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1. — Introduction.

The notion of a bimeasure in a bilinear functional sense has been studied by
M. MorsE and W. TRANSUE in a series of papers (cf. e.g. [12-16]) and E. THoMAS [20].
The bimeasures considered by these authors are (separately or, equivalently, jointly)
continuous sealar valued bilinear forms defined on the Cartesian product of the
spaces J(8;) and J{S,) of continnous functions with compact support on the locally
compact Hausdorff spaces 8, and 8, (J(8,) being equipped with the usual locally
convex inductive limit topology). The approgch in the present article, where (vector)
bimeasures are defined as (vector valued) separately ¢-additive funections on the
Cartesian product of two og-algebras, is motivated by a desire to find an analogue
of the Riesz (-Markov-Kakutani) representation theorem and its vector generaliza-
tion (cf.[1],[6]) which says that the weakly compact operators from C,(8) to X
(where X is a Banach space, § is a locally compact Hausdorif space, and C,(8) is
the space of continuous scalar functions on 8 vanishing at infinity, equipped with the
supremum norm) are via integration in a bijective correspondence with the regular
X-valued Borel vector measures on §. In the scalar case a Riesz type representa-
tion theorem in some form seems to be part of the folklore of the subject (see e.g.
E. Thomas’s review of [5] in Math. Reviews, 46, no. 9285}, though we haven’t seen
any proof in the generality involving bounded bilinear forms on C,(8;) x Cy(8.) for
arbitrary locally compact Hausdorff spaces §; and 8. In this connection it may
be observed that the early history of the representation of bilinear forms (see[7])
is eclosely related (even temporally) to F. Riesz’s pioneering work on the representa-
tion of linear forms.

Our main representation theorem is Theorem 6.9. That result resembles the
vector generalization of the Riesz representation theorem. The counterpart of a
weakly compact operator is here a bounded bilinear operator B: Co(8:) X C4(8,) - X
whose canonical extension (i.e. the unique separately weak*-to-weak* continuous
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extension B,: 0,(8;)" X Co(8,) — X" of B; such an extension is shown to always
exist) maps Og(81)" X Co{8,)” into X. These bilinear operators are shown to be via
integration (this term is made precise in Section b) in a bijective correspondence
with the mappings f: B, x B, —~ X (B, is the Borel s-algebra of §;) for which
BB, -): B,—X and (-, F): $,— X are regular vector measures for all e B,
FeB,. Such a mapping g is called a (separately regular) vector bimeasure.

In general, a vector bimeasure in our fterminology is a separately o-additive
mapping B: Xy x X, —+ X where X, and 2, are c-algebras. In Section 5 we develop
a theory of integration of a pair of functions with respect to a vector bimeasure
in much greater generality than would be necessary for the representation theorem
(where the consideration of continuous functions vanishing at infinity suffices).
The semivariation of a vector bimeasure is discussed in Secfion 4. In Section 3 we
deal with some aspects of the theory of vector measures needed in the sequel.

Onee we have the correspondence between the separately regular vector bimeas-
ures f: B, X By->X and the class of bilinear operators B: Cy(S;) X 0y(8,) — X spe-
cified above, another approach to the integration of pairs of functions, more closely
reminiscent of the method of Morse and Transue, suggests itself. In Section 7 it
is shown, roughly, that a technique based on the use of the veetor measures cor-
responding to the weakly compact operators

B(-, B): C(S)—>X  and B ): Co(8) > X

for ke 0y(8,), b € Cy(8,), in place of the vector measures f(-, F) and (B, ), F e By,
Ee®,, leads to a theory equivalent to the one developed in Section 5 if and only
if X does not contain any isomorphic copy of e¢,.

2, — Preliminaries and notation.

The notation introduced here will remain fixed throughout the paper. The scalar
field can be either R or C; we use (consistently) the common notation K for both.
We let X always be a Banach space over K. The normed dual of X is denoted
by X', and we write 2'(x) = (&', ) = (&, ') for we X, o' € X'. By definition,
o(X, X') is the weak topology on X and ¢(X’, X)is the weak* topology on X'. The
norm in X and in X’ is denoted by |‘|, and we write e.g. X, = {#' € X': lo'] <1}.
The notation |-| is also used for the norm of a bounded linear or bilinear operator;
thus e.g. |B| = sup {|{B(, ?)|: y€ Y1, 2€ Z,}, if ¥ and Z are also normed spaces
and B: Y xZ— X is a bounded bilinear operator. The adjoint of a bounded linear
operator T is denoted by T'.

In most questions pertaining to integration theory we follow [6]. For j =1, 2,
S, (resp. 8) is a non-empty set, X; (resp. X) is a o-algebra of subsets of 8, (vesp. 8).
A o¢-additive (or, equivalently, weakly g-additive [6, . 3187]) set function y: X—>X
is called a vector measure. The semivariation (in the sense of [6, p. 3207) of a vector
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measure u: 2 —X is denoted by [u[; |«] is a bounded nonnegative-valued ¢-sub-
additive function on 2. If here X = K, u is called a measure, and |u| agrees with
the total variation of u. We usually denote the total variation of a measure y: X'+ K
by v(x) and its Value for a set B € X' by v(u, H). We let ca(8, X) denote the Banach
space [6, p. 161] of the measures p: 2 — K equipped with the norm |u] = v(u, 8)
The p-measurability of a function f: X' — K for yeca(S, 2) is defined in [6, p. 106]
and its Z-measurability in[6, p. 240]. Recall that f is g-measurable if and only if it
is 2*-measurable, where 2* is the Lebesgue extension of 2 relative to u [6, p. 148].
It EcS8, yxz: 8—{0,1} denotes the characteristic function of E.

3. — Measurability and integrability with respect to vector measures.

In this section we present some material on vector measures needed in the
study of vector bimeasures. Throughout, y: X— X is a vector measure. For each
»'€ X', the measure E > (&', u(E)>, Ec X, is denoted by 2'u. An examination
of the steps leading to Corollary 2.4 in [1, p. 294] yields the version of that result
appearing in part (b) of the following lemma. Part (a) is well known and easy to
prove.

Lemma 3.1. — (a) |u|(B) = S:llgl’l)(ﬂ/,ﬂ, E) for oll EcX. (b) There exists a posi-

tive measure 1 € eca(S, X) such that

(1) AB)<|u|(B) for all Ec X, and
(2) lim |u](B)=0.

HE)>0
Let Dc X, be such that for a fized constant C >0 we have sup {|<&', my|: @' € D} >
>Clo| for all x€ X. Then a measure satisfying (1) and (2) can be chosen to be the

o0
sum of an absolutely convergent series Eanv(w,'ly) where a, 18 a positive number and
w,eD for all neN. n=1

The expressions u-null set, u-almost everywhere (abbreviated u-a.e.) and u-meas-
urable function will have the same meanings as in [6, p. 322]. The following result
is analogous to Proposition 2.17 in [20, p. 951

THEOREM 3.2. — Let Dc X, be as in Lemma 3.1. Then a function f: S—K is
p-measurable if and only if f is o u-measurable for every x' e D.

PrOOF. — Let a,> 0, 2, D for ne N and the measure 1= 3 a,0(z,u) be as
n=1

in Lemma 3.1. Denote by Z* (resp. X) the Lebesgue extension of X relative to A
(resp. «'p) [6, p. 143]. We show that

(1) Z¥=[) 22,

a'eD
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Choose Ae) =5 cﬂ 2y . For each ne N there are sets H,c X, N,cS and M,eX

x’eD ==

such that A =E, uNn, N,.c M, and o(a,u, M,) = 0[6, p.142]. Write E = UEn,
n=1
’)NmM QM Then 4 =HUN, EcX, Nc M,and MecX. Since v(a,u, M)<
f=1
<v(mpu, M )__0 for all neN, H{M) = Ean v(@w, uy M) = 0. Thus 4 € Z*. Conver-

ne=1

sely, let BeX*, so that B = F U P, where F e 2 and P c R for some R e X with
MR) = 0. Then v(@'y, R)< |u](R) = 0 for all #’e D, and so Be[)Z,. Since the
x’eD
p-measurability of f is equivalent to its 2*-measurability, and the #'u-measurability
of f is equivalent to ifs Z;-mea,sura,bﬂity, the assertion follows from (1).
A X-measurable function f: § — K which assumes only a finite number of values

is called a ZX-simple function. The definition of the integral f fdu, BelZ, of a
B

2-simple function f is obvious [6, p.322]. The following definition is used e.g. in
[6, p. 323].

DermviTioN 3.3. — A function f: 8§ — K is said to be u-integrable, if there is a
sequence (f,) of X-simple functions converging to j u-a.e. and such that the se-
quence ( f fx d[u,) is (norm) convergent in X for each e 2. We then write

i

5im [fodp=[fau=[fo)uds), Fex.
E E B

REMARK 3.4. — Every py-integrable function f: § -+ K is uy-measurable [6, p.150].
The integral is an unambiguously defined element of X [6, p.323]. We shall use
without explicit mention the well-known fact that, in case X = K, Definition 3.3
is equivalent to Definition 17 in [6, p.112]. A proof could be given by using, for
one direction, Corollary 3 in [6, p. 145], and Egoroff’s theorem and the Vitali-Hahn-
Saks theorem for the other.

The following theorem is closely related to some results in{11], but we give a
complete proof, because in our case f need not be Z-measurable.

THEOREM 3.5. — Let D c X, and € > 0 be as in Lemma 3.1. A function f: 8 —>K
is p-integrable if and only if the following two conditions hold:
i) f s &' u-integrable for each ®' € D;
(ii) lim sup f|f(s)|'v(m’;4, ds) = 0 whenever the sets E,cX satisfy B, ,cH,, neN,
n—>oo 2'€D F,
and () B, =10.
=1

Proor. — Suppose first that f is y-integrable. Clearly, (i) holds [6, p. 324]. Write
wH) =[fdu, BeX. Then »: XX is a vector measure [6, p. 323]. If the sets B,
E
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are as in (ii), then

sup [[f()|o(@, ds) = sup o(@'v, Bu) < [ (Ba) >

mEDE z'eD

as m—> oo (see[6, p.114] and use Lemma 3.1 or e.g. Theorem 1.3 in[11]). Con-
versely, assume (i) and (ii). Since fis g-measurable by Remark 3.4 and Theeorem 3.2,
there is a Z-measurable function f,: § — K which agrees with f u-a.e. (see e.g.[19,
p-145)); in particular, (i) and (ii) hold for f,. Denote E,= {se8: [fy(s)|>n}e X,
neN. For each ne N there is a Z-simple function f,: S— K satisfying f.{s) =0
for se E, and |f.(s)| <|f(8)], Ifa(s)— fo(s)] < 1/n for s S\FH,. Then ,}Ln(}a Fal8) = f4(8),
sef. If '€ D, we have for all Ee 2,

I< f(fﬂ_ fm) d[l, «’E,>1 é.‘Zﬁfo(s)[@(m’ﬂ, ds) ,
BB EEn
and so

f(fn fm) d,u‘ <GS f]fo(s]@m,u,ds .

EEm
If e.g. n>m, B,cE,, so that

1
[Fa(8) — fm(8)| < |Fu(s) — fol8)] 4 Ifo(8) — Fm(3)] <% + -y S€ SNEy.
Thus

lffndﬂ—ffmdﬂi

Ju -—fm)du|+

EEm

-+

f(fn—fm)du] 2 sup f oot d5) + [l 8) (5 + 5.)-

m
BN Em

It follows that ( ffn dy) is a Cauchy sequence in X. By definition f,, and hence f,
is p-integrable. *

The following corollary is essentially (i.e. modulo Theorem 3.2) contained in
Theorem 2.4 in[11].

COROLLARY 3.6. — A function f: 8 — K is y-integrable if and only if the following
two conditions are satisfied:

(i) f is o' p-integrable for each »' € X’;

{ii) for each E € 2 there is v(E) e X (clearly unique) such that {v(E), 2> f fdo'n
for all ' e X'.

If this is the case, then »(B)=[fdu, HeX.
E
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Proor. — Assume (i) and (ii). Since »: 2—X is weakly, hence strongly, c-addi-
tive, condition (ii) of Theorem 3.5 holds when D = X, (see Theorem 20 (a) in
[6, p.114] and use Lemmsa 3.1), so that f is u-integrable. The converse part and
the equation v(#)= f fdu follow from Theorem 8 (f) in [6, p. 324].

E

COROLLARY 3.7. ~ If & function f: S— K is integrable with respect to each of the
vector measures pu: X ->X and v: X— X, then | is (u 4 v)-integrable, and ffd (g -+v)=
_jfciy+ffda) for all BEeX.

Proor. — The above corollary reduces the proof to the standard sealar case.

4. — The Banach space of vector bimeasures.

Recall that X, is a o-algebra of subsets of 8,20, j =1, 2.

DurivitioN 4.1, — If §: 2, x X, — X is separately c-additive, i.e. if f(Z, -) and
B(+, F) are veetor measures for all He ), Fel,, then f§ is called a veetor bi-
measure. In case X = K, B is simply called a bimeasure.

We shall define a norm in the space of vector bimeasures, and for that purpose
we introduce the notion of semivariation. In Section 6 we need the concept also
for separately (finitely) additive mappings, so the definition is formulated in that
generality.

DEFINITION 4.2. — A partition (B}, of a set HelX; is called a 2;-partition, if
E,cX;forallk=1,..., m. Let f: 2 xX,—X be separately additive. For Fe 2,
m n
> 2 ab,plEy, F,)

k=1 p=1

where always (E,)r., is a X-partition of K, (F,):_, is a Zy-partition of F, and
ap, bye K, |a| <1, |b,|<1 for k=1,...,m, p=1,..,n The extended real valued
function (H, F)— |B|(E, F) on X, xZ%, is called the semivariation of f.

FelX,, welet 3] (H, F) denote the supremum of the numbers

LeMMA 4.3. — If B is as in the above definition, and D c X, is such that |o] =
= sup [{@, @")| for oll we X, then |B](E, F)= sup o' of|(B, F) for all E€ 2y, Fel,.
@’e€D a’'eD

PROOF. — If (B,)",, (F,)'.,, and a, b, ave as in Definition 4.2, we have

sup E Eaﬁa o3 0 f{ By, p)

2’eD k=1 p=1

== ’z Ea‘k pﬁEky F,)l .

Thus the assertion follows from elementary properties of the supremum.

In the rest of this section we confine our attention to separately o-additive
functions, although the separately finitely additive case could be treated in an analo-
gous way.
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THEOREM 4.4. — Let f: 2, x 2, — K be o bimeasure, and denote 5,(E) = B(E, -)
for each Ee X\, and B,(F) = p(-, F) for each FeX,. Then the mappings f,: X, —
— ca(8;, Z;) and By: Xy —> ca(Sy, Zy) are vector measures, and |B](S:, 8;) = [ ](8;) =

= [ B2](S)-

Proor. — To show that e.g. 8, is a vector measure, let (E,);2, be a sequence of
pairwise digjoint members of 2;. Since 3}3{10 ﬂ(;cgEM F) exists for all #el,, the
measures ﬁl( C} Ek), neN, form a bounded sequence in ca(S,;, X;) (see Theorem 8
in [6, p. 309] Z;lld Lemma 5 in [6, p. 97]). From Theorem 5 in [6, p. 308] it follows
that the sequence of the measures ,81( {3 E’,c) converges weakly in ca(S,, 2,) to

=1

ﬁl( U E’k) Thus B, is weakly, hence strongly, c-additive. Let now (E,)7_; be a
E=1

Z-partition of 8, and (F,);_, a 2y-partition of 8,, and suppose a,, b, e K, |a] <1,
<1, k=1,...,m, p=1,..,n Then

S S ab.pE,, By .

k=1 p=1

> 0((S b)) | =

p=1 To==1

The supremum of all numbers obtainable in this way as the left hand side of this
equation is easily seen to be ||8:]/(8.), and so [B:[(8:) == |Bll(8}, 8:). The equality
1818, 8) == [B,]1(8,) is proved similarly.

THEOREM 4.5. — (a) For any vector bimeaswre f: Xy xZy—>X
sup {|f(B, F)|: BEe X, Fe X} <|B|(8:, 8y) <16 sup {|f(E, F)|: Ec X, Fe X} <co.

(b) The set of vector bimeasures [: X, X2, X is a Banach space with respect
to the pointwise operations and the norm f > |f](81, Su).

Proor. — (a) The first inequality follows at once from the definition. By the
preceding theorem and Lemma 4 in [6, p. 320],

(@' 0B (81, 85) = (@ o) (Ss) <4 sup o((# 0 B)u(B), ;) <

<4 ;ug (4 ;uga Ka'y BB, F)}}) <l6sup{|f(B, F): Ecl,, Fely;
(334 eZ,

for all #’€ X;, and so the second inequality follows from Lemma 4.3. Finally
[#" 0B (81, 85) = [[(@'oB):](8,) is finite for all #' € X’ by Theorem 4.4 and Lemma 4
in [6, p. 320], i.e. sup {|<o, f(H, F))|: B X, Fe X} < co. Alternatively, this fol-
lows directly from Theorem 8 in [6, p. 309]. By the uniform boundedness principle
sup {|f(E, F)|: BEeX,, FeX,} < co.
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(b) It is elear that the vector bimeasures form a linear space. It is quickly
verified that || -[(8,, 8,) (which is finite by (a)) is 2 norm. To prove the complete-
ness of the space, let (8,) be a Cauchy sequence of vector bimeasures. Then
p(E, F) = lim £.(E, F) exists for all FelX,, Fel,, and the convergence is uni-
form on 2, x2,. A standard argument then shows that g is separately ¢-additive,
and by (@), lim |B,— B1(S:, 8;) = 0.

B>

5. — Integration with respect to a vector bimeasure,

Throughout this section, f: 27 x2,— X is a vector bimeasure. Before consid-
ering the integration of a pair of functions with respect to § we prove an auxiliary
result.

LeMMmA 5.1. — Let f: 8, K be §(-, F)-integrable for every F e X,. Then the set
function Fr—»ffdﬂ(-,li’), Fel,, is c-additive for every Ee X.
B

Proox. — Let us first treat the special case where X = K. Consider the ca(8,, Z,)-
valued vector measure f,, i.e. B > §(E, ) (¢f. Theorem 4.4). Let 1 €ca(S,:, 2,) be
a positive measure satisfying the conditions (1) and (2) of Lemma 3.1 relative to §;.
Each F e X, determines a bounded linear functional y, on ca(8,, 2) by (v, 1> =
== y(F), and the set D = {Z;, F e X,} has the property sup [<», ¢>|>10(v, 8,) for all

el
v € ca(Sy, 2,) [6, p. 97]. Since f is 51~me@sumble by Theorem 3.2, i.e. f is Z'f—meas-

urable where X is the Lebesgue extension of X relative to A, there is a X)-meas-
urable function f,: 8,->K which agrees with f Bi-a.e. (and hence (-, F)-a.e. for
each F e X,) [19, p. 145]. There is a sequence (f,) of X,-simple functions such that
Fa(8)] < |fs(s)] and 7}1_{90 fa(s) = fo(s) for all s 8;. As f, is f(-, F)-integrable for each
Fe X,

n—>o0

lim ff,,dﬁ(-,p) =f—f0d/3(-,1ﬂ) =ffdﬁ(-,ﬁ') for all ¥ e %,
E B B

by the Lebesgue dominated convergence theorem [6, p.151]. Since the set fune-
tion Fis f 1. (-, F), Felk,, is g-additive for each ne N, Corollary 4 in [6, p. 160]
"

shows that Fr> f fap(-, F) is o-additive on 2,. In the case of a general Banach
B

space X the above discussion proves for every »'e X’ the o-additivity of the set
funetion F»(ff ag(., F),m’> =ff d(z'of(-, F)), and so the assertion follows from
£ E

Theorem 1 in [6, p. 318].

The following definition is inspired by [15, p. 482] and the definition in [20, p. 145]
{see, however, Remark 7.3).
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DEFINITION 5.2. — The pair (f, g) of functions f: 8;— K and g: 8, > K is said
to be integrable with respect to the vector bimeasure: §: 2 X2, — X (or f-integrable
for short) if the following three conditions hold:

(i) f is p(-, F)-integrable for all Fe 2,, and g is S(¥, -)-integrable for all
Ee X, (so that one obtains the vector measures ,3(8,, -): 232—>X and B,(-, 8):
2 —~X defined by fﬂ(Sl,F)szdﬁ(-,F), b8, 8,) :Jgdﬁ(E, ), ef. Lemma 5.1);

i) fis B,(+, 8s) 1ntegmb1e and g is ,3(8,, -)-integrable;

(i deﬂg fgdfﬂ (81 °)-
If these conditions hold, each side of the equation in (iii) will be denoted by
[, 9 ap.

Exampre 5.3. — This example shows that in the above definition (iii) does not
follow from (i) and (ii). Choose 8; =8, =N=1{1,2,3,...}, and let X, = Z'Z be the

set of all subsets of N. Let (a,) be a sequence of positive numbers with Za,c < oo
Construct inductively a function f: §; — R for which =1

fl)ay=1¢,>0, fBYa,— f(k— Da,_,=1¢6,>0

for k>2 and Y ¢,<<oco. Then choose a decreasing positive sequence (b;) such that
k=1
2 f(kya, b, < oo (note that f(k)>0), and define the function g: 8, — R by g(n) =

= 1/b Define

B(n}, (m}) = anbn,  Blin}, {0 +1}) = — aubuy

for ne N, and f({m}, n})=0 if m=n=#m -+ 1. Since z Z{ﬁ {m}, {n})| < oo, it fol-

m=1 p=
lows from well-known properties of summable families of numbers that the func-

tion (B, F) ~B(E, F)=73 Y f({m},{n}) on X, x2, is a bimeasure. We have

meE nelF
ffdﬁ( {n}) = Ef(m ) B({m}, {n}) = bu(f(n) 8, — f(n — 1) Gpa) = bpe, if n>2
and [fdB(-,{1}) = f(1)ab,=bye,. Since

721 72 IV (m) B({m}, {n})| zmzlf (M) @ (b, + bnia) <2 i;lf(m) @, b,, < oo,

we can again mse a property of summable families (i.e. the discrete version of
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Fubini’s theorem) to show that for any Fe 2,

S 3 fm)p(m}, () = Z ) 2. B({m}, {n})

nel m=1 m= neF

(absolute convergence). Thus f is (-, F)-integrable and

[rapc, =3 3 fmp(im, (a3) = 3 buc.
8

nel m=1 ner
Since
2 2 |gmplim}, ()] = & + 2 (@n + Gpa) <00,
we see similarly that g is f(E, -)-integrable for every Ee X, and

Jsa6, )= 3 3 gmp(im}, (1) = 3 an(glm)bn—gom + 1)bps) = 0
. for all Ee 2.
Since

[ido. s =0 and  [gaps, )= 3 gmpne,— 5 e>0,
8 =

8y -

conditions (i) and (ii) of Definition 5.2 hold in this example, but (iii) does not.
The next result is an easy consequence of Theorem & in [6, p. 323] and Corol-
lary 3.7.

THEOREM 5.4. — (a) If a;,b,€ K for j=1,2, and if f;: 8, K, g,: 8; > K are
functions such that the pairs (f., g;) for ¢ =1,2, §j=1,2, are f-infegrable, then the
pair (@ fi-+ aafs, Bigs + bas) s f-integrable, and

f(a'1f1+a272’b191+ b,g.) 4, i bffug;

i=1 §=1

(b) Let Y be a Banach space and T: X — Y a bounded linear operator. Then
Tof is @ vector bimeasure, and if the pair (f, g) is f-integrable, it is T of-integrable,

and [(f, g) dTof = T([(f, ) df).

LeMua 5.5. — Let X = K, and let f: 8; — K be B(-, F)-integrable for every F e X,
Then | is Bi-integrable (cf. Theorem 4.4).

Proor. ~ We define ,f(H, F)xffdﬂ(-, F)for BeX,, FeZX,. Then ,f is a bi-
£
measure by Lemma 5.1 and the c-additivity of the indefinite integral (cf. e.g.
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Theorem 20 (a), (b) in[6, p.114]). Thus » where v(E) = (¥, -), Ee X}, is a
ca(S,, X,)-valued vector measure defined on X, (Theorem 4.4). We let x4, € ca(8,, Z,)
for F e X, be as in the proof of Lemma 5.1 and write D == {y,: F cX,}. Let (B,)

be any decreasing sequence of members of X; such that () B,= 0. Then
f==]

sup f{f{s) v(ypopi, ds) = sup v(,f(-, F), E,)

FeZ, L FeZ,

by Theorem 20 (a) in [6, p.114]. But supv(,f(-, F), E.) < |»|(E,) >0 as n—>co
FeZ,

(Lemma 3.1.). Since sup |<4, yz>|>21v(4, S,) for all 1eca(S,, 2,) [6, p. 97], The-

FeZ,
orem 3.5 shows that f is ﬂl-integrable.

The following theorem is analogous to part of the proposition in [20, p. 145].
THEOREM B.6. — For any function f: 8, K the following three conditions are
equivalent:
(1) f s B(-, F)-integrable for oll F e 2,;
(ii} the pair (f, xp) is P-integrable for all Feli;

(iii) the pair (f, g) is [-integrable for every bounded X,-measurable function
g: S~ K.

Proor. —~ 1t is easily verified that (i) implies (ii). Assume now (ii). Let g: S,—K
be bounded and 2,-measurable. Fix #'e X’ and B, ¢ 2, and consider the bimeasure
#'f = a'off. By Theorem 8 (f) in [6, p. 324] and Lemma 5.5, fxg, is integrable with
respect to the ca(S,, 2,)-valued vector measure #'f; (= (#'8),). Let g'e ca(S., Zy)’
be defined by <{g', 2> Sf gdl. As fyg is @'Bi-integrable, it is also infegrable with

respect to the scalar measure g'ox'f, (1.e. wagd(w of(E, -)) = (&', B(E, 8,) )
We have 1

W Jiageapy =g, [favs) =[gd(, a8, ) = (o, [gd,, 505, ).
B, By 82 8

For any He ), we denote by ,S(E, -) the vector measure Fi> j fag-, F), Fel,
(ef. Lemma 5.1), and define »(F fg df(E, -)e X (cf. Theorem 8 (¢) in [6, p. 323]).
Then we get by (1),
@'\ 1B) = (@, [g (68, ) =1 alg'ow'p) = [fa(e/ ofi(-, 8)
8, B E
for all B e X,. From Corollary 3.6 it thus follows that f is B4(, S,)-integrable and
! FaB,(-, 8) = »(8;) = f gd:p(8:, ), i.e. (iii) holds. As (iii) obkusly implies (i}, the

theorem is proved.
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COROLLARY 5.7. — If f: 8, — K is bounded and Z-measurable, and g: 8, ~ K is
bounded and Z,-measurable, then the pair (f, g) is B-integrable, and

| [0 dﬁ{ <818, 82) sup [f(s)] sup |g(2)]

Proor. — The f-integrability of the pair (f, g) follows at once from Theorem 8 (c¢)
in [6, p. 323] combined with the above theorem. (A direct elementary argument
could also be given.) Clearly, we may assume that f and ¢ are bounded in absolute
value by 1. Then

[t 0038 =| [138.0, 89| <1, 821480

by Theorem 8 (¢) in [6,p.323]. Let (E,)*_, be a X-partition of §,, and @, €K,
la)| <1, j=1,..., k. There is a sequence (g,) of X;-simple functions bounded by 1,
converging uniformly to ¢. Since

5;1“;{9‘%/3(Em ')‘ = lim

B> o0

S 50, B8, | <185, 8,

J=1

we have |B,(-, 82)| <]B[(81, 8a).

6. — A Riesz type representation theorem.

Throughout this section, §; and 8, will be locally compact Hausdorff spaces.
For j = 1,2, B, will denote the Borel g-algebra of §,, i.e. $B; is the g-algebra gen-
erated by the open subsets of §;. In the following discussion § will stand for &§;
and B for B,. An additive set function u:PH->X is said to be regular, if for
every A e B and every &> 0 there exist a compact set ¢ and an open set U such
that OcAc U and |u(EB)|<e for all Ee$, BEc UNC. Let rea(S, B, X) denote
the veetor space of the regular vector measures u: $-—>X. We write simply
real(S, B, K) = rea(8, B).

According to the Riesz (-Markov-Kakutani) representation theorem the map-
ping u > ¢, where for perea(S, B) pu € 0y(8)" is defined by the formula f fdp =

B

= {f, pud, € Co(8), is an isometric isomorphism from the closed linear subspace
rea(8, B) of ca(8, B) onto Co(8)" (cf. e.g. [19, p.131]). To simplify notation we
often identify u and ¢,; we then use the common notation M(8) for both of the
spaces rea({S, B) and C,(8)’.

A vector measure u: $-—>X is known to be regular if (and obviously only if)
#'uecrea(S, ) for all #'e X’ (ef. e.g. [9, p.263] or[11, p.159]). The proof of
Corollary 2 in [9, p. 263] shows that for the regularity of y it is in fact sufficient
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that o'y erca{S, $B) for all #' in some subset D of X’ which separates the points
of X. The more elementary technique used in [11] would yield the regularity of p

in case Dc X, is such that for some constant € > 0 sup |<&', z)|> C|»| for all xe X
x'€D
and @'y € rea(S, $) for all »'e D. This generality will suffice for our purposes.
The next result can (essentially) be found e.g. in [6, p. 493]; clearly the proof

given there also works in the case of a locally compact space § and C,(S).

LEMMA 6.1. ~ For perea(S, B, X) and fe Cy(S) write Tyf=[fdu. Then p > Ty
8

is a linear bijection from rea(S, B, X) onto the set of all weakly compact linear oper-
ators T': Co(8) — X. Moreover, |Tyu| = |u|(8) for all yerealS, B, X).

REMARK 6.2. —~ We shall always regard X canonically as a clogsed linear sub-
space of X’. Let T: Cy{8)-—> X be a bounded linear operator and 7": M(S) -+ X"
its second adjoint. For He B we write u(E) = T"y,e€ X" where y,e M(S8)" is de-
fined by {y%, > = AM(H), 1€ M(8). Then T is weakly compact if and only if u(E)e X
for all e, and in this case perea(S, B, X} and 7 = T,{6, p.493]. It was
observed in [3, p. 154] that the ¢-additivity of the set function u: B— X" already
implies the weak compactness of 7. Here is a proof of this fact, Since 7}—1»190 ) =0,

ie. T'w'(H,) = {u(H,), "> — 0 uniformly in &' e X,, for any decreasing sequence (H,)

of members of $B satisfying (} B,= 0, T’ is weakly compact (see Theorem 1 in
n=1

[6, p. 305]), and so is T [6, p.485].

We intend to establish in the context of vector bimeasures an analogue of
Lemma 6.1. First we need to consider extensions of certain bilinear operators.

LeMMA 6.3. — Let B: Co(8;) X Cy(8;) =X be a bounded bilinear operator. There
is a unique bilinear operator B,: Oy(8y)" X Co(8,) — X" which is an exiension of B
(when each of the Banach spaces Cy(S.), Co(S.) and X is canowically embedded in its
bidual) and separately continuous when each of the spaces Co(8y)", Co(S:)” and X" is
equipped with its weak* topology. The norms of B and B, are the same, and B,
depends linearly on B.

PRrROOF. — According to a well-known result due to Grothendieck [8], every bounded
linear operator from Cy(8;) to 0,(8,)’ is weakly compact. (One way of seeing this
is to combine Theorem 6 in [6, p. 494] with Theorem 4 in [6, p. 308] and Proposi-
tion 5.1 in[20, p.135].) Thus, for each &' €X', #/oB has a unique separately
weak* continuous extension BZ: 0y(8,)" X Cy(8,)' — K, and |BY| = |#'0B| (see e.g.
[21, p. 365]). We define (B,(u, v))(#') = B%(u, v) for u € 0y(8,)", ve C(8y)", #'e X'
Then B,(u, v)e X". In fact, B *" = qB¥ 4 bBY for &',y € X', a, bc K, because
aBY 4 bBY is separately weak* continuous and extends (aa’-+ by')oB. Thus B,(w,v):
X'—K is linear. Since |(B,(u, v))(#')| = |B¥(u, v)| <|o'||B| lu||v], B.(u,v) is contin-
nous. This also shows that |B,|<|B|, so that |B,| = |B|. The separate weak*-to-
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weak* continuity of B, is obvious, and so is its uniqueness, because 0y(§;) is weak*
dense in Oy (8;). Finally, if B,, B,: 0y(8:) X 0y(8,) — X are bilinear and bounded,
and @, b e K, a(B,), -} b(B,), is a separately weak*-to-weak® continuous extension of
aB;-- bB,, and 80 a(Bi), + b(By). = (aB, + bB,),.

DrmNITION 6.4. — If B and B, are as in the preceding lemma, B, is called the
canonical extension of B.

We shall make use of the canonical extension in proving representation theo-
rems for bounded bilinear operators from 0y (8,) X Cy(8,) to X. As a preliminary
step, let us treat the scalar case.

Norarion. — If f: §; —K is a bounded Borel (i.e., $;-measurable) function,
e M(8,) will denote the functional defined by <{f', 1> =ff di, Ae M(8;).
8

LemMa 6.5, — If b: Oo(8) X Oy(8,) —~ K is a bounded bilinear form, there is a
unique function B,: By X By — K satisfying the following two conditions:

(i) Bo(B, ) e rea(S,, By) for all B e B, and B,(-, F) € rea(8,, B,) for all F € By;
(i) [(h, k) dB, = b(h, k) for all ke Cy(8y), ke Co(S,).

If b,: M(S,) X M(8;) — K is the canonical extension of b and f: 8, —~K, g:8,—~ K
are bounded Borel fumctions, we have b,(f, g') = f (f, 9)aB,. The norm of b equals
1851(S1, 82). Conversely, if f: B X By — K satisfies (i), there is a unique bounded
bilinear form b: 04(8:) X Co(8,) — K such that f = f,.

PrOOF. — We define f, by the formula B,(H, F) = b.(xk, yr); BBy, FeB,.
From the separate weak* confinuity of b, it follows that e.g. for all bounded Borel
functions f: 8; — K the functional b,(f, -): M(S,)'— K is the canonical image of
some A,e M(S,) [6, p. 421]. In particular, (i) holds. Let f: 8, —K and g: 8, ~K
be bounded Borel functions. The pair (f, ¢) is S,-integrable by Corollary 5.7. The
measure F Hffdﬂb(',fﬂ), Fe®,, is just 1, (as can be seen by approximating f

81

uniformly by $,-simple functions). By definition we thus have f(f, g)afy = f g, =
82

=b,(f,¢'). In particular, (ii) holds. We now show that if any p: B, xB,—~ K in
place of B, satisfies (i) and (ii), then [B[(S:, S.) = |b]; this will also prove (by an
obvious linearity argument) the uniqueness of f,. Consider the vector measure
Bi: By —ca(S,, B,) defined by (B:(E))(F) = B(E, F) (cf. Theorem 4.4). The values
of B, lie in rea(S,, B,), and it is regular (see the discussion preceding Lemma 6.1,
and [6, p. 97]). Therefore, [8,](8,) = sup{{ [nap.): he Cy(Sy), |hi<1} by Lemma 6.1.
Since S‘

f 1dp, e roa(S,, By)  for all he Cy(S)),
8y
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we have
Sflhdﬁl — sup{lé[kd(sf‘kdﬁi) ke Co(Ss), 1k{<1} = sup lb(h, 1,
smee
fkd(fhdﬁl) = j(h, k)d = b(h, k) .
Thus o

1818y, 8) = ”/31”(81) = sup sup [b(k, k)| = |b|
ES LS ]
by Theorem 4.4. As to the last assertion, observe that (&, k)~ f (h, k) df is a
bounded bilinear form on Cy(8;) x Cy(S,) (cf. Theorem 4.5 and Corollary 5.7).

THEOREM 6.6. — Let B: Cy(8,;) X Cy(Sy) — X be a bounded bilinear operator. There
exists a unique mapping Bg: By X By— X7 satisfying the following two conditions:

(i) if #'e X', then the function F <&, Sz(H, F)> is in rea(S,, Bs) for all
Eec®,, and the function E v (&', pp(B, F)> is in rea(S,, B,) for all F e By,;

(ii) for all '€ X', he Cy8,) and ke C(Sy), <B(h, k), x> equals the integral
of the pair (h, k) with respect to the bimeasure (E, F)—~ <z, fs(E, F)>, He®,,
Fed,. We have

1) Ba(B, F) = B,(yz, 1% for Ee®,, Fe&®,,

and nﬁB”(SIJ 8.) = |B|.

Proor. — Define 5 by (1). As for any '€ X' the canonical extension of z'oB
is #'o(B,) (with the interpretation z'e X"), (i), (ii) and the uniqueness statement
follow from Lemma 6.5. Since [#'oB|= |#'0f3](8,, 8,) (Lemma 6.5), |B| = |f]-
+(8;, 8;) by Lemma 4.3.

We are going to charaeterize those bounded bilinear operators B: (y(8;) X
X 04{8,) = X for which f,(H,x%B,)c X. Let us prepare the proof of that resulf
with a lemma.

LEMMA 6.7. — Let B: Cy(8,) X Co{Ss)—> X be a bounded bilinear operator and B, ils
canonical entension. Let ¢ € Uy(8,) be such that B(p, k') e X for all ke Oy(8,). Then
B, *): Co(8,)'— X" is the second adjoint of the operator k> B (@, k') from Cu(Sy)
to X.

ProoF. — Both B.(p, *) and the second adjoint of %k B,(p, k') are continuous
from ¢(Cy(8,)", Cs(Ss)’) to o(X”, X'). As they agree on the canonical image of
C,(8,), which is weak* dense in Cy(8,)", they are the same. ‘

9 ~ Annali di Matematica
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THEOREM 6.8. — Let B: Uy(8:) X Oo(S;) —~ X and fz: B x Py— X" be as in The-
orem 6.6. The following siz conditions are equivalent:

(i) Bs(E, -) and fs{-, F) are regular for oll B B, FeBy;
(i) Bu(E, ) and B+, F) are o-additive for oll Bc Py, Fey;
(iii) fu(B, Fye X for all HeB,, Fechy;
(iv) B.f', g")e X for all bounded Borel funciions f:8S;— K, g: S;-> K;

(v) B.(f', ¢y e X whenever fe Oo(S1)U{yn: BECS; is open} and ge Cy(S,) U
U{yp: FC8, is open};
(vi) B,(0s(8:)" X Og(8)") c X.

PRrOOF. — Since every additive and regular u: $;, — X’ is c-additive (see e.g.
the proof of Theorem 13 in [6, p.138], or [4, p. 510]), (i) implies (ii). Assume (ii).
For each he (,(S;) there is a sequence (f,) of H;-simple functions converging uni-
formly to k. Bach function F i B,(f., lev) is o-additive, and the sequence of these
functions converges uniformly on &, to the funetion F > B,(h', x;), which is there-
fore o-additive, too. But Lemma 6.7 shows that B,(#/, x;) == B{h, -)”(%1;), and so
B.(W, X;*) e X for all Fe B, (see Remark 6.2). Using Lemma 6.7 again we see that
it Fe®$,, the second adjoint of the operator hi> B,(I', yx), b € C)(8,), has the value
B.(xz, y») for all B e B,. Since E > B,(yz, yr) is o-additive, (iii) holds (Remark 6.2).
As each bounded Borel function on §; can be approximated uniformly by 3;-simple
funections, (iii) implies (iv). Clearly, (iv) Eimplies (v). Assume now (v). To show
that then (vi) holds, we shall use a result of Grothendieck which says that
3 bounded linear operator 7: Cy(S;)—X is weakly compact if (and only if)
T"(x,) c X for all open sets Ec#8; (see[8, pp. 160-161]). For a fixed function
he 08y, B, -): M(S,) - X" is the second adjoint of B(h, ¢) (Lemma 6.7). Since
B(r, x;) e X for all open sets F c 8,, B(h, +) is weakly compact, and so B,(#', y)e X
for all pe M(8S,) [6, p.482]. For a fixed functional ye M(S;)’, the operator h > B,
(K, ) from C,(8;) to X has B,(-, ¢): M(8;) =X as its second adjoint (Lemma 6.7).
If g: 8,— K is in Cu(8,) or if ¢ is the characteristic function of an open set,
B.(xz, g') € X for every open set E c Sy, so that the operator h — B,(k/, g') is weakly
compact by Grothendieck’s theorem. Thus B,(¢, ¢') € X for all ¢ € M(8,)' [6, p. 482].
Fix now ¢ € M(8;). By Lemma 6.7, B,(p, ) is the second adjoint of the operator
k> B,(g, k) from Oy(8,) to X, and since By, yr) € X for all open sets FcC Sy,
the latter operator is weakly compact by Grothendieck’s theorem, and so B,(p, p)e X
for all w € M(S,)’, i.e., (vi) holds. Clearly, (vi) implies (iii). In view of Theorem 6.6
and the Orlicz-Pettis theorem [6, p. 318], (iii) implies. (ii). Theorem 6.6 combined
with the discussion preceding Lemma 6.1 shows that (ii) implies (i).

We are now ready to prove our main representation theorem. A vector bimeasure
B: By X B, X is said to be separately regular if B(H, -) e rea(S,, By, X) for each
Ee®, and B(-, F)erca(S,, B, X) for all FeB,. We denote by srea(Sy, Bi;
8., By; X) the set of the separately regular vector bimeasures f: B, X B, — X. It is
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easy to verily that srea(S;, By; 8,, By; X) 18 2 closed linear subspace of the Banach
space of all vector bimeasures §: B, X B,-> X equipped with the semivariation norm
{Section 4).

THEOREM 6.9. — Denote By(h, k) =[(h, k) dp for all f € srea(S,, B Sz, B; X) and
he Oy(8,), ke C(8,). Then the mapping p — Bg is an isomeiric linear bijection from
srea(Sy, Bi; 8., Be; X) onto the Banach space of those bounded bilinear operators
B: Cy(8,) X Oo(8:) ~ X for which B,(Co(S:)" X Co(85)") ¢ X. Moreover, (Bp).(f, g')=
:f(f, g) df for all bounded Borel functions f: 8, > K, ¢g: 8,—~K and fesrca(S;, B;
8y, Bo; X). In particular, (Ba)xz, xr) = B(E, F) for BEc B, Fe B,.

Proor. — Suppose f & srea(Sy, Bi; 8,, By; X). Then Bg: Op(S1) X Cg(8,) — X is
a bounded bilinear operator by Theorem 5.4 (or a direct elementary argument),
Corollary 5.7 and Theorem 4.b. Let f: S1—~>K and g: 8, — K be bounded Borel
functions. If o' e X', (@' oBs).(f', g') ff, (#'of) by Lemma 6.5, because %' oBg-
-(h, k) =f(h, k)d(@' of) for he (y(8:), ke Cy(S,) (Theorem 5.4 (b)). As (u, ) >
> {&', (Bp)s(%, v)> is the canonical extension of %' oBg, it follows that

I’ 4> = @ oBa)(i', g') = (o, [(1, 9) 4)

(Theorem 5.4 (b)), i.e. (Bs).(f,g") =f(f, g9)dp (¢ X). Thus Theorem 6.8 shows that
(Bg)o(Co(81)" X Cy(8:)") c X. It is easily verified that the mapping f > Bs, fesrca-
(81, Bi; 83y By; X), is linear. Since (Bp)o(yk, yr) = (B, F) for all B B,, Fe B,
it is injective. Let now B: 0y(8;) X 04(8,) — X be any bounded bilinear operator
satisfying the six equivalent conditions in Theorem 6.8. If 8= f;: B, X B, > X c X"
is defined as in Theorem 6.6 (so that f € srea(Sy, $i; Sz, Ba; X) by Theorem 6.8),
then by Theorem 6.6 B = B (because (&', f(k, kyag> :f(h, Eyd(z' of) = (o, B{h, k)>,
' e X, he Cy(8y), ke C(8,)), and |B](S:, 8:) = |B].

REMARK 6.10. — Tf B: Cy(8,) X C(8,) - X is a bounded bilinear operator such
that B,(Co(81)" X 04(8,)") ¢ X, it is clear from Lemma 6.7 that B(-, k): Oy(8,) - X
and B(h, -): Cy(8,) > X are weakly compact operators for all ke C,(8,), he 0,(8:)
(see [6, p. 482]). The weak compactness of all these operators does not in turn,
however, imply that B,(0(8:)" X 0o(8,)") c X. For example, denote as usual
6y = C4(N) and define B: ¢, X¢,~> ¢, by pointwise multiplication. It is clear that
when 1”, the set of all bounded sequences, is in the usual way identified with ¢,
B.{f, 9) = fg for all f, gei®. In fact, the bilinear operator (f, g) > fg extends B
and is obviously separately weak*-to-weak® continuous. Thus Be(chcg) =1", al-
though all the operators B(:, %): ¢, —>¢, and B(h, *): ¢,—>¢, for h, kec, are even
compact.

We conclude this section with a theorem which one would expect to be true of

a satisfactory bilinear analogue of a weakly compact operator. We first prove a
lemma.
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LeMuma 6.11. — Let S esrca(Sy, Ba; 8, Be; X) and let B = Bg: Co(81) X Co(8,) -+ X
be defined as in Theorem 6.9. Then the sets U = {f(E, F): BB, FeB,} and
V= {Bs(h, k): h & Cy(8y), k € Co(8:)} span the same closed linear subspace of X.

Proor. — Let Y, be the closed linear hull of U and ¥, that of V. Fix k& 8,(8,).
We have B,(yk, k') = B(-, k)'(3z) for all Ec$, by Lemma 6.7. As (B-,k)":
0s(8,)" — X is continuous from o(Cy(8:)", Co(S,)) to o(X, X') (note that B(-, k) is
weakly compact), and Co(8,) is weak* dense in Cy(8:)", B.(yz, k') €Y, for all E e %,
because Y, is (X, X')-closed [6, p. 422]. Pix now F e B,. By Lemma 6.7 again,
B,(y%, *) is the second adjoint of the weakly compact [6, p. 482] operator % > B,
“(yks k'), and so a similar reasoning shows that B,(yz, yz) €Y, for all Fe &,. Thus
Y,c ¥,. Conversely, it follows from Definitions 5.2 and 3.3 that each v € V can be
approximated in norm by linear combinations of elements from U.

REMARK 6.12. — The method used in the first part of the above proof also shows
that if B: 0y(8,) X Cy(S;) — X is a bounded bilinear operator whose range is con-
tained in a closed linear subspace ¥ of X, and such that B,(C,(8,)" X Cy(8y)") € X,
then B,(0s(8.)" X Co(8:)") c Y.

THEOREM 6.13. — Let Y be a closed linear subspace of X and B: Cg(8;) X Cy(8,) - X
o bounded bilinear operator whose range is contained in Y. Then the siw equivalent
conditions in Theorem 6.9 hold for B if and only if they hold for B regarded as a
mapping into Y.

Proor. — This is an easy consequence of Theorem 6.9 and the above lemma.

7. — Remarks on integration with respect to bounded bilinear operators.

We retain the notational conventions of the previous section. Let §: $; X B,—~X
be a separately regular vector bimeasure and B = Bg: 0g(8:) X Cp(8;) - X the
bounded bilinear operator corresponding to it ag in Theorem 6.9. The purpose of
this section is to make some comments on the possibility of replacing condi-
tion (i) in Definition 5.2 by a condition which involves the weakly compact operators
B(-, k) and B, -) for ke Cy(8,), b€ 0y(8,), and the corresponding regular vector
measures in place of f(-, F) and B(E, -) for B e B,, F € B,. We shall first deal with
the sealar case.

LeMMA 7.1, — Let b: 0(8y) X Co(8) = K be a bounded bilinear form and p the
separately regular bimeasure defined by B(E, F) = b,(xk, 1v), E€ B, FeBy (cf.
Lemma 6.5). For a function f: Si— K the following three conditions are equivalent:

(i) f is B(-, F)-integrable for all F c By;
(ii) f is imfegrable with respect to the vector measure fy: B,—> M(8,) (¢f. The-
orem 4.4);
(iii) f 4s integrable with respect to b(-, k) &€ M(8:) for all ke Cy(8,).



KArI YLINEN: On vector bimeasures 133

ProOF. — By Lemma 5.5, (ii) follows from (i) (note that M(S,) = rca(S,, B.)
is a closed subspace of ca(S;, B,)). Clearly, (ii) implies both (i) and (iii) (observe
that b(-, k) is just &' of;, because f, is regular by the discussion preceding Lemma 6.1,
and [Rd(k op,) = J hdBy, k> = b(h, k) for heCy(S,) by Lemma 6.5). Assume now

St 1

(iii). 'We shall prove (ii). This could be done by using some considerations in [20,
pp. 132-133, 144], but we give a direct argument. For nelN, we define f, = fy,,
where A, = {se 8;:|f(s)|<n}. Then f, is b(-, k)-measurable (i.e. measurable with
respect to the Lebesgue extension of B, relative to b(-, k)), hence b(-, k)-integrable
[6, p.117], for all ke Cy(8,), and so are f,h and fh for all ke Cy(S;). From the
Lebesgue dominated convergence theorem [6, p.151] it follows that

lim [f,hdb(, b =[fhab(-, ).
81

83

Since (h, k) }——:]'inhdb(-, k) is for every m € N a bounded bilinear form on Cy(S;) x

X C,(8,), the uniform boundedness prineiple can be used to show that the bilinear form
by Cy(8;) X Co(8,) — K defined by by(h, k) ffh db(- is bounded. Let T: Cy(S:)—

— (y(8,;)" be the bounded bilinear operator defined by <Th, k> = by(h, k). As T is
weakly compact (see the proof of Lemma 6.3), there is by Lemma 6.1 a regular
vector measure v: B, — Co(S;)’ such that by(h, k) = fh dv, k), hely(8y), ke Cy(Sy)-

Writing A(E)=[fdb(+, k) we have k'ov(E) = A(B) for all Ee$,, ke 0y(8,), be-
E

cause Ay, being b(-, k)-continuous [6, p. 114], is a regular measure, and |hd(k'oy) =
= by(h, k) f hal, for all he(y(8,) [6, p. 180]. Since '

flf (5)[o(i'Bs, ds) —flf ©)[o(o(, 1), ds) = o('ov, B,)

by Theorem 20 (a) in [6, p. 114] (recall that b(-, k) is identified with %'of,), we have
sup{ [i@lotop,, as): ke 0usa), 11 <1} < @) -0
Eﬂ

a8 n—oo for every decreasing sequence (E,) of members of $B, with N B, =0,
and so (ii) follows from Theorem 3.5. n=t

The following theorem is an easy consequence of the above lemma. In prepara-
tion, observe that if e.g. f: 8, — K is b(-, k)-integrable for all ke (,(8,), the linear
functional b(f, -) for which

b(f, &) =[fab(-, k),  EeCy(Sy),
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belongs to M(8,); by Lemma 7.1 and its proof we have actually
o, ) ={[fdp, k),  ReCyS).
8y
We define b(-, ¢) analogously.

THEOREM 7.2. — Let b: Cy(8;) X Co(8,) = K and §: B, X B,— K be as in Lemma 7.1.
The pair (f, ) of functions f: 8, —>K, g: 8 — K is f-integrable if and only if the
following three conditions hold:

(1) 7 45 b(-, k)-integrable for all ke Co(8,), and g is b(h, -)}-integrable for all
h € 0o(8,);

(ii) f is b(-, g)-integrable and g is b(f, -) integrable;
(i) [fdb(-,g9) =[g db(f, -).
If this is the case, both sides in (iii) are equal to f (f, g) dg.

REMARK 7.3. — Lemma 7.1 becomes false, if in (iii) 0y(8,) is replaced by J(S,),
the set of continuous functions with compact support. For example, let Sl S

be the half-open interval 10,1}, and define b:Cy(S1) X Co(S:)— R by b(h, k) fh

k() de. The function f: §;— R, f(@) = 2%, is b(-, k)-integrable for all keJ{,(Sz)
but not b(-, k)-integrable, if k()= @, x€]0,1]. Moreover, if g(x) = »?, the pair
(f, 9) is b-integrable in the sense of [15, p. 482] and [20, p. 145], but not f-integrable
in the sense of our definition (in this case B(E, F) = m(E N F), where m is the
Lebesgue measure on 10, 1]). In[17, p. 23], a pair (f, g) of functions satisfying the
conditions (i), (ii) and (iii) of Theorem 7.2 is said to be «strongly » infegrable with
respect to b.

We now turn to the question, to what extent analogues of Lemma 7.1 and
Theorem 7.2 are frue in the vector case. Part of Lemma 7.1 can be easily gen-
eralized without any restriction on the Banach space X. In the next lemma we
assume that § € srea(Sy, By; 8z, B3 X) and let B: Oy(8,) X C4(8,) — X be the bounded
bilinear operator defined by B(h, k) = f {h, k)dp. By Theorem 6.9 and Remark 6.10
the operators B(-, k): Oo(8;)—+X and B, -): C,(8,)—X are weakly compact,
ke Cy(8s), heCy(8y).

LEMMA 7.4, — If the function f: 8, K is p(-, F)-integrable for oll F e B,, then
for every k€ Cy(8,) f is integrable with respect to the regular vector measure on B, cor-
responding to B(-, k) by Lemma 6.1.

Proor. — By Theorem 5.6, f is integrable with respect to the vector measure
B f kdp(E, -), E € $,. But this is just the regular vector measure corresponding
e

to B(-, k), because the value of the latter for Be %, is B( k)”(x;), which equals
B.(yz, k') by Lemma 6.7, and clearly B.(x., k fk ap(m, -
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Following E. Tmomas [20, p.135] we say that a Banach space X is weakly

Z-complete, if for every sequence (x,) of elements of X such that » |(z,, #'>| <co
=1

for all #'e X' there is € X such that (z, ') = 3 (x,, ') for all &' € X' (or in

=1
oo

view of the Orlicz-Pettis theorem, equivalently, »== 3 .90,,) In the next lemma we
He==]
collect some well-known characterizations of weakly X-complete Banach spaces.

LeMMA 7.5. — For a Banach space X the following four conditions are equivalent:
(i) X is weakly X-compleie;
(il) X does not contain any isomorphic copy of ¢y

(iii) for every locally compact Hausdorff space S every bounded lincar operator
T: Co(8)— X is weakly compact;

(iv) for every set S = 0, every o-algebra X of subsets of S and every vector measure
p: X —>X the following holds: if f: 8 -~ K is a function which is o u-integrable for all
z'e X', then f is p-integrable.

Proor. — The equivalence of (i) and (ii) is due to C. BEssaca and A, PERCZYNSK’
(see[2,p.160]). As to the equivalence of (i) and (iii), see [18,p.219] and[20
pp. 135-136]. Assume now (i). To prove (iv), one may observe that if f is #'u-integ-
rable for all #'e X', then some ZX-measurable function agrees with f u-a.e. (see
Theorem 3.2 and [19, p. 145]); then apply Theorem 1 in [10, p. 31] and Corollary 3.6.
Finally, assume (iv). We prove (ii). Suppose, fo the contrary, that there is a linear
injection «: e, - X which is & homeomorphism onto its range. Take § = N and
let X' be the set of all subsets of IN. Define f(n) == n and g(n) == n-* for ne N.
Clearly, the set function p: 2'— X defined by u(4) = a(y,9) is an X-valued vector
measure. As the dual of ¢, is I!, it is easy to verify that f is #'u-integrable for all
#'e X'. But { is not u-integrable. This contradiction proves (ii).

COROLLARY 7.6. — 4 Banach space X is weakly Z-complete, if and only if for all
locally compact Hausdorff spaces S, and S, every bounded bilinear operator B: 0y(8,) X
X Cy(8;) = X satisfies the condition B,(C4(S,)" % 0o(8,)") c X.

Proor. — Let X be weakly 2-complete. By Lemma 6.7 and the weak compact-
ness of B(-, k): Cy(8;) - X (Lemma 7.5) B,(p, ¥')e X for all ke Oy(8,), @ € Co(8y)
[6, p. 482]. Fix ¢ €0,(8,)". Again by Lemma 6.7 and the weak compactness of
the operator k - B,(¢, k') from Cy(8,) to X, B,(p, v) € X for all ye 0,(8,)". Suppose,
conversely, that X is not weakly 2-complete. Then there is a linear injection
o: ¢ —> X which is a homeomorphism onto its range. Let B:e,X¢,— 6, be the
bilinear operator considered in Remark 6.10. Using Theorem 6.13 we see that xoB
does not satisfy the condition (eoB)(Cy(8:)" X Co(8,)") c X.
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In the next theorem we make the assumption that X is weakly X-complete.
By identifying a bounded operator (which is weakly compact by Lemma 7.5) from
0y(8,) to X with the corresponding regular vector measure (Lemma 6.1), and defining
B(-, g) and B(f, -} in a natural way, we can formulate a generalization of Theorem 7.2.
(Speciﬁcally, if e.g. f: 8;,— K is B(-, k)-integrable for all ke (y(8,), the discussion
preceding Theorem 7.2 shows that for all ' X' the functional

B> (o, [1aB(, ) = [fa(@ B, )
Sy Sy

on Cy(S,) is bounded, and so by the uniform boundedness principle % j fdB(-, k)
8y

is a bounded linear operator from C,(8,) to X. We denote this operator by B(f, )
and define B(-,g) similarly.)

THEOREM 7.7. — Let X be a weakly X-complete Banach space. Suppose € srca-
(81, By Say Bo; X) and let B == Bg: Cy(S8,) X Og(8,) - X be defined as in Theorem 6.9.
The pair (f,g) of functions f: 8, ~>K, g: 8, + K is p-integrable if and only if the
following three conditions hold:

(i) f is B(-, k)-integrable for all ke Cy(S;), and g is B(h, -)-integrable for all
h e Co(84);
(ii) f is B(-, g)-integrable and g is B(f, - )-integrable;
(i) [{dB(-, 9)=[gdB(f, ).
1 82
If this is the case, both sides of (iii) are equal to [(f, g)dp.

PROOF. — Since #'0B(E, F) = (#'0B),(xx, z¢) for all &' € X', E€ B,, Fe By, the
theorem is an easy consequence of Theorem 7.2 and Lemma 7.5.

We conclude by showing that the restriction made on X in the above theorem
is the right one.

THREOREM 7.8. — For a Banach space X the following two conditions are equivalent:

(i) X is weakly X-complete;

(ii) for all locally compact Hausdorff spaces 8, and 8,, and for all bounded
bilinear operators B: Oo(S1) X Co(8:) — X satisfying the siz equivalent conditions in
Theorem 6.8 the following holds: if for all ke Cy(S,) f: 8~ K is integrable with
respect to the regular vector measure on B, corresponding to the weakly compact oper-
ator B(-, k): Co(8,) — X, then f is fBs(-, F)-integrable for every Fe $,, where fp is
defined by pu(B, F) = B,(yz, x7), B€ By, FehB,.

ProoF. — By Theorem 7.6, (i) implies (ii). Suppose now that X is not weakly
X-complete. We shall construct a bounded bilinear operator B: ¢, X ¢, — ¢, satisfying
the conditions in Theorem 6.8 and such that the statement in (ii) is not true of B.
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Since X confains an isomorphic copy of ¢, (Lemma 7.3), it will then, in view of
Lemma 6.11 and Theorem 6.13, be clear that (ii) does not hold for X. Let ¢: N—K
be defined by ¢(n) = w1 If h, keo,== C(N), we define B(h, k) €6, as the point-
wise produet ghk. When I” is identified in the usual way with the bidual of ¢, it
is seen as in Remark 6.10 that B.(f, g) = ¢fg for all f, gel®. Thus B,(c,Xey) C ¢y.
Now, if p(n) = n, n € N, it is easily verified that for all k € ¢,  is integrable with
respect to the vector measure corresponding to B(-, k), but p is not integrable with
respect t0 E > B,(xz, xr)-
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