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1. Introduction. A vector-valued modular form of weight k (k any
real number) on the modular group Γ = SL(2,Z) may be described as
follows (see Section 2 for more details): for any integer p ≥ 1 it is a tuple
(F1(τ), . . . , Fp(τ)) of functions holomorphic in the complex upper half-plane
H together with a p-dimensional complex representation % : Γ → GL(p,C)
satisfying the following conditions:

(a) For all V =
(
a b
c d

)
∈ Γ we have

(F1, . . . , Fp)t|kV (τ) = %(V )(F1(τ), . . . , Fp(τ))t(1)

(t refers to transpose of vectors and matrices).
(b) Each function Fj(τ) has a convergent q-expansion holomorphic at

infinity:

Fj(τ) =
∑

n≥0

an(j)qn/Nj(2)

for positive integers Nj . (Here and below, q = exp(2πiτ).)

The precise meaning of the right slash operator |kV in (1) is as follows.
Fix a multiplier system υ in weight k with respect to Γ (there are six choices
for each k) and define F |kV (τ) = F |υkV (τ) = υ(V )−1(cτ + d)−kF (V τ). This
defines a right action of the group Γ on holomorphic functions F (τ) which
extends to a componentwise action on tuples of such functions. See [K1] for
more details. In what follows the multiplier υ will play no role and we omit it
from the notation. Note that as a consequence of (1) and (2), we necessarily
have k ∈ Q.

We might well have allowed our vector-valued modular forms to have
poles, in which case one would want to distinguish between meromorphic
and entire vector-valued modular forms. As it is, we will consider only vector-
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valued modular forms in the sense of (1) and (2) in the present paper, and
we will usually omit the adjective “entire”. If each function Fj(τ) satisfies
a0(j) = 0 we say that the vector-valued modular form is cuspidal.

It has been understood for some time that classical holomorphic modular
forms of weight k (on a subgroup ∆ of Γ ) may be construed as vector-valued
modular forms in the above sense, with p equal to the index |Γ : ∆| and %
the permutation representation of Γ on the cosets of ∆ (cf. [S]). However,
there are examples of vector-valued modular forms which do not arise in
this manner. The special case in which % is a monomial representation was
investigated by the authors in [KM]. The question then arises: to what extent
are properties of classical modular forms shared by the more general class
of vector-valued modular forms?

The main result of the present paper, treating a question of this nature, is
concerned with obtaining growth conditions on the Fourier coefficients an(j)
which are analogous to well known results in the classical case (cf. [L], [R]).
Aside from any intrinsic interest that the main result of the present paper
may have, it plays an important role in the proof of some recent theorems
in rational conformal field theory (RCFT) established by the second author
and Chongying Dong ([DM]). The principle of “modular invariance” is well
known in RCFT (cf. [Z], [DLM] for example), and while it remains conjec-
ture that the partition functions of RCFT are classical modular forms, it
is presently known only that such partition functions afford a vector-valued
modular form. (This is discussed in detail in [KM].) It is this circumstance
which animates the present paper. The main result of the paper is as follows:

Theorem. Let (F1(τ), . . . , Fp(τ)) be a vector-valued modular form of
weight k associated to a representation % of Γ . There is a nonnegative con-
stant α depending only on % such that the Fourier coefficients an(j) satisfy
the growth condition an(j) = O(nk+2α) for every 1 ≤ j ≤ p, as n → ∞.
If the vector-valued modular form is cuspidal then an(j) = O(nk/2+α) for
every 1 ≤ j ≤ p, as n→∞.

Our Theorem is thus an analog of the “elementary” estimates for classical
modular forms of weight k, namely an = O(nk) for holomorphic forms and
an = O(nk/2) for cusp-forms. The complications which arise from the more
general situation at hand are handled by the use of Eichler’s important
estimates ([E]), which the first author has used elsewhere ([K2]). The proof
of the Theorem shows that we may take α equal to log p‖%(S)‖ times a
constant independent of %.

We use the following notation throughout the paper: S =
(0 −1

1 0

)
and

T =
(1 1

0 1

)
are the usual generators of Γ ; τ denotes an element in H, z an

element in the closure R of the usual fundamental region for Γ in H. Thus
R is bounded by the two vertical lines consisting of points with real parts
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equal to 1/2 and −1/2 respectively, and by the arc of the unit circle lying
between these lines and in H. We also set y = Im τ and v = Im z.

2. Vector-valued modular forms. Let Hol denote the space of holo-
morphic functions on H and let Holq denote the subspace of those functions
which have a q-expansion convergent at infinity. Note that Hol is a right
Γ -module with respect to the action |k, whereas Holq is not preserved by
the action of Γ . We write Holk when we want to think of Hol as a right
Γ -module in this way. It is convenient to refer to the pair (F, %) as a vector-
valued modular form if F = (F1(τ), . . . , Fp(τ)) and % is a representation
of Γ in GL(p,C) such that (1) and (2) are satisfied. In this case it is evi-
dent from (1) that the component functions Fj(τ) span a finite-dimensional
Γ -submodule M ⊆ Holk; (2) tells us that M is actually contained in Holq.
We are going to show that the converse is also true. Precisely, we have the

Proposition. Let M ⊆ Holk be a finite-dimensional Γ -module which
is contained in Holq, and let (F1(τ), . . . , Fp(τ)) be a tuple of elements in M
which generate M as a linear space (the Fj(τ) are not required to be linearly
independent). Then there is a representation % : Γ → GL(p,C) such that
(F, %) is a vector-valued modular form of weight k.

The Proposition tells us that the data supplied by a vector-valued modu-
lar form is essentially equivalent to that of a finite-dimensional Γ -submodule
M of Holk contained in Holq together with a tuple of generators of M . Given
two vector-valued modular forms (F, %) and (F ′, %′), we say that they are
equivalent if they correspond to the same Γ -module, say M . In other words,
the component functions of both F and F ′ generateM as a linear space. Note
that the representations %, %′ play a passive role in this. For instance, it is
easy to find examples of vector-valued modular forms (F, %), (F ′, %′) with the
same tuple of holomorphic functions and inequivalent representations %, %′

of Γ . By way of example, let F and F ′ each consist of the 2-component vec-
tor (∆(τ),∆(τ)) where ∆(τ) is the usual discriminant function, a cusp-form
of weight 12 on Γ . Take % to be the 2-dimensional representation in which
each element of Γ is represented by the identity, and %′ the 2-dimensional
representation whose kernel is the (unique) subgroup of Γ of index 2 and
such that S interchanges components of F .

Proof of the Proposition. For each index j, 1 ≤ j ≤ p, and each V ∈ Γ
we have

Fj |kV (τ) =
p∑

m=1

%jm(V )Fm(τ)(3)

for scalars %jm(V ). Define a matrix (%jm(V )). If % defines a representation
of Γ in GL(p,C) then (F, %) will be a vector-valued modular form as de-
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sired. It is easy to see that if the component functions Fj(τ) are linearly
independent then this is indeed the case. It will not be so in general, how-
ever: if the Fj(τ) are linearly dependent then the choice of scalars in (3) is
not unique and a “bad” choice will lead to the failure of % to be a represen-
tation. We must explain how one may always choose the scalars %jm(V ) in
(3) so that, regardless whether the Fj(τ) are linearly independent, % will be
a representation of Γ .

In order to simplify notation in the argument to follow we assume (as
we may without loss of generality) that the first d component functions
F1(τ), . . . , Fd(τ) constitute a basis of M , and set G = (F1(τ), . . . , Fd(τ)).
Thus if ν is the matrix representation of Γ on M then we know from remarks
in the preceding paragraph that (G, ν) is a vector-valued modular form of
weight k:

Gt|kV (τ) = ν(V )Gt.

Set f = p − d, so that for f + 1 ≤ j ≤ p the functions Fj(τ) are linear
combinations of F1(τ), . . . , Fd(τ). So there is an f × d matrix Q such that

(Fd+1(τ), . . . , Fp(τ))t = QGt.

Introduce the p × d matrix P =
(
Id
Q

)
, the p × p matrix R (row opera-

tions) which satisfies RP =
(
Id
O

)
, and the p-dimensional representation of Γ

given by

%(V ) = R−1

(
ν(V ) O

O If

)
R,

where In denotes the n× n identity matrix. Now calculate

F t|kV (τ) = (PGt)|kV (τ) = Pν(V )Gt = %(V )PGt = %(V )F t.

This shows that (F, %) is indeed a vector-valued modular form of weight k,
and completes the proof of the Proposition.

We define the level of the vector-valued modular form (F, %) to be the
least common multiple of the integers Nj which occur in (2). As long as
Nj is always taken to be as small as possible in (2), it is easily seen that
equivalent vector-valued modular forms have the same level, so that the
level depends only on the equivalence class of vector-valued modular forms
to which (F, %) belongs. If (F, %) has level N then TN acts as the identity
on the subspace of Hol spanned by the components of F , i.e., with previous
notation we have %(TN ) = I. As a result, the matrix %(T ) has finite order
and consequently may be diagonalized. This means that we can choose a
basis B1(τ), . . . , Bd(τ) in such a way that

Bj(τ) = qnj/Nj
∑

n≥0

an(j)qn(4)
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for integers nj ≥ 0. We may rephrase this in the following manner: a vector-
valued modular form is equivalent to a vector-valued modular form (B,µ) in
which the component functionsBj(τ) of B are linearly independent and have
q-expansions (4). We say that a vector-valued modular form is reduced if it
satisfies these conditions. So every vector-valued modular form is equivalent
to one which is reduced, and if (B,µ) is a reduced vector-valued modular
form of level N then µ(T ) is a diagonal matrix with diagonal entries which
are Nth roots of unity.

3. Proof of the Theorem. In proving the Theorem we may replace the
given vector-valued modular form (F, %) by any other vector-valued modular
form to which it is equivalent. After remarks in the last section we may
therefore assume that (F, %) is reduced. Bearing in mind our notational
conventions we introduce, following Hecke, the function

gj(τ) = yσ|Fj(τ)|,
where σ is a real constant to be chosen later. Note that gj(τ) is invariant
under the action of T . Thanks to (2) there is a constant K such that

gj(τ) < Kvδσ(5)

for each j and all z ∈ R, where the constant δ is equal to 1 or 0 according
as F is holomorphic or cuspidal. For V =

(
a b
c d

)
∈ Γ we have

gj(V z) = (v|cz + d|−2)σ|Fj(V z)| = vσ|cz + d|k−2σ|Fj |kV (z)|.
Hence

gj(V z) ≤ |cz + d|k−2σ
p∑

m=1

|%jm(V )|gm(z),(6)

where we have used the triangle inequality in the last step. Note that if we
set G = (g1(z), . . . , gp(z)) then the sum in (6) is simply the jth entry of the
vector (|%jm(V )|)Gt.

Next we introduce the Eichler length of V (cf. [E], [K2]) with respect to
the generators S, T of Γ . Namely, we write V as a product

V = ±V1 . . . VL,

where each Vj is equal to either S or T nj for some integer nj , no two con-
secutive Vj are both equal to S or a power of T , and where L is minimal.
Then L = L(V ) is called the Eichler length of V . We have the basic estimate
([E, Theorem 1])

L(V ) ≤ n1 logµ(V ) + n2(7)

where µ(V ) = a2 + b2 + c2 + d2 for V =
(
a b
c d

)
and n1, n2 are constants

independent of V . Now we have %(V ) = %(V1) . . . %(VL), so that

|%jm(V )| ≤
∑
|%jm1(V1)| |%m1m2(V2)| . . . |%mL−1m(VL)|,(8)
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where the sum ranges over all indices 1 ≤ m1, . . . ,mL−1 ≤ p. Introduce a
constant K1 which satisfies

|%lm(S)| ≤ K1

for all l,m. Now if Vj = Tnj then |%lm(Vj)| = δl,m (Kronecker delta) be-
cause our vector-valued modular form is reduced. Since there are just pL−1

summands in (8), it follows that

|%jm(V )| ≤ pL(V )−1K
L(V )
1(9)

for all 1 ≤ j,m ≤ p and all V ∈ Γ . Using (5) and (6) we conclude from (9)
that

gj(V z) < |cz + d|k−2σ(pK1)L(V )Kvδσ.(10)

Making use of (7) we obtain

gj(V z) < K2|cz + d|k−2σµ(V )αvδσ(11)

for all indices j, all z ∈ R and V ∈ Γ . Here K2 is a constant depending
on σ but independent of j, z and V , while α = n1 log pK1 is a constant
independent of σ, j, z and V .

We interpolate a result from [K2, Lemma 6]. There is a choice for the
setM of left coset representatives of 〈T 〉 in Γ such that the following holds:
there is a constant K3 satisfying µ(V ) ≤ K3(c2 + d2) for all M ∈ M. Here,
(c, d) is the bottom row of M . As a result, if we take V = T nM with M ∈M
in (11) then

gj(V z) = gj(Mz) ≤ K4|cz + d|k−2σ(c2 + d2)αvδσ(12)

for a constant K4 depending only on σ. We also have

c2 + d2 ≤ |cz + d|2 (1 + 4|z|2)
v2 ≤ 20

3
|cz + d|2(13)

where we used Lemma 4 of [K2] for the first inequality and |z|2 ≤ 1/4 + v2,
v2 ≥ 3/4 for the second. Combine (12) and (13) to obtain

gj(V z) ≤ K5|cz + d|k+2(α−σ)vδσ

with a constant K5 depending only on σ. We now pick σ = α+ k/2, as we
may because α is independent of σ. The result is that

gj(V z) ≤ K5v
δ(α+k/2).(14)

Following Hecke, we can now easily complete the proof of the Theorem
in the cuspidal case. For we then have δ = 0, so that gj(τ) is bounded in H
by (14). Hence,

|Fj(τ)| = y−σgj(τ) = O(y−α−k/2)
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and a standard argument (e.g., [R, pp. 128–130]) yields an(j) = O(nk/2+α)
as desired. In case δ = 1 we use the argument of Lemma 8 in [K2] to obtain

v = Im(z) ≤ Im(Mz) +K6 Im(Mz)−1

for all M ∈ M and a constant K6 independent of M . Then if τ = V z =
TnMz as before, we obtain

v ≤ y +K6y
−1,

so that with (14) we get

|Fj(τ)| = y−α−k/2gj(τ) ≤ K5(1 +K6y
−2)α+k/2

and thus
|Fj(τ)| = O(y−k−2α).(15)

Again it is a standard consequence of this estimate that an(j) = O(nk+2α).
This completes the proof of the Theorem.

4. Further comments. We make some further observations about
vector-valued modular forms. It follows from (15) that if k + 2α < 0 then
Fj(τ) = 0. Bearing in mind that α depends only on the relevant represen-
tation of Γ , we obtain

Lemma 4.1. Fix a representation % : Γ → GL(p,C). There is a real
number β, depending only on %, such that if (F, %) is a vector-valued modular
form of weight k < β, then F = 0.

The previous comments show that we may take β = −2α. We do not
generally know the best possible value for β, which may well be 0. For that
matter, it is possible that the main Theorem holds true with α = 0. It
is well known that if we take % to be a 1-dimensional representation (i.e.,
forms on the full modular group), or more generally a unitary representation
(essentially the case of classical modular forms on a subgroup of finite index,
cf. [S]) then indeed we may take α = β = 0.

The nature of vector-valued modular forms of weight 0 is also of interest.
We note that the existence of nonconstant (entire) vector-valued modular
forms of weight 0 is established in [KM], though of course this cannot hold
in the classical case. The following more specialized result finds application
in [DM]. See [KKP] for related results in the classical arena.

Lemma 4.2. Let (F, %) be a vector-valued modular form of weight k and
assume that each of the Fourier coefficients an(j) of each of the component
functions Fj(τ) is a nonnegative real number. Then the following hold :

(a) If k = 0 then each Fj(τ) is constant.
(b) If (F, %) is cuspidal then F = 0.
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Proof. The fact that the derivative of a (classical, entire) modular form
of weight 0 is a cusp-form of weight 2 continues to hold for vector-valued
modular forms. Consequently, part (a) of the lemma follows from part (b).
As for (b), observe that the nonnegativity of Fourier coefficients implies that
the function Fj(iy) is nonnegative and increasing for y → 0+. On the other
hand, consideration of Fj |kS(i/y) leads to an equality

Fj(iy) = iky−k
∑

n>0

bne
−2πn/(Ny)

for some coefficients bn, and this tells us that Fj(iy) vanishes as y → 0+.
We conclude that Fj(τ) vanishes on the positive imaginary axis, and hence
is necessarily 0.
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