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Summary. - See .rntrod~tetion. 

1 .  - I n t r o d u c t i o n .  

The notion of a bimeasure in a bilinear functignal sense has been studied by 

M. MO~SE and W. T~_a~SUE in a series of papers (cf. e.g. [12-16]) and E. T~o~AS [20]. 

The bimeasures considered by these authors are (separately or, equivalently, jointly) 

continuous scalar valued bilinear forms defined on the Cartesian product of the 

spaces ~($1) and ~(S~) of continuous functions with compact support on the locally 

compact ttausdorff spaces $I and S~ (5%(Sj) being equipped with the usual locally 

convex inductive limit topology). The approach in the present article, where (vector) 

bimeasures are defined as (vector valued) separately a-additive functions on the 

Cartesian product of two a-algebras, is motivated by a desire to find an analogue 

of the l~iesz (-Markov-Kakutani) representation theorem and its vector generaliza- 

tion (cf. [1], [6]) which says that  the weakly compact operators from Co(S) to X 

(where X is a Banach space, S is a locally compact ttausdorff space, and Co(S) is 

the space of continuous ~calar functions on S vanishing at infinity, equipped with the 

supremum norm) are via integration in a bijective correspondence with the regular 

X-valued Borel vector measures on S. In the scalar case a Riesz type representa- 

tion theorem in some form seems to be part  of the iolklore of the subject (see e.g. 

E. Thomas's review of [5] in Math. Reviews, 46, no. 9285), though we haven' t  seen 

any proof in the generality involving bounded bilinear forms on Co(St)× Co($2) for 

~rbitrary locally compact Hausdorff spaces S~ and $2. In this connection it may 

be observed that  the early history of the representation of bilinear forms (see [7]) 

is closely related (even temporally) to F. l~iesz's pioneering work on the representa- 

tion of linear forms. 

Our main representation theorem is Theorem 6.9. That result resembles the 

vector generalization of the I~iesz representation theorem. The counterpart of a 

weakly compact operator is here a bounded bilinea.r operator B: Co(S1)× C0(S~)-~X 

whose canonical extension (i.e. the unique separately weak*-to-weak* continuous 

(*) Entra~a in Redazione il 30 marzo 1977. 
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extension Be: Co(S~)'~×Co(S~)~'--~X " of B;  such an extension is shown to always 

exist) maps Co(S~)~× Co(S~) ~ into X. These bihnear  operators are shown to be via 

integration (this t e rm is made precise in Section 5) in a bijective correspondence 

with the  mappings fl: ~ × ~ 2 - ~ X  (g~j is the  Borel a-algebra of Sj) for which 

fl(E, .): ~ - ~ X  and fl(. , /7):  3 ~ - > X  are regular vector measures for all E e 3 ~ ,  

/7 e ~2. Such a mapping fl is called a (separately regular) vector bimeasure. 

In  general, a vector bimeasure in our terminology is a separately a-additive 

mapping fi: Z~ × Z~-~ X where X~ and Z~ are a-algebras. In  Section 5 we develop 

a theory  of integration of a pair of functions with respect to a vector bimeasure 

in much greater general i ty t h a n  would be necessary for the  representat ion theorem 

(where the  consideration of continuous functions vanishing at  infinity suffices). 

The semivariation of a vector bimeasure is discussed in Section 4. In  Section 3 we 

deal with some aspects of the  theory  of vector measures needed in the  sequet. 

Once we have the  correspondence between the separately regular vector bimeas- 

ures fi: ~1 ~ ~2 -~ X and the  class of bilinear operators B:  Co(S1) × Co(S~) -~ X spe- 

cified above~ another  approach to the  integration of pairs of functions, more closely 

reminiscent  of the  method  of ~¢[orse and Trunsu% suggests itself. In  Section 7 it 

is shown, roughly, tha t  a technique based on the use of the vector measures cor- 

responding to the  weakly compact operators 

B( . ,  k): Co(S~)-->X and B(h, .): Co(S2)-->X 

for k e Co(S~), h ~ Co(St), in place of the  vector measures fl(., F)  and  fl(E, . ) , /7  e :B2, 

E e ~1, leads to a theory equivalent  to the one developed in Section 5 if and only 

if X does not  contain any  isomorphic copy of e0. 

2.  - P r e l i m i n a r i e s  a n d  n o t a t i o n .  

The notat ion introduced here will remain  fixed throughout  the paper. The scalar 

field can be either R or C; we use (consistently) the  common notat ion K for both.  

We let  X always be a Banaeh space over K. The normed dual  of X is denoted 

by  X' ,  and  we write x ' ( x ) =  (x' ,  x} = (x, x'} for x e X ,  x ' e  X' .  B y  definition, 

a(X, X ' )  is the weak topology on X and a(X', X)  is the  weak* topology on X' .  The 

norm in X and in X '  is denoted by I'[, and we write e.g. X '  1 = ( x ' e X ' :  Ix ']<l}.  

The notat ion ]. I is also used for the norm of a bounded linear or bilinear operator; 

thus e.g. IBI ----- sup {IB(y, z ) l : y e  YI, zeZ1} ,  if Y and Z are also normed spaces 

and B:  Y × Z-+ X is a bounded bilinear operator. The adjoint  of a bounded linear 

operator T is denoted by  T'.  

I n  most questions pertaining to integTation theory  we follow [6]. For  j ----- 1, 2, 

St (resp. S) is a non-empty  set, Zj (resp. X) is a a-algebra of subsets of St (resp. S). 

A a-additive (or, equivalently,  weakly a-additive [6, p. 3t8]) set func t ion /z :  X->  X 

is called a vector measure. The semivariation (in the  sense of [6, p. 320]) of a vector 
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measure /~: Z---~X is denoted by  lip[l; ]!#1[ is a bounded nonnegative-valued a-sub- 

addit ive funct ion on Z. I f  here X --~ K, # is called a measure, and ]IF I[ agrees with 

the to ta l  variat ion of #. We Usually denote the  tota l  variation of a me~sure #: Z - ~  K 

by  v(#) and its ~alue for a set E e Z by v(#, E). We let ca(S, Z)  denote the Banach 

space [6, p. 161] of the  measures #:  Z - ~ K  equipped with the norm [/~t : v(/~, S) 

The/~-measurabi l i ty  of a funct ion ]: Z - ~ K  for # e e a ( S ,  Z)  is defined in [6, p. 106] 

and  its Z-measurabi l i ty  in [6, p. 240]. Recall t ha t  ] is /~-measurable if and  only if it  

is Z*-measurable, where Z* is the  Lebesgue extension of Z relative to/~ [6, p. 148]. 

I f  E c S, Zz: S--> (0, 1} denotes the  characteristic function of E.  

3. - Measurabil ity and integrabil ity wi th  respect to  vector measures .  

I n  this section we present  some material  on vector measures needed in the  

s tudy  of vector  bimeasures. Throughout,  ~:  X-~ X is a vector measure. For  each 

x' e X' ,  the measure E ~-~ (x' ,  #(E)}, E ~  Z, is denoted by  x'/~. An examinat ion 

of the  steps leading to Corollary 2.4 in [1, p. 294] yields the  version of tha t  result  

appearing in part  (b) of the  following lemma.  Par t  (a) is well known and  easy to 

prove. 

L ] ~ ) .  3.1. - (a) I]# II(E) = sup v(x'#, E) ]or all E e Z. (b) There exists a posi- 
~'~X[ 

tire measure ~ e ca(S, X) such that 

(1) ~(E)< H#I](E) ]or all E e Z ,  and 

(2) lim ]I#l](E) = 0. 
)~(~)-~o 

Let D ¢ X~ be such that for a fixed constant C > 0 we have sup {Kx', x ) ] : x  ~ ~D} 

> C[x] ]or all x E X .  Then a measure satis]ying (1) and (2) van be chosen to be the 

sum o] an absolutely convergent series f a~v(x~,#) where a~, is a positive number and 

x'~ ~ 1) ]or all n ~ N. ~: 

The expressions #-null set, #-almost everywhere (abbreviated #-a.e.) and #-meas- 

urable ]unction will have the  same meanings as in [6, p. 322]. The following result 

is analogous to Proposit ion 2.17 in [20, p. 95]. 

TI~EOlCE~ 3.2. -- Let D c X:  be as in Lemma 3.1. Then a ]unction ]: S--> K is 

#-measurable i /  and only i] ] is x'#-measurable ]or every x' e D. 
co 

P~oo~. - Le t  a~ > 0, x; ~ D for n ~ N a.nd the  measure )~ ~ ~ a~v(x~#) be as 

in L e m m a  3.1. Denote  by  Z* (resp. X*) the  Lebesgue extension of Z relative to 

(resp. x'#) [6, p. 143]. We show tha t  

(1) z *  = N 
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oo 

Choose A e Q  Z ~ c F ]  L:~. For  each h e n  there are sets E ~ e X ,  N~cS and M~eX 
• ' ~ D  ~ 1  

' 0 such tha t  A = E ~ t ) N ~ ,  N~cM~ and v(x~#,M~)=O[6, p. 142]. Write E---- E~, 
n = l  c~ oo 

N =  N - ~ ,  M----- ~ M ~ .  Then A = E W N ,  E e X ,  N c M ,  and M e X .  Since v(x'~,M)< 
~=I ~=I 

<v(x~ /~ ,M~)=0  for all ~ N ,  2 ( M ) =  a~v(m~#,M)=O. Thus A e X * .  Conver- 

sely, let B ~ X * ,  so tha t  B = I F u P ,  w h e r e / ~ X a n d / ~ c R f o r s o m e / ~ X w i t h  

Z(R) = 0. Then v(x'#, R) < ]1# II(R) = 0 for all x' e D, and so B e~ A Z*,. Since the 
~ P E D  

/~-measurability of ] is equivMent to its X*-measm~ability, and the x'/~-measurability 

of J is equivalent  to its X~-measurability, the  assertion follows from (1). 

A Z-measurable funct ion ]: S -~ K which assumes only a finite number  of values 

is called a Z-simple ]q~nction. The definition of the integral f ]  d#, E e 2:, of a 
X 

X-simple function ] is obvious [6, p. 322]. The following definition is used e.g. in 

[6, p. 323]. 

DEI~II,~ITIO~ 3.3. - A function J: S - > K  is said to be #-i~tegrable, if there is a 

sequence (]~) of Z-simple functions converging to j #-a.e. and  such tha t  the  se- 

quence (~f~ d#) is (norm) convergent in X for each E e 27. We then  write 

I%]~A~K 3.4. -- Every  #-integrable function ]: S - ~ K  is #-measurable [6, p. 150]. 

The integral is an unambiguously defined element  of X [6, p. 323]. We shall use 

without  explicit ment ion the  well-known fact that ,  in case X - - - K ,  Definition 3.3 

is equivalent  to Definition 17 in [6, p. 112]. A proof could be given by  using, for 

one direction, Corollary 3 in [6, p. 145], and  Egoroff's theorem and the ¥i ta l i - t Iahn-  

Saks theorem for the  other. 

The following theorem is closely related to some results in [11], bu t  we give a 

complete proof, because in our ease ] need not  be X-measurable. 

I 
TH:E01{]~ 3.5. - ~et D c X 1 and C > 0 be as in Zemma 3.1. A Junction f: S--->K 

is #-integrable i] and only if the ]ollowing two conditions hold: 

(i) ] is x'#-integrable ]or each x 'eD;  

(ii) lira sup f]](s)lv(x'#, ds)= 0 whenever the sets E,  e X  satisJy E~+lcE~, heN,  
n-->c~ x ' ~ . D  E n  

oo 

and N E,  -~ O. 
n = l  

P~OO:~. - Suppose first t ha t  ] is #-integrable. Clearly, (i) holds [6, p. 324]. Write  

v(E) =f]d[~, E e X .  Then v: X - > X  is a vector measure [6, p. 323]. I f  the sets E~ 
B 
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are as in (ii), then  

fl/(s)lv(x'~, ds) = sup v(x'~, ~ . )  < il~,ll ( ~ ) ~  o,  SUlE) 

x*~D ~n w'eD 

a.s n--> c~ (see [6, p. 114] and use L e m m a  3.1 or e.g. Theorem 1.3 in [11]). Con- 

versely, assume (i) and (ii). Since I is #-measurable  b y  ICem~rk 3.4 and Theorem 3.2, 

there  is a Z-measurable  funct ion ]o: S -> K which agrees with ]/~-a.e. (see e.g. [19, 

p. 145]); in particular,  (i) and (ii) hold for fo. Deno te  : E ~ :  {s e S :  l/o(s)l >~n) e Z,  

h e N .  For  e~ch n e N  there  is a X-simple funct ion ]~: S--~K satisfying / ~ ( s ) =  0 

for s e E~ and l]~(s) I < t]o(s) l, I].(s) - ]o(s) l < 1In for s e S~.E,~. Then l i m  ].(s) = /o(s ) ,  

s e S .  I f  x ' e D ,  we have  for all E e Z ,  

and  so 

/~Em ~ r a  

I f  e.g. n > m, E .  c E~, so tha t  

It~(s) - f.,(s)l < It~(s) - Io(8)] + Ito(S) - / , . (s ) l  < -1  + L 

Thus 

, s e S \ E , ~ .  

<~ 

EEm 

f < ~ sup lio(s)lv(~'~, ds) + li~;l(~) + • 
~'ED 

I t  follows tha t  (f]~ d#) is u Cauchy sequence in X. B y  defini t ion/o,  and hence ], 

is tz-integrabte. 

The following corollary is essentially (i.e. modulo Theorem 3.2) contained in 

Theorem 2.4 in [11]. 

COrOLLArY 3.6. - A ]unction ]: S-->K is #-integrable i / and  only i] the ]ollowing 

two conditions are satis]ied: 

(i) ] is x'#-integrable ]or each x ' e X ' ;  

(ii) /or each E e Z there is v(E) e X (dearly unique) such that (v(E), x'} : f ] d x ' #  

for all x' e X' .  

I] this is the case, then v (E) :~]d# ,  E e Z. 
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PnooY. - Assume (i) and  (ii). Since ~: X - > X  is weakly,  hence strongly,  a-addi-  
I 

t i r e ,  condit ion (ii) of Theo rem 3.5 holds when  D = X~ (see T h e o r e m  20 (a) in 

[6, p. 114] and  use L e m m a  3.1), so t h a t  ] is #- integrable .  The  converse  p a r t  and  

the  equat ion  v(E) = f ] d #  follow f rom T h e o r e m  8 (f) in [6, p. 324]. 

C0~0LLA~¥ 3.7. - I f  a function f: 8--> K is integrable with respect to each of the 

vector measures #: Z - *  X and ~ : Z--> X ,  then ] is (# ~ ~)-integrable, and f f d ( / ~ + ~ ) =  

P=oo~.  - The  above  corollary reduces  the  proof  to the  s t anda rd  scalar case. 

4. - The  B a n a c h  space o f  vector  b imeasures .  

t~ecall t h a t  X~ i8 a a-algebra of subsets  of S j ¢  0, j = 1, 2. 

DE~X~ITIO~ 4.1. -- I f  8 :X1 × 2 : ~ - * X  is separa te ly  a-addi t ive,  i.e. if 8(E, .) and  

8 ( ' ,  l~) are  vec tor  measures  for  all E E X1, F e Z~, t h e n  8 is called a vector bi- 

measure. I n  case X = K,  8 is s imply  called ~ bimeasure. 

We shall define a n o r m  in the  space of vec tor  b imeasures ,  and  for t h a t  purpose  

we in t roduce the  not ion of semivar ia t ion.  I n  Sect ion 6 we need  the  concept  also 

for  separa te ly  (finitely) addi t ive  mappings ,  so the  definit ion is fo rmula ted  in t h a t  

genera l i ty .  

DEFINITION 4.2. -- A par t i t ion  (Ek)~  ~ of a set  E e X j  is culled a Z~-partition, if 

E ~ e L ~  for all k = 1~ ..., m. L e t  8: X I × X ~ - * X  be  separa te ly  addi t ive.  For  E e X 1 ,  

t V  " FD 
F e  Z~, we let  IISII(E, F ) d e n o t e  the  s u p r e m u m  of the  number s  I ~ -  ~%b~8(E~ '  

E ~ Z~-part i t ion of E,  ( ~)~=1 is a where  always ( k)k=~ iS a F ~ Z2-part i t ion of /~, and  

%, b~eK,  I%]<1,  ] b , ] < l  for k = 1, .. . ,  m, p = 1, ..., n. The  ex t ended  real  va lued  

funct ion (E , I~)~- ,  I]SH(E,F) on Z~×Z~ is called the  semivariation of 8. 

! 
L E ~ I A  4.3. -- I f  8 is as in the above definition, and D c X~ is such that IxI : 

= sup I<x, x ' > I / o r  all x e X ,  then ]18 tl (E, F) = sup fix' o 8 If (E, ]F) for all E e ZS, F e X2. 

~ F ~ and  b~ are as in Defini t ion 4.2, we h~ve PI~OOF. - I f  (E~)~=~, ( ~)~=~, a~  

sup a b x' oS(B  , = a 48(E , . 
~'eD k = l  ~ = 1  k = l  ~a=l 

Thus the  assert ion follows f rom e l emen ta ry  proper t ies  of the  supremum.  

I n  the  res t  of this section we confine our  a t t en t ion  to separa te ly  a-addi t ive  

funct ions,  a l though the  separa te ly  f ini tely addi t ive  case could be  t r ea t ed  in an  analo- 

gous way.  
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Tm~o~E~ 4 . 4 . -  Let fi: X ~ × Z ~ - + K  be a bimeasure, and denote f l~(E)=f l (E,  .) 

]or each E ~ ~ ,  and fl,(~) -~ fl(., ~) ]or each F ~ ~ .  Then the mappings fl~: ~ --> 

->ea(S~, X~) and fi~: X~->ea(S~, X~) are vector measures, and Nfll](S~, S~) : [lfi~[f(S1) ~-- 

P~ooF. - To show tha t  e.g. fl~ is a vector measure, let ( E ~ ) ~  be a sequence of 

° ) 
pairwise disjoint members  of Z'~. Since lira fl( ~ E~, F exists for all / ~ Z ~ ,  the  

in [6, p. 309~ and  L e m m a  5 in [6, p. 97]). l~rom Theorem 5 in [6, p. 308] it  follows 

tha t  the  sequence of the measures fll converges weakly in ea(S~, X~) to 
o o  

fll . Thus fl~ is weakly, hence strongly, a-additive. Le t  now ( ~)~=~ be a 

Zx-partition of S~ and  (F : ) ; :  1 a Z~-partition of S~, and  suppose a~, b: e K, Ia~l <1,  

lb , I< l ,  k----1, ..., m, p----1,. . .~+. Then 

° )1 i l 
The supremum of all numbers obtainable in this way as the left  hand  side of this 

equation is easily seen to be ]]flllI(S~), and so llfl~]l(S~)= ]lflll(S~, S~). The equali ty 

tlfilI(S~, S+=)= Ilfi2lt(s~) is proved similarly. 

Tm~=o~E)~ 4.5. - (a) !~or any vector bimeasure fi: Z~ ×Z~-+-X 

sup {l~(r,  F)  i: E + ~ ,  ~ e x~} < I1~ tI(s~, s~) < 16 sup {I~(E, F)[: E e X~, F e X~} < ~ .  

(b) The set o] vector bimeasures fi: X~ × Z~-> X is a Banaeh space with respect 

to the pointwise operations and the norm fi~-> ]lfll](S1, S~). 

PRoof.  - (a) The first inequal i ty follows at  once f rom the  definition. By  the  

preceding theorem and L e m m a  4 in [6, p. 320], 

[Ix'oZll(~, ~ )  = II(x'oZ)~!l(s~)< 4 sup v((~'oZ)l(B), s~ )<  
EeZ~ 

< 4 sup (4 sup t<x', # (~ ,  f )> l )  < 16 sup {I#(E, ~11: E + Xl,  f + X~} 

for all $ ' e  X~, and  so the  second inequal i ty follows from L e m m a  4.3. Final ly  

Ilx'oflIl(S1, S~)= II(x'ofl)iII(S1) is finite for all x ' e X '  by  Theorem 4.4 and L e m m a  4 

in [6, p. 320], i.e. sup {[< ~', fi(E,/~)>] : E e X1, F ~ 273} < ~ .  Alternatively,  this fol- 

lows directly from Theorem 8 in [6, p. 309]. By  the uniform boundedness principle 

sup {I~(E, F) i :  E + x~, ~ e x~} < ~ .  
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(b) I t  is clear tha t  the  vector bimeasures form ~ linear space. I t  is quickly 

verified thu t  !I" II(S~, S~) (which is finite by  (a)) is a norm. To prove the  complete- 

ness of the  space, let (ft.) be a Cauchy sequence of vector bimeasures. Then 

f l(E,F) = l imf l , (E,  ~) exists for all E e Z ~ ,  F e Z ~ ,  and the  convergence is uni- 

form on Z1 × S~. A s tandard ~rgument  then  shows tha t  fl is separately a-additive, 

~b---> OO 

5.  - In tegrat ion  w i t h  respect to  a vector  b imeasure .  

Throughout  this section, fl:Z~×Z~--~X is a vector bimeusure. Before consid- 

ering the integration of a pan • of functions with respect to fl we prove an auxiliary 

result. 

L a ~ A  5.1. - Let ]: S1--~ K be fl(., F)-integrable ]or every F e Z2. Then the set 
]unation F ~--> f f dfl( ., ~), F eZ~, is (r-additive ]or every E eX1. 

P~oo~ ~. - Le t  us first t rea t  the  special c~se where X = K. Consider the ca(S2, Z2)- 
valued vector measure fl~, i.e. E ~->fl(E, -) (cf. Theorem 4.4). Le t  )~ e ea(S~, Z~) be 

positive measure satisfying the conditions (1) and (2) of L e m m a  3.1 relative to ill. 
r r} 

Each F e X2 determines ~ bounded linear functional  X~ on ea(S~, Z~) by  @, X~ -~ 

: ~(/~), and the  set D : {Z~: F e Z ~ }  has the  proper ty  sup I@, ~}I >-~ v(u, S~) for all 
~ e D  

r e ea(S~, Z2) [6, p. 97]. Since ] is fi~-measur~ble by Theorem 3.2, i.e. ] is Z*-meas- 

urable where X* is the  Lebesgue extension of Z, relative to ~, there  is a Z~-meas- 

urable function ~o: S~-÷K which agrees with f fl~-a.e. (~nd hence fi(., F)-a.e. for 

e~ch F e Z~) [19, p. 145]. There is a sequence (]~) of Z~-simple functions such tha t  

If,(s)t < ]]0(s)] and lira ]~(s)= ]o(s) for all s ~ S~. As fo is fl(., F)-integrable for e~eh 

i~,~dfl(., F ) =  i]odfl(., ~) = ¢]czfl(., 2,) lira for ~11 F e & 
n ~ e ~  2ga  ~ 3~ 

by the Lebesgue dorfiinated convergence theorem [6, p. 151]. Since the set func- 

t ion F~f/odfi(-, F), ~e_r~, is a-additive for each h e N ,  Corollary 4 in [6, p. 160] 
E 

shows tha t  .F~-~fJ dfl(., F) is a-additive on Z2. In  the  case of a general. Banach 
E 

space X the  above discussion proves for every xrE X '  the a-addit ivi ty of the set 

function ~ ~ <fl dfl(., f ) ,  x'} =f]~ d(x'off(. , /g)),  and so the assertion follows from 

Theorem 1 in [6, p. 318]. 

The following definition is inspired by [15, p. 482] and the definition in [20, p. 145] 

(see, however, Remark  7.3). 
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DEFI~ITIO~ ~ 5.2. -- The pair (], g) of functions ]: S~--~K and g: S~-->K is said 

to be integrable with respect to the vector  bimeasure:  8: Z'~ X Z2--~ X (or 8-integrable 

for short) if the  following three  conditions hold: 

(i) ] is 8(', E)-integrable for all F~27~, and g is 8(E~ .)-integrable for all 

E eE~  (so tha t  one obtains the  vector  measures fS(S~, .): Z 2 - + X  and 8~(.,S~): 

2 ~ - ~ X  defined b y  sS(S~,~)=J]dfi(. ,~),  8~(E,S~)=~gdS(E , .), cf. L e m m a  5.1); 

(if) ] is 8~(', S~)-integrable and g is ~8(S~, .)-integrable; 

(iii) ~] dS~(. , S~)=~gd,8(S~ , .). 

I f  these  conditions hold~ each side of the  equat ion in (iii) will be  denoted  by  

EXAlVI2LE 5.3. -- This example shows tha t  in the  above definition (iii) does not  

follow from (i) and (if). Choose S~ = S ~ - - - - N :  (1, 2~ 3~ ...}~ and let  Z ~ =  ~ be the 
co 

set  of ~1I subsets  of N. Le t  (a~) be  a sequence of posit ive numbers  with ~ a~: ~ o0 

Construct  induct ively  a funct ion ]: S~-+ R for which ~=~ 

1(1)a l  = c~ > 0 ,  ] ( k ) a ~ - -  ] (k  - -  1)a~_~ = c~ > 0 

c~ 

for k > 2 and ~ c~ < co. Then choose a decreasing positive sequence (b~) such tha t  
/ ¢ = 1  

~ ](/~)a~b~<oo (note tha t  J(k)> 0), and define the  funct ion g: S2--~R b y  g(n)= 

= 1/b~. Define 

{ - } )  = + 1 } )  = - 

for n a y  and 8({m},{n})=--O if m~n:Y=m-}-l .  Since ~ ~ I S ( ( m } , { n } ) I < ~ ,  it fol- 
~ 1  ~ 1  

lows from well-known propert ies  of summable  families of numbers  tha t  the  func- 

t ion (/~, F) ~ 8 ( E ,  F) = ~ ~8({m},{~}) on & × &  is a bimcasure. We have 
~rb ~.E nE.F 

$1 m =  1 

and ~!ldS(', {1}) = / (1 )a lb l  = ble~. Since 

if n~2  

m = l  n = l  m = l  m = l  

we can again use a proper ty  of summable  families (i.e. the  discrete version of 
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Fubini ' s  theorem)  to  show tha t  for any  F e Z~, 

na2~ m = l  m = l  n ~  

(~bsolute convergence).  Thus ] is fl( . ,  i~)-integrable and 

f]d~(.,~) = Z ~](m)~({m}, {n}) = Zboco. 
S~ he/~ ~=I q~e~P 

Since 

~ I~(n)Z((m}, ~'})I = al + ~ (ao + ao_~) < oo, 
n = l  m = l  n = 2  

we see similarly tha t  g is fl(E, .)-integrable for every  E e Z1, and 

fg  dfl(~, • ) 
S~ 

Since 

= Z ~g(n)~( im} ,  {n}) = Za~(g(m)b~--g(m + ~)b~÷0 = 0 
meE n=l me~ 

for alt E e 2.'1. 

f ] @~(. , S~) = o and  fgd~fl(S1, ")----- ~g(n)b~c~= ~ c ~ > 0 ,  
S~ n = l  n = l  

conditions (i) and  (ii) of Definit ion 5.2 hold in this example,  b u t  (iii) does not.  

The  n e x t  resul t  is an easy consequence of Theorem 8 in [6, p. 323] and Corol- 

la ry  3.7. 

TI~]~O~E~ 5.4. - (a) I] a~, b j e K  /or j = l ,  2, and i] f~: S I -+K,  g~: S2-+K are 

]unctions such that the pairs (]~ gj) ]or i == 1~ 2, ~ = 1, 2~ are fl-integrable, then the 

pair (aJl~-a2]2, b lg l~  b2g~) is fl-integrable, and 

(a~]l+a~]2, blgl~- b~g2)dfl-= ~ a~bj (]~,gj)dfl. 
~=1 ~- 

(b) Let Y be a Banaeh space and T: X -+ ~[ a bounded linear operator. Then 

Toil is a vector bimeasure, and i] the pair (], g) is fi-integrable, it is Tofi-integrable, 

and ?], g)dZo~ = Z(?], g)d~). 

LE~[~)~ 5.5. - Zet X-= K, and let f: $1-+ K be fi(., t~)-integrable ]or every _F ~ X~. 

Then ] is fll-integrable (el. Theorem 4A). 

Piccolo. - We define sf l(E,F)-~f]dfl( . ,F) for E@Z1, F e e ' s .  Then  ffl is a bi- 

measure b y  L e m m a  5.1 and the  a-addi t iv i ty  of the  indefinite intega~al (cf. e.g. 
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Theorem 20 (a), (b) in[6 ,  p. l14]).  Thus v where v ( E ) - ~ f l ( E ,  .), EeX~,  is a 

ea(S~, X~)-valued vector  measure defined on Z1 (Theorem 4.4). We let Z~ e ca(S~, ~) '  
for F e ~ be  as in the  proof of L e m m a  5.1 and write D = {%~: F e X~}. Le t  (E.) 

be  ~ny deereusing sequence of members  of Z~ such tha t  N E~ = 0. Then 

sup fi]( )lv(zlo  , as) = sup 

b y  Theorem 20 (a) in [6, p. 114]. Bu t  supv(~fi(., F),  E,)  < Itvll(E,)->0 ~s n - ~  
Fez~ 

(Lemma 3.1.). Since sup ](~, Z~)l>~v(~, S~) for all ~eca(S2, Z~) [6, p. 97], The- 

orem 3.5 shows tha t  f is fi~-integrable. 

The following theorem is analogous to par t  of the  proposition in [20, p. 145]. 

T~EO~E~ 5.6. - For any function f: S~-~K the following three conditions are 
equivalent: 

(i) f is fl(., ~)-integrable for all F e Z~; 

(if) the pair (f, Z~) is fi-integrabIe for all EEZ~; 

(iii) the pair (f, g) is fl-integrable for every bounded L½-measurable function 
g: S ~  K. 

PR0oP. - I t  .is easily verified that  (i) implies (if). Assume now (if). Let  g: S~--~K 
be bounded  and Z~-measur~ble. F ix  x'e X'  and Eo e Z~, a.nd consider the  bimeasure 

x'fl-~ x'ofl. B y  Theorem 8 (f) in [6, p. 324] and L e m m a  5.5, f%E° is integrable with 

respect  to the  ca(S~, X2)-valued vector  measure x'fl~ (----(x'fih). Let  g'eea(S~, Z~)' 
be defined b y  <g', i )=fgd) . .  As ]Zso is x'fl~4ntegr~ble, it is also integrable with 

respect  to the  scalar measure g'ox'fi~ ( i . e . E . f g d ( ~ ' o f l ( E ,  ")) =<x ' , f l , (E ,S=)>) .  
We h~ve so 

Eo .Eo $2 $2 

For  any E e X1, we denote  b y  1fi(E, ") the  vector  measure  F~-->]fdfl(., F), ~e2:2 

(cf. L e m m a  5.1), and define v (E)= fgd f f i (E ,  . ) e X  (cf. Theorem 8 (c) in [6, p. 323]). 

Then we get  b y  (1), ~ 

for all E e L~. F rom Corollary 3.6 it thus follows tha t  f is fir( ", S2)-integrable and 

~/dflg(., S,)=v0~l)=fgdlfl(S~, .), i.e. ( i i i )holds.  As (iii) obviously implies (i), the  
g~ 

theorem is proved.  
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Co1¢oL/.~¥ 5.7. - I] ]: S~->K is bounded and Z~-measurable, and g: S~->K is 
bounded and 2~-measurable, then the pair (], g) is fi-i~tegrable, and 

f(f, g)d~I< Ilflll(s,, s~) sup  11(~)] sup  [g(t) I . 
semi ~eS~ 

P~oo~. - The fi-integrability of the  pair (], g) follows at  once from Theorem 8 (c) 

in [6, p. 323] combined with the above theorem. (A direct e lementary argument  

could also be given.) Clearly, we may  assume tha t  f and g are bounded in absolute 

value by  1. Then 

f(l, g)d  = fld o(., 1 < s )II(sl) 

E ~ Z'~-partition of S~, and  a~ e K, by  Theorem 8 (c) in [6, p. 323]. Le t  ( ~)~=1 be a 

]a~] <1,  j = 1, ..., k. There is a sequence (g~) of Z~-simple functions bounded by  1, 

converging uniformly to g. Since 

i ~  fg ) k < 

w e  h a v e  11~( ", ~) ] i  < liCit(S1, S~). 

6. - A Riesz type representation theorem. 

Throughout  this section, $1 and S, will be locally compact Hausdorff spaces. 

For  j = 1, 2, :5¢ will denote the  Borel a-algebra of Sj, i.e. 5~j is the a-algebra gen- 

erated by  the  open subsets of S~. In  the following discussion S will s tand for Sj 

and  :5 for :sj. An additive set function #:  : 5 - ÷ X  is said to be regular, if for 

every A E :5 and  every e > 0 there exist a compact set C and  an open set U such 

tha t  C = A c  U and ] # ( E ) [ < e  for all E e : 5 ,  E~c U~C. Le t  rea(S,~5, X) denote 

the vector space of the  regular vector measures /~: : 5 ->X.  We write simply 

tea(S, :5, K) = tea(S, :5). 
According to the l~iesz (-Markov-Kakutani) representation theorem the  map- 

ping # ~-> ~ where for /~ ~ tea(S, :5) q~g e Co(S)' is defined by  the formula ~fd#  = 

= <], ~ ) ,  ] e  Co(S), is an isometric isomorphism from the  closed linear subspace 

tea(S, :5) of ca(S, ~) onto Co(S)' (cf. e.g. [19, p. 131]). To simplify notat ion we 

often ident i fy  # and ~ ;  we then  use the common notat ion M(S) for both of the 

spaces tea(S, :5) and Co(S)'. 
A vector measure #: 5~->X is known to be regular if (and obviously only if) 

xr#erea(S, 3~) for all x ' ~ X '  (cf. e.g. [9, p. 263] or [11, p. 159]). The proof of 

Corollary 2 in [9, p. 263] shows tha t  for the  regulari ty of # i t  is in fact  sufficient 
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tha t  x'/~ ~ tea(S, 23) for all x' in some subset D of X '  which separates the points 

of X. The more e lementary  technique used in [11] would yield the regulari ty of # 

in case D c X ~  is such tha t  for some constant  C >  0 sup Kx', x}l C[x[ for all x e X  

and x'# e tea(S, 23) for ~1t x ' e  D. This general i ty  will suffice for our purposes. 

The next  result  can (essentially) be found e.g. in [6, p. 493]; clearly the  proof 

given there also works in the case of a locally compact space S and Co(S). 

L : ~ A  6.1. - ~or # e tea(S, :5, X)  and ] e Co(S) write T , ] = f ]  d/~. Then # ~> T~ 

is a linear bisection ]rom tea(S, 23, X)  onto the set o! all weakly compact linear oper- 

ators T: Co(S)-+X. Moreover, ]T~] = ]]#]I(S) for all i~erca(S, 23, X) .  

RE~AICK 6.2. - We shall alwa.ys regard X canonically as a closed linear sub- 

space of X '~. Le t  T: Co(S)->X be a bounded linear operator and  T": M(S)'-->-X '~ 

its second adjoint.  For  E e23 we write /,(E) ---- T"Z'~eX" where z~eM(S) '  is de- 

fined by  <Z'~, ~) = ~(E)) ~ e M(S). Then T is weakly compact if and only if/~(E) e X  

for all E e 2 3 ,  ~nd in this case /~erca(S,  23, X) and T =  T~[6, p. 493]. I t  was 

observed in [3, p. 154] t h a t  the  a-a~dditivity of the  set funct ion # :  23-+X" ah'eady 

implies the weak compactness of T. Here is ~ proof of this fact .  Since l i ln  #(E~) ~ 0, 

i.e. T'x'(E~) ~- (/~(E~), x ')  -+ 0 uniformly in x ' e  X~, for any  decreasing sequence (E~) 
o o  

of members of 23 satisfying ~ E,----0~ T'  is we~kly compact  (see Theorem I in 

[6, p. 305J), and  so is T [6, p. 485]. 

We in tend to establish in the context  of vector bimeasures an analogue of 

L e m m a  6.1. Firs t  we need to consider extensions of certain bilinear operators. 

LEM~A 6 . 3 . -  Let B:  Co(S~) × Co(S~)---> X be a bounded bilinear operator. There 

is a unique bilinear operator B,: Co(S~)t~× Co(S~)"--~ X ~ which is an extension of B 

(when each o] the Banaeh spaces Co(S~), Co(S~) and X is canonically embedded in its 

biduat) and separately continuous when each o] the spaces Co(S~y', Co($2) ~' and X ~ is 

equipped with its weak* topology. The norms of B and B~ are the same, and B~ 

depends linearly on B. 

P]¢oo~'. - According to a well-known result  due to Grothendieck [8], every bounded 

linear operator f rom Co(S1) to Co(S~)' is weakly compact. (One way of seeing this 

is to combine Theorem 6 in [6, p. 494] with Theorem 4 in [6, p. 308] and Proposi- 

t ion 5.1 in [20, p. 135].) Thus, for each x r e X  ', x 'oB has a unique separately 

weak* continuous extension B~': Co(S1) ~' × Co(S2)t'--> K, and IB~'I ~ Ix' oBI (see e.g. 

[21, p. 365]). We define (B~(u, v))(x') ~- B~'(u, v) for u e  Co(~1) ~, v e  Co($2)", x ' e X ' .  

Then B~(u, v) e X 'r. In  fact,  B~'~'+b¢ : abe '+  bBV," for x', y' EX ' ,  a~ b e K, because 

abe' ~- bB~' is separately weak* continuous and extends (ax '+ by')oB. Thus B,(u, v): 

X'--> K is linear. Since [(B~(u, v))(x')l : 1B~' (u, v)l < Ix' 11BI tu[ Iv], B.(n, v) is contin- 

uous. This also shows tha t  IB~I < IBI, so t ha t  IB~I----IBI. The separate weak*-to- 
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weak* continui ty of B~ is obvious, and so is its uniqueness, because Co(S~) is weak* 

dense in Co(SY. Finally,  if B~, B~: Co(SI)×Co(S~)---~X are bflinear and  bounded, 

and a, b ~ K, a(B~)~ ~ b(B~L is a separately weak*-to-weak* continuous extension of 

aB~ ~- bB~, and so a(B~)~ ~- b(B2)~ ~- (aB~-~- bB~)~. 

D]~I~ITIo~ 6.4. - I f  B and  B~ are as in the preceding lemma,  B, is called the 

canonical extension of B. 

We shall make use of the canonical extension in proving representat ion theo- 

rems for bounded bilinear operators from Co(S~)x Co(S~) to X. As a prel iminary 

step, let us t reat  the scalar ease. 

~ o ~ m ~ o ~ . -  I f  f: %~--~/t: is a bounded Borel (i.e., 35~-measurable) function, 

f' e M(S~)' will denote  the funct ional  defined by  <f', ~> ~ If d2, ). ~ M(S¢). 

L ] ~ A  6 . 5 . -  I f  b: Co(S~)XCo(S~)-+K is a bounded bilinear form, there is a 

unique function fl~: ~ x 3~-+ K satisfying the following two conditions: 

(i) fl~(E, .) ~ rca(S~, 3~) for all E e ¢~ and fl~(., F) ~ rca(S~, ¢~) for all F. e ~ ;  

(ii) f(h, k) dfi~ ~- b(h, b) for all h e Co(S~), k e Co(Sa). 

I f  b~: M(S~)'×M(S~)'->K is the canonical extension of b and f: S~---~ K, g:S~--> K 

are bounded Borel f~nctions, we have b~(f', g ' ) : f ( f ,  g)dflb. The norm of b equals 
Ilfi~II(SI~S~). Conversely, if fl: ~ I X g ~ - ~ K  satisfies (i), there is a unique bounded 

bilinear form b: Co(S~)x Co(S~)->K such that fl-~ fl~. 

P~ooP. We define fib by the formula fib(E, F ) =  b ' ' - ~(Z,, ZF), E e l 1 ,  F e : 5 ~ .  

F rom the  separate weak* cont inui ty  of b~ it  follows tha t  e.g. for all bounded Borel 

functions f: $1-+ K the functional  b~(f', .) : M(S~)' -+ K is the canonical image of 

some ),~EM(S2) [6, p. 421]. In  particular,  (i) hoIds. Le t  ]: S I - + K  and g: Ss-+K 

be bounded Borel functions. The pair (f, g) is flb-integrable by Corollary 5.7. The 

measure E~->f fd~( . ,F) ,  Fe:~2,  is just  2f (as can be seen by approximating / 

uniformly by 33rsimple functions). By  definition we thus have f(f, g)dflb----=~gd).1= 

: b~(f',g'). In  particular,  (ii) holds. We now show tha t  if any  fi: 5 5 ~ x ~ - + K  in 

place of fib satisfies (i) and (ii), then  IlfiH(s~, S2) : [bl; this will also prove (by an 

obvious l inearity argument)  the uniqueness of fl~. Consider the  vector measure 

fl~: 35~--~ca($2, 3~) defined by  (f i~(E))(F)= fl(E, tz) (cf. Theorem 4.4). The values 

of fll lie in rea(S~, 33~), and it is regular (see the discussion preceding L e m m a  6.1, 

Since z 

fh  3~) for all h e Co(S~), rca(~2 
sx 
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we have  

I?< 
since 

Thus  

e l l<q --~ sup lb(h, k)l , 

ll II(s , = II 111(s ) = s u p  s u p  tb(h,  = tbi 
[hl<l Iki<l 

by  Theorem 4.4. As to  the  last assertion, observe thu t  (h, k)~f(h, k)d/~ is a 

bounded  bil inear form on Co(S1)×Co($2) (cf. Theo rem 4.5 and  Corollary 5.7). 

TItEOl~]~ 6.6. - JLet B:  Co(S~) × Co(S~) --> X be a bounded bilinear operator. There 

exists a unique mapping fiB: 5~ × 3~--> X"  satisfying the following two conditions: 

(i) if  x ' e X ' ,  then the function F ~ - > ( x ' , f l B ( E , F ) }  is in rca(S~, ~ )  for all 

E e~5~, and the function E ~-> (x ' ,  fl,(E, F)} is in rea(S~, ~ )  for all F e ~ ;  

(ii) for all x' e X ' ,  h e Co(S~) and k e Co(S~), (B(h,  k), x '}  equals the integral 

of the pair (h, k) with respect to the bimeasure (E, F )~ ->(x ' ,  fi,(E, F)}, E e ~ ,  

F e ~ .  We have 

(1) fl~(E, F) -~ B.(Z~ , Z'~) for E e ~ , ~ e :55, 

and IlfiB]i(S~, S~) ----]B t. 

PRooF. - Define fib by  (1). As for any  x ' e  X '  the  canonical  extens ion of x 'oB  

is x'o(Be) (with the  in te rpre ta t ion  x ' e  X") ,  (i), (ii) and the  uniqueness s t a t emen t  

follow f rom L e m m a  6.5. Since lx'oBl--~ ltx'ofi, II(S~, S~) (Lemma 6.5), IBt-= llflll" 

• (S~, S~) b y  L e m m a  4.3. 

Vv~e are going to characterize those bounded  b ihnear  operators  B :  Co(St)× 

× Co($2)--~X for  which fl~(tg~ × ~ 2 ) c  X. L e t  us p repare  the  proof of t h a t  resul t  

wi th  a lemma.  

LE~I~A 6.7. - Let B: Co(S1)× Co($2) -> X be a bounded bilinear operator and Be its 

canonical extension. Let q~ e Co(St)" be such that Be(~, k') ~ X for all k e Co($2). Then 

Be(~, • ): Co(SS--~ X"  is the second adjoint of the operator k ~-> Be(~, k') from Co($2) 

to X .  

P]~ooF. - Bo th  B~(~, . ) . and  the  second adjoint  of k ~-> Be(~, k') are cont inuous 

f rom a(Co(S~)", Co(S~)') to a(X 'r, X') .  As t h e y  agree on the  canonical image of 

Co(S~), which is weak* dense in Co(S~)", t h e y  are the  same. 

9 - . d n n a l i  eli M a t e m a t i e a  
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TREOI~EN 6.8. - Let B : Co(SO × Co(S~) --> X and fi~: 53t × 53~--> X '~ be as in The- 

orem 6.6. The Jollowing six conditions are equivalent: 

(i) ~.(E, 

(ii) ~ (E ,  

(iii) ~(/~, 

(iv) B~(/,, 

(v) Bo(]', 

• ) and fl~(., ~) are regular /or all E ~ 531, E ~ ~ ;  

.) and ~ ( . ,  ~)  are (~-additive ]or all 1~53~, /7~53~; 

E)~X for all E~53~, E~:B~; 

g') ~ X Jor all bounded Boret functions J. S~-+K, g: S~-~K; 

g') ~ X whenever ] e Co(SO k) {Z~: E c S~ is open} and g e Co(S~) u 

W{X~:/7cS~ is open}; 

(vi) B~(¢o(SO" × ¢o(S~)") c x .  

P~oo~'. - Since every additive and  regular /~: 53~--->X" is a-additive (see e.g. 

the proof of Theorem 13 in [6, p. 138], or [4, p. 510]), (i) implies (ii). Assume (ii). 

For  each h ~ Co(S0 there is a sequence (]~) of 531-simple functions converging uni- 
I 

formly to h. Each function /7 ~-> B~(f ,  Zs) is a-additive, and the sequence of these 

functions converges uniformly on ~g2 to the  function F ~> B.(h', X~), which is there- 

fore a-additive, too. But  L e m m a  6.7 shows tha t  B~(h', Z~)---B(h, .)tr(Z£), and so 

B.( hr, X~) s X for a l l / 7  E 532 (see Remark  6.2). Using L e m m a  6.7 again we see t ha t  

i f / 7  ~ 53~, the  second adjoint  of the operator h ~->B~(h', Z~), h ~ Co(SO, has the  value 
' ' B / t B~(Z~, gF) for all E E 53~. Since E ~-> ~(Z~, Z~) is a-additive, (iii) holds (I~emark 6.2). 

As each bounded Borel function on S; can be approximated uniformly by  :5j-simple 

functions , (iii) implies (iv). Clearly, (iv) ~implies (v). Assume now (v). To show 

tha t  then  (vi) holds, we shall use a result of Grothendieck which says tha t  

a bounded linear operator T: Q(S~) -~X  is weakly compact i f  (and only if) 

T'r(ZE) C X for all open sets E c S~ (see [8, pp. 160-161]). For  a fixed funct ion 

h e Co(SO, Bo(h', -): M(S~) ' ->X ~ is the  second adjoint  of B(h, ") (Lemma 6.7). Since 

B~(h', Z~') e X for all open sets IF c $2, B(h, .) is weakly compact, and  so B~(h', ~o) ~ X 

for all ~ ~ M(S~)' [6, p. 482]. For a fixed functional  ~o e M(S~)', the operator h ~->B~. 

• (h', ~0) from Co(SO to X has B~(., ~o): M(S1)'-+X as its second adjoint  (Lemma 6.7). 

I f  g: S2 -*K is in Co(S~) or if g is the characteristic function of an open set, 

B.()/~, g') e X for every open set E c S~, so tha t  the operator h ~ B~(h', g') is weakly 

compact  by  Grothendieck~s theorem. Thus B~(% g,) ~ X for all ~ ~ M(S0 '  [6, p. 482]. 

Fix  now ~0 e M(SO'. By L e m m a  6.7, B~(% .) is the  second adjoint  of the operator 

k ~-> B~(% /d) from Co($2) to X, and since B~(~, Z~) e X for all open sets /7 c $2~ 

the lat ter  operator is weakly compact by  Grothendieck's theorem, and so B~q0, ~o) e X 

for all ~ E M(S2)', i . e ,  (vi) holds. Clearly, (vi) implies (iii). In  view of Theorem 6.6 

and the 0rlicz-Pettis theorem [6~ p. 318], (iii) implies (ii). Theorem 6.6 combined 

with the discussion preceding L e m m a  6.1 shows tha t  (ii) implies (i). 

We are now ready to prove our main representat ion theorem. A vector bimeasure 

fi: ~BI×~B~-->X is said to be separately regular if fi(E, .)erca(S~, 53~, X)  for each 

E ~ f f ~  and f l ( . , / 7 )~rea (S~53~ ,X)  for all / 7 ~ 5 ~ .  We denote by srca(N~,53~; 

S~, :g~; X) the set of the separately regular vector bimeasures fi: ~g~ × 53~-~ X. I t  is 
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easy to ver i fy  tha t  srca(S~, ~ ;  S~, ~ ;  X) is a closed linear subspace of ~he Banaeh  

space of all vec tor  bime~sures fl: ~ × ~ - ~  X equipped with the  semivariat ion norm 

(Section 4). 

T ~ o ~  6.9. - Denote Ba(h, k) ~-f(h, k) dfl /or a~l f ie  srca(S~, 5~1; S~, 5~; X) and 

h e Co(S~), k e Co(S~). Then the mapping fi ~-> Ba is an isometric linear bijection ]tom 

srca(S~, ~ ;  S:, ~ ;  X) onto the Banach space o/ those bounded bilinear operawrs 

B: Co(S1) × Co(S~) --~ X for which B,(Co(S~y × Co(S~y) c X.  Moreover, (Ba),(f, g') = 

=f(],  g) dfl ]or all bounded Borel /unctions ]: S~ ->K, g: Sz-~K and flesrca(S~, 5~; 

S~, ¢~; X).  In  particular, ( ~)~(~, 9~) fl(E, ~) /or E e ~5~, ~ e ~ .  

P~oo~. - Suppose f ie  srca(S~, :5~; S~, ¢~; X). Then  B~: Co(S~) x Co(S~) ---~ X is 

a bounded  bilinear opera tor  by  Theorem 5.4 (or a direct e lementary  argument) ,  

Corollary 5.7 and Theorem 4.5. Le t  /:  S I - ~ K  and g: S~-+K be bounded  Borel  

functions.  I f  x ' e X ' ,  (x'oB~)~(/', g')--~f(], g)d(x'o~) b y  L e m m a  6.5, because x'oB~. 

• (h, k) =f(h,  k)d(x'ofl) for he  Co(S~), k e  Co(S~) (Theorem 5.4 (b)). As (u, v) ~-~ 

(x', (B~),(u, v)) is the  canonical extension of x' oB~, it  follows tha t  

( T h e o r e m 5 A  (b)), i.e. (B~L(/ ' ,g ' )=f(/ ,g)d~ (ex) .  Thus Theorem 6.8 shows tha t  

(B~)~(Co(SI)" × Co(S~) H) c X.  I t  is easily verified tha t  the  mapping fl ~-~ B~, fi e srea. 
B r ? • ($1, :~ ;  $2, ~2; X),  is linear. Since ( ~)~(Z., ZF) fi(E, F) for all E e ~5~, /~ e :5.2, 

it is injective. L e t  now B:  Co(S~)× Co($2)-~ X be any  bounded  bilinear operator  

satisfying the  six equivalent  conditions in Theorem 6.8. I f  fi ----fib: ~ × ~2-+  X c X" 

is defined as in Theorem 6.6 (so tha t  fiesrca(S~, ~ ;  $2, ~2; X) by  Theorem 6.8), 

t hen  by  Theorem 6.6 B = B~ (because ~x', f(h, k)dfl~ =f(h ,  k)d(x'ofl) -~ (x', B(h, k)}, 

x' e x ,  h e  ¢o($1), k e  Co(S~)), ~nd ]!~II(S~, ~ )  = IBI. 

~E:~iIAI~K 6 . 1 0 . -  I f  B :  Co(S1)× Co(S~)-~X is a bounded  bil inear operator  such 

t ha t  B~(Co(SI)" ×Co(S~y')c X ,  i t  is clear f rom L e m m a  6.7 t h a t  /~(-, k): Co(S1)-+X 

an dB(h ,  -): Co(S~) - + X  are weakly  compact  operators  for  all k e Co(S2), h E Co(St) 

(see [6, p. 482]). The  weak compactness  of all these  operators does not  in tu rn ,  

however ,  imply  t ha t  B~(Co(S1)~'×Co(S~y)cX. Fo r  example,  denote  as usual 

Co ~ Co(N) and define B:  co x vo-~ co b y  pointwise multiplication. I t  is clear t ha t  
H 

when ~ ,  the  set of all bounded  sequences, is in the  usual  way identified with Co, 

B,(], g ) =  ]g for all /, g e 1% In  fact,  t he  bil inear operator  (/, g)~->/g extends B 
ff ff 

and  is obviously separate ly  weak*-to-weak* continuous. Thus  Be(c o × c o ) =  1 ~, al- 

though  all the  operators  B( . ,  k) : e0 -> co and B(h, .) : co -~ Co for h, k e Co are even 

compact .  

We conclude this section with a theorem which one would expect  to be t rue  of 

a sat isfactory bil inear analogue of a weakly compact  operator.  We first prove a 

lemma.  
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L]~)L~ 6.11. - Let fi e srca(S~ 33~; $2, 3~; X)  and let B = Be: Co(S1)×Co($2)->X 

be de]ined as in Theorem 6.9. Then the sets U~-- ( f l (E ,F) :  Beff51, F e ~ )  and 

V =  (Be(h, k): h ~ Co(S~), k ~ Co($2)) span the same dosed linear subspaee of X .  

I']~ooF. - Le t  :Y1 be the  closed l inear hull  of U and :Y~ tha t  of V. l~ix k e So(S~). 

B ' k "  ~" We have  ~(Xe, k')----B( ", ~(Z~) for all Ee~5~ b y  L e m m a  6.7. As (B. ,k)":  

Co(S~)"-~X is cont inuous f rom a(Co(S1)", Co(S~)') to  ~ ( X , X ' )  (note t h a t  B( . ,  k) is 

weakly compact) ,  and  Co(S~) is weak* dense in Co(S1)", B,(Z~, k ' )eY~ for all E e 3~, 

because Y~ is ~(X, X')-closed [6, p. 422]. F ix  now E e 2~1. By  L e m m a  6.7 again, 

B~(g'~, ") is the  second adjoint  of the  weakly compact  [6, p. ~82] opera tor  k ~->B~. 

B ' • (Z'~, It'), and so a similar reasoning shows tha t  ~(Z~, g~) eY~ for all F e ~ .  Thus 

Y1 c ~ .  Conversely, i t  follows f rom Definitions 5.2 and 3.3 tha t  each x e V can be 

approx ima ted  in no rm by  l inear combinations of e lements  f rom U. 

REMARK 6.12. -- The  me thod  used in the  first par t  of the  above proof also shows 

tha t  if B:  Co(S~)× Co(S~)-+X is a bounded  bilinear opera tor  whose range is con- 

ta ined in a closed linear subspace Y of X,  and such tha t  B~(Go(S~)" × Co(S~)")c X ,  

t hen  B~(Co(S~)" × Co(S~)") c ~.  

TttEORE~ 6.13. -- Let Y be a dosed linear subspace o] X and B: Co(S~) × Co(S~)--> X 

a bounded bilinear operator whose range is contained in Y.  Then the six equivalent 

conditions in Theorem 6.9 hold /or B i] and only i] they hold ]or B regarded as a 

mappiq W into Y .  

P~oo~. - This is an easy consequence of Theorem 6.9 and the  above lemma.  

7. - Remarks on integration with respect to bounded bilinear operators. 

We re ta in  the  nota t ional  conventions of the  previous section. L e t  fi: 331 × ~ - ~ X  

be ~ separate ly  regular  vec tor  bimeasure  a.nd B - ~ B e :  Co(S1)×Co(S~)--~X the  

bounded  bil inear opera tor  corresponding to  it  as in Theorem 6.9. The  purpose of 

this section is to make  some comments  on the  possibility of replacing condi- 

t ion (i) in Definit ion 5.2 by  a condition which involves the  weakly compact  operators 

B( . ,  k) and B(h, .) for k ~ Co(S~), h e Co(S1), and the  corresponding regular  vector  

measures  in place of fl(-, F )  and fl(E, .) for  E e :5i, F ~ ~ .  We shall first deal with 

the  scalar case. 

LE~MA 7.1. - .Let b: Co(S1)× Co($2)--~ K be a bounded bilinear ]orm and fl the 

separately regular bimeasure defined by /5(E, F)----be(z~ , Z~'), E e:51, ~e33~ (el. 

Zemma 6.5). For a ]unction ]: Si---~ K the ]ollowing three conditions are equivalent: 

(i) f is fl(., ~)-integrable ]or all F e :B~; 

(ii) ] is integrable with respect to the vector measure ill: 3~---~ M(S~) (el. The- 

orem 4.4); 

(iii) ] is integrable with respect to b(., k ) e  M(SI) ]or all k e Co(S~). 
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P~ooF.  - B y  L e m m a  5.5, (ii) follows from (i) (note tha t  M(S~)~ rca(S~, 3~2) 
is a closed subspace of ca(S~, ~ ) ) .  Clearly, (ii) implies both  (i) and (iii) (observe 

tha t  b(., k) is just  k' otis, because fl~ is regular b y  the  discussion preceding L e m m a  6.1, 

and ~hd(k'°fll)-----~hdfi~, k~ ~--b(h, k) for h ~Co(S~) b y  L e m m a  6.5). Assume now 

(iii). We shall prove (ii). This could be  done by  using some considerations in [20, 

pp. 132-133, 1~4], bu t  we give a direct argument ,  l~or n ~N, we define ]~ = ] ~  

where As ~-{s e S~: ]](s) I < n}. Then ]~ is b(., k)-measurable (i.e. measurable with 

respect  to the  Lebesgue extension of ~B~ relat ive to b(., k)), hence b(., k)-integr~ble 

[6, p. 117], for all k ~ Co(S~), and so are ]~h and ]h for all h e Co(S~). l~rom the 

Lebesgue dominuted convergence theorem [6, p. 151] it follows tha t  

lim k)=flhdb(.,  k). 
~--.-> oo 

S~ S~ 

Since (h, k)~->~f~hdb(., k) is for every n E N a bounded  bilinear form on Co(St)x 

x Co(S~), the  uniform boundedness  principle can be  used to show tha t  the  bilinear form 

b~: Co(S1) x Co(S~)--> K defined by  b~(h, k) -~ffhdb(.,  ~) is bounded.  Le t  T:  Co(S~)--> 
*gl 

--> Co(S~)' be the  bounded  bilinear operator  defined b y  (Th, k) -~ b~(h, k). As T is 

weakly  compact  (see the  proof of L e m m a  6.3), there  is b y  L e m m a  6.1 a regular 

vector  measure ~: ~1--> Co(S~)' such tha t  b1(h, k) -~ ~ h d ~ ,  k~, h eCo(S~), k eCo(S~). 

Writing ~(E) -~ f fdb( . , k )  we have k ' o ~ ( E ) :  ~k(E) for all Ee~B~, keCo(S~), be- 
E 

cause 2~, being b(., k)-continuous [6, p. 114], is a regular measure,  and ~hd(k'or) -~ 
= by(h, k) ~ f h  d~  for all h e Co(S~) [6, p. 180]. Since 

E n  ~ n  

by  Theorem 20 (a) in [6, p. 114] (recall tha t  b(., k) is identified with k'ofll), we have 

sup { f[/(s)lv(k'Ofll, ds): k e  Co(S~), Ik[ < 1}< IIvlt(  ) 0 
En 

co 

as n--> oo for every decreasing sequence (E~) of members  of ~1 with m E ,  = 0, 

and so (ii) follows from Theorem 3.5. ~=1 

The following theorem is an easy consequence of the  above lemma. In  prepara- 

tion, observe tha t  if e.g. ]: S1-->K is b(., k)-integrable for all k eCo(S~), the  linear 

funct ional  b(], .) for which 

b(], k) ----f] db(., k),  k e Co(S~), 
$1 
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belongs to M(S2); by  L e m m a  7.1 and its proof we have actually 

$1 

We define b(-, g) analogously. 

THEO~]~[ 7.2. -- Let b: Co(S1) × Co(S~)--~ K and fi : ~ × ¢~--> K be as in Lemma  7.1. 

The pair (], g) o] /unctions ]: S1-->K, g: S2-->K is fl-integrabte i] and only if the 

following three conditions hold: 

(i) ] is b(., k)-integrable for all k e Co(S~), and g is b(h, .)-integrable for all 

h e ¢ o ( $ 1 ) ;  

(it) ] is b(., g)-integrable and g is b(], .) integrable; 

(iii) ~]  db( ", g) =~g db(], " ). 

I] this is the case, both sides in (iii) are equal to f(], g) dfl. 

R E ~ A ~  7.3. - L e m m u  7.1 becomes false, if in (iii) Co($2) is replaced by  J~(S~), 

the  set of continuous functions with compact support. For  example, let S~----S~ 
1 

be the half-open interval  ]0,1], and define b: Co(S~)×Co(S2)---~R by b(h, ~)=fh(x). 
o 

• k(x) dx. The funct ion ]: SI -+R,  ](x) ~ x -2, is b(., k)-integr~ble for all k e~(S~),  

bu t  not  b(-, k)-integr~blc, if k ( x ) :  x, x e J0, 1]. Moreover, if g ( x ) :  x 2, the  pair 

(/, g) is b-integr~ble in the  sense of [15, p. 482] and [20, p. 145], bu t  not  fl-integrable 

in the  sense of our definition (in this case fl(E, 1~)= m ( E n  ~), where m is the  

Lebesgue measure on ]0, lJ).  I n  [17, p. 23], a pair (], g) of functions satisfying the 

conditions (i), (it) ~nd (iii) of Theorem 7.2 is said to be (( strongly ~) integrable with 

respect to b. 

We now turn  to the  question, to what  ex tent  analogues of L e m m u  7.1 and 

Theorem 7.2 are t rue  in the  vector c~se. Pa r t  of Lemm~ 7.1 can be easily gen- 

eralized wi thout  any  restriction on the  B~na,ch space X. In  the  nex t  lemma we 

assume tha t  fl e s r c a ( ~  :~; S~, ~ ;  X)  ~nd let B:  Co(S~) × Co(S~)--->X be the  bounded 

biline~r opera.tor defined by  B(h, k) =f(h, k) dfl. By Theorem 6.9 and  Remark  6.10 

the  operators B ( . , k ) :  Co(S~)-~X and B(h, .): Co{S~)-->X are weakly compact,  

L E ~ A  7.4. - 1] the ]unction ]: S ~ - ~ K  is fi(.,~)-integrable ]or all ~ e ~ ,  then 

]or every k e Co(S~) ] is integrable with respect to the regular vector measure on ~5~ cor- 

responding to B( . ,  k) by Lemma 6.1. 

P~oo~. - By  Theorem 5.6, ] is integrable with respect to the  vector measure 

E ~ J k d f l ( E ,  .), E e ~ .  But  this is just  the  regular vector measure corresponding 

k) (Z~), which equals to B ( . , k ) ,  because the  value of the  l~tter for E e 3 ~  is B(. ,  " ' 

' B ' =~ B~(Z~ , k') by  L e m m a  6.7, ~nd clearly ~(g~, k') kdfi(E, .). 
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Following E. THOMAS [20, p. 135] we say tha t  a Banach space X is weakly 

S-complete, if for every sequence (x~) of elements of X such tha t  ~ l(x~, x'}l < c ~  

for all ¢ ' f fX '  there is x ~ X  such tha t  (¢ ,~ '}  = ~ ( ~ , ~ ' }  for all $ ' f f X '  (or in 
n = l  

co 

view of the Orliez-Pettis theorem, equivalently,  x = ~ w~). In  the next  lemma we 

collect some well-known characterizations of weakly Z-complete BanaeJa spaces. 

L:~]~MA 7.5. - For a Banach space X the following four conditions are equivalent: 

(i) X is weakly Z-complete; 

(if) X does not contain any isomorphic copy of c0; 

(iii) for every locally compact Hausdorff space S every bounded linear operator 

T: Co(S)--> X is weakly compact; 

(iv) for every set S V= O, every a-algebra X o/subsets of S and every vector measure 

# : X -*. X the following holds: if f: S -+ K is a function which is x'#-integrable for all 

x ' e  X ' ,  then f is #-integrable. 

P~ooF. - The equivalence of (i) and (if) is due to C. BESSAGA and A. P~czYNsK ~ 

(see[2, p. 160]). As to the  equivalence of (i) and (iii), see [18, p. 219] and[20 

pp. 135-136]. Assume now (i). To prove (iv), one may  observe thut  if f is x'/~-integ- 

rable for all x ' e X ' ,  then  some Z-measurable funct ion agrees with f #-a.c. (see 

Theorem 3.2 and  [19, p. 145]) ; t hen  apply Theorem 1 in [10~ p. 31] and Corollary 3.6. 

Finally,  assume (iv). We prove (if). Suppose, ~o the  contrary, tha t  there is a linear 

injection ~: co--->X which is a homeomorphism onto its range. Take S----N and 

let  X be the  set of all subsets of N. Define f ( n ) ~ n  and g(n)--=n -~ for h e N .  

Cleurly, the  set function #:  X--->X defined by #(A) --=- ~(zdg) is an X-valued vector 

measure. As the dual  of co is P, it  is easy to verify tha t  f is x'/~-intcgrable for all 

x ' e  XL But  f is not/~-integruble. This contradiction proves (if). 

C0~0LLA~Y 7.6. -- A Banach space X is weakly X-complete, if and only if for all 

locally compact Hausdorff spaces $1 and S~ every bounded bilinear operator B: Co(St)× 

× Co(S~) --> X satisfies the condition B~(Co(SI) '~ × Co(S~)') c X.  

P~ooF. - Le t  X be weakly Z-complete. By  Lernma 6.7 and the weak compact- 

ness of B( . ,  k): Co(S1)-+X (Lemma 7.5) B~(9, k') e X  for all kE Co($2), q~ e Co(Sx)" 

[6, p. 482]. F ix  ? e Co(S~)'. Again by L e m m a  6.7 and the weak compactness of 

the  operator k ~> Bd% k') from Co(S~) to X, B~(% ~ ) e  X for all ~ e Co(S~)L Suppose, 

conversely, tha t  X is not  weakly 2,~-complete. Then there is a linear injection 

~:Co-+X which is a homeomorphism onto its range. Le t  B:eo×co=-->co be the 

bilinear operator eonsicIered in t~emark 6.10. Using Theorem 6.13 we see tha t  ~oB 

does not  satisfy the condition (~oB)~(Co(S~)"× C o ( S J ) c X .  
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I n  the  nex t  theorem we make  the  assumption t h a t  X is weakly / - comple te .  

By  ident ifying a bounded  operator  (which is weakly compact  b y  L e m m a  7.5) f rom 

Co(Sj) to X with the  corresponding regular vector  measure (Lemma 6.1), and defining 

B( . ,  g) and B(f, • ) in a na tura l  way, we can formula te  a generalizat ion of Theorem 7.2. 

Specifically, if /: S1--~K is B(.,  k)-integrable for all k e Co($2), the  discussion e.g. 

preceding Theorem 7.2 shows tha t  for all x ' e  X '  the  funct ional  

ffdB(., k)) k)) 
81 S~ 

on Co(S~) is bounded,  and so by  the  uniform boundedness  principle k ~ffdB(., k) 
B1 

is a bounded  l inear opera tor  f rom Co(S~) to X. We denote  this opera tor  by  B(f, .) 

and define B( . ,  g) similarly.) 
% 

THEOREM 7.7. -- Ie t  X be a weakly X-complete Banach space. Suppose fl e srca. 

• ($1, 53t; S~, 332; X) and let B -~ B~: Co(S1)× Co($2)---~X be defined as in Theorem 6.9. 

The pair (/,g) of functions /: S1-->K, g: S~--~K is fi-integrable q and only if the 

following three conditions hold: 

(i) f is B( . ,  k)-integrable /or all k e Co($2), and g is B(h, .)-integrable for all 

h e ¢o($1); 

(ii) f is B(. ,  g)-integrable and g is B(/, .)-integrable; 

(iii) f f  dB(., g) ~ ! g  dB(/, .). 

I f  this is the case, both sides o/ (iii) are equal to S(f, g)rift. 

P]~ool~. - Since x'ofl(E, F) ' ' x' F e 332, the  = (x oB)~(ZE , g~) for all e X ' ,  E e g31, 

theorem is an easy consequence of Theorem 7.2 and L e m m a  7.5. 

We conclude by  showing tha t  the  restr ict ion made on X in the  above theorem 

is the  r ight  one. 

THEOI~E1K 7.8. - -  For a Banach space X the following two conditions are equivalent: 

(i) X is weakly X-complete; 

(ii) for all locally compact HausdorM spaces $1 and $2, and /or all bounded 

bilinear operators B: Co(S1)xCo(S2)-->X satisfying the six equivalent conditions in 

Theorem 6.8 the following holds: if for all keCo(S~) /: S I ->K is integrable with 

respect to the regular vector measure on ~ corresponding to the weakly compact oper- 

ator B ( . , k ) :  Co(S~)-->X, then / is flB(.,F)-integrable for every F e'.52, where fl, is 

B ' ') defined by fiB(E, F) ---- ~(ZE, Z~ , E e ~B1, F e ~2. 

PI~OOF. -- By  Theorem 7.6, (i) implies (ii). Suppose now tha t  X is not  weakly 

/ - comple t e .  We shall construct  a bounded  bilinear operator  B :  co × Co -+ co satisfying 

the  conditions in Theorem 6.8 and such tha t  the  s t a t emen t  in (ii) is not  t rue  of B. 
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Since X con ta ins  an  i somorph ic  c o p y  of  co ( L e m m a  7.5), i t  will  t hen ,  in v iew of  

L e m m a  6.11 a n d  T h e o r e m  6.13~ be  clear  t h a t  (it) does no t  ho ld  for  X.  L e t  ~ :  N - > K  

be  def ined b y  ~0(n) = ~-~. I f  h, I~ e co ~ Co(N), we define B(h,  k) e e0 us t he  po in t -  

wise p r o d u c t  ~hk.  W h e n  1 ~ is ident i f ied  in t h e  usua l  w a y  w i t h  t he  b idua l  of co, i t  
/ /  

is seen  as in  l~emark  6.10 t h a t  B~(/, g) -~ ~]g for  all  /, g e l %  T h u s  B~(co × c o ) c  Co. 

Now,  if ~(n) : n, n ~ N,  i t  is eusi ly ver i f ied t h u t  for  all k e Co ~ is in tegrab le  wi th  

r e spec t  t o  t he  vec to r  m e a su re  corresponding '  to  B ( . ,  k), b u t  ~o is no t  in tegrable  wi th  

r e spec t  to  E e-> ~()~, Z~). 
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