
Accepted for publication in J. Fluid Mech. 1

On velocity and reactive scalar spectra in
turbulent premixed flames

H. KOLLA1, E. R. HAWKES2, A. R. KERSTEIN3,
N. SWAMINATHAN4, and J. H. CHEN1

1 Sandia National Laboratories, Livermore, CA 94550, USA
2The Unversity of New South Wales, Sydney, Australia

372 Lomitas Road, Danville, CA 94526, USA
4Engineering Department, University of Cambridge, Cambridge CB2 1PZ, UK

(Received 16 July 2014)

Kinetic energy and reactive scalar spectra in turbulent premixed flames are studied from
compressible three-dimensional direct numerical simulations (DNS) of a temporally evolv-
ing rectangular slot-jet premixed flame, a statistically one-dimensional configuration. The
flames correspond to a lean premixed hydrogen-air mixture at an equivalence ratio of 0.7,
preheated to 700 K and at 1 atmosphere and three DNS are considered with a fixed jet
Reynolds number of 10000 and a jet Damköhler number varying between 0.13 and 0.54.
For the study of spectra, motivated by the need to account for density change which can
be locally strong in premixed flames, a new density-weighted definition for two-point ve-
locity/scalar correlations is proposed. The density-weighted two-point correlation tensor
retains the essential properties of its constant-density (incompressible) counterpart and
recovers the density-weighted Reynolds-stress tensor in the limit of zero separation. The
density weighting also allows the derivation of balance equations for velocity and scalar
spectrum functions in the wavenumber space that illuminate physics unique to combust-
ing flows; pressure-dilatation correlation is a source of kinetic energy at high wavenum-
bers and, analogously, reaction-rate–scalar fluctuation correlation is a high wavenumber
source of scalar energy. These results are verified by the spectra constructed from the
DNS data. The kinetic energy spectra show a distinct inertial range with a −5/3 scaling
followed by a ‘diffusive-reactive’ range at higher wavenumbers. The exponential drop-off
in this range shows a distinct inflection in the vicinity of the wavenumber corresponding
to a laminar flame thickness, δL, and this is attributed to the contribution from the
pressure-dilatation term in the energy balance in wavenumber space. Likewise, a clear
spike in spectra of major reactant species - hydrogen - arising from the reaction-rate term
is observed at wavenumbers close to δL. It appears that in the inertial range classical
scaling laws for the spectra involving Kolmogorov scale are applicable but in the high
wavenumber range where chemical reactions have a strong signature the laminar flame
thickness produces a better collapse. It is suggested that a full scaling should perhaps
involve Kolmogorov scale, laminar flame thickness, Damköhler number and Karlovitz
number.

1. Introduction

The study of spectra of scalars is of great importance for a broad class of turbulent
flows (Warhaft 2000; Dimotakis 2005): temperature and salinity fields in ocean flows,
pollutant dispersion in atmospheric flows, magnetic fields in astrophysical flows, chemi-
cally reacting flows in industrial devices, to cite a few. In turbulent reacting flows, which
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are relevant in many industrial and engineering applications, stiff non-linear chemical
reactions amongst a multitude of reacting scalars (tens to hundreds of chemical species)
introduce length and time scales over a broad range. Compared to characteristic scales of
the turbulent fluid flow the chemical scales are generally, except under extreme circum-
stances, at the finer end with some overlap. Nonetheless, the turbulence-scalar interaction
is strong and two-way: fluid dynamics affects the scalar mixing which has a bearing on
the finite rate chemical kinetics, while the reaction induced density change affects the
fluid dynamics. With few notable exceptions, such as the spectral closure of EDQNM
(Ulitsky & Collins 1997; Xia et al. 2010), virtually every modelling methodology of tur-
bulent reacting flows relies on some implicit or explicit assumptions about the dynamics
of turbulence-scalar mixing and associated scalar spectra. For instance, the widely used
laminar flamelet model for non-premixed turbulent combustion relies on representing the
thermo-chemical manifold with a single scalar whose evolution equations employ models
based on passive scalar mixing assumptions. While such assumptions are strictly valid for
purely passive scalars in incompressible homogeneous isotropic turbulence, it is unclear
what the consequences of variable density, finite rate chemical kinetics and differential
species diffusion are on the evolution of scalar spectra. Recent studies (Swaminathan &
Grout 2006; Chakraborty & Swaminathan 2007) have shown that scalar mixing physics
are influenced by heat release in turbulent premixed flames, but their role in spectral
behaviour is unclear. Indeed, even the assumption of universality of velocity spectra in
the so called dissipation range maybe questionable for flows with strong local density
change and dilatation, such as turbulent premixed flames, although it is routinely used
for closing sub-grid Reynold’s stresses in large eddy simulations (LES).
While spectra of passive scalars have been widely studied, spectra of reactive scalars

have received limited attention. It is well known from Batchelor’s early theory (Batchelor
1959) that passive scalars with large Schmidt number exhibit a k−1 scaling of the power
spectrum in the so-called viscous-convective wavenumber, k, range in which the spectral
transfer of velocity is diffusive but that of the scalar is convective. On the other hand,
scalars with small Schmidt number (Batchelor et al. 1959) exhibit an inertial-diffusive
range with a k−17/3 scaling for the scalar spectrum. Corrsin (1961) extended these scaling
laws for the case of a scalar undergoing a first-order reaction and elucidated the influence
of the reactivity on the scalar spectrum in the relevant wavenumber ranges for both large
and small Schmidt numbers. However, Corrsin’s analysis is restricted to a very dilute re-
actant whose dynamics do not affect the flow field. Nonetheless his results clearly show
that the spectral dynamics of reactive scalar depend not just on scales of the background
turbulent flow but also on the characteristic scales of the reactions. Similarly, G. Kosály
(1993) examined a bi-variate reacting system in an incompressible turbulent mixing layer
and derived the reacting scalar spectra in the slow and fast chemistry limits to compare
against the measurements of Bilger et al. (1991). More recently Wang et al. (2007) and
Vaishnavi et al. (2008) report dissipation spectra of mixture fraction, a conserved scalar,
in turbulent non premixed flames from experiments and DNS, respectively. Knaus & Pan-
tano (2009) examined spectra of kinetic energy, mixture fraction and temperature from
DNS of non-premixed reacting shear layers. They note that the influence of heat release
on the spectra can be accounted for simply by considering density-weighted large-scale
quantities in the classical scaling laws (except for the dissipation range of the tempera-
ture spectrum). Even though their results are based on DNS with single step chemical
kinetics, they are very encouraging. They essentially confirm the arguments of Bilger
(2004) who showed that for most practical flows turbulence will overwhelm dilatation
due to heat release in non-premixed flames, and hence passive scalar behaviour is to be
expected. This is, however, not true of premixed flames in which the local dilatation due
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to heat release is relatively stronger (Bilger 2004). Hence the spectral dynamics of both
velocity and scalars in premixed flames are likely to be very different from those of non-
premixed flames. Furukawa et al. (2002) report kinetic energy spectra, conditioned on
fresh and burnt gas fluids, for large Damköhler number turbulent premixed flames and
observe an increase in kinetic energy as well as anisotropy in the burnt side relative to the
unburnt side. To the best of our knowledge the only works that have reported reacting
scalar spectra in turbulent premixed flames are the experimental works of Guttenfelder
et al. (2003) and Kariuki et al. (2012) who report spectra of hydroxyl radical. Little is
known of spectra and co-spectra of reacting scalars at realistic levels of heat release in
premixed flames, as noted by Dimotakis (2005) and Knaus & Pantano (2009), and this
is the primary focus of the present study.
The study of spectra is made difficult by the fact that measuring spectra is very

challenging in both experiments and direct numerical simulations (DNS). In experiments
of reacting flows selectively imposing conditions such as incompressibility, homogeneity or
isotropy is not straightforward. Furthermore, for statistically stationary flames estimation
of spectra requires two-point correlation measurements in a three-dimensional field, which
are very difficult to obtain experimentally. These restrictions are alleviated somewhat in
DNS, but performing well resolved DNS with a large range of dynamic scales for long
durations to achieve statistical convergence is expensive, prohibitively so for reacting
flows. However, with rapid increases in computing power DNS of turbulent reacting flows
at realistic turbulence levels have become feasible in recent years. In the present work
we employ one such DNS (Hawkes et al. 2012) to study spectra of reacting scalars in a
premixed flame interacting with intense shear-driven turbulence. In terms of organisation
of this paper, we first present details of the DNS in section 2. The variable density
aspect of turbulent reacting flows requires a careful reconsideration of the fundamental
mathematical framework required to study spectra, and this is discussed in section 3.
The results are then presented in section 4 followed by concluding remarks in section 5.

2. Direct numerical simulations

Compressible three-dimensional direct numerical simulations of temporally evolving
planar premixed flames interacting with a turbulent rectangular jet shear layer are con-
sidered in the present study. This configuration is amenable to analysis presented in
section 3 since it results in a statistically one-dimensional turbulent premixed flame.
The configuration comprises a high velocity rectangular jet of unburnt lean hydrogen-air
mixture of equivalence ratio 0.7 flowing in a quiescent fluid of adiabatic burnt products
of the same equivalence ratio. The unburnt reactants are preheated to 700 K and the
pressure is 1 atm. The jet is initialised as a high streamwise velocity region of prescribed
width, H, with a symmetric profile about the transverse mid-plane of the computational
domain. The mean streamwise velocity was prescribed to smoothly approach zero in the
quiescent mixture with a hyperbolic tangent function profile given by

u(y)

Uj
=

1

2

�
tanh

�
y/H + 1/2

δs0

�
− tanh

�
y/H − 1/2

δs0

��
, (2.1)

where u(y) is the mean streamwise velocity, Uj is the peak jet velocity, y is the trans-
verse coordinate and δs0 is the non-dimensional shear layer width which was set to 0.1.
To trigger the shear layer instabilities a small amount of broadband turbulent velocity
fluctuations of intensity 4% were superimposed on the initial mean velocity, and the
velocity fluctuations were prescribed to approach zero in the co-flow using the same hy-
perbolic tangent profile as in Eq. 2.1. The initial velocity fluctuations satisfy continuity
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Figure 1. Schematic showing the configuration of the DNS (left). The streamwise direction is
x, transverse is y and spanwise is z. Instantaneous local heat release rate, normalised by the
maximum laminar flame value, is shown on the right for the Da+ case at t = 15tj .

and were generated using the method of Rogallo (1981) to conform to a prescribed en-
ergy spectrum of Passot & Pouquet (1987) with an integral length scale equal to H/3.
Since flame interaction with a realistic turbulent shear layer was desired, two planar
flames were initially placed sufficiently outside the shear layer, at symmetric locations
about the transverse mid-plane, such that by the time the flames propagate inward and
interact with the shear layer it would retain no memory of the initial synthetic veloc-
ity fluctuations. The planar flames divide the domain into unburnt-burnt regions with
transverse profiles for temperature and species mass fractions corresponding to a freely
propagating planar laminar flame. A schematic of the initialisation is given in Fig. 1 and
more details are given in Hawkes et al. (2012).

The computational domain is 3D rectangular Cartesian with a size of 16H×20H×12H
in the x (streamwise), y (transverse) and z (spanwise) directions respectively. In the set
of simulations the jet width, H, is varied independently while the jet velocity, Uj , is
adjusted such that the jet Reynolds number, Rej ≡ UjH/νu, is held constant at 10000
while the jet Damköhler number, Daj ≡ (H/Uj)/(δL/sL), varies. Here νu is the kinematic
viscosity, δL is the thermal thickness and sL is the unstrained laminar flame speed of
the unburnt mixture. Note that the definition of Damköhler number here using a mean
convective time scale is slightly different from conventional definition where an integral
time scale is normally used. Three simulations with Damköhler numbers Daj = 0.13,
0.27 and 0.54 are performed and these will be referred to as the ‘Da-’, ‘baseline’ and
‘Da+’ cases respectively. The relevant numerical and thermochemical parameters are
listed in Table 1. The rectangular Cartesian domain is discretised using a fixed mesh of
uniform size, listed as ∆x in Table 1, in the streamwise and spanwise directions. In the
transverse direction a uniform mesh of same size is used in the inner 15H portion of the
domain, while for the outer portion the mesh is gradually coarsened since neither the
flame nor the turbulent flow structures ever appear here. The grid resolution is small
enough to sufficiently resolve the inner structure of the flame. The thinnest radical layer
in an unstrained laminar flame for this mixture corresponds to species HO2 which has a
thickness, based on full width at 90% of maximum, of 0.586 mm, and this layer contains at
least 16 grid points in the Da+ case and 32 grid points in the Da- case (see Table 1). The
DNS is performed using the code S3D (Chen et al. 2009) developed at Sandia National
Laboratories. S3D solves the compressible form of the conservation equations for mass,
momentum, enthalpy and species mass fractions in physical space. Molecular transport
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Parameter Case Da- Baseline Case Da+
Daj 0.13 0.27 0.54
H (mm) 2.7 3.84 5.4
Uj (m/s) 312.6 219.8 156.3
∆x (µm) 18 25.6 36
∆t (ns) 2.5 4 5

sL (m/s) 7.89
δL (m) 5.025×10−4

νu (m2/s) 8.44×10−5

ρu (kg/m3) 0.3961
ρb (kg/m3) 0.1354
equivalence ratio 0.7

Table 1. Numerical and thermochemical parameters of the three DNS cases. The unburnt
and burnt mixture densities are ρu and ρb.

coefficients are prescribed using the mixture-averaged formulation by interfacing with
the TRANSPORT library (Kee et al. 1986). Finite rate chemical kinetics are prescribed
by interfacing with the CHEMKIN library (Kee et al. 1996) and the chemical mechanism
of Li et al. (2004) with 9 species and 19 elementary reactions was used. S3D employs
high order explicit finite difference schemes: an eighth-order central difference scheme for
spatial derivatives (Kennedy & Carpenter 1994) and a six-stage fourth-order low storage
Runge-Kutta scheme for temporal derivatives (Kennedy et al. 2000). All fields of the
solution vector are also filtered periodically using a tenth-order explicit filter (Kennedy
& Carpenter 1994) to remove spurious high-frequency noise. The application of the filter
in physical space can have some implications for the spectral content and this is discussed
in section 4. The solution is advanced using a fixed time step, ∆t, given in Table 1.

Periodic boundary conditions are applied at the streamwise and spanwise boundaries.
The transverse boundaries are prescribed as non-reflecting outflow using the Navier-
Stokes characteristic boundary conditions (NSCBC) treatment of Poinsot & Lele (1992)
with the improvements of Yoo & Im (2007). After initialisation the two flame sheets
propagate inward while the turbulence in the shear layer develops. As the flame sheets
interact with the shear layer they get wrinkled and corrugated causing a gradual increase
in the turbulent burning velocity, defined here based on the consumption rate of hydrogen

sT =

�
ω̇H2

dy

ρuYH2,u
. (2.2)

The overline (..) denotes averaging in the streamwise and spanwise directions. The tur-
bulent burning velocity rises above the laminar flame speed, sL, and saturates before
dropping to zero once all the reactants are exhausted. The variation of sT /sL with time,
normalised by the jet time tj ≡ H/Uj , is shown in Fig. 2 for the Da+ and Da- cases.

3. Mathematical framework

3.1. density-weighted correlation tensors

In the study of turbulent reacting flows it is conventional to consider density-weighted
moments, since their conservation equations closely resemble their incompressible coun-
terparts and are more tractable from a modelling point of view. The mean and fluctuation
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Figure 2. Variation of the turbulent to laminar burning velocity ratio, sT /sL, for the Da+
and Da- cases is plotted against normalised time, t/tj .

of velocity, for instance, are defined as, respectively,:

�Ui = ρui/ρ, u��

i = ui − �Ui, (3.1)

and the Reynolds-stress tensor is ρu��

i u
��

j /ρ . The same ideas are seldom extended to the
study of spectral quantities leading to some potential discrepancies.

To illustrate this consider the conventional definitions of the two-point velocity cross-
correlation and velocity spectrum tensors - a Fourier transform pair - in incompressible
flows (Pope 2000):

Rij(�r) = u�

i(�x)u
�

j(�x +�r);

Φij(�k) =
1

(2π)3

∞���

−∞

exp(−i �k ·�r) Rij(�r) d�r, (3.2)

where u�

i ≡ ui − ui is the velocity fluctuation about the conventional ensemble average,

�x,�r are position and displacement vectors in physical space, respectively, and �k is the
wavenumber vector. Thus defined, the turbulent kinetic energy, t.k.e., is related to the
velocity spectrum tensor via

t.k.e. =
1

2
u�

iu
�

i =
1

2

∞���

−∞

Φii(�k) d�k. (3.3)

An energy spectrum function, E(k), can then be defined which represents the contribution

to t.k.e. from all wavenumbers of magnitude k (i.e. k = |�k|) such that

E(k) =
1

2

∞���

−∞

Φii(�k) δ(|�k| − k) d�k, and t.k.e. =

∞�

0

E(k)dk. (3.4)
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In a discrete representation of the flow field, such as in a DNS, E(k) can be constructed
as the average of the product of all the Fourier coefficients of u�

i with a wavenumber
magnitude of k.

If one were to näıvely replace u�

i with u��

i in the above schema one would find that the
resulting energy spectrum function recovers u��

i u
��

i /2 which is not equal to the density-

weighted turbulent kinetic energy, �t.k.e. ≡ ρu��

i u
��

i /2ρ. In other words the Fourier coef-

ficients of u��

i cannot be used to represent the spectrum function of �t.k.e.. Considering
the almost universal adoption of density-weighted quantities in the study and modelling
of turbulent reacting flows, an appropriate mathematical framework is in order. To this
end, we propose that the two-point velocity cross-correlation tensor incorporate a density
weighting as follows:

�Rij(�r) =
1

2ρ

�
ρ(�x) u��

i (�x) u
��

j (�x +�r) + u��

i (�x) ρ(�x +�r) u��

j (�x +�r)
�
. (3.5)

Strictly, a trivariate correlation tensor should involve two separation vectors and in that
respect the tensor defined above represents a contraction along one vector. The reasons for
this choice are twofold. First, in variable density flows momentum, rather than velocity is
the fundamentally conserved quantity. Physically, �Rij can be interpreted as the influence,
on average, of the momentum fluctuation at point (�x) on the velocity fluctuation at point
(�x + �r), and vice-versa. Second, as the ensuing derivations will show, this contraction

simplifies the derivation of a balance equation for �Rij with each of the terms carrying a
clear physical meaning. Yoshizawa et al. (2013) found a similar benefit, simplified balance
equations for single-point statistical moments, by weighting the fluctuating quantities by
density. It is evident that �Rij(0) is a symmetric tensor ( �Rij(0) = �Rji(0)) and it is equal
to the density-weighted Reynolds-stress tensor. If the density and fluctuating velocity
fields are homogeneous then �Rij(�r) = �Rji(−�r), a property shared by its incompressible
counterpart Rij . Homogeneity might seem a stringent assumption for reacting flows but
one might conceive of statistically one-dimensional reacting flows with a fixed mean
flame normal direction such that homogeneity applies in the two directions that are
orthogonal to it. However, while the continuity equation in incompressible flows yields
the simplifications

∇ · u� = 0,

∂ Rij

∂rj
= 0, (3.6)

the same for �Rij is not afforded by the definition in Eq. 3.5. Furthermore, for incom-
pressible isotropic turbulence there exist simple relationships between the two-point cor-
relation tensors and velocity structure functions which also contain scale information.
This is clealry not the case for the density weighted correlation tensor. One could con-
trive density weighted structure functions to be consistent with the correlation tensors
but that is not an objective here. Nonetheless, analogous definitions for density-weighted
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velocity spectrum tensor and energy spectrum function can be written:

�Φij(�k) =
1

(2π)3

∞���

−∞

exp(−i �k ·�r) �Rij(�r) d�r, (3.7)

�E(k) =
1

2

∞���

−∞

�Φii(�k) δ(|�k| − k) d�k, (3.8)

�t.k.e. =

∞�

0

�E(k)dk. (3.9)

Likewise, the density-weighted cross-correlation tensor between two fluctuating scalars ψ
and ξ can be defined as

�Rψξ(�r) =
1

2ρ

�
ρ(�x) ψ��(�x) ξ��(�x +�r) + ψ��(�x) ρ(�x +�r) ξ��(�x +�r)

�
. (3.10)

The important distinction that must be stressed here is that the spectrum function for
kinetic energy, �E(k), must now be constructed as the average of the product of the
Fourier coefficients of ρu��

i and u��

i . Note that this represents a one-wavenumber spectral
decomposition of the Favre averaged turbulent kinetic energy and it stems from the
choice of using only one spearation vector in the definition of �Rij . Similarly, for scalar

energy, �Eψ(k), it must be the average of the product of Fourier coefficients of ρψ�� and
ψ��.
The density weighting for the correlation tensors proposed here is not a definitive form

for variable density flows and other forms are certainly possible that might retain all the
properties of the incompressible counterparts. The proposed definitions are motivated
by the need to capture scale information while still being consistent with Favre-averaged
Reynolds stresses and scalar fluctuations which are widely considered as useful quantities
for describing turbulent reacting flows. Apart from having the useful properties described
above, these definitions of �Rij and �Rψξ serve an important objective of the present study;
the derivation of a balance equation for the spectrum of turbulent kinetic energy and
scalar fluctuations in reacting flows, presented in the following sub-section.

3.2. Balance equations for density-weighted spectrum functions

Hinze (1975) presents an elegant derivation of a balance equation for two-point velocity
correlations, leading to an equation for the energy spectrum function, in incompressible
isotropic turbulence as well as in homogeneous sheared turbulence. He also notes the dif-
ficulties of incorporating variable density, particularly if the local turbulent fluctuations
are high enough that compressibility effects become appreciable. Krzywoblocki (1952)
derived balance equations for velocity and temperature fluctuation correlations in com-
pressible homogeneous isotropic turbulence but considered a density-weighted correlation
function of the form ρ(�x)u��

i (�x) ρ(�x +�r)u��

j (�x +�r) , which is different from Eq. 3.5. Here
we seek a balance equation governing the latter.
In the derivation to follow we largely adopt the approach and notation of Hinze (1975).

For the sake of simplicity, and without loss of generality, we consider statistically station-
ary turbulent reacting flows. Furthermore, since reacting flows can not be homogeneous
in a strict three-dimensional sense, consider a scenario that comes closest, i.e. statistically
one-dimensional reacting flows, where moments vary only along a mean flame normal di-
rection. The two-point correlation function �Rij(�r) will then be invariant to translation
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as long as the displacement vector �r is constrained to always be orthogonal to the mean
flame normal vector. We start from the balance equations derived in appendix A for u��

i

(Eq. A 4),

∂u��

i

∂t
+

∂ �Ui

∂t
+ �Uk

∂ �Ui

∂xk
+ u��

k

∂ �Ui

∂xk
+ �Uk

∂u��

i

∂xk
+ u��

k

∂u��

i

∂xk
= −

1

ρ

∂(P + p�)

∂xi
+

1

ρ

∂τik
∂xk

,

and for ρu��

i (Eq. A 8),

∂ρu��

i

∂t
+ρ�

�
∂ �Ui

∂t
+ �Uk

∂ �Ui

∂xk

�
+ρu��

k

∂ �Ui

∂xk
+

∂ρu��

i
�Uk

∂xk
+

∂

∂xk
(ρu��

i u
��

k−ρu��

i u
��

k) = −
∂p�

∂xi
+

∂τ �ik
∂xk

.

Denoting locations �x and (�x +�r) by ()A and ()B , respectively, the equation for (u��

i )A
is multiplied by (ρu��

j )B and equation for (ρu��

i )A is multiplied by (u��

j )B . Similarly the
equations for (u��

j )B and (ρu��

j )B are multiplied by (ρu��

i )A and (u��

i )A, respectively, and the
resulting four equations are added. Note that the derivative at point A of any quantity
at point B is zero, and vice–versa. Averaging the result, noting that ρu�� = 0, gives

2∂(ρ �Rij)

∂t
+ ρ�A(u

��

j )B

�
∂ �Ui

∂t
+ �Uk

∂ �Ui

∂xk

�

A

+ ρ�B(u
��

i )A

�
∂ �Uj

∂t
+ �Uk

∂ �Uj

∂xk

�

B

+ (u��

j )B(ρu
��

k)A

�
∂ �Ui

∂xk

�

A

+ (ρu��

j )B(u
��

k)A

�
∂ �Ui

∂xk

�

A

+ (u��

i )A(ρu
��

k)B

�
∂ �Uj

∂xk

�

B

+ (ρu��

i )A(u
��

k)B

�
∂ �Uj

∂xk

�

B

+

�
∂

∂xk

�

A

(�Uk)A(ρu��

i )A(u
��

j )B +

�
�Uk

∂

∂xk

�

A

(u��

i )A(ρu
��

j )B +

�
∂

∂xk

�

B

(�Uk)B(ρu��

j )B(u
��

i )A +

�
�Uk

∂

∂xk

�

B

(u��

j )B(ρu
��

i )A

+

�
∂

∂xk

�

A

(ρu��

i u
��

k)A(u
��

j )B +(ρu��

j )B

�
u��

k

∂u��

i

∂xk

�

A

+

�
∂

∂xk

�

B

(ρu��

j u
��

k)B(u
��

i )A +(ρu��

i )A

�
u��

k

∂u��

j

∂xk

�

B

− (u��

i )A

�
∂ρu��

j u
��

k

∂xk

�

B

− (u��

j )B

�
∂ρu��

i u
��

k

∂xk

�

A

=

−

�
∂

∂xi

�

A

p�A(u
��

j )B−

�
∂

∂xj

�

B

p�B(u
��

i )A− (ρu��

i )A

�
1

ρ

∂(p� + P )

∂xj

�

B

− (ρu��

j )B

�
1

ρ

∂(p� + P )

∂xi

�

A

+

�
∂

∂xk

�

A

(τ �ik)A(u
��

j )B +

�
∂

∂xk

�

B

(τ �jk)B(u
��

i )A+ (ρu��

i )A

�
1

ρ

∂τjk
∂xk

�

B

+ (ρu��

j )B

�
1

ρ

∂τik
∂xk

�

A

.

(3.11)

A few simplifications are in order here. The fourth and fifth terms on the left hand
side of Eq. 3.11 are simply 2ρ �Rkj(∂ �Ui/∂xk)A, while the sixth and seventh terms are

2ρ �Rik(∂ �Uj/∂xk)B . The second and sixteenth terms can be combined and rewritten as
follows:

(ρ�A − ρ�B)(u
��

j )B

�
∂ �Ui

∂t
+ �Uk

∂ �Ui

∂xk

�

A

+ρ�B(u
��

j )B

�
∂ �Ui

∂t
+ �Uk

∂ �Ui

∂xk

�

A

− (u��

j )B

�
∂ρu��

i u
��

k

∂xk

�

A

= (ρ�A − ρ�B)(u
��

j )B

�
∂ �Ui

∂t
+ �Uk

∂ �Ui

∂xk

�

A

− (u��

j )B

�
ρ
∂ �Ui

∂t
+ ρ�Uk

∂ �Ui

∂xk
+

∂ρu��

i u
��

k

∂xk

�

A

= (ρ�A − ρ�B)(u
��

j )B

�
∂ �Ui

∂t
+ �Uk

∂ �Ui

∂xk

�

A

− (u��

j )B

�
−
∂P

∂xi
+

∂τ ik
∂xk

�

A
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after using Eqs. A 6 and A7 for a stationary flow. Similarly, the third and seventeenth
terms can be rewritten as

(ρ�B − ρ�A)(u
��

i )A

�
∂ �Uj

∂t
+ �Uk

∂ �Uj

∂xk

�

B

+ρ�A(u
��

i )A

�
∂ �Uj

∂t
+ �Uk

∂ �Uj

∂xk

�

B

− (u��

i )A

�
∂ρu��

j u
��

k

∂xk

�

B

= (ρ�B − ρ�A)(u
��

i )A

�
∂ �Uj

∂t
+ �Uk

∂ �Uj

∂xk

�

B

− (u��

i )A

�
−

∂P

∂xj
+

∂τ jk
∂xk

�

B

.

In making these simplifications it is assumed that (ρ)A = (ρ)B and (∂ �Uk/∂xk)A =

(∂ �Uk/∂xk)B which is valid for the statistically one-dimensional case considered here. For
low Mach number reactive flows compressibility effects will be negligible and the density
change occurs chiefly via chemical reactions. Accordingly, the mean density will vary only
along the mean flame normal direction. In addition, following Hinze (1975), independent
variables are introduced to simplify the derivatives of the two-point correlations:

rk = (xk)B − (xk)A; (xk)AB = [(xk)A + (xk)B ]/2,

such that the derivatives become
�

∂

∂xk

�

A

=
1

2

�
∂

∂xk

�

AB

−
∂

∂rk�
∂

∂xk

�

B

=
1

2

�
∂

∂xk

�

AB

+
∂

∂rk
.

For the statistically one-dimensional case, since the displacement vector �r is constrained
such that all two-point correlations are invariant to translations, derivatives of all cor-
relations with respect to (xk)AB are identically zero. This allows the simplification of
eighth and eleventh terms on the left hand side to

�
∂

∂xk

�

A

(�Uk)A(ρu��

i )A(u
��

j )B +

�
�Uk

∂

∂xk

�

B

(u��

j )B(ρu
��

i )A

= − �Uk
∂

∂rk
(ρu��

i )A(u
��

j )B − (ρu��

i )A(u
��

j )B
∂ �Uk

∂rk
+ �Uk

∂

∂rk
(ρu��

i )A(u
��

j )B

= − (ρu��

i )A(u
��

j )B
∂ �Uk

∂rk
,

and, similarly, the ninth and tenth terms to

�
�Uk

∂

∂xk

�

A

(u��

i )A(ρu
��

j )B +

�
∂

∂xk

�

B

(�Uk)B(u��

i )A(ρu
��

j )B = (u��

i )A(ρu
��

j )B
∂ �Uk

∂rk
.

Finally, the twelfth and thirteenth terms are simplified to

�
∂

∂xk

�

A

(ρu��

i u
��

k)A(u
��

j )B + (ρu��

j )B

�
u��

k

∂u��

i

∂xk

�

A

=

�
∂

∂xk

�

A

(ρu��

i u
��

k)A(u
��

j )B + (ρu��

j )B

�
∂u��

i u
��

k

∂xk
− u��

i

∂u��

k

∂xk

�

A

=

�
∂

∂xk

�

A

�
(ρu��

i u
��

k)A(u
��

j )B + (u��

i u
��

k)A(ρu
��

j )B

�
− (ρu��

j )B

�
u��

i

∂u��

k

∂xk

�

A

,
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while the fourteenth and fifteenth terms to
�

∂

∂xk

�

B

�
(ρu��

j u
��

k)B(u
��

i )A + (u��

j u
��

k)B(ρu
��

i )A

�
− (ρu��

i )A

�
u��

j

∂u��

k

∂xk

�

B

.

When these simplifications are introduced Eq. 3.11 represents a balance equation for
�Rij :

2∂ρ �Rij

∂t
+ 2ρ �Rik

�
∂ �Uj

∂rk

�
− 2ρ �Rkj

�
∂ �Ui

∂rk

�

� �� �
T1

+ [(u��

i )A(ρu
��

j )B − (ρu��

i )A(u
��

j )B ]

�
∂ �Uk

∂rk

�

� �� �
T2

−

�
∂

∂rk

�
[(ρu��

i u
��

k)A(u
��

j )B + (u��

i u
��

k)A(ρu
��

j )B ] +

�
∂

∂rk

�
[(u��

i )A(ρu
��

j u
��

k)B + (ρu��

i )A(u
��

j u
��

k)B ]

� �� �
T31

−(ρu��

i )A

�
u��

j

∂u��

k

∂rk

�

B

− (ρu��

j )B

�
u��

i

∂u��

k

∂rk

�

A� �� �
T32

+(ρ�A − ρ�B)(u
��

j )B

�
∂ �Ui

∂t
+ �Uk

∂ �Ui

∂xk

�

A

+ (ρ�B − ρ�A)(u
��

i )A

�
∂ �Uj

∂t
+ �Uk

∂ �Uj

∂xk

�

B� �� �
T4

= +

�
∂

∂ri

�
(p� + P )A(u��

j )B −

�
∂

∂rj

�
(p� + P )B(u��

i )A
� �� �

T51

− (ρu��

i )A

�
1

ρ

∂(p� + P )

∂xj

�

B

− (ρu��

j )B

�
1

ρ

∂(p� + P )

∂xi

�

A� �� �
T52

−

�
∂

∂rk

�
(τik)A(u��

j )B +

�
∂

∂rk

�
(τjk)B(u��

i )A
� �� �

T61

+(ρu��

i )A

�
1

ρ

∂τjk
∂xk

�

B

+ (ρu��

j )B

�
1

ρ

∂τik
∂xk

�

A� �� �
T62

.

(3.12)

The physical interpretation of the various terms is as follows: T1 represents the con-
tribution of mean velocity gradients; T2 represents the interaction between the mean
velocity and the fluctuating velocity correlations and can be interpreted as eddy defor-
mation by mean flow (Hinze 1975); T3 ≡ (T31 + T32) denotes the contribution of the
turbulent straining motions; T4 represents the influence purely due to density fluctua-
tions; T5 ≡ (T51+T52) represents the contribution of pressure-velocity correlations and
T6 ≡ (T61+T62) represents the viscous dissipation effects. All of the terms in Eq. 3.12,
except the fluctuating density term T4, have analogues in the corresponding equation
presented by Hinze (1975) for the incompressible case. Without the density weighting

ascribed to the definition of �Rij , arriving at an equation with such clear physical mean-
ing of the various terms would not have been possible. If one were to instead attempt
a derivation without the density weighting, the resulting equation would be much more
complicated and unwieldy.
Our objective here is not to attempt a closure for the various terms in Eq. 3.12, but

rather to illustrate the various physical processes in reacting flows and compare them with
the incompressible case. We do not present any further simplification of this equation
but rather intend to use it as a basis to study the energy balance in wavenumber space.
Hinze (1975) considers the special case of homogeneous isotropic sheared turbulence with
a non-zero but uniform mean velocity gradient which simplifies the equation considerably,
particularly the terms involving mean velocity and its gradients. Such an exercise is of
limited utility here. The simplest archetypes of statistically one-dimensional reacting
flows conceivable - a non-premixed flame in a turbulent shear layer or a statistically
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planar freely propagating premixed flame - do not satisfy the condition of uniform mean
velocity gradient.
We now apply the Fourier transform operation, denoted by the operator

F{..} =
1

(2π)3

∞���

−∞

exp(−i �k ·�r) (..) d�r,

to each of the terms in Eq. 3.12 and contract the tensorial indices i and j. The result is
expressed nominally as

2ρ
∂�Φii(�k)

∂t
+ F{T1}+ F{T2}+ F{T3}+ F{T4} = F{T5}+ F{T6}. (3.13)

Since �Φii(�k) represents the contribution to �t.k.e. from the wavenumber �k, Eq. 3.13 de-

notes the balance of �t.k.e. in wavenumber space. Upon closer inspection of each of the
terms it is self evident that the terms F{T1} and F{T2} represent energy production
due to large-scale mean motion, just as their incompressible counterparts. On the other
hand the term F{T4} denotes an additional mechanism by which mean motion con-
tributes to energy production by coupling with fluctuating density-velocity correlations,
a mechanism absent in the incompressible case.
The most interesting results, however, involve F{T31} and F{T5}. First consider the

former. Noting that, from the definition of rk given before,

∂

∂rk
=

1

2

��
∂

∂xk

�

B

−

�
∂

∂xk

�

A

�
(3.14)

the term T31 from Eq. 3.12, in the limit �r = 0, can be written as

[T31]�r=0 =
�1

2

��
∂

∂xk

�

B

−

�
∂

∂xk

�

A

��
(u��

i )A(ρu
��

j u
��

k)B − (ρu��

i u
��

k)A(u
��

j )B

�

+
�
(ρu��

i )A(u
��

j u
��

k)B − (u��

i u
��

k)A(ρu
��

j )B

��
A=B

= 0.

Introducing the inverse Fourier transform operator

F−1{..} =

∞���

−∞

exp(i �k ·�r) (..) d�k,

this can also be expressed as

[T31]�r=0 = F−1{F{T31}}�r=0 =

∞���

−∞

F{T31} d�k = 0.

This relation implies that the term F{T31} when integrated over all wavenumbers is
identically zero. In other words this term is not a net source or sink in the balance of
�t.k.e. but merely redistributes energy across wavenumbers. This is a significant result
as, in effect, it states that the density-weighted triple velocity correlations do not pro-

duce or destroy density-weighted turbulent kinetic energy, but merely transfer it between

wavenumbers, a characteristic shared by the unweighted triple velocity correlations in
the incompressible case (Hinze 1975).
As for the term F{T5} it can be split into two terms, one involving mean pressure and

the other involving fluctuating pressure. In the absence of externally imposed pressure
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gradients, the former is expected to be negligible. The latter comprises T51 which is often
referred to as a pressure-dilatation term in the context of single-point correlations since
the contraction of indices in Eq. 3.12 makes the fluctuating part of T51

∂

∂ri

�
p�A(u

��

i )B − p�B(u
��

i )A
�
.

Hinze (1975) shows that in incompressible isotropic turbulence the condition ∂u��

i /∂xi = 0

leads to the fluctuating pressure-velocity correlation tensor, p�A(u
��

i )B , becoming zero.
Hence F{T5} does not appear in the final energy balance. This is clearly not the case in
compressible flows. It is well known (Zeman 1991; Sarkar et al. 1991) that in non-reacting
compressible flows at moderate to high Mach numbers, pressure-dilatation has a leading

order influence in the balance of �t.k.e., particularly if shocklets arise in the flow. On the
other hand, in low speed reactive flows pressure-dilatation has been shown to be a major

source of �t.k.e. (Zhang & Rutland 1995). Our analysis suggests that even when the energy
balance is considered in wavenumber space, pressure-velocity correlations can be inter-
preted as a net source or sink. More significantly, dilatation fluctuations mostly occur at
flame scales, typically at the high wavenumber end of the energy spectrum. Therefore,
pressure-velocity correlations could be a significant source of backscatter. The analy-
sis presented here provides a formal mathematical framework to quantify, and possibly
model, the extent of backscatter using dimensional arguments.

By analogy with the energy balance, the density-weighted two-point scalar correlation
balance can similarly be derived. While the primary interest is in correlations of a scalar
with itself, the equation is derived for the more general case of correlations between two
different scalars, ψ and ξ. Starting from the balance equation for ψ��, Eq. B 1 derived in
appendix B,

∂ψ��

∂t
+

∂ �ψ
∂t

+ �Uk
∂ �ψ
∂xk

+ u��

k

∂ �ψ
∂xk

+ �Uk
∂ψ��

∂xk
+ u��

k

∂ψ��

∂xk
=

ω̇ψ

ρ
+

Dψ

ρ
,

and that for ρψ��, Eq. B 4,

∂ρψ��

∂t
+ ρ�

∂ �ψ
∂t

+ ρ� �Uk
∂ �ψ
∂xk

+ ρu��

k

∂ �ψ
∂xk

+
∂ρψ�� �Uk

∂xk
+

∂

∂xk
(ρu��

kψ
�� − ρu��

kψ
��) = ω̇�

ψ +D�

ψ.

We multiply the equation for (ψ��)A by (ρξ��)B and the equation for (ξ��)B by (ρψ��)A.
Similarly, we multiply the equations for (ρψ��)A and (ρξ��)B by (ξ��)B and (ψ��)A respec-
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tively. Adding and averaging the result yields

2∂ρ �Rψξ

∂t
+ ρ�A(ξ

��)B

�
∂ �ψ
∂t

+ �Uk
∂ �ψ
∂xk

�

A

+ ρ�B(ψ
��)A

�
∂�ξ
∂t

+ �Uk
∂�ξ
∂xk

�

B

+(ξ��)B(ρu��

k)A

�
∂ �ψ
∂xk

�

A

+(ρξ��)B(u��

k)A

�
∂ �ψ
∂xk

�

A

+(ψ��)A(ρu��

k)B

�
∂�ξ
∂xk

�

B

+(ρψ��)A(u��

k)B

�
∂�ξ
∂xk

�

B

+

�
∂

∂xk

�

A

(�Uk)A(ρψ��)A(ξ��)B+

�
�Uk

∂

∂xk

�

A

(ψ��)A(ρξ��)B+

�
∂

∂xk

�

B

(�Uk)B(ρξ��)B(ψ��)A+

�
�Uk

∂

∂xk

�

B

(ξ��)B(ρψ��)A

+

�
∂

∂xk

�

A

(ρu��

kψ
��)A(ξ��)B+(ρξ��)B

�
u��

k

∂ψ��

∂xk

�

A

+

�
∂

∂xk

�

B

(ρu��

kξ
��)B(ψ��)A+(ρψ��)A

�
u��

k

∂ξ��

∂xk

�

B

− (ψ��)A

�
∂ρu��

kξ
��

∂xk

�

B

− (ξ��)B

�
∂ρu��

kψ
��

∂xk

�

A

= (ω̇�

ψ)A(ξ
��)B + (ω̇�

ξ)B(ψ
��)A

+

�
ω̇ψ +Dψ

ρ

�

A

(ρξ��)B +

�
ω̇ξ +Dξ

ρ

�

B

(ρψ��)A + (D�

ψ)A(ξ
��)B + (D�

ξ)B(ψ
��)A.

(3.15)

Analogous to Eq. 3.11, the second and sixteenth terms can be simplified using Eq. B 3 as

(ρ�A − ρ�B)(ξ
��)B

�
∂ �ψ
∂t

+ �Uk
∂ �ψ
∂xk

�

A

− (ξ��)B

�
(ω̇ψ)A + (Dψ)A

�
,

and the third and seventeenth terms as

(ρ�B − ρ�A)(ψ
��)A

�
∂�ξ
∂t

+ �Uk
∂�ξ
∂xk

�

B

− (ψ��)A

�
(ω̇ξ)B + (Dξ)B

�
.

Similarly, terms eight through eleven simplify to

�
(ψ��)A(ρξ��)B − (ρψ��)A(ξ��)B

� ∂ �Uk

∂rk
,

while terms twelve through fifteen to

−
∂

∂rk

�
(ρψ��u��

k)A(ξ
��)B + (ψ��u��

K)A(ρξ��)B

�
+

∂

∂rk

�
(ρψ��)A(u��

kξ
��)B + (ψ��)A(ρξ��u��

k)B

�

− (ρξ��)B

�
ψ��

∂u��

k

∂xk

�

A

− (ρψ��)A

�
ξ��

∂u��

k

∂xk

�

B

.
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Finally, Eq. 3.15 simplifies to

2∂ρ �Rψξ

∂t
−

�
(ρu��

k)A(ξ
��)B + (u��

k)A(ρξ
��)B

�� ∂ �ψ
∂rk

�
+
�
(ρu��

k)B(ψ
��)A + (u��

k)B(ρψ
��)A

�� ∂�ξ
∂rk

�

� �� �
T1

−
�
(ψ��)A(ρξ��)B − (ρψ��)A(ξ��)B

��∂ �Uk

∂rk

�

� �� �
T2

−
∂

∂rk

�
(ρψ��u��

k)A(ξ
��)B + (ψ��u��

K)A(ρξ��)B

�
+

∂

∂rk

�
(ρψ��)A(u��

kξ
��)B + (ψ��)A(ρξ��u��

k)B

�

� �� �
T31

−(ρξ��)B

�
ψ��

∂u��

k

∂xk

�

A

− (ρψ��)A

�
ξ��

∂u��

k

∂xk

�

B� �� �
T32

+(ρ�A − ρ�B)(ξ
��)B

�
∂ �ψ
∂t

+ �Uk
∂ �ψ
∂xk

�

A

+ (ρ�B − ρ�A)(ψ
��)A

�
∂�ξ
∂t

+ �Uk
∂�ξ
∂xk

�

B� �� �
T4

= (ω̇ψ)A(ξ��)B + (ω̇ξ)B(ψ��)A� �� �
T51

+ (ω̇ψ/ρ)A (ρξ��)B + (ω̇ξ/ρ)B (ρψ��)A� �� �
T52

+ (Dψ)A(ξ��)B + (Dξ)B(ψ��)A� �� �
T61

+ (Dψ/ρ)A (ρξ��)B + (Dξ/ρ)B (ρψ��)A� �� �
T62

. (3.16)

The similarities between Eqs. 3.16 and 3.12 are obvious. Likewise, the physical inter-
pretation of various terms in 3.16 is also similar to those in Eq. 3.12, with only subtle
differences: T1 represents the contribution of mean scalar gradients; T2 represents the
interaction between mean flow and scalar-scalar correlations; T3 represents the contribu-
tion of scalar-scalar-velocity triple correlations; T4 represents the influence of fluctuating
density coupled with mean velocity and mean scalar gradients; T5 represents the contri-
butions of chemical reactions and T6 represents the dissipative terms due to molecular
diffusion. Also, it can be readily shown that, upon applying the Fourier transform oper-
ation, the term T31 will be identically zero when integrated over all wavenumbers, and
hence, it has the same role as T31 in Eq. 3.12 i.e. transferring scalar fluctuations between
wavenumbers. Also, the role of chemical reactions is now simply encapsulated in term T5.
In some respects it can be considered analogous to the pressure-velocity correlation term
in Eq. 3.12, since both terms are expected to be most significant at high wavenumbers
corresponding to chemical scales.

4. Results

As evident from the description of the DNS database, the simulations correspond to a
statistically one-dimensional case with moments varying only in the transverse direction
and in time. Accordingly, spectra are constructed from a fixed temporal snapshot and
at fixed transverse distance relative to the mid-plane. Furthermore statistical symmetry
about the mid-plane is exploited and samples from equi-distant positive and negative
transverse planes are considered as statistically equivalent. It is convenient to map the
transverse distance to a mean progress variable since the latter readily refers to a location
in the flame brush. The progress variable, c, is defined based on normalised oxygen mass
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Figure 3. The typical one-dimensional flame brush from the DNS. The plot on left shows

Favre turbulent kinetic energy, �t.k.e., normalised by U2

j and Favre progress variable, �c, as a
function of normalised transverse coordinate, y/H, for the Da- (solid) and Da+ (dashed) cases

at t/tj = 15. The plot on right shows �t.k.e. (red) and Favre fluctuations of hydrogen mass
fraction (blue) plotted against c̃ for the Da- case at t/tj = 15.

fraction as

c ≡
YO2,u − YO2

YO2,u − YO2,b
, (4.1)

such that it assumes the value zero in the unburnt mixture, denoted by subscript u, and
unity in the fully burnt mixture, denoted by subscript b. The progress variable could
alternatively be defined using mass fractions of hydrogen or water. Oxygen was chosen
here because it is the excess reactant and has non-zero values both on the unburnt and
fully burnt regions and hence the definition is numerically cleaner. Figure 3 shows the
typical flame brush, in physical as well as progress variable space, from the Da- and Da+
cases for the temporal snapshot corresponding to t/tj = 15. Since the streamwise and
spanwise homogeneous directions exist the spectra could be constructed as a function of
wavenumber magnitude, k, either by performing two-dimensional Fourier transforms and
averaging all ensembles of equal k, or by performing one-dimensional Fourier transforms
along one direction and averaging along the other direction. Here the latter is adopted for
two reasons. The numerical convergence of the one-dimensional transforms is better since
there are a sufficient number of samples for a given value of k to perform the ensemble
averaging. For two-dimensional transforms, since the grid is rectangular Cartesian, the
number of samples becomes progressively smaller with decreasing k. The second reason
is that the domain size, and hence the length scale of periodicity, is different in the two
directions and therefore the two-dimensional transforms are slightly ambiguous. As a
consequence of the density weighting in the definitions of correlation tensors and spectrum
functions, the one-dimensional spectrum, of say velocity component u��

1
, is computed as

Eu1
=

1

2ρ

�
F{ρu��

1
} F∗{u��

1
}+ F{u��

1
} F∗{ρu��

1
}
�

=
1

2ρ

�
1

2Nz

2Nz�

k=1

�
Fk{ρu

��

1
} F∗

k{u
��

1
}+ Fk{u

��

1
} F∗

k{ρu
��

1
}
��

,

(4.2)
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Da- Da+
c̃ 0.1 0.5 0.9 0.1 0.5 0.9
Ret 428.4 90.8 15.7 354.2 103.9 19.4
Reλ 80.2 36.9 15.3 72.9 39.5 17.1
Ka 0.71 0.2 0.05 0.16 0.05 0.02
�η ∗ kmax 2.2 4.15 8.44 2.33 4.0 6.9

Table 2. Relevant DNS parameters of the cases for which spectra are studied.

where Fk and F∗

k denote the Fourier transform and its complex conjugate, respectively,
of each streamwise line signal from the two equi-distant planes, and 2Nz is the total
number of line samples. The mean density, ρ, is computed from an average over both
planes.

4.1. Turbulence kinetic energy spectra

Figure 4 shows a sample one-dimensional kinetic energy spectrum, E1D ≡ 0.5(Eu1
+

Eu2
+ Eu3

), from the Da+ case corresponding to transverse planes of �c = 0.5 at time
t = 15tj . It is evident that there is a large range of dynamic scales, with a clear inertial
range, attesting to the high quality of the DNS dataset. The statistical convergence is
assessed on the plot on the left by comparing the spectrum from the full set of samples
with that constructed from samples only from the bottom plane, y = -4.9 mm, and that
constructed from samples only from the top plane, y = 4.9 mm, (see Fig. 1). The two
planes are separated by a distance of 9.8 mm which is over six times greater than the
integral scale, Λ, which is 1.49 mm for this case. Hence the samples from the bottom plane
can be deemed statistically independent from those on the top plane. As is evident the
three spectra are barely distinguishable indicating statistical convergence. Also shown is
the comparison between the density-weighted and the conventional unweighted spectra.
The latter is constructed as described in Eq. 4.2, but without the density terms. It is
interesting to note that including the density weighting does not seem to influence the
spectrum in the low wavenumber (energy-containing and inertial) range, but a difference
is apparent in the high wavenumber range. The latter is traditionally referred to as
the dissipative range, but as the ensuing discussion will show shortly, it might more
appropriately be viewed instead as a “reactive-dissipative” range in the current case. This
comparison should not be viewed as the efficacy, or lack thereof, of the density weighting
in the spectra definitions. It is likely that factors such as the density jump across the
premixed flame front (which is relatively low for the present preheated lean hydrogen
cases) and the wavenumber characteristic of density fluctuations will determine the extent
of the differences that arise due to the density-weighted definition. Furthermore, as we
showed in section 3, the density weighting makes the interpretation of the spectrum
balance equations much simpler and more meaningful.
It is worth commenting on some numerical aspects that can influence computation

of the spectra. As mentioned earlier the DNS employs a tenth-order filter to improve
stability. The filter, described in detail by Kennedy & Carpenter (1994), is an explicit
central-difference filter and is purely dissipative. The spectral transfer function of the
filter, shown as a dashed line in Fig. 4, indicates that it is monotonic and confirms its
dissipative nature at high wavenumbers. Consequently the filter will only remove en-
ergy at these high wavenumbers and will not add energy spuriously. Another potential
numerical artifact concerns aliasing. It was shown in Hawkes et al. (2012) that for the
temporal snapshots being considered (t/tj = 15) the mean Kolmogorov length scale is
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greater than at least half the grid size, �η > 0.5∆x, which is considered sufficient reso-
lution for turbulent flow DNS (Yeung & Pope 1989). Hence we believe the contribution
from aliasing errors is negligible in the current results. And finally, it is a conventional
practice to pre-multiply signals with windowing functions before performing a discrete
Fourier transform to avoid spectral leakages. In the present study however, no windowing
functions were employed since the 1D line signals on which the Fourier transform was
performed were guaranteed to be periodic owing to the DNS boundary conditions.
The one-dimensional spectra from the Da- and Da+ cases at three locations spanning

the flame brush - c̃ = 0.1, 0.5 and 0.9 - are shown in Fig. 5. The relevant non-dimensional
DNS parameters for these locations are listed in Table 2. These parameters are calculated
using the following expressions

turbulent Reynolds number, Ret =
u��

Λ

�ν , (4.3)

Taylor scale Reynolds number, Reλg
=

u��λg

�ν , (4.4)

Karlovitz number, Ka =

�
νu/sL

�η

�2

, (4.5)

where the integral length and velocity scales, Λ and u�� respectively, the Taylor microscale,
λg, and the Kolmogorov scale, �η, are evaluated using

u�� =
�
2 �t.k.e/ 3

�1/2

, Λ = u��3/��

λg =
�
15�νu��2/��

�1/2
and �η =

�
�ν3/��

�1/4
. (4.6)

Note that Favre averaged kinematic viscosity is �ν and Favre averaged turbulent kinetic
energy dissipation rate is ��. The parameter �η∗kmax in Table 2, where kmax is the Nyquist
wavenumber, denotes the level of resolution of the smallest flow scales. Figure 5 reveals
the classical spectrum shape with distinct energy containing, inertial and dissipative
ranges is evident for all the cases. It is interesting to note the high wavenumber shape of
the spectra. While the shape at high k for most part resembles the exponential drop-off
characteristic of a typical dissipation range, an unmistakeable inflection occurring in the
vicinity of k ≈ 105 in the Da- and k ≈ 5× 104 in the Da+ cases is present. The temporal
evolution of the shear layer and the flame brush are such that in both cases the peak
�t.k.e. and turbulent Reynolds numbers, Ret, occurred at locations where c̃ is just less

than 0.1 (see Fig. 3). Hence the values of �t.k.e. and Ret progressively decrease from �c of
0.1 to 0.9, a trend clearly evident in the spectra. This trend differs from that of Furukawa
et al. (2002) who construct kinetic energy spectra conditioned on fresh versus burnt gas
fluid and report that the turbulent kinetic energy conditioned on the burnt gas is higher
than that of the fresh gas indicating flame generated turbulence. This difference is likely
due to two reasons. First, the flames investigated by Furukawa et al. (2002) have much
higher Damköhler numbers (O(100)) compared to the present flames (O(0.1)) and hence
they could be in different vastly different regimes. Second, the conditional sampling used
to construct the spectra by Furukawa et al. (2002) ensures that the velocity fluctuations
induced by large scale flame flapping are discounted. The unconditional spectra presented
here include this effect.
Knaus & Pantano (2009) report kinetic energy spectra from DNS of a non-premixed

flame in a temporally evolving shear layer, a configuration nearly identical to the present
DNS. They find a surprisingly good scaling of the spectra when normalised using Favre
averaged quantities. They examined the scaling of the normalised one-dimensional energy
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Figure 4. A sample one-dimensional turbulent kinetic energy spectrum for the Da+ case cor-
responding to �c = 0.5 at time t = 15tj . The plot on the left compares the spectra constructed
with the full set of samples (red) with that constructed using only samples from the bottom
plane (blue) and samples only from the top plane (green). Since the curves coincide the former
is plotted as a solid line and the latter using dashed lines clarity. The plot on the right compares
the spectra constructed with (red) and without (blue) the density-weighted definitions, along
with the transfer function (dashed) for the tenth-order filter used in the DNS.

Figure 5. The one-dimensional turbulent kinetic energy spectra for the Da- (left) and Da+
(right) cases corresponding to three flame brush locations, �c = 0.1 (red), 0.5 (green), 0.9 (blue).

spectra,

E1D
norm ≡ ��−2/3�η−5/3E(k),

as a function of the normalised wavenumber, k�η. The rationale behind expecting such
a scaling is that the Kolmogorov hypotheses yields for energy spectra a function of the
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Figure 6. Plot on the left shows normalised one-dimensional turbulent kinetic energy spectra
plotted against the normalised wavenumber for all locations in the Da- and Da+ cases. The plot
on the right shows the compensated kinetic energy spectra.

form

E(k) = C �2/3 k−5/3 f(kη), (4.7)

with the function f(kη) capturing the exponential, presumably universal, high wavenum-
ber drop-off. A good collapse based on Favre averaged quantities led Knaus & Pantano
(2009) to suggest that spectra in reacting flows follow the conventional Kolmogorov
scaling in terms of Favre averaged quantities, an encouraging prospect. We examine this
scaling by plotting the normalised energy spectra against the normalised wavenumber, for
all cases in Fig. 6. The compensated spectra for the corresponding cases, (k�η)5/3×E1D

norm,
are shown in the same figure on the right. At the outset, the compensated spectra show
the presence of nearly one decade of an inertial range with a −5/3 scaling in almost all
the cases, except for Da+ �c = 0.9, which has the lowest Ret of all. More interestingly,
the normalised spectra show a very good collapse in the inertial range, but deviate no-
ticeably in the dissipative range. Evidently, a Kolmogorov type scaling involving Favre
averaged quantities is not applicable over the entire wavenumber range for the current
cases. Also, the value of the Kolmogorov scaling constant (C in Eq. 4.7), which can be
inferred from the inertial range plateau in the compensated spectra, is around 0.2 for the
current cases, which is somewhat lower than that reported by Knaus & Pantano (2009)
for non-premixed flames. However, there is possibly some uncertainty in assuming that
Favre averaged quantities, �� and �η, will yield a perfect Kolmogorov scaling. While the
turbulent quantities, and spectra, vary significantly in space, the temporal evolution is
considerably slower. Figure 7 shows the raw and normalised kinetic energy spectra from
three temporal snapshots: t/tj = 12, 15 and 18, for the Da- case at the �c = 0.5 location.

The discussion in section 3 on the energy balance in wavenumber space provides some
intuition here. As discussed before, a major difference between the incompressible and
variable density reactive flows involves the pressure-velocity correlations, term T5 in

Eq. 3.12. We anticipate that this term could be a significant source for �t.k.e., mainly
through the pressure-dilatation coupling. It is well known that premixed flame fronts are
accompanied by a much stronger local dilatation due to the density jump, as compared to
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Figure 7. Temporal evolution of one-dimensional turbulent kinetic energy spectra for the Da-
case at �c = 0.5 location. Plot on the left shows raw spectra from temporal snapshots correspond-
ing to t/tj = 12, 15 and 18, and plot on the right shows corresponding normalised spectra.

non-premixed flames (Bilger 2004). The contribution of the two pressure-velocity terms,
T51 and T52, are shown in Fig. 8 for the case of Da+, �c = 0.1. Shown in the same
figure is the spectral coherence between fluctuating pressure, p�, and one component of
fluctuating velocity, u��

1
. This figure presents strong evidence of the role of the pressure-

velocity terms. Both terms are of identical magnitude at all wavenumbers and a strong
‘spike’ in these terms at high wavenumbers coincides nearly perfectly with the inflection
in the kinetic energy spectrum. Furthermore, the fluctuating pressure and velocities seem
to be significantly coherent at the same wavenumber, indicating a strong signature from
the pressure-velocity correlations.

Premixed flame fronts introduce strong dilatational fluctuations at scales comparable
to laminar flame thickness, and we speculate that the pressure-velocity term introduces
energy into the flow at the same scales. Depending on the relative strength of the other
terms in the energy balance, this energy might be transferred both forward and backward
in wavenumber space. In the current simulations the unstrained laminar flame thickness,
defined based on the maximum temperature gradient as

δL =
Tb − Tu

(∇T )max
,

is 5.025 × 10−4 m, while the Komogorov scale, �η, for all the cases lies in the range of
1.2×10−5 to 8×10−5 m, which suggests a strong overlap of the dissipative range with the
chemical scales. Accordingly, the high wavenumber range is no longer characterised only
by viscous dissipation, but rather, also by the influence of chemical reactions, which in
the case of kinetic energy, manifests itself through the pressure-velocity term. At the very
least, the high wavenumber exponential drop-off needs to be revised to include the flame
thickness δL. Hence, we examine a revised normalisation of the energy spectra based on
δL instead of �η as

Enorm ≡ ��−2/3δ
−5/3
L E(k),

and plot it against a normalised wavenmber kδL, as shown in Fig. 9. When thus nor-
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Figure 8. Plot on the left shows one-dimensional kinetic energy spectra for the Da+, �c = 0.1
case, along with the pressure-velocity terms, T51 and T52 in Eq. 3.12. The plot on the right
shows the total pressure-velocity term, T5, and the spectral coherence between p� and u��

1 .

malised, it now appears that the location of the inflection in the kinetic energy spectrum
coincides for a given Da. Furthermore this location is at (kδL/2π) ≈ 5 for the Da+ case
and (kδL/2π) ≈ 10 for the Da- case, lending further credence to the hypothesis that the
inflection arises due to the pressure-velocity term at the laminar flame scales. Further
evidence of the contribution of this term is presented in Fig. 10 for all the cases. One can
spot a direct correlation between both the magnitude and location of the ‘spike’ in this
term at high wavenumber and the inflection in the corresponding kinetic energy spectra.
It is worth emphasising, as is evident from Fig. 9, that the normalisation based on δL,
while improving the collapse in the viscous range, disrupts the collapse in the inertial
range. This merely suggests that for an appropriate scaling to be valid over the entire
wavenumber range it would have to involve both �η and δL. We envision suitably incor-
porating the Karlovitz number which, being related to the ratio of �η and δL, quantifies
the extent of overlap (or lack thereof) between the viscous range and the reactive range.
However, the derivation of the revised scaling is a topic for future study.

4.2. Reacting scalar spectra

In this section the auto-spectra of reactive scalars are interpreted based on the bal-
ance equation 3.16, which more generally, can be used to study both co-spectra and
auto-spectra. The latter is often of interest in modelling methodologies that employ a
‘laminar flamelet’ hypothesis which attempt to capture the evolution of the entire chemi-
cal manifold through the evolution of a single, or sometimes two, reactive scalars. Figure
11 shows the one-dimensional auto-spectra of hydrogen and oxygen mass fractions for the
Da- case at the three locations; �c = 0.1, 0.5 and 0.9. In comparison to the kinetic energy
spectra, the scalar spectra show a subtle difference; the curve corresponding to middle
of the flame brush (c̃ = 0.5) is higher than those corresponding to the flame brush edges
(c̃ = 0.1, 0.9). This is a reflection of the scalar fluctuations peaking in the flame brush
middle whereas the turbulent kinetic energy peaks near the unburnt side, as shown in
Fig. 3 The hydrogen spectrum exhibits a shoulder, again in the high wavenumber reactive
range, which is not so prominent for the oxygen spectrum. Curiously, for hydrogen, the
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Figure 9. The one-dimensional turbulent kinetic energy spectra normalised using the laminar

flame thickness as, Enorm ≡ ��−2/3δ
−5/3
L E(k), plotted against the normalised wavenumber ,

kδL,for all locations in the Da- and Da+ cases.

Figure 10. The total pressure-velocity term, T5 in Eq. 3.12, is plotted against the normalised
wavenumber , kδL, for the Da+ (left) and Da- (right) cases.

shoulder exists at (kδL/2π) ≈ 10 which is the wavenumber where the pressure-velocity
term has a signature. This is at least partly explained by the fact that for the current
simulations the length scale corresponding to hydrogen reactions in the unstrained lam-
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Figure 11. One dimensional auto-spectra of fluctuations of hydrogen (left) and oxygen (right)
mass fractions for the Da- case at three locations; �c = 0.1, 0.5 and 0.9.

inar flame is 3.6 × 10−4 m which is very close to δL. This thickness is estimated as the
thickness of the hydrogen reaction-rate profile at 10 % of its maximum.
We now consider the scaling for scalar spectra. The spectrum of a unity Schmidt

number scalar is expected to have an inertial-convective wavenumber range where the
spectral transfer is simply by convection with the well known Obukhov-Corrsin scaling,

Eψ(k) ∼ �ψ�
−1/3k−5/3, (4.8)

where �ψ is the scalar dissipation rate. It is only if the Schmidt number is sufficiently
different than unity can one expect either a viscous-convective range (Sc � 1) or an
inertial-diffusive range (Sc � 1). For the present case the Schmidt number for hydrogen
is ≈ 0.2 and that for oxygen is ≈ 0.8 throughout the flame so it is unlikely that either
limit would apply. As for the influence of chemical reactions the only guidance is from
the analysis of Corrsin (1961) which yields, for a velocity-decoupled scalar undergoing a
first-order chemical reaction, a scaling

Eψ(k) ∼ Aψ��2�−1/3k−5/3 exp (3A�−1/3k−2/3), (4.9)

where A is a time scale of the first-order chemical reactions. Corrsin’s analysis shows
the interesting behaviour that the influence of chemical reactions on the shape of the
spectrum in the inertial-convective range diminishes as wavenumber increases. However,
the applicability of this analysis too is unclear for the present study since the two central
assumptions - scalar decoupled from velocity and first-order chemical reactions - are
violated. Nonetheless, following Knaus & Pantano (2009), we examine the Obukhov-
Corrsin scaling for the reactive scalars. Figure 12 shows the hydrogen spectra normalised
using the Obukhov-Corrsin scale, �ηH2

≡ �ηSc−3/4, as

Enorm ≡ ��−1

H2
��1/3 �η−5/3

H2
EH2 (4.10)

and normalised using the laminar flame thickness (on the right) as

Enorm ≡ ��−1

H2
��1/3 δ

−5/3
L EH2. (4.11)

As in the case of the kinetic energy spectra, normalising with laminar flame thickness
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Figure 12. The one-dimensional hydrogen spectra normalised using the Obukhov-Corrsin

scale as, Enorm ≡ ��−1

H2
��1/3�η

−5/3
H2

EH2, (left) and using the laminar flame thickness as,

Enorm ≡ ��−1

H2
��1/3δ

−5/3
L EH2, (right) plotted against the normalised wavenumber for the Da-

case.

Figure 13. The reaction source terms, T51 and T52, in Eq. 3.16, for the hydrogen (left) and
oxygen (right) auto-spectra are shown for the Da-, �c = 0.5 case.

seems to give a better collapse compared to normalising with Obukhov-Corrsin scale.
However, this collapse should not be treated as conclusive since the range of variation of
the other normalising quantities is not very large between the three curves. Nonetheless,
it is evident that the Obukhov-Corrsin scale does not collapse the spectra in the high
wavenumber range which is consistent with the findings of Knaus & Pantano (2009).
It was noted earlier that the reaction source term, T5 in Eq. 3.16, is analogous to

the pressure-velocity term in Eq. 3.12. Both terms primarily represent the influence of
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Figure 14. The reaction source term, T51, in Eq. 3.16, for the hydrogen auto-spectra are
shown for the Da- case for the three �c locations.

chemical reactions. The reaction source terms for the hydrogen and oxygen spectra are
shown in Fig. 13. Again, the two terms, T51 and T52, are of similar magnitude and the
presence (absence) of the shoulder in the auto-spectra for hydrogen (oxygen) correlates
remarkably well with a corresponding strong (weak) contribution from one of the terms,
T51. Curiously, the term T52 does not have such a spike. Furthermore, the bump in the
hydrogen spectra is strongest for c̃ = 0.5, followed by 0.1 and 0.9 (see Fig.11) and this
corresponds well with the magnitude of the T51 term for these three locations shown in
Fig. 14. Figure 15 shows the hydrogen-oxygen co-spectra and the spectral coherence.
The co-spectra, too, show a shoulder at exactly the same wavenumber. Furthermore,
the spectral coherence distribution is quite interesting. The coherence between these
two major species is high at the low wavenumber inertial range and it gradually becomes
negligible, a consequence of the homogenisation of the scalar fluctuation correlations over
the inertial range. However, the coherence abruptly increases at the wavenumber where
the reactions are significant, clearly suggesting that the chemical reactions introduce thin
fronts with a coherent variation of the species in a direction locally normal to the fronts.

5. Concluding remarks

The principal contributions of present study are twofold. First, we have presented a
mathematical framework for a rigorous analysis of turbulent kinetic energy and scalar
variances in spectral space for combusting flows with variable density. Although the
primary focus was on turbulent reacting flows, this framework is equally applicable to
non-reacting flows where density variation can be significant such as high Mach number
turbulent flows. The cornerstone of the framework is a newly proposed density-weighted
definition for two-point velocity and scalar correlation tensors that retain the essential
properties of their incompressible counterparts while also being consistent with Favre
averaged Reynolds-stresses and scalar co-variances. The density weighting formally leads
to balance equations in wavenumber space for kinetic energy and scalar variance spectrum
functions, hitherto only derived for constant-density flows (Hinze 1975). The balance
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Figure 15. The one-dimensional co-spectra for fluctuating hydrogen-oxygen mass fractions,
and their spectral coherence are shown for the Da-, �c = 0.5 case.

equations clearly highlight the physics arising out of variable density such as the role of
pressure-dilatation correlations in turbulent kinetic energy balance.
The second contribution of this study is the evidence of high wavenumber physics in

turbulent reacting flows that result in spectra which do not adhere to classical incom-
pressible scaling laws. High fidelity large Reynolds number direct numerical simulation
data sets are used to construct kinetic energy spectra that clearly show that while Kol-
mogorov scaling may be applicable in the inertial range, the high wavenumber range
should be construed as a ‘diffusive-reactive’ range where a proper scaling would have
to incorporate a suitable length scale characteristic of chemical reactions. Likewise, the
classical Obukhov-Corrsin scaling for near unity Schmidt number scalar spectra is not
strictly applicable for reactive scalars particularly at high wavenumbers where chemical
reactions occur. The DNS spectra substantiate the results from the spectral space balance
analysis; pressure-dilatation correlations and reaction-scalar fluctuation correlations are
high wavenumber sources of kinetic energy and scalar variance, respectively. However,
these results are by no means conclusive since the DNS datasets have a somewhat limited
scope. The Damköhler numbers of the DNS cases are relatively low (O(0.1)) and vary
only by a small factor across the data sets. Future work will focus on performing order
of magnitude analyses on the spectral space balance equations to determine the rela-
tive contributions of various terms and the underlying scaling in different wavenumber
ranges. The aim will be to assess the underlying assumptions of various sub-grid models
and determine their regime of applicability for large eddy simulations. The framework
can also enable a rigorous analysis of energy transfer in spectral space and study issues
such as backscatter, another topic for future study. We will also attempt to glean spec-
tra and assess the scaling by performing DNS over a much broader range of relevant
parameters (Damköhler and Karlovitz numbers), and isolating parametric influences by
utilizing simplified global chemical kinetics in future studies.
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Appendix A. Balance equation for velocity fluctuation u��
i

We seek a balance equation for the velocity fluctuation about its Favre average, u��

i .
The continuity equation, in its original and averaged forms is, respectively,

∂ρ

∂t
+

∂ρuk

∂xk
= 0, (A 1)

∂ρ

∂t
+

∂ρ�Uk

∂xk
= 0. (A 2)

Subtracting the latter from the former yields

∂ρ�

∂t
+

∂ρ� �Uk

∂xk
+

∂ρu��

k

∂xk
= 0. (A 3)

On the other hand, the momentum equation can be expanded as

ρ
∂u��
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∂xk

, (A 4)

where τik is the viscous stress tensor. In the above, the conventional decompositions for
density and pressure are used i.e. ρ = ρ+ ρ� and p = P + p�. Multiplying Eq. A 3 by u��

i

and adding to Eq. A 4 yields
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. (A 5)

It is straightforward to show that Eq. A 5, upon averaging and making use of Eq. A 2
and the relation

ρ�u��

i =✚
✚✚❃

0
ρu��

i − ρu��

i , (A 6)

yields the averaged form of the momentum equation

ρ
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. (A 7)
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Subtracting Eq. A 7 from Eq. A 5 and simplifying yields the desired density-weighted
balance equation for u��

i
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(A 8)

The veracity of Eq. A 8 is easily verified. Multiplying the equation for u��

i by u��

j , and the
equation for u��

j by u��

i , adding the two and averaging the results yields, when A6 and
A7 are used, the exact balance equation for the Favre averaged Reynolds-stresses (Jones
1993):
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Appendix B. Balance equation for scalar fluctuation ψ��

The derivation for the scalar fluctuation equation proceeds along similar lines as for
velocity. We start by expanding the balance equation for ψ as:

ρ
∂ψ��
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∂ �ψ
∂t

+ ρ�Uk
∂ �ψ
∂xk

+ ρu��

k

∂ �ψ
∂xk

+ ρ�Uk
∂ψ��

∂xk
+ ρu��

k

∂ψ��

∂xk
= ω̇ψ +Dψ, (B 1)

where ω̇ψ is the reaction source term and Dψ is the molecular diffusion term. Multiplying
Eq. A 3 by ψ�� and adding the result to Eq. B 1 gives

ρ
∂ψ��

∂t
+

∂ρ�ψ��

∂t
+ ρ

∂ �ψ
∂t

+ ρ�Uk
∂ �ψ
∂xk

+ ρu��

k

∂ �ψ
∂xk

+ ρ�Uk
∂ψ��

∂xk

+
∂ρ� �Ukψ

��

∂xk
+

∂ρu��

kψ
��

∂xk
= ω̇ψ +Dψ. (B 2)

Averaging Eq. B 2 yields the exact balance equation for �ψ:

ρ
∂ �ψ
∂t

+ ρ�Uk
∂ �ψ
∂xk

+
∂ρu��

kψ
��

∂xk
= ω̇ψ +Dψ, (B 3)

which, when subtracted from Eq. B 2 and simplified, yields the desired balance equation
for ψ��:

∂ρψ��

∂t
+ρ�

∂ �ψ
∂t

+ρ� �Uk
∂ �ψ
∂xk

+ρu��

k

∂ �ψ
∂xk

+
∂ρψ�� �Uk

∂xk
+

∂

∂xk
(ρu��

kψ
��−ρu��

kψ
��) = ω̇�

ψ+D�

ψ. (B 4)

Note the similarity of Eq. B 4 to Eq. A 8.
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