
9 June 2011

On velocity space interrogation regions of fast-ion

collective Thomson scattering at ITER

M Salewski1, S K Nielsen1, H Bindslev1, V Furtula1,

N N Gorelenkov2, S B Korsholm1, F Leipold1, F Meo1,

P K Michelsen1, D Moseev1, M Stejner1

1 Association Euratom - Risø National Laboratory for Sustainable Energy, Technical

University of Denmark, DK-4000 Roskilde, Denmark
2 Princeton Plasma Physics Laboratory, Princeton, NJ 08543-045, USA

E-mail: msal@risoe.dtu.dk

Abstract. The collective Thomson scattering (CTS) diagnostic proposed for ITER

is designed to measure projected 1D fast-ion velocity distribution functions at several

spatial locations simultaneously. The frequency shift of scattered radiation and the

scattering geometry place fast ions that caused the collective scattering in well-defined

regions in velocity space, here dubbed interrogation regions. Since the CTS instrument

measures entire spectra of scattered radiation, many different interrogation regions

are probed simultaneously. We here give analytic expressions for weight functions

describing the interrogation regions, and we show typical interrogation regions of the

proposed ITER CTS system. The backscattering system with receivers on the low field

side is sensitive to fast ions with pitch |p| = |v‖/v| < 0.5 − 0.9 depending on the ion

energy and the frequency shift of the scattered radiation. A forward scattering system

with receivers on the high field side would be sensitive to co- and counter-passing fast

ions in narrow interrogation regions with pitch |p| > 0.6 − 0.8. Additionally, we use

weight functions to reconstruct 2D fast-ion distribution functions, given two projected

1D velocity distribution functions from simulated simultaneous measurements with the

back- and forward scattering systems.

PACS numbers: 52.25.Os, 52.40.Db, 52.50.Gj, 52.65.Cc, 52.70.Gw
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1. Introduction

In burning plasmas in ITER, fast ions from fusion reactions, from neutral beam injection

(NBI) and from ion cyclotron resonance heating (ICRH) will provide more than 2/3 of

the total heating by transferring most of their energy to the bulk plasma. However, many

aspects of fast-ion behaviour, which still pose challenges to theory, may lead to enhanced

energy and fast-ion losses. For example, fast ions can develop energetic particle modes

[1, 2] and can interact with Alfvén eigenmodes [3–7], with sawteeth instabilities [8–11],

with kinetic ballooning modes [4,12,13], with neoclassical tearing modes [4,14] or with

turbulent fluctuations [15–17]. The extrapolation of such phenomena to ITER plasmas

is even more uncertain, and measurements of fast-ion velocity distributions in ITER are

therefore essential [18, 19]. Millimetre-wave collective Thomson scattering (CTS) has

been demonstrated to provide such measurements at JET [20], TEXTOR [10,11,21–23]

and ASDEX Upgrade [24–26].

The proposed ITER CTS system comprises a forward scattering system with

receivers on the high field side and a backscattering system with receivers on the low field

side [27–32]. Each system is designed to measure fast-ion velocity distributions in 7−10

measurement volumes distributed along the minor radius a on both the high field side

and the low field side simultaneously, satisfying the ITER measurement requirements

on resolution for fusion alpha diagnostic (time: 100 ms, space: a/10) [33]. The CTS

backscattering system is an enabled ITER diagnostic, and its in-port components are

part of the updated ITER baseline design [34]. The forward scattering system [29,32],

however, is not enabled. CTS measurements are sensitive to the fast-ion velocity

distribution function projected onto the wave vector kδ = ks −ki where s and i refer to

scattered and incident radiation, respectively. A frequency shift νδ of scattered radiation

can be related to an ion velocity vp projected onto kδ: νδ = νs − νi ≈ vp · kδ/2π. The

detected frequency shift and the projection angle between kδ and the magnetic field B,

φ = 6 (kδ,B), place the ions that caused the collective scattering in a well-defined region

in velocity space, here dubbed interrogation region. Typical interrogation regions of the

back- and forward scattering ITER CTS systems are presented using weight functions

such as those used for fast-ion Dα (FIDA) diagnostic [35–38]. Weight functions are

a convenient and illustrative way to relate the fast-ion distribution function and the

geometry of the experiment to the measured CTS signal.

To develop analytic expressions for CTS weight functions in Sec. 4, we define

relevant coordinate systems in Sec. 2 and illustrate the projection of velocity distribution

functions onto kδ in Sec. 3. The analytic expressions derived here should also be useful

for FIDA because CTS weight functions are identical with the geometric (Doppler shift)

part of FIDA weight functions [38]. In Sec. 5 we show, using weight functions, that

the ITER CTS backscattering system is sensitive to dynamics of fast ions with pitch

|p| = |v‖/v| < 0.5 − 0.9, depending on the ion energy and the frequency shift of the

scattered radiation. Here v‖ is the velocity component parallel to B and v is the velocity

magnitude. The proposed forward scattering system would reveal dynamics of co- and
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counter-passing fast ions in narrow interrogation regions with pitch |p| > 0.6 − 0.8 as

opposed to the backscattering system where the interrogation regions cover broad ranges

of pitch angle and energy. CTS signals at ITER are dominated by alpha particles [30,31].

For a central alpha distribution function computed with TRANSP [39], most of the CTS

signal at various frequency shifts originates from the low energy end of the interrogation

regions which are thus effectively probed (Sec. 5). Simultaneous measurements with

both systems would even make it possible to study anisotropy in the fast-ion velocity

distribution and to reconstruct 2D velocity distributions (Sec. 6). We conclude in Sec. 7.
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Figure 1. An ITER NBI ion distribution function at the minor radius coordinate

r/a = 0.25 in the midplane on the high field side computed with TRANSP shown

in four coordinate systems. (a) Slice through the 3D, rotation invariant velocity

distribution function f3D(v‖, v⊥1, v⊥2). The projection directions are indicated by

the vector kδ and thin straight lines for φ = 100◦ (black) and φ = 10◦ (blue). Positive

u-coordinates are on the branches containing the arrows and negative u-coordinates

lie on the mirror-reflected branches. (b) 2D velocity distribution function f2D
v (v‖, v⊥).

(c) 2D velocity distribution function f2D
Ep (E, p). (d) 1D projected velocity distribution

functions g(u) corresponding to the projection directions indicated in (a).

2. Coordinate systems

In CTS experiments 1D projections g(u) of full 3D fast-ion velocity distribution functions

f 3D(v‖, v⊥1, v⊥2) along kδ are estimated by measuring the spectral power density of

scattered radiation. The Cartesian velocity component v‖ is parallel to B and v⊥1 and

v⊥2 are perpendicular to B, and u is the 1D velocity component in the direction of kδ.
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The projection is given by

g(u) =
∫

f 3D(v)δ

(

v · kδ

kδ
− u

)

dv, (1)

where v is the velocity and δ() is the Dirac delta function. The u-coordinate determines

the frequency shift of scattered radiation in CTS experiments:

νδ ≈ ukδ/2π. (2)

Figure 1 shows an NBI ion distribution function in four different representations. The

distribution function has been computed with TRANSP simulating an ITER plasma

during the injection. Figure 1(a) is a 2D slice through the 3D distribution function

f 3D(v‖, v⊥1, v⊥2). As we assume f 3D to be rotationally symmetric about B, we are

free to choose v⊥1 to lie in the plane spanned by kδ and B. For the same reason we

can choose |v⊥1| as coordinate axis since the half plane with negative v⊥1 is a mirror

reflection of that with positve v⊥1. Two typical projection directions for a forward- and

a backscattering ITER CTS system are indicated by vector arrows and two branches

of thin straight lines for each projection angle in Fig. 1(a). The corresponding 1D

distribution functions g are shown in Fig. 1(d). As the relation between f 3D and g is

by no means obvious, we will elaborate on the mapping from (v‖, v⊥1, v⊥2)-coordinates

of f 3D onto the u-coordinate of g in the following section.

As we assume the fast-ion distribution function to be rotationally invariant about B,

it is sufficient and convenient to work with the fast-ion distribution functions f 2D
v (v‖, v⊥)

and f 2D
Ep (E, p) shown in Fig. 1(b) and (c). The perpendicular velocity components v⊥1

and v⊥2 are related to v⊥ through the gyroangle γ by v⊥1 = v⊥ cos γ and v⊥2 = v⊥ sin γ,

so v2

⊥ = v2

⊥1
+ v2

⊥2
. The energy is E = 1

2
mv2, and the pitch is p =

v‖
v

with v2 = v2

‖ + v2

⊥.

The (E, p)- and (v‖, v⊥)-coordinate systems are truly 2D with no implied third direction.

We derive weight functions describing the interrogation regions in these coordinate

systems (Sec. 5). The representations of the fast-ion distribution function in Figs. 1(a)-

(c) are equivalent. One can obtain the velocity distribution function f 2D
v from f 3D by

transforming to cylindrical coordinates and integrating over the by assumption ignorable

gyroangle γ, f 2D
v = 2πv⊥f 3D, and the velocity distribution function f 2D

Ep is related to

f 2D
v through a 2D coordinate transformation. The respective Jacobians are included in

the definitions f 2D
v and f 2D

Ep , so that the ion particle density is respectively given by

n =
∫

f 3D(v‖, v⊥1, v⊥2)dv⊥1dv⊥2dv‖ =
∫

f 2D
v (v‖, v⊥)dv⊥dv‖ (3)

=
∫

f 2D
Ep (E, p)dEdp =

∫

g(u)du.

3. Mapping from (v‖, v⊥1, v⊥2)-coordinates and (v‖, v⊥)-coordinates onto

u-coordinates

We illustrate the projection trace of a gyrating ion in (v‖, v⊥1, v⊥2)-space onto u-space

along kδ in Fig. 2. The gyroorbit about the v‖-axis can be parametrized by (vp
‖, v

p
⊥, γp)
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(a) (b)

Figure 2. Illustration of the mapping from (v‖, v⊥1, v⊥2)-space onto u-space along

kδ (blue). (a) (v‖, v⊥1)-plane: The point (vp

‖ , vp
⊥ cos γp) (large red dot), which is

always on the dotted line between the extremal points (vp

‖ , vp
⊥) and (vp

‖ ,−vp
⊥) (small

orange dots), is projected onto the u-coordinate at angle φ to the v‖-axis. The

dashed lines are perpendicular to the u-axis. As cos γp ∈ [−1, 1], up ∈ [vp

‖ cosφ −
vp
⊥ sin φ, vp

‖ cosφ + vp
⊥ sin φ]. (b) (v⊥1, v⊥2)-plane: Projection of a point (vp

⊥1
, vp

⊥2
)

(large red dot) representing an ion on a gyroorbit into the (v‖, v⊥1)-plane. The v⊥1-

coordinate is vp
⊥ cos γp. The u-axis along k

δ (blue) lies in the (v‖, v⊥1)-plane and so is

usually not identical to the v⊥1-axis.

where vp
‖ and vp

⊥ are constant and γp ∈ [0, 360◦] with respect to the v⊥1-axis. The

gyroorbit then intersects the (v‖, v⊥1)-plane at (vp
‖ , v

p
⊥) for γp = 0◦ and at its mirror

image (vp
‖,−vp

⊥) for γp = 180◦. For arbitrary gyroangles the projection into the (v‖, v⊥1)-

plane is (vp
‖, v

p
⊥ cos γp). It is then a matter of plane geometry to find the projected

velocity up as a function of the gyroangle γp (see Fig. 2):

up = vp
‖ cos φ + vp

⊥ sin φ cos γp. (4)

A single point in 2D velocity space with coordinates (vp
‖, v

p
⊥) thus maps onto an interval

of width 2vp
⊥ sin φ centered on vp

‖ cos φ in u-space as cos γp takes values from -1 to 1. If

the projection direction is perpendicular to the magnetic field (φ = 90◦), the interval

in u is at its widest, going from up = −vp
⊥ to up = +vp

⊥, and is symmetric about

u = 0. In the other extreme, if the projection direction is parallel to the magnetic field

(φ = 0◦), the width of the interval goes to zero. In this case the point in (v‖, v⊥)-space

will map onto a single point in u-space: up = vp
‖. These intervals in u determine in

which frequency channels an ion with given (vp
‖ , v

p
⊥) will elicit a response at given φ.

Figure 3(a) shows three Maxwellian bumps as simple test velocity distribution

functions in (v‖, v⊥1, v⊥2)-space representing distinct populations of fast ions: trapped

particles (T), passing particles (P) and particles near the trapped-passing-boundary

(TP). These populations should be taken as illustrations only. The bulk part of a typical

ITER plasma is modelled as isotropic deuterium Maxwellian distribution function with

an ion temperature T = 20 keV and an ion density n = 1020 m−3. Figures 3(b)-(d)
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illustrate the projections of these velocity distribution functions onto kδ. The projection

directions, represented by the vector arrows and thin straight lines as in Fig. 1(a), are

typical for the proposed ITER CTS system. The projections g of the test functions onto

these two projection directions are plotted in Figs. 3(b)-(d). For φ = 100◦ the intervals

are much broader than for φ = 10◦ as their widths are 2v⊥ sin φ. Since the integral of g

always gives the fast-ion particle density (Eq. (3)) and is therefore the same for any φ,

the curves are flatter for φ = 100◦ than those for φ = 10◦. For φ = 10◦ the curves are

more lopsided about u = 0 than those for φ = 100◦ because the centre of each interval

is v‖ cos φ.
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Figure 3. (a) Populations of trapped particles (T), passing particles (P), and particles

near the trapped-passing-boundary (TP) are shown in a 2D slice of a 3D coordinate

system. The concentric circles about the origin represent the bulk ion distribution.

The projection directions used for (b)-(d) are shown as vector arrows and thin straight

lines for φ = 10◦ (blue) and φ = 100◦ (red). These directions are typical for the

forward scattering and backscattering systems, respectively. The dashed lines enclose

triangular regions in which the much more numerous bulk ions hamper the detection

of fast ions for each φ. (b) Projections g for the bump of trapped particles (T). (c)

Projections g for the bump of passing particles (P). (d) Projections g for the bump of

particles near the trapped-passing-boundary (TP). The dashed lines in (b)-(d) are the

projections of the bulk plasma distribution function.

The projection of the isotropic Maxwellian bulk-ion distribution function is a

Maxwellian (dashed lines in Figs. 3(b) to (d)) described by the bulk-ion temperature

and particle density. As the bulk-ion particle density is much larger than that of fast

ions, the scattered radiation related to bulk ions will obscure that of fast ions for values
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of

|u| = |v‖ cos φ + v⊥ sin φ cos γ| < A × vth, (5)

where the factor A reflects a velocity level one chooses below which little fast ion

information can be extracted (usually A ∼ 2). The bulk ions thus create an obscure

region — a triangle in (v‖, v⊥)-space or a bicone in (v‖, v⊥1, v⊥2)-space — in which the

fast ions are very difficult to detect. The shape of such triangles depends on φ and is

given by the three sides

v⊥ =
A × vth ± v‖ cos φ

sin φ
, (6)

v⊥ = 0. (7)

Two such triangles are plotted for φ = 10◦ and for φ = 100◦ in Fig. 3(a) as dashed

lines enclosing shaded regions. The bump of trapped particles (T) can be well detected

with the backscattering system (φ ≈ 100◦), but the bulk ions hamper detection with the

forward scattering system (φ ≈ 10◦). Co- and counter-passing particles (P) with pitch

near ±1, on the other hand, are well detectable with the forward scattering system, but

the bulk ions hamper detection with the backscattering system. Particles assumed to

be near the trapped-passing-boundary (TP) in our illustration are well detectable with

either system.

4. Weight functions

In Sec. 3 we discussed the question: Given an ion in 2D velocity space, where is it in

u-space or in which frequency channels of the CTS receiver will it elicit a response? In

this section we ask the reciprocal question: Given a fast-ion phase space density at a

particular u — or a detected spectral power density in a particular frequency channel —

where could the ions that caused the collective scattering be in 2D velocity space? The

answer is expressed in terms of plasma independent weight functions which are positive

in the velocity space interrogation regions and zero in the velocity space regions where

the ion cannot be for given u and φ. Weight functions wv in (v‖, v⊥)-space are defined

such that

g(u, φ) =
∫ ∞

−∞

∫ ∞

0

wv(u, φ, v‖, v⊥)f 2D
v (v‖, v⊥)dv⊥dv‖ (8)

or correspondingly wEp in (E, p)-space

g(u, φ) =
∫

1

−1

∫ ∞

0

wEp(u, φ, E, p)f 2D
Ep (E, p)dEdp. (9)

The product of a plasma independent weight function and a fast-ion 2D distribution

function of a particular plasma (the integrand in Eq. 8 or Eq. 9) represents the relative

contributions of regions in 2D velocity space to g for given u and φ.

To find analytic expressions for weight functions in (v‖, v⊥)-space, we compare

Eq. 1 with Eq. 8. The (v‖, v⊥1, v⊥2)-coordinate system is chosen such that the v‖-axis
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is aligned with B and the v⊥1-axis lies in the plane spanned by kδ and B (Fig. 2). The

k⊥2 component of kδ is then zero and Eq. 1 becomes

g(u, φ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f 3D(v‖, v⊥1, v⊥2)δ

(

v · kδ

kδ
− u

)

dv‖dv⊥1dv⊥2

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f 3D(v‖, v⊥1, v⊥2)δ(v‖ cos φ + v⊥1 sin φ − u)dv‖dv⊥1dv⊥2

=
∫ ∞

−∞

∫ ∞

0

f 2D
v (v‖, v⊥)

1

2π

∫

2π

0

δ(v‖ cos φ + v⊥ sin φ cos γ − u)dγdv⊥dv‖.

The expression for the weight function is by comparison with Eq. 8

wa
v(u, φ, v‖, v⊥) =

1

2π

∫

2π

0

δ(v‖ cos φ + v⊥ sin φ cos γ − u)dγ. (10)

The superscript a denotes that wa
v is an analytic expression. The weight function is

positive at those locations in (v‖, v⊥)-space where a gyroangle γ exists that satisfies

Eq. 4 for the given u and φ. The argument of the Dirac delta function is then zero.

If no such gyroangle exists for given (u, φ, v‖, v⊥), the delta function argument is never

zero, and the weight function is then zero at (v‖, v⊥) for the given u and φ. If a delta

function argument has roots, the delta function can be rewritten using

δ(h(x)) =
∑

k

δ(x − xk)

|h′(xk)|
, (11)

where xk are the roots of h, and the prime denotes a derivative. If roots γk of the delta

function argument in Eq. 10 exist, they are given by

cos γk =
u − v‖ cos φ

v⊥ sin φ
, (12)

and so the weight function can be written

wa
v(u, φ, v‖, v⊥) =

1

2π

∫

2π

0

∑

k

δ(γ − γk)

v⊥ sin φ sin γk

dγ (13)

=
1

2πv⊥ sin φ

√

1 −
(

u−v‖ cos φ

v⊥ sinφ

)2

∑

k

∫

2π

0

δ(γ − γk)dγ. (14)

There are then always two roots in the interval [0, 2π] so that the weight function

becomes

wa
v(u, φ, v‖, v⊥) =

1

πv⊥ sin φ

√

1 −
(

u−v‖ cos φ

v⊥ sinφ

)2
. (15)

Equation 15 is valid in the velocity space regions where the delta function argument

in Eq. 10 has roots. These are the velocity space interrogation regions. Otherwise

wa
v(u, φ, v‖, v⊥) = 0, describing velocity space regions in which ions cannot be observed

at given u and φ.

An alternative way to arrive at this result is by noting the geometrical relationship

between u and γ illustrated in Fig. 2. Due to the assumed rotational invariance of f 3D,

every gyroangle of the ion is equally likely. We may consider the gyroangle γ a random

variable with the probability density function pγ(γ) = 1/(2π). In this picture u is also
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a random variable, and we get the probability density function of u, given φ, v‖ and v⊥,

by the transformation

pu(u|φ, v‖, v⊥) = pγ(γ)

∣

∣

∣

∣

dγ

du

∣

∣

∣

∣

, (16)

where the derivative is found from Eq. 4. The right hand side turns out identical to that

of Eq. 15. The weight function is thus the probability density function of the random

variable u, given φ, v‖ and v⊥.

The weight function wa
v(u, φ, v‖, v⊥) is singular near its limits in u for which the

values are positive. However, the integral
∫

wa
v(u, φ, v‖, v⊥)du can easily be shown to be

finite. It is unity as for every probability density function. We will exploit this fact to

construct approximate weight functions wb
v by binning. The weight functions and their

finite integrals explain the double-peak structure of the curves in Fig. 3.

It is useful to find these expressions in (E, p)-coordinates. Equation 4 expressed in

(E, p) is

u =
(

p cos φ +
√

1 − p2 sin φ cos γ
)

√

2E/m, (17)

and Eq. 15 expressed in (E, p) is

wa
Ep(u, φ, E, p) =

1

π
√

2E/m(1 − p2) sin φ

√

1 −
(

u/
√

2E/m−p cos φ√
1−p2 sin φ

)2
. (18)

This result is consistent with the proportionality relation in the appendix of [36]. Here

we give a complete analytic expression.

Figure 4 shows weight functions for several projection angles φ and a given velocity

u = 6 × 106 m/s as examples. The upper row shows weight functions in (v‖, v⊥)-

coordinates, and the lower row corresponding weight functions in (E, p)-coordinates.

The weight functions have positive values in the coloured regions which we call

interrogation regions. Ions within these regions are observable for the given u and

φ. On the other hand, ions in white regions, where the weight functions are zero, are

unobservable. Explicit expressions for the limiting lines separating the velocity space

interrogation regions from the unobservable regions in (v‖, v⊥)-space are found by solving

Eq. 4 for v⊥.

v⊥ =
u − v‖ cos φ

sin φ cos γ
. (19)

For each gyroangle γ, there is a line of constant slope in (v‖, v⊥)-space along which ions

with that γ project onto a given u for a given φ. Such lines are shown in Fig. 5. Two

limiting lines with γ = 0◦ or γ = 180◦ are

v⊥ = ±u − v‖ cos φ

sin φ
. (20)

These two lines intersect the v‖-axis at v‖ = u/ cos φ and have the slopes ±v‖/ tanφ.

Their closest distance to the origin is u. Points below these lines cannot map onto u.

The weight functions are largest just above these lines at which the gyroangle is γ = 0◦

or γ = 180◦. These large values near the limits are expected [40].
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Figure 4. Weight functions in (v‖, v⊥)-coordinates ((a)-(d)) for u = 6 × 106 m/s and

various projection angles φ. The corresponding weight functions in (E, p)-coordinates

are shown in (e)-(f). The angles φ = 10◦ and φ = 100◦ are typical for the forward-

and backscattering ITER CTS systems, respectively, while the angles 45◦ and 80◦ are

shown for illustrative purpose. The coloured regions are interrogation regions while

the white regions are unobservable for the given φ and u.
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(b) φ = 100◦

Figure 5. Contours of the gyroangle within the interrogation regions shown in

Fig. 4(a) and (d), respectively. The colours show the necessary gyroangle γ ∈ [0◦, 180◦]

to map onto u = 6 × 106 m/s for the given φ in (v‖, v⊥)-space. For γ ∈ [180◦, 360◦]

similar maps can be found as cos(360◦ − γ) = cos γ.

Weight functions wv for any φ (except for φ = 0◦, 90◦, 180◦, 270◦) and u are

qualitatively similar: they are triangles in (v‖, v⊥)-space (Figs. 4(a)-(d)). If the v‖-

intercept u/ cosφ of the triangle is larger than any ion velocity (if φ ∼ 90◦), then only

one of the limiting lines is relevant to the experiment such as for the proposed ITER CTS

fast-ion system for φ ≈ 100◦ (Fig. 4(d)). The interrogation region then covers a fairly

large region of the velocity distribution function in velocity space. To the contrary, the

weight function picks out a narrow triangle in velocity space for the forward scattering

system with φ ≈ 10◦ (Fig. 4(a)). The projection angles φ = 45◦ and φ = 80◦ are shown

for illustrative purpose (Figs. 4(b)-(c)). For φ = 45◦ the triangle is wider than for

φ = 10◦ and intercepts the v‖-axis at larger values. For φ = 80◦ the triangle is yet wider

and the v‖-intercept yet larger, and the triangle is a mirror image of that for φ = 100◦.

The seemingly different shapes of the four corresponding weight functions wEp in (E, p)

coordinates can likewise be explained (Figs. 4(e)-(h)).
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The analytic weight functions are singular on the limiting lines given by Eq. 20 and

so are inconvenient for numerical work. However, Eq. 15 can be integrated over u, and

the integral can be shown to be unity. This is also expected since the weight function

is a probability density function. We can therefore find corresponding binning weight

functions wb
v(u, φ, v‖, v⊥) and wb

Ep(u, φ, E, p) by binning u into intervals for γ = [0, 2π]

using Eq. 4. To do this we find contributions of Maxwellian bumps distributed in

(v‖, v⊥)-space to a given g(u) at the projected velocity u. Three such bumps were

illustrated in Fig. 3. The weight functions are then normalized to satisfy Eq. 8. If

the characteristic width of the Maxwellians and the bin width go to zero, the analytic

weight functions are recovered with very large values near the limiting lines. We use a

characteristic width corresponding approximately to the typical resolution of numerical

simulations.

5. Velocity space interrogation regions of the proposed forward- and

backscattering ITER CTS systems

Figure 6 shows example interrogation regions of a single CTS spectrum for a central

measurement volume of the proposed backscattering system in a standard ITER burning

plasma. The colours show the integrand of Eq. 9 (the relative contributions to g) for

φ = 100◦ for eight example u values. The central alpha distribution function has been

computed with TRANSP. The integrands in the interrogation region tend to be larger

towards the small energy values because the alpha distribution function tends to be

larger there. We have not converged the statistics of the alpha distribution function to

be completely smooth to show the effect of small-scale features in the alpha velocity

distribution. The CTS signal will then come mostly from those regions within the

interrogation regions where the alphas are most numerous and the weight functions are

largest. The regions without colours are unobservable with the CTS diagnostic at the

given u and φ. The positive and negative velocities u interrogate similar regions for

the backscattering system, and the 1D projections g will then be nearly symmetric.

Figure 7 shows corresponding plots for the proposed forward scattering system. Co-

passing ions with positive pitch at several energies can be measured for positive u and

counter-passing ions with negative pitch for negative u. The interrogation regions of the

forward scattering system cover a narrower region in (E, p)-space compared with those

of the backscattering system.

While the weight functions are plasma independent, the integrand of Eq. 9 is also

proportional to the particular fast-ion distribution function. A comparison of Fig. 8(a)

with Fig. 7(a) and Fig. 8(b) with Fig. 6(a) illustrates that the region from which most of

the CTS signal at the given u and φ originates — the region which is effectively probed

— can be very different for other fast ion distributions. The weight functions in each

pair are identical, but it is multiplied with the alpha distribution in Figs. 6 and 7 and

with the NBI distribution from Fig. 1 in Fig. 8.
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Figure 6. Relative contributions from the interrogation regions in (E, p)-space for

φ = 100◦ and various velocities u. The coloured regions show the integrand of Eq. 9,

i.e. the product of the weight functions and a central alpha distribution function

(r/a = 0) computed with TRANSP. The integrands have been normalized. The alpha

distribution function is illustrated as grey isocontours.
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Figure 7. Relative contributions from the interrogation regions in (E, p)-space for

φ = 10◦ and various velocities u. The coloured regions show the integrand of Eq. 9,

i.e. the product of the weight functions and a central alpha distribution function

(r/a = 0) computed with TRANSP. The integrands have been normalized. The alpha

distribution function is illustrated as grey isocontours.



On velocity space interrogation regions of fast-ion CTS 13

0.5 1
−1

0

1

Energy [MeV]

P
it

c
h

 [
−

]

(a) φ = 10◦

0.5 1
−1

0

1

Energy [MeV]

P
it

c
h

 [
−

]

(b) φ = 100◦

0 1

Figure 8. Relative contributions from the interrogation regions in (E, p)-space for

φ = 10◦ and φ = 100◦ with u = 6× 106 m/s. The coloured regions show the integrand

of Eq. 9, i.e. the product of the weight functions and the high field side NBI distribution

function at r/a = 0.25 computed with TRANSP (see Fig. 1(d)). The integrands have

been normalized. The NBI distribution function is illustrated as grey isocontours.

6. Reconstruction of the fast-ion velocity distribution function from two

1D projections

Weight functions can be used to reconstruct the fast-ion velocity distribution function

from two 1D distributions functions along different projection directions. This problem

has no unique solution [41], but it is possible to find reasonable reconstructions. Here we

present an iteration algorithm to find such reconstructions by exploiting the knowledge

contained in weight functions. Figure 9(a) shows three bumps in (E, p)-space as simple

test model, and Fig. 9(d) shows the NBI ion distribution function from Fig. 1 as a second

test model. The aim is to reconstruct these target 2D test functions, given only two 1D

projections g with different projection angles. In an actual experiment, two target 1D

projections g can be obtained from two simultaneous CTS measurements with different

projection angles. Here we choose the angles to be φ = 10◦ and φ = 100◦ corresponding

to the forward- and backscattering ITER CTS systems and use only information that

would not be masked by the bulk ions in ITER and are hence outside the shaded triangles

in Fig. 3, i.e. |u| > 3 × 106 m/s. After an initial guess, two projections g are computed

from the iterated 2D velocity distribution function. The next iteration is obtained by

adding or subtracting small multiples of the weight functions for each u and φ to the

2D velocity distribution function, depending on whether the corresponding iterated g

is larger or smaller than the target g, respectively. The iterated solution depends on

the initial guess for which we choose zeros everywhere. Reasonable reconstructions are

then reliably obtained for a wide range of target functions compared with other initial

guesses. Fig. 9 demonstrates that large-scale features of the simple 2D test functions

can reasonably be reconstructed, given only two 1D projections with |u| > 3× 106 m/s

(Figs. 9(b) and (e)).

To demonstrate that measurements from other fast-ion diagnostics could be

included in the algorithm, we use a third g for a hypothetical third projection angle

(φ = 45◦) for the reconstruction (Figs. 9(c) and (f)). This CTS geometry is not

feasible in ITER due to refraction. However, the hypothetical extra CTS measurement
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serves as example for the possible extension of the algorithm. The reconstruction of the

more complicated NBI ion distribution function improves due to the extra information.

The reconstruction algorithm and its extension will be used in future experiments at

ASDEX Upgrade where a second CTS receiver is currently being installed and FIDA is

available [42].
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Figure 9. Reconstruction of a target function ((a) and (d)) given only the information

obtained from two 1D projections g ((b) and (e)) or three 1D projections g ((c) and

(f)) with |u| > 3 × 106 m/s. The projection angles of the two 1D projections were

φ = 10◦ and φ = 100◦ in (b) and (c). In (c) and (f) additionally a projection with

φ = 45◦.

7. Conclusions

Here we show the velocity space interrogation regions of the proposed ITER CTS system.

The backscattering system with receivers on the low field side is an enabled ITER

diagnostic whereas the forward scattering system with receivers on the high field side

is not. The backscattering system is sensitive to fast ions with pitch |p| < 0.5 − 0.9,

depending on the ion energy and the frequency shift of the scattered radiation. Its

viewing geometry makes it easy to retrofit it with a CTS-based fuel ion ratio diagnostic

[43–46]. On the other hand, the forward scattering system would be sensitive to co- and

counter-passing fast ions at various energies with pitch |p| > 0.6− 0.8. Its interrogation

regions in 2D velocity space are narrow compared with those for the backscattering

system which cover broad ranges in (E, p)-space. The relative contributions of different

regions in 2D velocity space to the CTS signal have been computed using weight

functions and TRANSP simulations of the alpha and NBI ion distributions in ITER,
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showing the regions which are effectively probed. The interrogation regions are described

by weight functions. We here derive analytic expressions for the weight functions which

should also be useful for FIDA since CTS weight functions are identical to the geometric

(Doppler shift) part of FIDA weight functions [35–38]. Moreover, it is shown that

weight functions can efficiently be used as base functions in reconstructions of 2D fast-

ion distribution functions, given two simultaneous CTS measurements with different

scattering geometries. The quality of such reconstructions can be improved by including

fast-ion measurements from other diagnostics in the iteration algorithm. Thus, we

have shown the benfits of the back- and forward scattering ITER CTS systems and

their combination. Much added information could be gained from a forward scattering

system, allowing measurements of co- and counter-passing ions with high velocity

space resolution, revealing anisotropy in the fast-ion populations and even allowing

reconstruction of 2D fast-ion distribution functions.
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