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ON VECTORIAL POLYNOMIALS AND COVERINGS
IN CHARACTERISTIC 3
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(Communicated by Jonathan I. Hall)

Abstract. For K a field containing the finite field F9 we give explicitly the
whole family of Galois extensions of K with Galois group 2S4 ∗Q8 or 2S4 ∗D8

and determine the discriminant of such an extension.

1. Introduction

The motivation of this work is the problem of resolution of singularities in pos-
itive characteristic, more precisely the ideas presented by S.S. Abhyankar in [4].
Following Abhyankar, loc. cit. Section 18, let Nd

k,t denote a neighborhood of a
simple point on a d-dimensional algebraic variety over an algebraically closed field
k of characteristic p from which we have deleted a divisor having a t-fold normal
crossing at the simple point and let πL

A(Nd
k,t) be the set of all Galois groups of finite

unramified local Galois coverings of Nd
k,t. In his landmark paper [1], Abhyankar,

while working on local uniformization of algebraic varieties in a positive character-
istic, proved the inclusion πL

A(Nd
k,t) ⊂ Pt(p), where Pt(p) denotes the set of finite

groups G such that the quotient G/p(G) of G by the subgroup p(G) generated by
its p-Sylow subgroups is abelian, generated by t generators. Later, using so-called
projective and vectorial polynomials, he proved (see [2, 4]) that πL

A(Nd
k,t) contains

PGL(m, q) and GL(m, q), for every integer m > 1 and every power q > 1 of p.
Recently D. Harbater et al. [7] proved that for a group G to belong to πL

A(Nd
k,t)

it is necessary that p(G) admit an abelian supplement in G of rank ≤ t. In [4],
Abhyankar exhibited some examples due to G. Stroth of groups contained in Pt(p)
but not satisfying the abelian supplement condition. In characteristic 3, and for
t = 3, the Stroth groups are the groups 2S4 ∗H, where 2S4 denotes a double cover
of the symmetric group S4, H is either the quaternion group Q8 or the dihedral
group D8 of order 8 and ∗ denotes central product. In this paper, for K a field
containing the finite field F9 of nine elements, we give explicitly the whole family of
Galois extensions of K with Galois group 2S4 ∗H, and determine the discriminant
of such an extension. We note that in [5], the first author provided an explicit con-
struction of 2S4 ∗ Q8-extensions of fields containing F9 using her previous results
on Galois embedding problems based on Serre’s trace formula, [9]. Here we use
a different method of construction combining Abhyankar’s embedding criterion [3]
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and Serre’s trace formula, and reach a more explicit and simple formula both for
2S4 ∗ Q8- and 2S4 ∗ D8-extensions as well as an explicit formula for the discrim-
inant of such extensions. The explicit determination of the discriminant of these
extensions is a step towards local uniformization for three-dimensional varieties in
positive characteristic.

2. Preliminaries

Let us first recall the definitions and fix the notation. We denote by 2Sn one of
the two double covers of the symmetric group Sn reducing to the nontrivial double
cover 2An of the alternating group An, and by H either the quaternion group Q8

or the dihedral group D8, double covers of the Klein group V4. Let K be a field
of characteristic different from 2 and let L̃|K be a Galois extension with Galois
group the group 2S4 ∗ H. Then if L is the field fixed by the center of 2S4 ∗ H, we
have Gal(L|K) � S4 × V4, and for L1, L2 the fixed subfields of L by V4 and S4,
respectively, we have Gal(L1|K) � S4 and Gal(L2|K) � V4. Therefore we obtain
the whole family of Galois extensions with Galois group 2S4 ∗ H of a field K by
constructing the whole family of 2S4 ∗ H-extensions containing a given arbitrary
S4-extension of the field K. Let us now be given a polynomial f(X) ∈ K[X] of
degree 4 with Galois group S4 and splitting field L1 over K. We want to determine
when L1 is embeddable in a Galois extension of K with Galois group 2S4 ∗H. This
fact is equivalent to the existence of a Galois extension L2|K with Galois group V4,
disjoint from L1, and such that, if L is the compositum of L1 and L2, the Galois
embedding problem

(1) 2S4 ∗ H → S4 × V4 � Gal(L|K)

is solvable. We recall that a solution to this embedding problem is a quadratic
extension L̃ of the field L, which is a Galois extension of K with Galois group
2S4 ∗ H and such that the restriction epimorphism between the Galois groups
Gal(L̃|K) � Gal(L|K) agrees with the given epimorphism 2S4 ∗ H � S4 × V4.
If L̃ = L(

√
γ) is a solution, then the general solution is L(

√
rγ), r ∈ K∗. Given

a Galois extension L1|K with Galois group S4, in order to obtain all 2S4 ∗ H-
extensions of K containing L1, we have to determine all V4-extensions L2 of K,
disjoint from L1, and such that the embedding problem (1) is solvable.

Let us consider the double covers 2S4 → S4 and H → V4 and let ε1 ∈ H2(S4,±1),
ε2 ∈ H2(V4,±1) denote the corresponding cohomology elements. Let π1 : S4×V4 →
S4 and π2 : S4 × V4 → V4 be the two projections and let π∗

1 , π∗
2 be the induced

morphisms between the 2-cohomology groups. Then the element ε = π∗
1(ε1) ·

π∗
2(ε2) ∈ H2(S4×V4, {±1}) corresponds to the double cover 2S4∗H of S4×V4. This

implies that the element in H2(GK , {±1}) giving the obstruction to the solvability
of the embedding problem (1) is equal to the product of the elements giving the
obstructions to the solvability of the embedding problems 2S4 → S4 � Gal(L1|K)
and H → V4 � Gal(L2|K).

Let us now specify notation by writing 2+Sn or 2−Sn depending on whether
transpositions in Sn lift in the double cover to involutions or to elements of order
4. Let E = K[X]/(f(X)), for f(X) the polynomial of degree 4 realizing L1, let
QE denote the trace form of the extension E|K, i.e. QE(x) = TrE|K(x2), and let
d be the discriminant of the polynomial f(X). Let L2 = K(

√
a,
√

b). We denote
by w the Hasse-Witt invariant of a quadratic form and by (·, ·) a Hilbert symbol.



VECTORIAL POLYNOMIALS AND COVERINGS IN CHARACTERISTIC 3 25

By [9] the obstruction to the solvability of the embedding problem 2±S4 → S4 �
Gal(L1|K) is equal to w(QE).(±2, d) ∈ H2(GK , {±1}) . By [10], the obstruction to
the solvability of Q8 → V4 � Gal(L2|K) is equal to (a, b).(−1, ab) ∈ H2(GK , {±1})
and by e.g. [6], the obstruction to the solvability of D8 → V4 � Gal(L2|K) is equal
to (a, b) ∈ H2(GK , {±1}) (here we assume that the order 4 elements of D8 are
mapped on the nontrivial element in Gal(L2|K) fixing

√
ab).

From now on, we assume that K is a field of characteristic 3. We write f(X) =
X4 + s2X

2 − s3X + s4. By computation of the trace form QE , we obtain

w(QE) = (ds2, (s2
2 − s4)s2) · (−1, s2

2 − s4).

If we further assume that K contains F9, i.e. that −1 ∈ K2, the solvability of
the embedding problem (1) is equivalent to

(2) (ds2, (s2
2 − s4)s2) = (a, b),

that is, the equality of two Hilbert symbols.
We now recall the isomorphisms S4 � PGL(2, 3) and 2+S4 � GL(2, 3) and state

Abhyankar’s Embedding Criterion [3] (1.1), and Polynomial Theorem [3] (2.1),
(3.7), in our particular case.

Proposition 1. Let K be a field of characteristic 3, and let M |K be a Galois
extension with Galois group PGL(2, 3). The embedding problem

(3) GL(2, 3) → PGL(2, 3) � Gal(M |K)

is solvable ⇔ M |K is the splitting field of a projective polynomial Y 4 + c3Y +
c4 ∈ K[Y ]. Moreover, if |K| ≥ 9, the splitting field of the vectorial polynomial
Y (Y 8 + c3Y

2 + c4) is a solution to the embedding problem (3).

3. Main results

Under the hypothesis charK = 3, the two equivalent conditions to the solvability
of the Galois embedding problem 2+S4 → S4 � Gal(M |K) obtained by applying
Serre’s trace formula and Abhyankar’s Embedding Criterion can directly be seen
to be equivalent. Indeed, let M |K be a Galois extension with the Galois group S4

given as the splitting field of a polynomial f(X) = X4 + s2X
2 − s3X + s4 ∈ K[X],

let d be the discriminant of f(X), let x be a root of f(X) in M and let E = K(x).
Then M is the splitting field of a polynomial of the form Y 4 + c3Y + c4 ∈ K[Y ]
if and only if there exists elements a0, a1, a2, a3 ∈ K such that the irreducible
polynomial over K of the element y = a0 + a1x + a2x

2 + a3x
3 has such a form. By

computation, this is equivalent to the conditions a0 = −a2s2 and Q(a1, a2, a3) :=
s2a

2
1 + (s2

2 − s4)a2
2 + s3

2a
2
3 + (s2

2 + s4)a1a3 + 2s2s3a2a3 = 0. Now the quadratic
trace form QE , for E = K(x), is equivalent to 1 + Q, for Q the quadratic form
in a1, a2, a3 in the second condition. If we assume w(QE) = (2, d), then we have
QE ∼ 〈1, 1, 2, 2d〉 (see [9] 3.2) which implies Q ∼ 〈1, 2, 2d〉 and this last quadratic
form represents 0 over any field K of characteristic 3. Reciprocally, assume that Q
represents 0 over K. Diagonalizing Q, we obtain 〈s2, m, s2md〉, with m = s2

2 − s4,
and so we have s2b

2
1 + mb2

2 + s2mdb2
3 = 0, for some b1, b2, b3 ∈ K, which implies

(−ds2,−ms2) = 1, and so (ds2, ms2) = (−1, md) ·(−1,−1). Hence we get w(QE) =
(ds2, ms2) · (−1, m) = (−1, d) = (2, d).

Theorem 1. Let K be a field of characteristic 3 containing F9, and let f(X) =
X4+s2X

2−s3X+s4 ∈ K[X], with Galois group S4 and L1 the splitting field of f(X)
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over K. Let d = s3
4 +s2

2s
2
4 +s4

2s4−s3
2s

2
3 be the discriminant of the polynomial f(X).

The family of elements a, b in K such that (a, b) = (ds2, ms2), where m = s2
2 − s4,

can be given in terms of an arbitrary invertible matrix P = (pij)1≤i,j,≤3 ∈ GL(3, K)
as a = dA, b = s2mF , where

A = s2p
2
11 + mp2

21 + dms2p
2
31,

F = dmP 2
13 + ds2P

2
23 + P 2

33, with Pij =
∣∣∣∣ pii pij

pji pjj

∣∣∣∣ .

Let L2 = K(
√

a,
√

b) and assume that L2|K has Galois group V4 and L1∩L2 = K
(i.e. that the elements a, b, ab, da, db, dab are not squares in K). Let L = L1 · L2.
For x a root of the polynomial f(X), take y = a0 + a1x + a2x

2 + a3x
3, with

a0 = −s2a2,

a1 = dm
√
−1(ns2p11P23 − p21P33 + mnp21P13 − ds2p31P23) + m

√
a(dP13 + nP33),

a2 = ds2

√
−1(p11P33 − s2

2s3p11P23 − ms2s3p21P13 − dmp31P13) − s2

√
a(s2s3P33 + dP23),

a3 = dms2

√
−1(s2p11P23 + mp21P13) + ms2

√
aP33,

where n = s2
2 + s4. Then L(

√
ry), r ∈ K∗, is the general solution to the embedding

problem
2+S4 ∗ D8 → S4 × V4 � Gal(L|K).

Proof. By [8], 3.2, the equality of Hilbert symbols (2) is equivalent to the K-
equivalence of quadratic forms

(4) 〈ds2, ms2, dm〉 ∼ 〈a, b, ab〉.

The family of quadratic forms K-equivalent to R := 〈ds2, ms2, dm〉 is given
by PT RP , for P running over GL(3, K). By diagonalizing P tRP , we obtain
〈dA, s2mF, dAs2mF 〉, with A and F as in the statement. Let a = dA, b = s2mF .
Now, we have (a, b) = 1 ∈ H2(GK(

√
a), {±1}) and, as a �∈ K2 and L1∩K(

√
a) = K,

the extension L1(
√

a)|K(
√

a) has Galois group S4, and the Galois embedding prob-
lem 2+S4 → S4 � Gal(L1(

√
a)|K(

√
a)) is solvable. By the argument preceding

Theorem 1, there exist a1, a2, a3 ∈ K(
√

a) such that Q(a1, a2, a3) = 0, and for the
element y = a0+a1x+a2x

2+a3x
3 we have that Irr(y, K(

√
a) is a projective polyno-

mial. Also, by Abhyankar’s Polynomial Theorem (see Proposition 1), the splitting
field of the vectorial polynomial Y. Irr(

√
y, K(

√
a)), that is, the field L1(

√
a)(

√
y),

is a solution to the Galois embedding problem 2+S4 → S4 � Gal(L1(
√

a)|K(
√

a)).
Now our aim is to compute explicitly such elements ai. Diagonalizing Q, we ob-
tain 〈s2, m, s2md〉 and from (4) we get that 〈s2, m, s2md〉 ∼ 〈A, s2mAF, s2mFd〉
and the basis change matrix can be written down explicitly in terms of the ma-
trix P . Now the vector (0, d

√
−1,

√
a) ∈ K(

√
a)3 anihilates the quadratic form

〈A, s2mAF, s2mFd〉, and from it we obtain the values for a1, a2, a3 ∈ K(
√

a) such
that Q(a1, a2, a3) = 0.

Now we want to see that L(
√

y)|K is a Galois extension with Galois group
2+S4 ∗ D8. By the assumption L1 ∩ L2 = K, we have Gal(L(

√
y)|L2) � 2+S4. We

now consider the behaviour of y under the action of Gal(L2|K). Let r, s, t be the
nontrivial elements of Gal(L2|K) fixing respectively

√
ab,

√
b,
√

a. By computation
we obtain ysy = d2h2b, where h = ms2p31x

3 +(p21−s2
2s3p31)x2 +(mnp31 +p11)x+

s3
2s3p31−s2p21. Now y ∈ K(

√
a)(x), so yt = y and yr = ys, so L(

√
y) is Galois over
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K. Now we have (dh
√

b)s = dh
√

b and (dh
√

b)r = −dh
√

b, so Gal(L(
√

y)|L1) � D8,
with L(

√
y)|L1(

√
ab) cyclic; hence Gal(L(

√
y)|K) � 2+S4 ∗ D8. �

Remark 1. For the element y given by Theorem 1, we have Irr(y, K(
√

a)) = Y 4 +
c3Y + c4, where

c3 = s3a
3
1 + ma2

1a2 + s2s3a
2
1a3 + s2s3a1a

2
2 + ms2a1a2a3 + ms3a1a

2
3 + s2

3a
3
2

−ns3a
2
2a3 + (m2 + s2s

2
3)a2a

2
3 + s3

3a
3
3,

c4 =
d

s2
2

(a1a3 − a2
2 − s2a

2
3)

2.

Theorem 2. Let the fields K and L and the elements d, a, b and y be as in
Theorem 1, let µ = d + (d + 1)

√
d and let ρ = ab + (ab + 1)

√
ab. Then

1. L(
√

rµy), r ∈ K∗, is the general solution to the embedding problem

2−S4 ∗ D8 → S4 × V4 � Gal(L|K).

2. L(
√

rρy), r ∈ K∗, is the general solution to the embedding problem

2+S4 ∗ Q8 → S4 × V4 � Gal(L|K).

3. L(
√

rµρy), r ∈ K∗, is the general solution to the embedding problem

2−S4 ∗ Q8 → S4 × V4 � Gal(L|K).

Proof. For σ ∈ S4 \A4, we have µσµ = −(d− 1)2d and so, L(
√

µy)|K Galois. Now
(d− 1)

√
−d changes sign under the action of σ, so Gal(L(

√
µy)|L2) � 2−S4, hence

Gal(L(
√

µy)|K) � 2−S4 ∗ D8.
For r, s, t ∈ Gal(L2|K) fixing

√
ab,

√
b,
√

a, resp., we have ρsρ = ρtρ =
−(ab − 1)2ab and ρrρ = ρ2, so L(

√
ρy)|K Galois. Now (ab − 1)

√
−ab changes

sign under the action of s and under the action of t, so Gal(L(
√

ρy)|L1) � Q8,
hence Gal(L(

√
ρy)|K) � 2+S4 ∗ Q8.

Combining both arguments, we obtain the third statement in the theorem. �

Proposition 2. Let the fields K and L and the elements s2, s3, s4, d, a, b, m, pij

and y be as in Theorem 1; µ, ρ as in Theorem 2. We have

disc(L(
√

y)|K) = d104a96b100D2,
disc(L(

√
µy)|K) = d152a96b100D2(d − 1)48,

disc(L(
√

ρy)|K) = d104a144b148D2(ab − 1)48,
disc(L(

√
µρy)|K) = d152a144b148D2(d − 1)48(ab − 1)48,

where

D = s4p
4
11−s2s3p

3
11p21+ms2p

2
11p

2
21−ms3p11p

3
21+(m2−s2s

2
3)p

4
21

+dp31(−p3
11+ms2

2p
2
11p31−s3p

3
21+m2s2p31p

2
21)+d2p3

31(s2s3p21+mp11)+d3p4
31.

Proof. We have disc(L(
√

y)|K) = disc(L|K)2 · NL|K(y) and disc(L|K) = (dab)48.
Now NL|K(y) = (NL1(

√
a)|K(y))2 = (NK(

√
a)|K(c4))2, for c4 the degree 0 coefficient

in the irreducible polynomial of y over K(
√

a). By computation we obtain c4 =
d
s2
2
(a1a3 − a2

2 − s2a
2
3)

2 and, by substituting the values of a1, a2, a3 and computing
the norm, NK(

√
a)|K(c4) = d8b4D2 for D as in the statement.

To obtain the other three discriminants, it is now enough to compute NL|K(µ) =
NK(

√
d)|K(µ)48 = (d − 1)48d48 and NL|K(ρ) = NK(

√
ab)|K(ρ)48 = (ab − 1)48(ab)48.

�
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4. Examples

Let K = k((Z1, Z2, Z3)) be the quotient field of the formal power series ring in
3 variables over a field k containing F9. We consider the polynomial

f(X) = X4 + Z1X
2 + Z2X + Z3 ∈ K[X],

i.e. we are taking s2 = Z1, s3 = −Z2, s4 = Z3. We can check that the polynomial
f has Galois group S4 over K and let L1 be the splitting field of f over K. We
consider the extension L2|K generated by the elements

√
ds2,

√
ms2,

√
dm, which

corresponds to taking the matrix P in Theorem 1 to be one of the matrices

P1 =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ , P2 =

⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ , P3 =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ .

We can check that the elements ds2, ms2, dm, s2, dms2, m are not squares in K,
and so L2|K has Galois group V4 and is disjoint with L1|K. Let L = L1 · L2.
We denote by yi the element y given by Theorem 1 for each of the matrices Pi,
i = 1, 2, 3. Then we have

Gal(L(
√

yi)|K) � 2+S4 ∗ D8, i = 1, 2, 3,

with L(
√

y1)|L1(
√

dm), L(
√

y2)|L1(
√

ms2), L(
√

y3)|L1(
√

ds2) cyclic. The factors
appearing in disc(L(

√
y1)|K) are d, s2, m and s4, the factors appearing

in disc(L(
√

y2)|K) are d, s2, m and m2 − s2s
2
3, and the factors appearing in

disc(L(
√

y3)|K) are d, s2, m. In particular the discriminantial locus remains un-
changed when going from L to L(

√
y3).

We observe that the elements d − 1 and ab − 1, for each choice of a, b among
ds2, ms2, dm, are invertible elements in the ring k[[Z1, Z2, Z3]], and so the discrim-
inant locus will not change if we realize any other of the groups 2S4 ∗ H over the
same field K by means of Theorem 2.
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