let X be a fixed infinite set of "variables" and let W be the

fi-word algebra [2] on X . A word w € W will be called linear if every

x £ X occurs at most once in v ; an identity [2] V = w will be called

linear if both u, w are linear. The relevance of linearity to the study

of P-closed classes arises from the fact that for a linear
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214 A. Sha faa t

w[x , . . . , x ) € W and for S , . . . , S € P(A) we can write
-L Tl A. A. Tl

w(S±, . . . , S n ) = { w ( s v . . . , s n ) ; B± (Slt . . . , s n € 5 , } .

This is not possible in general. For example, if Q consists of a 'binary

operation + and w = x + x then S + S is not {s +s ; s € S }

unless S has only one element.

By a regular identity is meant an identity in which every variable

that occurs on one side also occurs on the other. I t is easily verified,

and known [4], that a variety V of ft-algebras is P-closed if i t is

defined by a set of linear, regular identities. For the converse of this

fact the following two theorems are known (see [ / ] , [3] and [4]).

THEOREM 1. I f 1/ is P-closed and is defined by a single identity

v = w then v = w is either regular3 linear or of the form v = v .

THEOREM 2. Every P-alosed variety is definable by a set of regular,

linear identities^.

The purpose1 of this note is to give the following synthesis of the

above two theorems.

THEOREM 3. If V is a P-olosed variety defined by a set T. of

identities then \J can be defined by the (possibly empty) set of regular,

linear identities in Z .

Theorem 2 follows directly from Theorem 3. Theorem 1 can also be

easily deduced from our theorem as follows: If E consists of a single

identity v = w and defines a P-closed variety then, by Theorem 3, £ is

equivalent to the subset Z' of regular, linear identities of I . Then

Z' is empty or else Z' = Z . In the latter case v = w must be regular,

linear while in the former v = w must define the variety of all

fi-algebras and hence must be of the form v = v .

Proof of Theorem 3

We begin with a few definitions which our proof requires. For every

v € W and x € X we write d (u) for the number of occurrences of x

1 I would l ike to thank Mr S. Whitney, who discovered Theorem 2
independently of [ / ] , for pointing out to me that Gautam's Theorem 1 does
not follow ' d i r ec t l y ' from Theorem 2 and for other useful remarks.
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in v . We refer to d (v) as the degree of x in v . By the degree of

V we mean the largest integer, to be denoted by d{v) , in the (finite)

set {d (u); x d X] . For every finite set V of words we define d(V)

to be the largest of the integers d{v) , v € V , if V is non-empty and

d{V) = 0 if V is empty. For every finite set Z of identities we

d e f i n e d(Z) = d(V) , w h e r e V = {v, w; V = W € 1} . We w r i t e d ({v = w})

simply as d (v = w) . We shall refer to d{V), d(Z) , and so on, as the

degree of V, £ , and so on.

An identity will.be called balanced if d (v) = d (w) for a l l

x € X ; that i s , if every variable occurs the same number of times in V

as in W . I t is immediate that a balanced identity is regular. Also, an

identity is regular and linear if and only if i t is balanced and of degree

1 .

Lemma 1 and Lemma 2 below cover a good part of our proof of Theorem 3.

The first of these two lemmas hardly needs any proof.

LEMMA 1 .

(1.1) An identity of the form v = v is balanced.

(1.2) If v = w is balanced then so is w = v and

d (w = w) = d (w = v) .

(1.3) If u = v and v = w are balanced then so is u = w and

d (u = v) = d (u = u) = d (M = w) .

(X.h) If v[xx, . . . , a ; n ) = w(xx, . . . , x j and u = u' are

balanced then so is v[u, x , . . . , x ) = u ( « ' , x , . . . , x )

and the degree of v(u, x^, . . . , x^) = w[u', x2, . . . , x^)

is not smaller than that of v = w .

The above lemma shows that rules of deduction of identities from

identities preserve the property of being balanced. Also, the rules of

deduction do not cause the degree to decrease. This makes the following

lemma intuitively clear.

LEMMA 2. Let v = w be dedudble from a finite set Z of balanced

identities but not from any other subset of Z . Then v = w is balanced

and d{Z) s d (u = u) .
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Proof. If £ i s empty then V = w must be of the form v = v and

the required resul t follows from Lemma 1 ( l . l ) and d(Z) = 0 . Assume

therefore that £ is non-empty. Then v, W must be dist inct; for,

otherwise V = w is deducible from the empty subset of £ which is

dist inct from £ , contradicting our assumption.

Let v. = u, , . . . , v -, = w , , v = w tie a proof of V = w (from
J. 1 77—J- 71—X

£ ) of shortest possible length n . If n = 1 then V = w must belong

to £ and hence is deducible from the subset {u = w) of £ ; we must

therefore have £ = {u = w} which gives d(£) S d (v = u) .

Let n > 1 (so that v = w is not a member of £ ) and using

induction on n assume that the lemma is true for all £' and v' = w'

such that v' = w' can be deduced from £' in less than n steps.

Since v, w are distinct, therefore V = w is not a result of

reflexivity. Nor is v = w a member of £ . Hence v = w is obtained

from one or two of the identities v = u ... , v , = w by an
j- l n—l 72— _L

application of one of the rules:

(1) symmetry;

(2) t r ans i t iv i ty ;

(3) substitution of a variable as in Lemma 1 (l.U).

That v = W i s balanced is now clear from Lemma 1. We show that

d(£) 5 d (v = w) .

For every i , 1 - i - w-l , let £. denote a minimal subset of £

from which v. = zJ. can be deduced. Let V = w be obtained from v. = w.
it- i v

by an application of ( l ) . Then v = w is clearly deducible from £. . By
it

our assumption on £ this implies £. = £ and the induction hypothesis

gives <i(£) = d[T..) 5 d [v. = w.) 2 d (v = w) , where the last inequality

follows from (1.2) of Lemma 1.

Now le t v = w be obtained from v. = W. , v. = w. by an
l- T- d d

application of (2) or (3). Then, as above, we must have £ = £. u £ . .

Hence, by the induction hypothesis and (1.3) or (l.k) of Lemma 1, we get
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d(Z) = max(d(Z.), d[z)) 5 max(d (w. = W.), <* (i>. = w.)) S d (v = w) .

This proves the lemma.

Since every identi ty deducible from a set Z of iden t i t i e s i s

deducible from a f in i te subset of Z we have

COROLLARY 1. Every identity deducible from a set of balanced
identities is itself balanced.

The above corollary and Theorem 2 give

COROLLARY 2. Every identity of a V-alosed variety is balanced.

To prove Theorem 3 let now 1/ be a P-closed variety defined by a set
of identities E . Let Z' be the subset of £ consisting of regular,
linear identities. By Theorem 2, V can be defined by the set Z" of all
regular, linear identities of V . Since Z' c Z" we need only show that
Z" is deducible from Z' . Let V = W be an identity of Z" and let A
be a minimal subset of Z from which V = w is deducible; A exists
because Z and Z" are equivalent. We have to show that A c Z' . If A
is empty then nothing remains to be proved. Otherwise, by Lemma 2,
1 £ d(A) < d {v = w) = 1 . Hence d(A) = 1 , which implies that A
consists of balanced identities of degree 1 . This proves A c £' and
hence the theorem.

A straightforward modification of the above proof will give

THEOREM 4. Let T be the set of all balanced ^.-identities of

degree less than a given ^positive integer n . Let Z be a set of
^-identities which is.

equivalent to Z n T

Sir-identities which is equivalent to a subset of V . Then Z is

n
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