
Statistical Science
2015, Vol. 30, No. 2, 216–227
DOI: 10.1214/14-STS507
© Institute of Mathematical Statistics, 2015

On Various Confidence Intervals
Post-Model-Selection
Hannes Leeb, Benedikt M. Pötscher and Karl Ewald

Abstract. We compare several confidence intervals after model selection in
the setting recently studied by Berk et al. [Ann. Statist. 41 (2013) 802–837],
where the goal is to cover not the true parameter but a certain nonstandard
quantity of interest that depends on the selected model. In particular, we com-
pare the PoSI-intervals that are proposed in that reference with the “naive”
confidence interval, which is constructed as if the selected model were correct
and fixed a priori (thus ignoring the presence of model selection). Overall, we
find that the actual coverage probabilities of all these intervals deviate only
moderately from the desired nominal coverage probability. This finding is in
stark contrast to several papers in the existing literature, where the goal is to
cover the true parameter.

Key words and phrases: Confidence intervals, model selection, nonstan-
dard coverage target, AIC, BIC, Lasso.

1. INTRODUCTION AND OVERVIEW

There is ample evidence in the literature that model
selection can have a detrimental impact on subse-
quently constructed inference procedures like confi-
dence sets, if these are constructed in the “naive” way
where the presence of model selection is ignored. Such
results are reported, for example, by Brown (1967);
Buehler and Feddersen (1963); Dijkstra and Veld-
kamp (1988); Kabaila (1998, 2009); Kabaila and Leeb
(2006); Leeb (2006); Leeb and Pötscher (2003, 2005,
2006a, 2006b, 2008a, 2008b); Olshen (1973); Pötscher
(1991, 2006); Pötscher and Leeb (2009); Pötscher and
Schneider (2009, 2010, 2011); Sen (1979); Sen and
Saleh (1987).

Recently, Berk et al. (2013) proposed a new class
of confidence intervals, so-called PoSI-intervals, which
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correct for the presence of model selection, in the
sense that these intervals guarantee a user-specified
minimal coverage probability, even if the model has
been selected in a data-driven way. However, the set-
ting of Berk et al. (2013) differs from earlier studies,
in that they consider confidence intervals for a differ-
ent quantity of interest: In the aforementioned analy-
ses, the quantity of interest (the coverage target) is al-
ways a fixed parameter or subparameter of the data-
generating model. In Berk et al. (2013), on the other
hand, a different and nonstandard coverage target is
considered that depends on the selected model. (Even
if an overall correct model is assumed, that nonstan-
dard coverage target does not coincide with a parame-
ter in the model, except for degenerate and trivial situa-
tions.) By design, the PoSI-intervals hence do not pro-
vide a solution to the more traditional problem, where
the goal is to cover a parameter in the overall model
after model selection.

Berk et al. (2013) motivate the need for PoSI-
intervals by the poor performance of the “naive” in-
terval as observed in the studies mentioned in the first
paragraph of this section. However, these studies do
not deal with the performance of the “naive” proce-
dures post-model-selection when the coverage target is
as in Berk et al. (2013). This raises the question of how
the “naive” interval performs when it is used to cover
the coverage target considered in Berk et al. (2013).
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The main contribution of this paper is to answer this.
In particular, we compare “naive” confidence intervals
and PoSI-intervals in the setting of Berk et al. (2013).
[The results in the present paper are partly based on
Ewald (2012), and we refer to this thesis for additional
results and discussion.]

We find that the minimal coverage probability of
the “naive” interval is slightly below the nominal one,
while that of the various PoSI intervals is slightly
above, when the coverage target is as in Berk et al.
(2013) and when AIC, BIC, or the LASSO are used for
model selection. In the scenarios that we consider, the
coverage probabilities of all these intervals are mostly
within 10% of the nominal coverage probability. In the
more traditional setting where the coverage target is a
parameter in the overall model, however, all these inter-
vals generally fail to deliver the desired minimal cov-
erage probability. (Note that the various PoSI-intervals
are not designed to deal with this coverage target.)
For example, consider the scenario depicted by the
solid curves in Figure 1 on page 222: There, a “naive”
confidence interval post-model-selection with nomi-
nal coverage probability 0.95 has a minimal coverage
probability of about 0.91 and the corresponding PoSI-
interval has a minimal coverage probability of about
0.96, if the coverage target is as in Berk et al. (2013).
But if the coverage target is a parameter in the over-
all model, the minimal coverage probabilities of the
“naive” interval and of the PoSI-interval drop to about
0.56 and 0.62, respectively.

The paper is organized as follows: In Section 2
we introduce the data-generating process, the model-
selection procedures, the coverage targets, and various
confidence procedures, including the PoSI-intervals.
We consider the same assumptions and constructions
as in Berk et al. (2013), as well as some additional con-
fidence intervals. The (minimal) coverage probabilities
of “naive” intervals and of PoSI-intervals are studied
in Sections 3 and 4. In particular, Section 3 contains
an explicit finite-sample analysis of these procedures
in a simple scenario with two nested candidate models.
Section 4 contains a simulation study where we com-
pare these intervals in three more complex scenarios;
the first scenario is also studied by Kabaila and Leeb
(2006), and the other two scenarios are taken from
Berk et al. (2013). (The code used for the computa-
tions in Section 3 and for the simulations in Section 4
is available from the first author on request.) Finally, in
the Appendix we present an example with a coverage
target that is similar to, but slightly different from, that
considered in Berk et al. (2013). The interesting feature
of this example is that the “naive” confidence interval

here is valid, in the sense that its coverage probability
is never below the nominal level.

2. COVERAGE TARGETS AND
CONFIDENCE INTERVALS

Throughout, we consider a set of n homoskedastic
Gaussian observations with mean vector μ ∈ R

n and
common variance σ 2 > 0, that is,

y = μ + u,(2.1)

where u ∼ N(0, σ 2In). We further assume that we have
an estimator σ̂ 2 for σ 2 that is independent of all the
least-squares estimators that will be introduced shortly.
See Remark 2.1(ii) for some cautionary comments re-
garding our assumptions on σ̂ 2. For the estimator σ̂ 2,
we either assume that it is distributed as a chi-squared
random variable with r degrees of freedom multiplied
by σ 2/r , that is, σ̂ 2 ∼ σ 2χ2

r /r , for some r ≥ 1, or we
assume that the variance is known a priori, in which
case we set σ̂ 2 = σ 2 and r = ∞. Unless noted other-
wise, all considerations that follow apply to both the
known-variance case and the unknown-variance case.
The joint distribution of y and σ̂ depends on the param-
eters μ ∈ R

n and σ > 0, and will be denoted by Pμ,σ .
The available explanatory variables are represented

by the columns of a fixed n × p matrix X, where we
allow for p > n; again, see Remark 2.1(ii). We con-
sider models where y is regressed on a (nonempty)
subset of the regressors in X: For each model M ⊆
{1, . . . , p} with M �= ∅, write XM for the matrix of
those columns of X whose indices lie in M . Writing
M as M = {j1, . . . , j|M|} ⊆ {1, . . . , p}, we thus have
XM = (Xj1, . . . ,Xj|M|), where Xj denotes the j th col-
umn of X and where |M| denotes the size of M . Write
M for a user-specified (nonempty) collection of can-
didate models. Throughout, we assume that M con-
sists only of submodels of full column rank, that is, we
assume that the rank of XM equals |M| and satisfies
1 ≤ |M| ≤ n for each M ∈M.

Under a candidate model M ∈M, y is modeled as

y = XMβM + vM,

where βM corresponds to the orthogonal projection
of μ from (2.1) onto the column-space of XM , that is,
βM = (X′

MXM)−1X′
Mμ. The least-squares estimator

corresponding to the model M will be denoted by β̂M ,
that is, β̂M = (X′

MXM)−1X′
My. The working model M

is correct if XMβM = μ; in that case, we have vM = u.
Otherwise, that is, if XMβM �= μ, the working model
is incorrect, and we have vM = μ − XMβM + u. Ir-
respective of whether the working model is correct or
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not, we always have β̂M ∼ N(βM,σ 2(X′
MXM)−1); in

particular, β̂M is an unbiased estimator for βM , irre-
spective of whether or not the model M is correct. As
noted earlier, we assume that the variance estimator σ̂ 2

is independent of the collection of estimators β̂M for
M ∈M.

To pinpoint the regression coefficient of a given re-
gressor Xj in a model M it appears in, we write βj ·M
for that component of βM that corresponds to the re-
gressor Xj for each j ∈ M . Similarly, the components
of β̂M are indexed as β̂j ·M for j ∈ M . This convention
is called “full model indexing” in Berk et al. (2013).

Consider now a model selection procedure, that is,
a data-driven rule that selects a model M̂ ∈ M from
the pool M of candidate models and the resulting
post-model-selection estimator β̂

M̂
. The coverage tar-

get considered in Berk et al. (2013) is β
M̂

or compo-
nents thereof. Note that this coverage target is random,
because it depends on the outcome of the model selec-
tion procedure.

REMARK 2.1. (i) At least one author of the present
paper believes that the merits of β

M̂
as a coverage

target for inference are debatable: For example, the
meaning of the first coefficient of β

M̂
depends on the

selected model and hence also on the training data
(y,X); the same applies to the dimension of β

M̂
. In

particular, we stress that different model selection pro-
cedures (e.g., AIC, BIC, the LASSO, etc.) lead to dif-
ferent targets β

M̂
. We refer to Berk et al. (2013) for fur-

ther discussion and motivation for studying β
M̂

. These
authors make the case for β

M̂
by arguing that the rel-

evant setting is one where no correct overall model is
available; however, in this situation the subsequent re-
mark becomes especially important.

(ii) While the model (2.1) is nonparametric, the dis-
tributional requirements on σ̂ 2 obviously are rather re-
strictive. However, these are the assumptions underly-
ing the analysis in Berk et al. (2013), and we adopt
them here in order to be in line with that reference.
A leading case where these requirements are fulfilled
is when (2.1) is replaced by the parametric model
y = Xβ + u, when X is as before and is assumed to
be of full column rank p < n, and when σ̂ 2 is the usual
unbiased variance estimator in that model and r is set
to n − p. In this leading case, however, the true pa-
rameter β in the overall model is well-defined and will
then typically be the prime target of statistical infer-
ence, rather than the nonstandard coverage target intro-
duced in Berk et al. (2013). Outside of the parametric
model just discussed, the requirements on σ̂ 2 made in

Berk et al. (2013), and also here, will only be satisfied
in certain special cases, some of which are discussed
at the end of Section 2.2 in Berk et al. (2013). [The re-
quirements on σ̂ 2 are also fulfilled (with r = n − q), if
we would maintain a true parametric model y = Zθ +u

for some observed n × q matrix Z of rank q < n that
contains X as a submatrix; however, in this case one is
back to the leading case discussed above, after redefin-
ing M appropriately.]

In this paper, we will mainly focus on confidence in-
tervals for the coefficient of one particular regressor in
the selected model. Without loss of generality, assume
that X1 is the regressor of interest and that the cover-
age target is β1·M̂ . To ensure that this quantity is always
well-defined, we assume that the first regressor X1 is
contained in all candidate models under consideration,
that is, we assume that 1 ∈ M for each M ∈ M. We
seek to construct confidence intervals for β1·M̂ that are
of the form

β̂1·M̂ ± Kσ̂1·M̂
for some constant K > 0, with σ̂ 2

1·M defined by σ̂ 2
1·M =

σ̂ 2[(X′
MXM)−1]1,1, where [· · ·]1,1 denotes the first di-

agonal element of the indicated matrix. Here, we abuse
notation and write a ± b for the interval [a − b, a + b].
For a given level 1 − α with 0 < α < 1, the constant K

should be chosen such that the minimal coverage prob-
ability is at least 1 − α, that is, such that

inf
μ,σ

Pμ,σ (β1·M̂ ∈ β̂1·M̂ ± Kσ̂1·M̂) ≥ 1 − α.(2.2)

Because the distribution of (β̂1·M − β1·M)/σ̂1·M is
independent of unknown parameters and also indepen-
dent of M , it follows, for fixed M , that a confidence
interval for β1·M with minimal coverage probability
1−α is given by the textbook interval β̂1·M ±KNσ̂1·M ,
where KN is the (1 − α/2)-quantile of the distribution
of (β̂1·M − β1·M)/σ̂1·M—a standard normal distribu-
tion in the known-variance case and a t-distribution
with r degrees of freedom in the unknown-variance
case. In view of this, it is tempting to consider, as a con-
fidence interval for β1·M̂ , the interval β̂1·M̂ ± KNσ̂1·M̂ .
Because this construction ignores the model selection
step and treats the selected model M̂ as fixed, we will
call this the “naive” confidence interval.

The PoSI-interval developed in Berk et al. (2013) is
obtained by first constructing simultaneous confidence
intervals for the components of βM that are centered
at the corresponding components of β̂M , for each M ∈
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M, with coverage probability 1 − α: More formally,
the PoSI-constant KP is the unique solution to

inf
μ,σ

Pμ,σ (βj ·M ∈ β̂j ·M ± KP σ̂j ·M : j ∈ M,M ∈M)

(2.3)
= 1 − α,

where the quantities σ̂ 2
j ·M are defined like σ̂ 2

1·M but
with j replacing 1. By construction, the PoSI-constant
KP is such that we obtain simultaneous confidence in-
tervals for the components of β

M̂
that are centered at

the corresponding components of β̂
M̂

. In other words,
(2.3) implies

inf
μ,σ

Pμ,σ (β
j ·M̂ ∈ β̂

j ·M̂ ± KP σ̂
j ·M̂ : j ∈ M̂)

(2.4)
≥ 1 − α.

In particular, (2.2) holds when KP replaces K . For
computing the constant KP , we note that the prob-
ability in (2.3) can also be written as Pμ,σ (|β̂j ·M −
βj ·M |/σ̂j ·M ≤ KP : j ∈ M,M ∈ M). This probability
is not hard to compute, because it involves only the
random variables (β̂j ·M − βj ·M)/σ̂j ·M , which are (de-
pendent) standard normal in the known-variance case
and (dependent) t-distributed in the unknown-variance
case, with an obvious dependence structure only de-
pending on X. In particular, the probability in (2.3)
does not depend on μ or σ 2. Similar considerations
apply, mutatis mutandis, to the constant KP 1 that is in-
troduced in the following paragraph.

A modification of the preceding procedure, which is
also proposed in Berk et al. (2013), is useful when in-
ference is focused on a particular component of β

M̂
,

instead of on all components. Recall that the cover-
age target in (2.2) is the first component of β

M̂
, that

is, β1·M̂ . The PoSI1-constant KP 1 provides simultane-

ous confidence intervals for β1·M centered at β̂1·M for
each M ∈ M. In particular, KP 1 is the unique solution
to

inf
μ,σ

Pμ,σ (β1·M ∈ β̂1·M ± KP 1σ̂1·M :M ∈M)

(2.5)
= 1 − α.

Again, by construction, (2.2) holds when KP 1 re-
places K .

Like the PoSI-constants discussed so far, other pro-
cedures for controlling the family-wise error rate can
be used. Consider, for example, Scheffé’s method: Re-
call that X denotes the matrix of all available explana-
tory variables, and note that (β̂j ·M − βj ·M) is a lin-
ear function of Y − μ, that is, a function of the form

υ ′(Y − μ), for a certain vector υ �= 0 in the span of X.
The Scheffé constant KS is chosen such that

Pμ,σ

(
sup

ν∈span(X)

ν �=0

ν′(Y − μ)

σ̂‖ν‖ ≤ KS

)
= 1 − α.

Then the relations (2.4) and, in particular, (2.2) hold
when KS replaces both K and KP . Note that the prob-
ability in the preceding display does not depend on μ

and σ , and that the constant KS is easily computed as
follows: Let s denote the rank of X. In the known-
variance case, KS is the square root of the (1 − α)-
quantile of a chi-square distribution with s degrees
of freedom. In the unknown-variance case, KS is the
square root of the product of s and the (1−α)-quantile
of an F -distribution with s and r degrees of freedom.

Using the constants KP , KP 1, or KS gives valid con-
fidence intervals post-model-selection, that is, intervals
that satisfy (2.2), because these constants give simul-
taneous confidence intervals for all quantities of in-
terest that can occur; for example, (2.4) follows from
(2.3), which in turn guarantees that (2.2) holds when
KP replaces K . One advantage of this is that a cov-
erage probability of at least 1 − α is guaranteed, irre-
spective of the model selection procedure M̂ (as long
as it takes values in M). In particular, this is guaran-
teed even if the model is selected by statistically inane
methods like the SPAR-procedure mentioned in Sec-
tion 4.9 of Berk et al. (2013). The price for this is that
the PoSI constants KP and KP 1 may be overly conser-
vative for a particular model selection procedure M̂ .
[In this context, we note that equality holds in (2.4) for
the SPAR-procedure, and that equality holds in (2.2)
for a variant of the SPAR-procedure which selects that
model M̂ which maximizes |β̂1·M |/σ̂1·M over M ∈M.
Because such model selection procedures are hard to
justify from a statistical perspective, we will not fur-
ther consider SPAR and its variant here.]

Last, we will also consider the obvious approach
where one chooses the smallest constant K such that
(2.2) is satisfied. We will denote this constant by K∗
(provided it exists). This is, of course, a well-known
standard construction; see Bickel and Doksum (1977),
page 170, for example. By definition, the interval in
(2.2) with K∗ replacing K is the shortest interval of
that form whose minimal coverage probability is 1−α.
Note that K∗ depends on the model selection proce-
dure in question, and that computation of this quantity
can be cumbersome as it requires computation of the
finite-sample distribution of β̂1·M̂/σ̂1·M̂ . However, ex-
plicit computation of this constant is feasible in some



220 H. LEEB, B. M. PÖTSCHER AND K. EWALD

cases [cf. the results in Section 3 and also the more
general results of Leeb and Pötscher (2003)], and this
constant can also be computed or approximated in a
variety of other scenarios [e.g., by adapting the results
of Pötscher and Schneider (2010) or the procedures of
Andrews and Guggenberger (2009)]. Also note that we
have K∗ ≤ KP 1 ≤ KP ≤ KS by construction.

The procedures discussed so far are concerned with
coverage targets like β

M̂
that depend on the selected

model. This should be compared to the more clas-
sical parametric setting where the coverage target is
the underlying true parameter: Assume that the data is
generated by an overall linear model, that is, assume
that the parameter μ in (2.1) satisfies μ = Xβ for the
overall regressor matrix X introduced earlier, and that
rank(X) = p < n holds. And assume that inference is
focused on (components of) the parameter β . In this
setting, the effect of model selection on subsequently
constructed confidence intervals can be dramatic. For
example, Kabaila and Leeb (2006) show that the mini-
mal coverage probability of the “naive” confidence in-
terval for β1, that is, the quantity

inf
β,σ

PXβ,σ (β1 ∈ β̂1·M̂ ± KNσ̂1·M̂),

can be much smaller than the nominal coverage prob-
ability 1 − α; in fact, this minimal coverage proba-
bility can, for example, be smaller than 0.5, depend-
ing on the regressor matrix X in the overall model
y = Xβ + u. The main reason for this more dramatic
effect is that β̂1·M is a biased estimator for β1 whenever
the model M is incorrect, whereas β̂1·M is always un-
biased for β1·M . Of course, valid confidence intervals
post-model-selection can also be constructed when the
coverage target is β1, namely, by replacing KN in the
preceding display by the smallest constant K such that
the resulting minimal coverage probability equals 1−α

(provided it exists). For the computation or approxima-
tions of this constant in particular situations, we refer
to the papers cited in the preceding paragraph.

3. SOME FINITE-SAMPLE RESULTS

In this section we give a finite-sample analysis of the
confidence intervals discussed so far, where we con-
sider a simple model selection procedure that selects
among two nested models using a likelihood ratio test.
More precisely, maintaining the setting of Section 2,
let X now be an n × 2 matrix of rank 2, and assume
that M = {M1,M2} with M1 = {1} and M2 = {1,2}
throughout this section. For the model selector, we
set M̂ = M2 if |β̂2·M2 |/σ̂2·M2 is larger than C, and

M̂ = M1 otherwise, where C > 0 is a user-specified
constant. Arguably, any reasonable model selection
procedure in this setting must be equivalent to a likeli-
hood ratio test, at least asymptotically; cf. Kabaila and
Leeb (2006). In the numerical examples that follow, we
will consider C = √

2, such that the resulting model
selector M̂ corresponds to selection by the classical
Akaike information criterion (AIC); this model selec-
tor is asymptotically equivalent to several other model
selectors, including the GCV model selection criterion
of Craven and Wahba (1978/79) and the Sp criterion of
Tukey (1967); cf. Leeb (2008). Furthermore, we will
also consider C = √

log(n), corresponding to the BIC
model selection criterion. Throughout this section, let
φ(·) and 
(·) denote the density and the cumulative
distribution function (c.d.f.) of the univariate standard
Gaussian distribution, and set �(x, c) = 
(x + c) −

(x − c). And, last, we will write ρ for the correlation
coefficient between the two components of β̂M2 , that is,
ρ = −[(X′

M2
XM2)

−1]1,2([(X′
M2

XM2)
−1]1,1[(X′

M2
·

XM2)
−1]2,2)

−1/2.
The following result describes the coverage proba-

bility of the interval β̂1·M̂ ± Kσ̂1·M̂ in two scenarios,
namely, when the coverage target is β1·M̂ and when the
coverage target is β1·M2 . Note that, in case the model
M2 is correct, that is, if we have μ = Xβ for some
β ∈ R

2, and hence also y = Xβ + u, then this second
scenario reduces to the classical parametric setting de-
scribed at the end of Section 2; in particular, we then
have βM2 = β and, thus, β1·M2 = β1.

PROPOSITION 3.1. In the setting of this section,
we have

Pμ,σ (β1·M̂ ∈ β̂1·M̂ ± Kσ̂1·M̂)

= E

[
�

(
0,

σ̂

σ
K

)
�

(
ζ,

σ̂

σ
C

)

+
∫ (σ̂ /σ )K

−(σ̂ /σ )K

(
1 − �

(
ζ + ρz√
1 − ρ2

,
(σ̂ /σ )C√

1 − ρ2

))

· φ(z) dz

]
and

Pμ,σ (β1·M2 ∈ β̂1·M̂ ± Kσ̂1·M̂)

= Pμ,σ (β1·M̂ ∈ β̂1·M̂ ± Kσ̂1·M̂)

+E

[(
�

(
ρζ√

1 − ρ2
,
σ̂

σ
K

)

− �

(
0,

σ̂

σ
K

))
�

(
ζ,

σ̂

σ
C

)]
,
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with ζ = β2·M2/SD(β̂2·M2), where SD(·) denotes the
standard deviation. The expectations on the right-hand
sides are taken with respect to σ̂ /σ . In the known-
variance case, σ̂ /σ is constant equal to one and the
expectations are trivial; in the unknown-variance case,
σ̂ /σ is distributed like the square root of a chi-squared
distributed random variable with r degrees of freedom

divided by r , that is, σ̂ /σ ∼
√

χ2
r /r .

PROOF. The statements for the known-variance
case are simple adaptations of the finite-sample state-
ments of Proposition 3 in Kabaila and Leeb (2006). For
the unknown-variance case, it suffices to note that σ̂ /σ

is independent of {β̂M1, β̂M2}. With this, the statements
are then obtained by conditioning on σ̂ /σ and by us-
ing the formulae for the known-variance case derived
earlier. �

Proposition 3.1 provides explicit formulas that also
allow us to compute (minimal) coverage probabili-
ties numerically. For the following discussion, fix the
values of C and K , that is, the critical value C of
the hypothesis test that is used for model selection
and the value K that governs the length of the confi-
dence interval post-model-selection. We first note that
Pμ,σ (β1·M2 ∈ β̂1·M̂ ± Kσ̂1·M̂) is strictly smaller than

Pμ,σ (β1·M̂ ∈ β̂1·M̂ ± Kσ̂1·M̂) whenever ρζ �= 0, be-
cause the two probabilities differ by a correction term
(namely, the expected value on the right-hand side of
the second display in Proposition 3.1) which is neg-
ative whenever ρζ �= 0. If ρζ = 0, the two proba-
bilities are equal. And if ρ = 0, it is easy to see
that both probabilities are equal to E[�(0,Kσ̂/σ)] =
F(K) − F(−K), irrespective of ζ , where F denotes
the c.d.f. of a t-distribution with r degrees of freedom
in the unknown-variance case and the standard Gaus-
sian c.d.f. in the known-variance case. Next, we note
that the coverage probabilities depend only on r , ζ ,
and ρ. (Recall that r denotes the degrees of freedom
of σ̂ 2 in the unknown-variance case, and that we have
set r = ∞ in the known-variance case.) Note that ζ

is a function of the regressor matrix XM2 and of the
unknown parameters μ and σ 2, while ρ is a function
of XM2 only. Moreover, it is easy to see that the cov-
erage probabilities are symmetric both in ζ and in ρ

around the origin. Concerning the influence of r , it
can be shown that the coverage probabilities for the
known-variance case provide a uniform approximation
to those in the unknown-variance case, uniformly in the
unknown parameters, where the approximation error
goes to zero as r → ∞; this follows from the results of

Leeb and Pötscher (2003) using standard arguments. In
the examples that follow, we found that the results for
the known-variance case and for the unknown-variance
case are similar, and that these results are visually hard
to distinguish from each other, unless r is extremely
small like, for example, 3. We therefore focus on the
known-variance case in the following because it pro-
vides a good approximation to the unknown-variance
case as long as r is not too small.

We proceed to comparing the case where the cov-
erage target is β1·M̂ as in Berk et al. (2013) with the
more standard case where the coverage target is the
parameter β1·M2 , in terms of the coverage probabili-
ties of confidence intervals post-model-selection. Re-
call that the nonstandard target depends on the training
data as well as on the model selection procedure em-
ployed, whereas the standard target does not. Consider
first the case where C = √

2, corresponding to the AIC
model selector. For several of the confidence intervals
introduced in the preceding section, the results are vi-
sualized in Figure 1, for the case where the coverage
target is β1·M̂ (top panel) and for the case where the
coverage target is β1·M2 (bottom panel). Note that the
range of the vertical axes (displaying coverage proba-
bility) in the two panels is quite different.

In each panel of Figure 1, we see that the effect of
model selection on the resulting coverage probabilities
depends on the correlation coefficient ρ, with larger
values of ρ corresponding to smaller minimal cover-
age probabilities. But the strength of the effect varies
greatly with the scenario, that is, on whether the cov-
erage target is β1·M̂ or β1·M2 . When the coverage tar-
get is β1·M̂ (top panel in Figure 1), we see that the
effect of model selection is comparatively minor: The
smallest coverage probabilities are always obtained for
the “naive” interval, whose coverage probability here
can be smaller as well as larger than the nominal 0.95.
Irrespective of the true parameters, the actual cover-
age probability of the “naive” interval is quite close to
the nominal one here. The other intervals, that is, the
PoSI1-, the PoSI-, and the Scheffé-interval, all have
coverage probabilities larger than 0.95. (The minimal
coverage probabilities here are obtained for ζ = 0, but
we found this not to be the case for other model se-
lection procedures, i.e., for other values of C.) When
the coverage target is β1·M2 (bottom panel in Figure 1),
however, we get a very different picture: For ρ = 0.9,
the minimal coverage probability of all the intervals
considered there is much smaller than 0.95, with min-
ima between 0.55 (“naive”) and 0.65 (Scheffé). For
ρ = 0.5, the minimal coverage probabilities of the
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FIG. 1. Coverage probability of several confidence intervals in
the known-variance case, as a function of the scaled parame-
ter ζ = β2·M2/SD(β̂2·M2), using the model selection procedure

with C = √
2, that is, AIC. The nominal coverage probability is

1−α = 0.95, indicated by a gray horizontal line. The coverage tar-
get is β1·M̂ (top panel) and β1·M2 (bottom panel). In each panel,
the four solid curves are computed for ρ = 0.9, and the four dashed
curves are for ρ = 0.5. The curves in each group of four are or-
dered: Starting from the top, the curves show the coverage proba-
bilities for KS (Scheffé), KP (PoSI), KP 1 (PoSI1), and KN (naive).

“naive” interval and of the PoSI1-interval are below,
while those of the other intervals are above, the nom-
inal 0.95. For very small values of ρ, the coverage
probabilities of all the intervals considered in Figure 1
are visually indistinguishable from horizontal lines as
a function of ζ (and hence are not shown here), irre-
spective of the coverage target. For ρ = 0.1, for exam-
ple, the coverage probability of the “naive” interval is
about 0.95, while that of the other intervals is above
0.95, ordered by their length. (This should not come

as a surprise since in case ρ = 0 model selection has
no effect on estimating the regression coefficients; fur-
thermore, the two targets are identical in this case.)

Figure 1 illustrates that the coverage probability of
confidence intervals post-model-selection depends cru-
cially on whether the coverage target is β1·M̂ as in
Berk et al. (2013) or the more classical coverage tar-
get β1·M2 . We stress here again that the PoSI-intervals
and the Scheffé-interval have not been designed to deal
with the case where the coverage target is β1·M2 . For
a more detailed analysis of the “naive” interval in the
case where the coverage target is β1·M2 , we refer to
Kabaila and Leeb (2006).

For the other values of C that we consider, that is, for
C = √

log(n) for various values of n, we found the fol-
lowing: When the coverage target is β1·M̂ , the results
are very similar to those shown in the top panel of Fig-
ure 1. To conserve space, we do not show these results
here. When the target is β1·M2 , the resulting curves are
of the same shape but steeper, with coverage proba-
bilities decreasing as C increases. This is so because
larger values of C lead to more frequent selection of the
smaller model M1, causing more bias in the resulting
post-model-selection estimator; we refer to Leeb and
Pötscher (2005) and, in particular, Figure 3 in that ref-
erence, for further discussion and analysis of this phe-
nomenon.

We next compare the confidence intervals for β1·M̂
introduced in Section 2 through their minimal cover-
age probability as a function of the correlation coef-
ficient ρ. In particular, for various values of C, we
compute the quantity on the left-hand side of (2.2)
for specific K’s, namely, for KN (“naive”), for KP

(PoSI), for KP 1 (PoSI1), for KS (Scheffé), and for
K∗ (the smallest valid K). By construction, we have
K∗ ≤ KP 1 ≤ KP ≤ KS , so that the resulting curves of
minimal coverage probabilities are also arranged in in-
creasing order.

All the minimal coverage probabilities shown in Fig-
ure 2 are within 5% of the nominal level 0.95. For the
“naive” intervals corresponding to KN (the first four
curves from the bottom), the minimal coverage prob-
ability is below 0.95 (except for the trivial case where
ρ = 0), but not by much. The intervals with K∗ have
minimal coverage probabilities of exactly 0.95, for ev-
ery value of C, by construction (but note that K∗ de-
pends on C, whereas KS , KP , KP 1, and KN do not).
Hence, the curves corresponding to the K∗’s for the
four values of C considered here are constant and sit
on top of each other. And, again by construction, all
other intervals are slightly too large in the sense that
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FIG. 2. Minimal coverage probabilities of the confidence inter-
vals for β1·M̂ as a function of ρ in the known-variance case,

for C = √
2 (solid curves), C = √

log(10) (dashed curves),
C = √

log(100) (dot-dashed curves), and C = √
log(1000) (dot-

ted curves). The nominal coverage probability is 1 − α = 0.95. For
each value of C, the corresponding five curves are ordered: Start-
ing from the top, the curves correspond to the intervals with KS ,
KP , KP 1, K∗, and KN .

their minimal coverage probability exceeds the nomi-
nal level 0.95. Concerning the influence of C, we see
that larger values of C correspond to slightly larger
minimal coverage probabilities for the intervals cor-
responding to KN , KP 1, KP , and KS , and for most
values of ρ; it should be noted, however, that—in con-
trast to the case of the standard target—here the target
changes with C. Overall, the difference between the
coverage probabilities of all these intervals is not dra-
matic.

Last, we compare the confidence intervals for β1·M̂
through the values of the constants K that correspond
to the intervals in question. By construction, KS and
KN are constant as a function of ρ. Note that the
constants KN , KP , KP 1, and KS do not depend on
the model selection procedure that is being used (and
thus not on C), while the constant K∗ does depend on
the model selection procedure (and thus on C). For a
given model selection procedure, the constant K∗ is the
smallest number K for which (2.2) holds; in particular,
the interval corresponding to K has minimal coverage
probability smaller/equal/larger than 1 − α if and only
if K is smaller/equal/larger than K∗.

The interpretation of Figure 3 is similar to that of
Figure 2, the main difference being that the lengths
considered here are somewhat more distorted than the
minimal coverage probabilities considered earlier. The
“naive” interval is up to about 10% too short, while the
intervals corresponding to KP 1, KP , and KS are too

FIG. 3. The constants K that govern the width of the confidence
intervals as a function of ρ in the known-variance case, using the
model selection procedure with critical value C. The nominal cov-
erage probability is 1 − α = 0.95. Starting from the top, the five
solid curves show KS , KP , KP 1, K∗ for C = √

2 (AIC), and KN .
The remaining curves show K∗ for C = √

log(10) (dashed curve),
for C = √

log(100) (dash-dotted curve), and for C = √
log(1000)

(dotted curve).

long, namely, by up to about 5%, 15%, 25%, respec-
tively. We also see that K∗ decreases as C increases
for most values of ρ, which is consistent with the ob-
servations made in the second-to-last paragraph.

4. SIMULATION STUDY

We now compare the “naive” interval, the PoSI1 in-
terval, and (a variant of) the PoSI interval for β1·M̂
by their respective minimal coverage probabilities in
a simulation study where the data are generated from a
Gaussian overall linear model Mfull, say, of the form
Y = Xβ + u with 30 observations, 10 explanatory
variables, and i.i.d. standard normal errors. Moreover,
we also study these intervals when the coverage tar-
get is β1 = β1·Mfull (instead of β1·M̂ ). For the estima-
tor σ̂ 2, we use the usual unbiased variance estimator
obtained by fitting the overall model; hence, we have
r = n − p = 20 here. [To be precise, while the con-
stants KN as well as KP 1 are computed as detailed in
Section 2, we consider instead of KP defined by (2.3)
the larger constant KP ′ which is obtained from (2.3)
when M is replaced by the collection of all nonempty
subsets of {1, . . . , p}. We shall refer to the resulting in-
terval also as a PoSI-interval in this section. The reason
for this choice is that code for computing KP ′ is pub-
licly available from the authors of Berk et al. (2013),
so that KP ′ is the PoSI-constant likely to be used by
practitioners. Note that KP 1 ≤ KP ≤ KP ′ holds, and
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hence the performance of the interval based on KP can
be easily deduced from Table 1.]

As model selectors, we consider AIC, BIC, and the
LASSO: For AIC we use the step() function in R
with its default settings, subject to the constraint that
the regressor of interest, that is, the first one, is al-
ways included; this corresponds to minimizing the AIC
objective function through a greedy general-to-specific
search over the 29 candidate models (i.e., M consists
of all submodels of the overall model that contain the
first regressor). Similarly, for BIC we use the step()
function with the penalty parameter equal to log(30).
And for the LASSO, we basically select those regres-
sors for which the LASSO-estimator has nonzero co-
efficients. [More precisely, we use the lars package
in R and follow suggestions outlined in Efron et al.
(2004), Section 3.4: To protect the regressor of inter-
est (the first one), we first compute the residual of
the orthogonal projection of y on the first regressor;
write ỹ for this residual vector, and write X̃ for the re-
gressor matrix X with the first column removed. We
then compute the LASSO-estimator for a regression
of ỹ on X̃ using the lars() function; the LASSO-
penalty is chosen by 10-fold cross-validation using the
cv.lars() function (in both functions, we set the
intercept parameter to FALSE, and otherwise use
the default settings). The selected model is comprised
of those regressors in X̃ for which the corresponding
LASSO coefficients are nonzero, plus the first column
of X.]

Three designs are considered for the design matrix
X: For design 1, we take the regressor matrix from
the data-example from Section 3 of Kabaila and Leeb
(2006) (for which the minimal coverage probability of
a “naive” nominal 95% interval for β1, based on a dif-
ferent variance estimator, was found to be no more
than 0.63 in that paper). For design 2 and 3, respec-
tively, we consider the exchangeable design and the
equicorrelated design studied in Sections 6.1 and 6.2
of Berk et al. (2013). The exchangeable design is such
that the corresponding PoSI-constant is small asymp-
totically, and the equicorrelated design corresponds to
a large PoSI-constant asymptotically; cf. Theorem 6.1
and Theorem 6.2 in Berk et al. (2013). For the equicor-
related design (design 3), the difference between the
PoSI-interval and the “naive” interval is thus expected
to be most pronounced.

More precisely, for the first design, we take the re-
gressor matrix from a data set from Rawlings, Pan-
tula and Dickey (1998) (page 179), where the response

is peak flow rate from watersheds, and where the ex-
planatory variables are rainfall (inches), which is the
regressor of interest here, that is, the first column of X,
as well as area of watershed (square miles), area imper-
vious to water (square miles), average slope of water-
shed (percent), longest stream flow in watershed (thou-
sands of feet), surface absorbency index (0 = complete
absorbency; 100 = no absorbency), estimated soil stor-
age capacity (inches of water), infiltration rate of wa-
ter into soil (inches/hour), time period during which
rainfall exceeded 1/4 inch/hour, and a constant term
to include an intercept in the model. Logarithms are
taken of the response and of all explanatory variables
except for the intercept. For the second design, we de-
fine X(p)(a) as in Section 6.1 in Berk et al. (2013)
with p = 10 and we choose a = 10 here, and we set
X = UX(p)(a), where U is a collection of p orthonor-
mal n-vectors obtained by first drawing a set of p

i.i.d. standard Gaussian n-vectors and then applying
the Gram–Schmidt procedure. And for the third de-
sign, we define X(p)(c) as in Section 6.2 in Berk et al.
(2013), but such that the regressor of interest is the first
one, where we choose c = √

0.8/(p − 1), and we set
X = V X(p)(c), where V is obtained by drawing an in-
dependent observation from the same distribution as
U before. (Because we consider only orthogonally in-
variant methods here, the coverage probabilities under
study are invariant under orthogonal transformations of
the columns of the design matrix. In particular, the cov-
erage probabilities for the second and for the third de-
sign actually do not depend on the matrices U and V .)

For each of the three design matrices, we simulate
coverage probabilities under the model Y = Xβ +u for
randomly selected values of the parameter β , we iden-
tify those β’s for which the simulated coverage proba-
bility gets small, and we correct for bias as explained in
detail shortly. For example, consider the case where the
coverage target is β1 and where the “naive” confidence
interval is used with AIC as the model selector. We first
select 10,000 parameters β by drawing i.i.d. samples
from a random p-vector b such that Xb follows a stan-
dard Gaussian distribution within the column-space of
X. For each of these β’s, we approximate the corre-
sponding coverage probability by the coverage rate ob-
tained from 100 Monte Carlo samples. In particular, we
draw 100 Monte Carlo samples from the overall model
using β as the true parameter. For each Monte Carlo
sample, we compute the model selector M̂ and the
resulting “naive” confidence interval, and we record
whether β1 is covered or not. The 100 recorded results
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TABLE 1
Smallest coverage probabilities (rounded to two digits of accuracy after the comma) found

in MC study for the coverage targets β1·M̂ , and β1, using AIC, BIC, and the LASSO for
model selection, for the PoSI-interval, the PoSI1-interval, and the “naive” interval,

each with nominal coverage probability 0.95

Coverage Model Confidence Design 1 Design 2 Design 3
target selector interval (watershed) (exchangeable) (equicorr.)

β1·M̂ AIC PoSI 1.00 1.00 0.99
PoSI1 0.99 0.99 0.98
Naive 0.89 0.92 0.81

BIC PoSI 1.00 1.00 0.99
PoSI1 0.98 0.99 0.98
Naive 0.89 0.86 0.84

LASSO PoSI 1.00 1.00 1.00
PoSI1 1.00 1.00 1.00
Naive 0.95 0.95 0.93

β1 AIC PoSI 0.85 0.91 0.83
PoSI1 0.76 0.91 0.77
Naive 0.62 0.82 0.54

BIC PoSI 0.62 0.65 0.48
PoSI1 0.51 0.66 0.43
Naive 0.43 0.51 0.26

LASSO PoSI 0.09 0.12 0.05
PoSI1 0.08 0.12 0.03
Naive 0.07 0.10 0.01

are then averaged, resulting in a coverage rate that pro-
vides an estimator for the coverage probability of the
interval if the true parameter is β . After repeating this
for each of the 10,000 β’s, we compute the resulting
smallest coverage rate as an estimator for the minimal
coverage probability of the confidence interval. The
smallest coverage rate, as an estimator for the smallest
coverage probability (over the 10,000 selected β’s), is
clearly biased downward. To correct for that, we then
take those 1000 parameters β that gave the smallest
coverage rates and re-estimate the corresponding cov-
erage probabilities as explained earlier, but now using
1000 Monte Carlo samples. For that parameter β that
gives the smallest coverage rate in this second run, we
run the simulation again but now with 500,000 Monte
Carlo samples, to get a reliable estimate of the corre-
sponding coverage probability. This procedure is also
used, mutatis mutandis, to evaluate the performance of
the PoSI1-interval and of the PoSI-interval (with con-
stant KP ′ ), with AIC, BIC, and the LASSO as model
selectors, and also in the case where the coverage target
is β1·M̂ . We stress here that the smallest coverage rates
found by this procedure are simulation-based results
obtained by a stochastic search over a 10-dimensional

parameter space, and thus only provide approximate
upper bounds for the true minimal coverage probabil-
ities (cf., e.g., the results for the PoSI-interval and the
PoSI1-interval, when the coverage target is β1, when
BIC is used for model selection, and when the second
design matrix is used for X). Table 1 summarizes the
results.

For AIC and BIC, the results of the simulation study
reinforce the impression already gained in the theo-
retical analysis in Section 3: When the coverage tar-
get is β1·M̂ , the PoSI1-interval as well as the PoSI-
interval are somewhat too long and the “naive” in-
terval is somewhat too short, resulting in moderate
over- and under-coverage, respectively. Both over- and
under-coverage are more pronounced than in the sim-
ple model studied in Section 3. In contrast, when the
coverage target is β1, then the actual coverage proba-
bility of all intervals can again be far below the nominal
level. As expected, the difference between the “naive”
interval and the PoSI1-interval (resp., PoSI-interval)
is most pronounced for design 3. The results for BIC
are quite similar to those for AIC, when the cover-
age target is β1·M̂ ; but when the target is β1, all in-
tervals based on BIC have poorer coverage properties
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compared to the intervals based on AIC, with minima
close to, or below, 0.5 in some cases. This is because
BIC selects smaller models than AIC, typically causing
more bias in the resulting post-model-selection estima-
tor [that phenomenon is analyzed in greater detail in
Leeb and Pötscher (2005) and Pötscher (2009)]. The
results for the LASSO stand out: When the coverage
target is β1·M̂ , the PoSI1-interval (resp., PoSI-interval)
gives smallest probabilities very close to one, while
the smallest coverage probability of the naive interval
is very close to the nominal level (0.95). But when
the coverage target is β1, all intervals have smallest
coverage probabilities of around 0.1 and below. The
reason for this is that the LASSO model selector, as
implemented here and for the parameters used in the
stochastic search for the smallest coverage probabil-
ity, selects the smallest possible model in most cases,
that is, the model containing only the first regressor.
In other words, the model selected by the LASSO is
“nearly nonrandom.” When the target is β1·M̂ , this en-
tails that the naive interval is approximately valid and
that both PoSI intervals are too large. [Indeed, the naive
interval is valid if the underlying model selector always
chooses a fixed (nonrandom) model; cf. the discussion
following (2.2).] But when the target is β1, the model
selected by the LASSO typically suffers from severe
bias, resulting in very small coverage probabilities for
all intervals.

Other model selectors can, of course, give results
different from those in Table 1. The model selectors
chosen here represent a selection of popular methods
from the contemporary literature that exhibit an inter-
esting range of possible scenarios for the minimal cov-
erage probabilities of confidence intervals post-model-
selection.

APPENDIX: CONFIDENCE SETS UNDER
ZERO-RESTRICTIONS POST-MODEL-SELECTION

Let y and σ̂ 2 be as in Section 2, and consider M =
{M0,M1}, where each of the two candidate models Mi

is full rank. Suppose we are interested in the coeffi-
cient of the first regressor X1, that is assumed present
in M1 but absent in M0. In the notation introduced in
Section 2, we thus have 1 ∈ M1 and 1 /∈ M0. Let M̂ be
any model selection procedure that chooses only be-
tween M0 and M1. As the model-dependent coverage
target, we consider the coefficient of X1, which is not
restricted under M1, and which is restricted to zero un-
der M0. More precisely, set bM1 = β1·M1 , set bM0 = 0,

and let the target be b
M̂

. We consider a “naive” confi-
dence interval for b

M̂
that is defined as

I
M̂

=
{

β̂1·M1 ± kN σ̂1·M1, if M̂ = M1,

{0}, if M̂ = M0,

where kN is chosen so that Pμ,σ (β1·M1 ∈ β̂1·M1 ±
kN σ̂1·M1) = 1 − α. [The constant kN is the (1 −
α/2)-quantile of a standard normal distribution in the
known-variance case and the (1 −α/2)-quantile of a t-
distribution with r degrees of freedom in the unknown-
variance case.] The actual coverage probability of I

M̂
,

as a confidence interval for b
M̂

, is at least equal to the
nominal coverage probability 1 − α, because

Pμ,σ (b
M̂

∈ I
M̂

)

= Pμ,σ (β1·M1 ∈ IM1 and M̂ = M1)

+ Pμ,σ

(
0 ∈ {0}, M̂ = M0

)
= Pμ,σ (β1·M1 ∈ IM1 and M̂ = M1)

+ Pμ,σ (M̂ �= M1)

= Pμ,σ (β1·M1 ∈ IM1 or M̂ �= M1) ≥ 1 − α,

where the inequality in the last step holds in view of
the choice of kN .
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