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Abstract This paper presents a generalization of the

description of the displacement-correlation peak in particle

image velocimetry (PIV) to include the effects due to local

velocity gradients at the scale of the interrogation domain.

A general expression is derived that describes the ampli-

tude, location and width of the displacement-correlation

peak in the presence of local velocity gradients. Simplified

expressions are obtained for the peak centroid and peak

width for simple non-uniform motions. The results confirm

that local gradients can be ignored provided that the vari-

ation of the displacement within the interrogation domain

does not exceed the (mean) particle-image diameter. An

additional bias occurs for a spatially accelerating or

decelerating fluid, which implies an artificial ‘‘particle

inertia’’ even when the particles can be considered as ideal

tracers.

1 Introduction

In the interrogation analysis in particle image velocimetry

(PIV) by means of a spatial correlation, it is generally

assumed that the displacement field is uniform (Adrian

1988; Westerweel 1993, 1997; Olsen and Adrian 2001).

However, PIV is applied to study the flow fields that are

typically non-uniform, and therefore it has to be explained

under what circumstances the displacement field can be

considered to be uniform at the scale of the interrogation

volume. In the preceding studies for the case of uniform

displacement fields it was shown that the width of the

displacement-correlation peak is proportional to the parti-

cle-image diameter ds (Adrian 1988; Westerweel 2000b).

In a simulation study it was shown that the velocity gra-

dients can be ignored when the variation a of the local

particle-image displacement is small with respect to ds

(Keane and Adrian 1992), i.e.,

jaj � ds with a � MDuDt; ð1Þ

where M is the image magnification, Dt is the exposure

time delay, and Du represents the local variation of the

velocity field, i.e.,

jDuj � jou=oxj � L; ð2Þ

where L is a typical dimension of the interrogation volume,

e.g., the thickness of the light sheet Dz0 or the equivalent

in-plane dimension of the interrogation region DI/M. The

effect on the appearance of the correlation as a function of

an increasing variation a of the displacement within the

interrogation volume is shown in Fig. 1. In many practical

situations the ratio ds/DI is very small, and typically should

not exceed 3–5% in order to preserve a well-defined cor-

relation peak (Keane and Adrian 1992). This means that

the local gradients have to be small in order to comply with

this requirement. For increasing gradients the correlation

peak amplitude decreases, while the width of the correla-

tion peak increases in proportion to the variation of the

displacement. Such a broadening of the displacement-cor-

relation peak also occurs in micro-PIV as the result of

Brownian motion of the tracer particles (Olsen and Adrian

2000a), which can be used to estimate the local tempera-

ture-dependent viscosity (Hohreiter et al. 2002).

For uniform displacements the correlation peak detect-

ability is proportional to NI FI FO, where NI is the image
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density and FI and FO are the in-plane and out-of-plane

loss-of-correlation due to in-plane and out-of-plane motion

of the tracer particles (Keane and Adrian 1990). This can

be generalized to: NI FI FOFD, where the term FD accounts

for the loss-of-correlation due to the local variation of the

displacement field (Westerweel 2004; Hain and Kähler

2007).

The reduction of the displacement-correlation peak

means that the peak detectability is reduced. This implies a

higher occurrence of spurious vectors in regions with

strong local gradients (Keane and Adrian 1992). If the

gradient only occurs in the in-plane components of the

displacement, then it is possible to (partially) compensate

for the effects of the gradients in the displacement by

means of local image deformation (Huang et al. 1993;

Tokumaru and Dimotakis 1995; Fincham and Delerce

2000; Scarano 2002). However, in most turbulent flows the

small-scale turbulence is (nearly) isotropic, which means

that the in-plane variation of the displacements are of the

same magnitude as the out-of-plane variation of the dis-

placements when the light-sheet thickness is of the order of

the in-plane dimension of the interrogation domain; then

the out-of-plane gradients cannot be compensated by pla-

nar deformation methods, which means that the local

velocity gradients irreversibly deteriorate the interrogation

performance. In multi-frame PIV local velocity gradients

can easily dominate the peak detectability when the tem-

poral separation of the interrogation images is increased

(Hain and Kähler 2007). For micro-PIV the depth-of-cor-

relation (Olsen and Adrian 2000b) can be of the order of

the flow domain (i.e., channel depth), which means that a

large range of displacements can occur in a single inter-

rogation domain. As mentioned before, Brownian motion

of the tracer particles adds to the broadening of the cor-

relation peak.

In this paper, the mathematical support for the empirical

relation in Eq. (1) is derived. First the theoretical analysis

for PIV interrogation in case of a uniform displacement

field is summarized (Sect. 2). Then an expression for the

local displacement distribution is derived (Sect. 3). This is

used to generalize the existing theory for uniform dis-

placements to include non-uniform displacement fields

(Sect. 4). The analysis follows a more rigorous approach

than used by Olsen and Adrian (2001). Based on the

extended description several effects are described where

local gradients affect the interrogation analysis. The last

section (Sect. 5) summarizes the main results.

2 Interrogation by spatial cross-correlation

The point of departure for the analysis is the original the-

oretical description of the interrogation analysis given by

Adrian (1988), Keane and Adrian (1990), Westerweel

(1993), and Olsen and Adrian (2001), which is summarized

here.

Consider two image fields I1 and I2, which represent the

two image frames recorded with a time delay Dt = t2 - t1
(Olsen and Adrian 2001):

I1ðXÞ ¼ W1ðX � X1Þ
Z

I01ðxÞs0ðX �MxÞgðx; t1Þdx;

I2ðXÞ ¼ W2ðX � X2Þ
Z

I02ðx0Þs0ðX �Mx0Þgðx0; t2Þdx0

ð3Þ

where W1 and W2 are the weighting functions that define

the interrogation windows, I01 and I02 define the

illumination pulses, s0 is the particle-image intensity per

unit illumination, M the image magnification,1 X and x are

the coordinates in the image domain and flow field domain,

respectively, and

gðx; tÞ ¼
X

i

d x� xiðtÞ½ � ð4Þ

describes the pattern of tracer particles at positions xi(t) at

time t. It is common to split g into mean and fluctuating

a / DI = 0.00
a / d = 0.00

0.05
0.50

0.10
1.00

0.15
1.50

Fig. 1 The spatial correlation for an increasing displacement variation a, defined in Eq. (1), relative to the dimension of the interrogation domain

DI and particle-image diameter ds. The approximate peak amplitudes are 1.00, 0.86, 0.55 and 0.40. Adapted from Westerweel (2004)

1 Note that M is only a scalar in the case of paraxial imaging and a

thin light sheet; in general M will be a projection matrix that maps x
onto X; see, e.g., Prasad (2000).
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parts, i.e., g = hgi + g0, with hgi = C and hg0i = 0, where C

is the mean number density of tracer particles (Adrian

1988).

The spatial cross-correlation R(s) for continuous image

fields is defined by

RðsÞ ¼
Z

I1ðXÞI2ðX þ sÞdX: ð5Þ

For discrete image fields, i.e., digital PIV images, the

spatial correlation is also defined at discrete separations.

This is given by convoluting R(s) with the self-correlation

of the spatial pixel sensitivity and sampling the result at

discrete separations, as described by Westerweel (1993,

1997). For sufficiently large particle images, i.e., ds/dr �1

(where dr is the pixel size), R(s) closely approximates the

spatial correlation for digital PIV images (Westerweel

2000a, b).

It is common to split the image fields into mean and

fluctuating parts. Then R(s) can be written as (Keane and

Adrian 1992)

RðsÞ ¼ RCðsÞ þ RFðsÞ þ RDðsÞ; ð6Þ

where RC is the correlation of the mean image intensities,

RF the correlation of the mean image intensity of I1 with

the fluctuating part of I2 and vice versa,2 and RD the

correlation of the fluctuating parts of I1 and I2. The terms

RC and RF vanish when the mean image intensity is

subtracted from I1 and I2. The remaining term RD can be

split into mean and fluctuating parts, where the averaging is

taken over an ensemble of tracer patterns for a given (fixed)

velocity field u(X,t) (Adrian 1988; Westerweel 1993):

RðsÞ ¼ hRDðsÞjui þ R0DðsÞ ð7Þ

where hRD(s)|ui is commonly referred to as the displace-

ment-correlation peak and R0D(s) as the random

correlation term (Westerweel 2000b).

At this point it is common to make a number of general

assumptions: (1) that all particle images have an identical

shape and size;3 (2) that the light sheet intensity distribu-

tion is only a function of the out-of-plane coordinate4 (here

denoted as z); (3) that the optical axis is normal to the light-

sheet plane; and (4) that the two exposures of the light

sheet occur in the same plane. The ensemble mean of the

spatial correlation can then be written as (Adrian 1988;

Westerweel 1993):

hRDðsÞjui¼
1

M4

Z
W1ðXÞW2ðXþsÞ

�
Z Z

s0ðX�X0Þs0ðXþs�X00Þ
Z Z

I01ðz0ÞI02ðz00Þ

� g01
X0

M
;
Y 0

M
;z0

� �
g02

X00

M
;
Y 00

M
;z00

� �����u
� �

�dz0dz00dXdX0dX00 ð8Þ

where hg01(x0)g02(x00)|ui is the conditional two-point

ensemble cross-correlation over all possible tracer pattern

fluctuations for a given flow field u. For a uniform

displacement this can be expressed as (Adrian 1988)

g01ðx0Þg02ðx00Þju
� �

¼ Cd x00 � x0 � Dx½ � ð9Þ

with: Dx = uDt. Under the condition that the particle-

image diameter is small with respect to the typical

dimension of the interrogation region (ds � DI) and for a

uniform particle-image displacement sD (=MDx),5 the

displacement-correlation peak can be expressed as

(Adrian 1988)

RDðsÞjuh i ¼ Iz1Iz2NIFIðsÞFOðDzÞs2
00Fsðs� sDÞ ð10Þ

with:

NI ¼ CDz0D2
I =M2; ð11Þ

FIðsÞ ¼
Z

W1ðXÞW2ðX þ sÞdX
.

D2
I ; ð12Þ

FOðDzÞ ¼
Z

I01ðzÞI02ðzþ DzÞdz

Z
I01ðzÞI02ðzÞdz;

�
ð13Þ

FsðsÞ ¼
Z

s0ðXÞs0ðX þ sÞ=s2
00 ð14Þ

with s00
2 = $s0(X)2 dX and Izk = $I0k(z) dz for k = 1,2. The

image density NI represents the mean number of particle

images in the interrogation domain, the terms FI and FO are

denoted as the in-plane and out-of-plane loss of correlation,

respectively, and Fs represents the particle-image self-cor-

relation. Under the assumptions stated above, the

displacement-correlation peak is a single sharp peak located

at sD. The exact position of the peak can be determined from

either the peak centroid or peak maximum. For symmetric

particle images and a uniform displacement the peak cen-

troid and peak maximum are identical in the limit ds/DI ?0.

The centroid lD of the ensemble mean of the displace-

ment-correlation peak is defined as (Adrian 1988; Keane

and Adrian 1990)

lD �
R

s RDðsÞjuh idsR
RDðsÞjuh ids

: ð15Þ

Substitution of Eq. (10) in Eq. (15) yields

2 In older texts the term RF is mistakenly referred to as the random

correlation term, but this part of the signal is actually included in RD;

(see Westerweel 2000b).
3 This assumption is generally satisfied for diffraction-limited

imaging of small tracer particles; see Adrian (1984). These particle

images can have different intensities based on their position within

the light sheet.
4 This condition is generally satisfied at the local scale of the

equivalent interrogation volume in the flow.

5 Note that M is a projection of the volumetric flow domain onto the

planar image domain.
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lD ¼
R

sFIðsÞFsðs� sDÞdsR
FIðsÞFsðs� sDÞds

: ð16Þ

The function Fs(s) is symmetric with its centroid located at

sD. The in-plane loss-of-correlation FI(s) skews Fs(s - sD),

which leads to a bias error in the measured displacement

(Keane and Adrian 1990; Westerweel 1997). The bias error

is directed toward smaller displacements, which is related

to the fact that particle images with larger displacements

are more likely to leave the interrogation domain between

the two light pulses.

In general the width of Fs(s) is much smaller than the

width of FI(s), i.e., ds � DI. Hence, FI(s) can be written as

a Taylor series around sD:

FIðsÞ ¼ FIðsDÞ þ ðs� sDÞ �
oFI

os

����
s¼sD

þh.o. ð17Þ

Substitution in Eq. (16) yields

lD ffi sD þ
1

FIðsDÞ
�
R

s2FsðsÞdsR
FsðsÞds

	 

� oFI

os

����
s¼sD

ð18Þ

where the term between brackets is the second moment of

Fs(s). Given that FI(s) and the second moment of Fs(s) are

both positive, and that qFI/qs is directed toward the origin,

lD is usually biased toward s = 0 (Keane and Adrian 1990;

Westerweel 1997).

For identical square uniform interrogation windows, the

in-plane loss-of-correlation is given by Westerweel (1997):

FIðs; tÞ ¼
ð1� jsj=DIÞð1� jtj=DIÞ for jsj; jtj\DI;
0 elsewhere:

�

ð19Þ

To reduce the complexity of the analysis, only one

component of s is considered. The spatial derivative of FI

with respect to s is then given by

oFI

os

����
s¼sD

¼ � 1

DI

sD

jsDj
1

1� jtDj=DI

ð20Þ

with sD = (sD,tD). (A similar expression can be found for

the direction perpendicular to the direction of s). The

second moment of Fs(s) for identical Gaussian particle

images is 1
8

d2
s ; so that the expression for the expected

correlation peak centroid defined in Eq. (18) becomes:

lD ¼ sD �
sD

jsDj
1

1� jsDj=DI

d2
s

8DI

: ð21Þ

As the second order and higher order derivatives for FI

defined in Eq. (19) in are zero, this expression is exact.

Indeed, the centroid is biased toward s = 0. For uniform

interrogation regions the displacement bias error is practi-

cally constant over a considerable range in sD (Westerweel

1997).

In general the bias error will be small, i.e., typically

about 0.06 px for particle images with a diameter of 2 px

in a 32 9 32-pixel interrogation domain (Westerweel

1997). This is small with respect to the random error

(typically 0.1 pixel units) in instantaneous data, but can be

significant when evaluating flow statistics, such as the

mean flow velocity. The bias error can be eliminated in

several ways. It is evident that the bias error vanishes when

the gradient of FI is zero. For uniform interrogation win-

dows this can be accomplished either by using two

interrogation windows of different size (Keane and Adrian

1992), or by using offset interrogation regions (Westerweel

et al. 1997), so that the displacement-correlation peak is

located at the maximum of FI(s) (i.e., qFI/qs = 0). Another

approach is to divide the correlation values by FI(s)

(Westerweel 1997).

3 The distribution function of a displacement field

In this section it is explained how the displacement dis-

tribution is obtained for a given displacement field over a

finite measurement volume. The evaluation of the images

by a spatial cross-correlation implies that hg01g02|ui is

evaluated over a finite measurement volume, i.e., dV(x0) =

Dz0 � (DI/M)2, which is depicted in Fig. 2. This volume is

equivalent to the weight function W(x) defined by Olsen

and Adrian (2001). Due to the spatial variations in the

displacement over dV(x0), the single displacement value

that is represented by the d-function in Eq. (9) is replaced

by a displacement distribution function FD(s), which

eliminates the explicit dependence on x0 and leads to the

following expression for the displacement-correlation

peak:

RDðsÞjuh i ffi I2
z s

2
00 � NIFIFO � Fs 	 FDðsÞ ð22Þ

g1 (x )g2 (x ) | u

s = x x

x

x(x )

V (x )

F (s)

x

s = x x

Fig. 2 The integration of hg01g02|ui over a small volume dV(x0) is

replaced by a displacement distribution FD(s). (The axes for x0 and

x0 0 - x0 actually represent three-dimensional spaces.) Adapted from

Westerweel (1997)
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where * represents a convolution integral. Hence, the dis-

placement sD is no longer uniquely defined: it may now

refer to the maximum of FD(s) (viz., the most probable

displacement), or the first moment of the distribution (viz.,

the local mean displacement), or any other convenient

parameter that characterizes FD(s).

The displacement distribution for a displacement field

Dx(x) over a finite measurement volume dV is given by

FDðsÞ ¼
1

dV

Z

dV

d s� DxðxÞ½ �dx: ð23Þ

This integral can be easily evaluated in the Fourier

transform domain, i.e.

F FDðsÞf g ¼
Z

1

dV

Z

dV

d s� DxðxÞ½ �e2pik�s dxds

¼ 1

dV

Z

dV

e2pik�DxðxÞ dx

ð24Þ

where the following identity was applied:Z
dðx� x0Þe2pik�xdx ¼ e2pik�x0 : ð25Þ

Note that: F FDðsÞf g � 1; for k = 0, i.e.:
R

FDðsÞds � 1; so

that FD(s) is indeed a distribution function for arbitrary

Dx(x).

To illustrate the effect of a local variation of the dis-

placement field, two example displacement fields are

considered: a simple shear and a sinusoidal displacement

field. First, consider a simple shear in one direction, i.e.,

DxðxÞ ¼ ðay; 0; 0ÞT ð26Þ

for -L B y B L, where a is a constant. Consider only the x-

coordinate, which implies a reduction to a one-dimensional

problem. Substitution of Eq. (26) in Eq. (24) yields

F FDðsÞf g ¼
Z1

�1

1

2L

ZL

�L

dðs� axÞe2piksdx ds

¼ 1

2L

ZL

�L

e2pikaxdx ¼ sincð2kaLÞ:

ð27Þ

The inverse Fourier transform of a sinc-function is a rect-

function

sincðbkÞ �!F
�1 1

b
rectðs=bÞ ¼ 1=b for jsj\b=2;

0 elsewhere;

�
ð28Þ

so that the inverse Fourier transform of Eq. (27) yields

FDðsÞ ¼
1

2aL
rect

s

2aL

� 
: ð29Þ

Note that the total area of the rect-function is unity. This

implies that an increase of the shear also increases the

width of the distribution, but decreases the amplitude.

Hence, the local variations of the displacement reduce the

correlation peak amplitude and increase the width of the

correlation peak, in correspondence to what occurs in

Fig. 1 for increasing a. Consequently, the local variations

of the displacement field also reduce the peak detectability,

and enhance the displacement bias error.

Now, consider a sinusoidal displacement field, again in

one direction only, i.e.,

DxðxÞ ¼ sinðpy=LÞ; 0; 0ð ÞT ð30Þ

over the domain - L B x B L. The corresponding Fourier

transform of the displacement distribution is equal to a

zeroth order Bessel function of the first kind, i.e.,

F FðsÞf g ¼ 1

2L

ZL

�L

exp½2pik sinðpy=LÞ�dy

¼ 1

2p

Z2p

0

expð�2pik sin hÞdh ¼ J0ð2pkÞ:

ð31Þ

The corresponding inverse Fourier transform of Eq. (31) is

FDðsÞ ¼
1=p

cosðarcsin sÞ ¼
1=pffiffiffiffiffiffiffiffiffiffiffiffi
1� s2
p ð32Þ

(see also Fig. 3). In spite of the strong similarity between

the Fourier transform of FD(s) for the sinusoidal field with

that of the shear field (see Fig. 3, middle), the correspond-

ing displacement distributions are quite different: the

distribution for the sinusoidal field has two peaks. This

means that the displacement-correlation peak will have two

maxima (provided that the local variations of the dis-

placement field are larger than the equivalent width of the

particle images; see discussion below). This is an example

of the so-called peak splitting, which occurs often in regions

with very strong local fluctuations of the displacement. This

means that for a finite number of particle images the

interrogation analysis will only detect one of the two peaks;

in this case the measured displacement can not be consid-

ered as a local mean value of the displacement field.

4 The displacement-correlation peak for non-uniform

displacements

The analysis in the preceding section did not include the

effects due to the finite window size and the finite

dimensions of the particle images. Our point of departure is

the exact expression in Eq. (8). For ideal tracer particles

the two-point correlation of the tracer-pattern fluctuations

for a non-uniform displacement field is given by, cf. Eq. (9)

g01ðx0Þg02ðx00Þju
� �

¼ Cd x00 � x0 � Dxðx0Þ½ �: ð33Þ

Exp Fluids (2008) 44:831–842 835
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In the case of a uniform displacement field,

hg01(x0)g02(x00)|ui is a function of s = x00 - x0 only, which

leads to a rather simple expression that was derived in

Sect. 2. However, for a non-unform displacement field

Eq. (33) is a function of x0, which makes it difficult to carry

out a straightforward evaluation of Eq. (8). The expression

in Eq. (8) can be solved numerically, but this is a rather

cumbersome procedure for a generalized analysis of spatial

gradients. Instead, it is possible to reduce Eq. (8) to that of

a much simpler approximate equation, by making some

general assumptions. This procedure is described in this

section.

4.1 Approximate expression

To simplify the expression in Eq. (8), it is assumed that the

displacement field is uniform, except in the direction of the

x-coordinate, i.e.,

DxðxÞ ¼ ðDxðxÞ;Dy;DzÞT : ð34Þ

It is assumed that the displacement field is a function of x

and y only, so that the double integral over z0 and z00 can be

replaced byZZ
I01ðz0ÞI02ðz00Þdðz00 � z0 � DzÞdz0 dz00 ¼ Iz1Iz2Dz0FOðDzÞ

ð35Þ

In order to preserve the skewing effect of the in-plane loss-

of-pairs on the displacement-correlation peak, a term

containing FI(s) is split from the integrand:

Z
W1ðXÞW2ðX þ sÞ � � � dX ) FIðsÞD2

I

�
Z

W1ðXÞW2ðX þ sÞ
FIðsÞD2

I

� � � dX:

ð36Þ

In addition, the particle-image self-correlation is accounted

for by a convolution of the integrand with Fs(s)ZZZ
s0ðX � X0Þs0ðX þ s� X00Þ � � � dX dX0 dX00

) s2
00

Z
Fsðs� s0Þ

ZZZ
dðX � X0ÞdðX þ s0 � X00Þ

�
� � �

� � � dX dX0 dX00
�

ds0: ð37Þ

The substitution of Eqs. (35)–(37) in Eq. (8) yields

hRDðsÞjui ffi Iz1Iz2s
2
00NIFOðDzÞFIðsÞ

Z
Fsðs� s0Þ

�
ZZZ

W1ðXÞW2ðX þ s0Þ
FIðs0ÞD2

I

� dðX � X0ÞdðX þ s0 � X00Þ
� d X00 � X0 � DXðX0Þ½ �dX dX0 dX00 ds0

ð38Þ

with: DX = MDx. This expression is then further reduced

by the integration of the two d-functions that replace the s0-

functions, i.e.

hRDðsÞjui ¼ Iz1Iz2s
2
00NIFOðDzÞFIðsÞ

Z
Fsðs� s0Þ

�
Z

W1ðX0ÞW2ðX0 þ s0Þ
FIðs0ÞD2

I

d s0 �DXðX0Þ½ �dX0 ds0:

ð39Þ

Fig. 3 The displacement field

(left), and the corresponding

distribution Fourier transform

(middle) and displacement

distribution (right), for a simple

shear (top row) and sinusoidal

displacement field (bottom row)

836 Exp Fluids (2008) 44:831–842

123



Given that the variations of the displacement field are

small, i.e.,

s0 
 sD ¼ DXðX0Þ ð40Þ

with |a| = M|Du|Dt � DI, FI(s
0) is replaced by FI(sD), so

that FI(sD)DI
2 represents the normalization constant for the

displacement distribution function. Hence, the

approximation for Eq. (8) reads

hRDðsÞjui ffi Iz1Iz2s
2
00NIFOðDzÞFIðsÞ

�
Z

Fsðs� s0ÞFDðs0Þds0;
ð41Þ

with

FDðs0Þ ¼
1

FIðsDÞD2
I

Z
W1ðX0ÞW2ðX0 þ s0Þ

� d s0 � DXðX0Þ½ �dX0:

ð42Þ

Note that the integral in Eq. (41) represents a convolution

of Fs(s) and FD(s); this justifies the expression given in

Eq. (22).

Evidently, the result in Eqs. (41–42) needs to be vali-

dated against the numerical solutions of the exact

expression in Eq. (8). This is done in the next section.

4.2 Simple flows

In this section the effect of spatial gradients in the dis-

placement field on the location, height and shape of the

displacement-correlation peak is investigated for the case

of simple, one-dimensional displacement fields, such as

simple shear and uniaxial strain. To reduce the complexity

of the analysis, only uniform interrogation windows are

considered. Analytical expressions for the peak centroid

and the peak width are found by means of the approximate

expression Eq. (41) that was derived in the preceding

section. These are compared against numerical solutions of

the exact expression Eq. (8).

4.2.1 Simple shear

Consider a uniform displacement DX0 plus a simple shear

motion

DXðYÞ ¼ DX0 þ
a

DI

� ðY � Y0Þ: ð43Þ

The displacement field is a function of Y only, so that

FD(s), defined in Eq. (42), is given by

(a) (b)

(d)(c)

Fig. 4 The displacement-

correlation peak for the case of

simple shear for different values

of the gradient parameter a
(=MDuDt) relative to the

particle-image diameter ds, with

a mean displacement of

DX0 = 0.25DI and a particle-

image diameter ds = 0.05DI.

The curve represents the

displacement-correlation peak

for a uniform displacement that

is equal to the mean

displacement of the shear

motion
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FDðs; tÞ ¼ dðtÞ � 1

DI

Z

W

d s�MDxðYÞ½ �dY; ð44Þ

with s = (s,t)T. This integral was solved in Sect. 3 for a

uniform simple shear and a uniform interrogation window.

Hence, the corresponding displacement distribution FD(s,t)

is uniform in s:

FDðs; tÞ ¼ dðtÞ � 1

jaj �
1 jsj � 1

2
jaj;

0 elsewhere:

�
ð45Þ

The substitution of Eq. (45) in Eq. (41) yields the

displacement-correlation peak that is shown in Fig. 4 for

different values of the gradient parameter a. In the

Gaussian approximation for Fs(s) and FD(s), the width dD

of Fs *FD (s) is given by

dD ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d2

s þ
4

3
ðMjDujDtÞ2

r
: ð46Þ

Hence, the local shear motion increases the width of the

displacement-correlation peak. This increases the

displacement bias error of the peak centroid in

comparison to the uniform displacement result Eq. (21)

lD � sD

DI

¼ � 1

FIðsDÞ
d2

s

8D2
I

� 1

FIðsDÞ
ðMjDujDtÞ2

12D2
I

: ð47Þ

In Fig. 5 the displacement bias error is plotted as a function

of the gradient parameter for different particle-image

diameters. The solid lines represent Eq. (47), whereas the

symbols are numerical solutions of the exact equation in

Eq. (8). Note that the increase of the bias magnitude due to

the shear is equal for all values of ds. This is reflected in

Fig. 6, in which the width of the displacement-correlation

peak relative to its width for uniform displacements (i.e.,ffiffiffi
2
p

ds) is plotted as a function of the gradient relative to the

particle-image diameter. The solid line represents Eq. (46),

whereas the symbols represent numerical solutions of

Eq. (8). This graph indicates that PIV images with large ds

are less sensitive to variations in the displacement than those

images with small ds. So, according to Eq. (18) the dis-

placement bias error is determined by the width dD of the

displacement-correlation peak, given by Eq. (47). This is

shown in Fig. 7, in which the displacement bias error is

plotted as a function of dD.

4.2.2 Uniaxial strain

Consider the displacement field for uniaxial strain

DXðXÞ ¼ DX0 þ
a

DI

� ðX � X0Þ; ð48Þ

M u t / DI

0.00 0.02 0.04 0.06 0.08 0.10

/D
I

-0.004

-0.003

-0.002

-0.001

0.000 d / DI =

0.05

0.07

0.09

0.12

Fig. 5 The displacement bias e (=lD - sD) relative to DI as a

function of the local variation of the displacement MDuDt for a

uniform simple shear plus a uniform translation of DX0 = 0.25DI, for

different values of ds/DI

M u t / d

0.0 0.5 1.0 1.5 2.0

d D
/d

2

0.8

1.0

1.2

1.4

1.6

1.8

2.0

d / DI =

0.05

0.07

0.09

0.12

Fig. 6 The width dD of hRD|ui relative to the particle-image diameter

ds as a function of the local variation of the displacement MDuDt
relative to ds

dD / DI

0.00 0.05 0.10 0.15 0.20 0.25

/D
I

-0.004

-0.003

-0.002

-0.001

0.000

Fig. 7 The displacement bias e relative to DI as a function of the

width dD of hRD|ui relative to DI. The symbols correspond to the data

in Fig. 6, and the solid line represents Eq. (47)
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with 1
2
jaj �DX0; so that DX C 0 for all positions inside the

interrogation window. Substitution of Eq. (48) in Eq. (42)

yields

FDðs; tÞ ¼ dðtÞ � 1

FIðsD; 0ÞDI

�
Z

W1ðXÞW2ðX þ sÞ

d s� DXðXÞ½ �dX

ð49Þ

(Note that W1 and W2 now represent one-dimensional

functions.) The integrand only makes a contribution to the

total integral when s = DX(X) on the interval where

W1(X)W2(X + s) = 0. This implies that the finite dimen-

sions of the interrogation windows limit the range of

displacements that can be measured.

As for the case of a simple shear, the displacement

distribution of the tracer particles within W1 is uniform

with a mean displacement DX0 and a width M|Du|Dt.

However, for Dx [ 0 the integral in Eq. (49) is non-zero

only for

DXðXI �
1

2
DIÞ\s\DXðXI þ

1

2
DI � sÞ: ð50Þ

Substitution of Eq. (48) yields that FD(s) = 0 for

js� sDj\ 1
2

dD; with (see also Fig. 8)

dD ¼
jaj=DI

1þ a=DI

1� DX0

DI

þ 1

2

a

DI

	 

DI ð51Þ

and:

sD ¼ DX0 �
1

2

a

DI

1� dD

jaj

	 

DI: ð52Þ

Hence, for the case of a positive uniaxial strain (a = MDu

Dt [ 0), i.e., a spatially accelerating fluid, Eq. (49) implies

that the local displacement-distribution is truncated at the

side of the largest displacements. Consequently, the mean

of the observed local displacement-distribution is then

biased toward a smaller displacement in comparison with

the actual mean of the local displacement distribution. On

the other hand, for a negative uniaxial strain (a = MDu

Dt \ 0), i.e., a spatially decelerating fluid, the distribution

is truncated at the side of smallest displacements, so that

the mean measured displacement is larger than the local

mean displacement. This bias adds to the displacement bias

error that is the result of the skew of the displacement-

correlation peak due to FI (Fig. 9).

So, for an accelerating fluid (a [ 0) the measured dis-

placement is smaller than the true local mean displacement,

whereas for a decelerating fluid (a \ 0) the measured

displacement is larger. It is as if the tracer particles have

some inertia, even if the tracer particles themselves are

ideal.

The effect of the uniaxial strain on the centroid of the

displacement-correlation peak is found by the substitution

of FD(s) in Eq. (22). In Fig. 10 are shown the displace-

ment-correlation peaks for uniaxial strain with different

values of a. Note that the displacement-correlation peak for

uniaxial strain has a larger bias than for simple shear (for

the same value of a), which is the result of the truncation of

the displacement distribution for large displacements.

To estimate the displacement bias error, it is assumed

that the width dD of the displacement-correlation peak for a

uniaxial normal stress is given by (Gaussian

approximation):

dD ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d2

s þ
1

12

a=DI

1þ a=DI

1� DX0

DI

þ 1

2

a

DI

� �	 
2
s

: ð53Þ

In Fig. 12 the approximate result in Eq. (53) is compared

against the numerical solutions of the equation in Eq. (22).

The total displacement bias error is now given by the

displacement bias error for the truncated displacement

distribution plus the bias error due to the increase of the

width of the displacement-correlation peak, i.e.:

(a) (b)

Fig. 8 The displacement distribution for uniaxial strain. For positive

strain (a) the distribution is truncated at the largest displacements,

whereas for negative strain (b) the distribution is truncated at the

smallest displacements

X0 / DI

0.0 0.1 0.2 0.3 0.4 0.5

(s
--

X
0)

/D
I

-0.02

-0.01

0.00

0.01

0.02
M

u t = --0.10DI

M u t = --0.05DI

M u t = 0.05DI

M u t = 0.10D
I

Fig. 9 The first moment of the displacement distribution for a

uniaxial strain as a function of the local mean displacement DX0, for

different values of the gradient parameter a = MDuDt
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sD � DX0

DI

¼ � 1

FIðsDÞ
d2

D

16D2
I

� 1

2

a=DI

1þ a=DI

DX0

DI

þ 1

2

a

DI

	 

:

ð54Þ

The total displacement bias error for uniaxial strain is

plotted in Fig. 11. It is noted that the use of offset inter-

rogation windows, which implies DX0 = 0, only

compensates for part of the bias and increase in peak width

(Fig. 12).

5 Discussion and conclusion

The previous sections describe the effect of local gradients

at the scale of the interrogation domain on the shape of the

displacement-correlation peak. This is a generalization of

the existing theoretical expression for the displacement-

correlation peak. An approximate expression is derived,

(a) (b) (c)

(f)(e)(d)

Fig. 10 As Fig. 4, but now for uniaxial strain, i.e., spatially accelerating (a [ 0) or decelerating (a \ 0) fluid. The dashed curves correspond to

the displacement-correlation peaks for a simple shear in Fig. 4

dD / DI

0.05 0.10 0.15 0.20

/D
I

-0.02

-0.01

0.00

0.01

M u t / d =

-2

-1

0

1

2

Fig. 11 The displacement bias error for uniaxial strain as a function

of the correlation peak width dD, for different values of M Du Dt. The

mean displacement DX0 is 0.25DI. The solid lines correspond to

Eq. (54); the symbols are obtained from numerical solutions of

Eq. (8)

M u t / d

0.0 0.5 1.0 1.5 2.0

d D
/d

2

0.8

1.0

1.2

1.4

1.6

1.8

2.0

d / DI =

0.05

0.07

0.09

0.12

Fig. 12 As Fig. 6, but now for a uniaxial strain (with DX0 = 0.25DI).

The solid curve represents Eq. (54); the dashed curve corresponds to

the solid curve in Fig. 6
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which accurately predicts the bias error and peak width for

simple flows. It is confirmed that the broadening and

splitting of the displacement-correlation peak due to local

variations of the displacement does not occur as long as the

variation a of the displacements over the interrogation

volume does not exceed the particle image diameter ds, as

stated in Eq. (1).

The procedure to determine the displacement-correla-

tion peak for non-uniform displacement fields would be as

follows:

1. determine the local distribution function FD(s) of the

displacement field;

2. convolve FD(s) with the particle-image self-correlation

Fs(s);

3. multiply the result with the in-plane loss-of-pairs FI(s)

and out-of-plane loss-of-pairs FO(Dz).

In most situations with small values of a the local

displacement field is well approximated by a uniform

displacement plus a shear and/or uniaxial strain. Specific

results for these fluid motions are obtained in Sects. 4.2.1

and 4.2.2.

The principal effect of sub-interrogation gradients is a

reduction of the peak amplitude, a bias error in the esti-

mated displacement, and a proportional broadening of the

correlation peak, where the total volume of the correlation

peak is conserved. The analysis predicts the bias error and

correlation peak width, which can be related to peak

detectability (peak height) and random error (peak width).

For a simple shear the width dD of the correlation peak is

given by Eq. (46). The conservation of total volume then

implies that the correlation peak amplitude is given by

RDðsDÞ�NIFIFOFD with; FD ffi exp �2

3
a2=d2

s

� �
: ð55Þ

This expression predicts mean peak amplitudes of: 1.00,

0.85, 0.51 and 0.22, for: a/ds = 0.0, 0.5, 1.0 and 1.5,

respectively; these values correspond well with the

(instantaneous) peak amplitudes shown in Fig. 1 (see also

Hain and Kähler 2007). The one-quarter rules for the in-

plane and out-of-plane displacement imply a maximum

loss-of-correlation that reduces the correlation peak height

to 75% of the maximum amplitude. A similar drop in

amplitude corresponds to |a|/ ds \ 0.66, i.e., a two-third

rule for the displacement variation.

The random error rDX is proportional to the width dD of

the displacement-correlation peak, and for a simple shear it

is approximately given by6

rDX ffi c dD=
ffiffiffi
2
p
ffi c ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

3
a2=d2

s

r
; ð56Þ

with c = 0.05-7 (Westerweel 2000b).

In the case of a uniaxial strain, i.e., a spatially acceler-

ating or decelerating fluid, the centroid of the

displacement-correlation peak yields an additional bias that

can be interpreted as an artificial ‘inertia’ of the particles.

This even occurs when the particles can be considered as

ideal tracers, and is the result of the finite dimensions of the

interrogation domain.

Also, the analysis shows that a simple sinusoidal fluid

motion with a wavelength equal or less than the dimension

of the interrogation domain leads to the appearance of two

correlation peaks (see Fig. 3) when the displacement

amplitude becomes larger than ds. This is an example of

the so-called peak splitting. In a practical situation, i.e.,

with a finite number of particle images, it is likely that the

interrogation analysis just finds only one of the two peaks

(ignoring the other peak as a possible random-correlation

peak). Then the measured displacement would correspond

to the local minimum or maximum displacement.7 This

means that the measured displacement for the case of a

sinusoidal displacement field is not proportional to the

locally averaged displacement; this invalidates the com-

monly accepted assumption that the measured

displacement is equal to the locally averaged displacement

(Willert and Gharib 1991; Olsen and Adrian 2001; Hart

2000; Nogueira et al. 1999).

An application where the local gradients can become

dominant is micro-PIV, in particular for measurements

where the interrogation domain extends over a substantial

part along the observation direction. For pressure-driven

Stokes flow in a channel geometry the velocity profile

along the optical axis has a parabolic shape. This shape is

approximated by the sinusoidal distribution in Fig. 3 for:

0 B x B 1; hence, FD(s) is approximately given by

Eq. (32) for s C 0. This particular shape of the displace-

ment-correlation peak is reported by Wereley and Whitacre

(2006). In this particular situation the PIV measurement

yields the maximum velocity in the measurement domain,

rather than the mean displacement.

In order to absorb larger local variations of the dis-

placement, one could increase the particle-image diameter

ds. In the case of diffraction-limited particle images, ds

&ds, with ds = 2.44(M + 1)f#k, where f# is the aperture

number of the lens and k the light wavelength. So, ds can

be increased by increasing f#, i.e., by reducing the lens

aperture. Unfortunately, this also reduces the collected

amount of light scattered by the tracer particles, and—in

6 Provided that the particle image diameter is at least two pixel units

in a digital PIV image.

7 As the result of the bias toward s = 0, it is more likely that the peak

closest to the origin of the correlation domain is detected.
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the case of micro-PIV—implies an unfavorable increase of

the correlation depth (Olsen and Adrian 2000b). An

increase of ds also implies a proportional increase of the

random error, given in Eq. (56), and a general deterioration

of the overall performance of the PIV system (Adrian

1997). One could possibly determine an optimum between

increasing ds to improve peak detectability, while accept-

ing a (small) increase in the random error. The expressions

given in this paper can be used as a guideline.
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