83 H. Linger

Hence, for any positive integer m, up to isomorphism there exist exactly
14+3(n—1)(n— 1) m-element n-dimensional commutative quasi-tiivial superassociative
Systems.

TueorEM 11 (classification of a certain class of commutative quasi-trivial super-
associative operations of odd arity). Let n be some even positive integer and let (B, g),
|Bl>1, be some algebra with one {n+1)-ary operation. Then t.f. a. e.:

() (B, g) is an n-dimensional commutative quasi-trivial superassociative system
and there hold (a) or (b):
(a) There exisis at most one x € B such that g(x, ¥, ..., y) = y for any y e B,
(b) There exists some a€ B such that gle, v, ..,y) =y for any ye B and
such that there exists some be B with gla(yn), b, ..., b) # b.
(i) There exists some total ordering < on B, there exists some final segment C
of (B, <) and there exists some integer i, 1<i<dn, such that
My <(Xos ey X) I (Xgs wees X € C*FE,
g (505 s ¥p) = {ml,s(xo, v, X)) - otherwise
(Xg 5 ors Xy € .B).

Remark. The following example shows that there exist n-dimensional com-
mutative quasi-trivial superassociative systems, n even, neither satisfying () (a)
nor (i) (b): Put B:={0,1,2,3}, n:=2, g(x,x, P = glx,p,x) = g(y, x, X) 1= X
for any x,y e Band g(x,y, z) = —(x+y+z)mod4 for any three mutually distinet
elements x,y,ze B
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On vertices and edges in maximam path-facters of a tree
by

Zdzistaw Skupied and Wiadystaw Zygmunt (Krakéw)

Abstract. The paper presents proofs for part of the results announced in [11]. It develops
a method of classifying the edges and the vertices of a tree 7 with respect to their appearance in
maximum path-factors of 7.

1. Introduction. Since Ore's ploneering wotk [7] in 1961, different publications
concerning Hamiltonian graphs have dealt with the covering of vertices by (or
partition of vertices into) disjoint (possibly trivial) paths in an ordinary graph, say G.
Most of these papers deal with the invariant of G introduced by Barette [1]. Follow-
ing Skupien [8] we will denote this invariant by (@), and call it the vertex-path
partition number of G, where ny{(G) is the minimum number of paths among the
path partitions of vertices of G.

Recently, new related invariants, namely Hamiltonian completion number
he(G) and Hamiltonian shortage sy(G), have been independently introduced by
Goodman and Hedetniemi [3), and Skupieri [8], [9]. In general, these new invariants
coincide. Namely, both equal 0 when G is Hamiltonian, and both equal 7,(G)
when G is a non-trivial non-Hamiltonian graph. Only for ¢ = K, we have m,(K,)
= he(Ky) = sy(K)—1= 1. :

In a series of papers sufficient conditions have been found fov either n{(G)<s
or 5y(G)<s, where 5 is an integer.

The problem of determining mo{G) or su(0) is considered independently in [2],
[3], and [8]. In cach of these papers algorithms for determining mo(G) in the case
where G is a tree or forest are developed. Algorithms presented in [2] and [3] are
very similar to cach other. Two cther algorithms, based on labelling the vertices
of a tree, are presented in [8].

Evaluating , for trees is of special importance. Namely, in [2] and [3] it is noted
that, for a connected graph G,

7o(G) = min{mo(T): T is spanning tree of G}.
In general (cf. [10]),

7o(@) = min {z,(F): Fis a spanning forest of G, with components which are
spanning trees of components of G}.
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In [2] and [3] it is also noted that z4(G) or he(G) can be introduced in an information
retrieval context, not only in connection with Hamiltonian graph theory. As a matter
of fact, those practical applications show that determining partitions of vertuces
of a non-Hamiltonian graph G inte 7,(G) path is more important than determining
ito(G) itself. Tt is worthy of notice in this context that problem of determining all
those partitions if ¢ is a non-Hamiltonian graph is stated as Problem 3 in [8]. We
shall deal with this problem in the case where G is a tree (or a forest), though in this
case the problem is solved in Kania [4] by using lincar programming. The present
paper is designed to yield a base for an alternative combinatorial solution of the
problem in the case of a tree. This solution will be presented in [13].

In what follows, we consider an equivalent to the above-mentioned path covering
or path partition of vertices of G. It is called a path-factor of G. By a path-factor
of G we mean a factor whose each compenent is a path (possibly trivial). A path-
factor is 2 maximum path-factor if its size is the largest possible. Though a path-
factor is not a subgraph with prescribed vertices, its name and its structure resemble
the notion of a I-factor or a k-factor where & is a vector. Also our investigations
of path-factors, presented below, resemble similar investigations as regards classi-
fying edges with respect to their appearance in k-factors (cf. Lovasz [5] and
[6]). However, we shall classify not only edges but also vertices of a tree with
respect to their appearance in path-factors of a tree.

The results of this paper were announced in [11] and [10], where procedures
for determining all maximal path-factors are sketched, In another related paper [12]
we show that decomposing a tree with a vertex of degree 2 can simplify procedures
for determining path-factors.

2. Basic terminelegy and notation. We shall use the common terminology and
notation of graph theory with special additions which were introduced in [8], [11]
and [12]. For the sake of completeness we recall some definitions and notation.

Only ordinary (i.c., simple) graphs G will be considered. The terms factor and
spanning subgraph will be identified.

Given a graph G = (¥, E) and either a set of vertices ¥, or another graph G!
with the vertex set Vy, each of the symbols G-¥, and G-G? denotes the subgraph
of G induced by the subset of vertices V-V, . Given a set of edges E, , the symbol G-£ il
denotes the factor of G with the edge set E-E;. The number of components of G is
denoted by k(G).

By a path P, with n>1 we mean a graph with » vertices x,, x,, ..., X, and
n—1 edges x;x,,¢ (i =1,2,..,n—1). For P, the notation

Py [ty Xa, oo, %]
is used and the vertices x, and x, are called the end-vertices of P, Moreover, Py, = [x,]
with E(P;) = @ is called a trivial path.

The degree of a vertex x in G is denoted by d(x, G). A vertex of degree 1 or 0
in G is called a hanging vertex. Each of the remaining vertices is called the inner
vertex and any vertex of degree greater than 2 is said to be a branching vertex.
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By a string in G we mean a non-trivial path whose each inner vertex (if any) is
of degree 2 in G and each of the end-vertices is either hanging or branching in G.
A string is a hanging string il (at least) one of its end-vertices is hanging. A string P
in G is said to be artached to a vertex x if x is an end-vertex of P and is a branching
vertex in G. Then the edge of P, incident to x is called the edge of attachment of P,

A branching vertex v is a hanging branching vertex if all or all but one of the
strings attached to » are hanging. An edge, say e,, which is incident to a hanging
branching vertex » and does not belong to any hanging string is called the edge of
attachment of the hanging branching vertex v.

It is clear that each tree with two or more branching vertices has at least two
hanging branching vertices each of which has an edge of attachment.

By a pathifactor of G we mean a factor each component of which is a path
(possibly trivial). A path-factor of G is called a maximum path-factor if its size is
maximal among all path-factors of G. Let ¥ (G) and & (G) denote the collections
of all path-factors and all maximum path-factors of G, respectively. The vertex-path
partition number wo(G) of ¢ is defined as follows:

7o(@) = min{k(W): We #'(G)}.

Observe that a path-factor is maximum if the number of its components is the
smallest possible; more precisely,

We & (G) @ We W (GYAk(W) = ny(G).

An edge is called compulsory or forbidden in G if it belongs to all or to no
maximum path-factors of G, respectively; otherwise the edge is called fiee in G.
A path in G is said to be a compulsory (green) path if it is a non-trivial path whose each
edge is compulsory [green] in G.

The plucking operation 7' = pI(T) on trees T and the ith derived forest Fy(T)
of a tree (or a forest) 7, which are concepts of great importance in what follows, are
introduced in the next section.

3. Some genmeral properties of maximum path-factors, We start with stating
a simple result on maximum path-factors in a disconnected graph.

(3.1) THEOREM. Let graphs G' be components of a graph G, i = 1,2, .., k(G).
Then a path-factor S of G is maximum iff, for each G', the intersection S G' is
@ maximum path-factor of @&, ie.,

SeFG) « Sew(G) and Vii I<I<k(G) = §n Ge PG

The proof follows from the following three obvious formulas:
KG)

no(G) = ;1 7o(G7)

1163
Se W (@ = k(5) = i_zzk(Sn Gh,

S A GYzr(G) withi=1,2,...k(G), Sew (G). A
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Since, for Se #(G),
KG)

§= UEnd),

i=1
we have the following
(3.2) CorOLLARY. If G* are components of G, then

KoY )
7@ ={Us" s'e FGY). |

(3.3} COROLLARY. Each edge of any path which is a component of the graph G
is compulsory in G. B

(3.4) DEFINITION. Let Fy(T) denote the forest derived from (ot the derived
Jorest of ) a tree (or, more generally, a forest) T, i.e., Fy (T’ ') stands for a forest obtained
by deleting the edges of attachment of all hanging branching vertices in T.

Since

ﬂo(Fl(T)) = 7o(T)

{cf. the formula (13) in [8]), each maximum path-factor of F, 1 (7) is also a maximum
path-factor of 7, that is,

(3.5) FFEMesFD.

Tn what follows we shall make use of the so-called plucking operation pl on
trees. This operation was used in [8] without giving it 3 name,

(3.6) DrrINTIoN. Given a tree T. Let pl(T) denote either

(2) the tree T if T does not contain any branching vertex or

{b) the subtree (possibly the empty graph Xo) obtained from T by deleting all
hanging branching vertices together with incident edges and all hanging strings
attached to those vertices.

(3.7) Remark. Either pl(T) is a component of the derived forest Fi(T) or
Pl =K, &

Let pl* denote the -tk iterate of the operation pl, 3 1, and let pi® be the identity
operation on T. Since the tree T is finite, there is an integer b (e.g., A = |V(T)])
such that

pIT) = pi' YT = ... = pI®(T).

Note that pl®(T") is either a path (possibly trivial K,) or the empty graph K.

Analogously, let Fo(T) = T and let Fy(T) denote the i-th derived forest of T,
ie., the forest derived from the (f-—1)-th derived -forest Fy (T, i=1,2,..
Qbviously, there exists an integer j such that

FJ(T) = F}+1(T) = .= F ().
Hence

(3.8) Remark. F(T) is clearly a spanning forest of T cach component of
which has at most one branching veriex. F(T) is called the simplest derived forest
of " B
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The following observation generalizes Remark (3.7):

(3.9) Remark. Either pIYT) is a component of the kth derived forest F{T)
or pT) =Ky, k=1,2,.. B

Tterating formula (3.5) gives
(3.10) F(FMNeFT), k=1,2,..

Hence, by the definition of the derived forests, we have

(3.11) CoROLLARY. No edge of attachment of a hanging branching vertex in any
pl(T), k=0, is compulsory in T. B

Therefore, by Remark (3.7) and Corollary (3.2), all components of any maximum
path-factor of pl(T) are components of a certain maximum path-factor of 7. More
generally, we have

(3.12) COROLLARY. For any maximum path-factor S of pl¥(T), there is  certain
maxinmum path-factor S of T such that each component of *S is a component of S. B

Consider any maximum path-factor S of T. It was noted in [8] p. 490, that edges
of attachment of hanging branching vertices can be eliminated from the maximum
path-facior S of 7. Namely, if § contains edges of attachment of hanging branching
vertices of 7, then there exists an § e &(F,; (T7) (Fy(T) being the forest derived from T)
such that the intersection of § and pl(T) is identical with that of S and pl(T). In
general, for any k>1, we have

(3.13) VSe #(MAS e #(FD): §npHT) = 5§ nplHTy.
So, owing to Remark (3.9) and Theorem (3.1}, we have the following

(3.14) CORrOLLARY. Given any maximum path-factor S of T, 8 r pl(T) is a maxi-
mum path-factor of pl(T); more generally,

SeZ Ty = Sap{Tye FPHT)), k=1,2,..

(3.15) TueoreM. The collection SP(T) of ail maximum path-factors of T induces

the collection % (pl*(IY) of all maximum path-factors of plNT), that is,
FPHT) = F={Snpl'T): Se &M}, k=1,2,..

Proof. The inclusion &, (pIiT)) follows from Corollary (3.14). The

converse inclusion follows from Corollary (3.12). B

(3.16) Remark. Any edge which is incident to an inner vertex of a compulsory
path and does not belong to that path is clearly forbidden. B

Now, Theorem (3.15) implies the following

(3.17) COROLLARY. An edge of pi(T) is compulsory (forbidden or free) in
pIND), for any k = 1,2, .., iff it is so in T.

Hence, we have the following

(3.18) COROLLARY. If an edge of a hanging string P in pI*(T), k20, is not any
edge of attachment of P, then the edge e is compulsory in T; in particular, if pI®(T)
is non-empty and non-irivial then pl®(T) is a compuisory path in T. B
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4. Labelling procedure. The following procedure of labelling the vertices of a tree
is a modification of one of the procedures -presented in [8].

PROCEDURE 1 (of labelling the vertices of a tree I).

1. Associate label 1 with every hanging vertex.

2. Associate label 2 with every hanging branching vertex.

3. Associate label 21 or 3 with each remaining vertex x of any banging string
attached to a vertex with label 2 according as the vertex x is adjacent to a vertex
with label 2 or not.

4. Apply the plucking operation to the tree in question.

5. In step 4 one obtains one of the following three graphs:

(a) the empty graph Xj,

{b) a path P (possibly P = Kj),

(c)y a tree with a branching vertex.

5a. Stop in case (a).

5b. In case (b), for each vertex x which has no label, associate label 12 or 3
with x according as the vertex is hanging or inner in P.

5c. In case (c) associate label 12 with each hanging vertex which has no label
and go to step 2.

6. Determine /= min {i: pI(T) = pl'"*'(T){= pl=(1))}. (Note that & is the
number of transitions to Step 2 while executing Procedure 1 for the tree 7).

The above procedure is clearly finite and associates a label with each vertex
of the tree T. )

The formula for the vertex-path partition number 7{T) of T (c¢f. formula (12)
in [8]) now takes the form:

4.1) 7ig(T) = Ny+Nya—No—(pl™(1)
whete N is the number of vertices with label i in T (= 1,2, 12) and

if pl®(T) is a nontrivial path,

- {1
a(pl™(1)) = 10 if PI™(T) s Ky or Ky .

(4.2) DerFINITION. An edge whose end-vertices have labels i and f is said to be
the edge of type (i-f).

Now since each vertex with label 3 belongs to a hanging string in a certain
pl*(T) and is not incident to the edge of attachment of this string, Corollary (3.18)
implies the following

(4.3) COROLLARY. Each vertex with label 3 i incident to exactly two compulsory
edges of which neither is of type (3-2). B

Hence we have ‘

(4.4) CoroLLARY. No vertex with lobel 3 is a hanging vertex of a maximum
path-factor of T. B

The following remark is obvious.
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(4.5 Remark. For any vertex x with label 12 there is exactly one incident
edge e which is not the edge of attachment of any hanging branching vertex in any
plY(T), k=20, unless x is the unique vertex of pl®(T) (then pI°(T) = K, and there is no
such edge e).

Observe that each hanging branching vertex has label 2. Hence, by Defi-
nition (3.4) of the derived forest, we have

(4.6) Remark. Each edge not belonging to F(T) is of type (2-f) with possibly
F=12,2,21,3 (j# 1) and if an edge of type (2-) belongs to F(T) then
i=1,12,21 (i # 2, i # 3). Moreover, each but possibly one of the components
of F(T) has exactly one vertex with label 2. Only p!*(T) has no such vertex.
{In particular, each branching vertex in F(T) has label 2.) Furthermore, each
hanging vertex of F(T) (kz0) has label 1 or 12. H

The following remark is obvious.

(4.7) Remark. A vertex » with label 21 is of degree 2 in a certain pi(7) and
in F(T). &

Note that neither of the two neighbours of that » in F,(T) has label 21. Owing
to Remark (4.6), each remaining neighbour of ¢ in 7" has label 2. Hence we have

(4.8) Remark. An edge of type (21-21) cannot appear in any labelled tree;
edges of other types can appear (see Fig. 1). @

1 7
2
12
12
2
7 !

Fig. 1. The labelled forest which contains edges of all possible types (except (21-21)).

(4.9) Lemma. Each of the hanging vertices in any maximum path-factor of the
tree T has label 1, 12, or 21. -

2-—Fundamenta Mathematicas CIX
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Proof. By Corollary (4.4) it suffices to show that each vertex with label 2 is
an inner vertex in any maximum path-factor of T. To this end, consider a vertex x
with label 2. So the vertex x is a hanging branching vertex of a certain subtree
pIYT) of T. Therefore x cannot be a hanging vertex in any path-factor kS e S (pINT)).
Therefore, using Corollary (3.14), we deduce that Lemma (4.9) is true. &

Hence, by Corollary (3.12), we have the following

(4.10) CoroLLARY. All hanging vertices in any raximim path=factor of pI¥(T),
k=0, have labels 1, 12, or 21. B

On the other hand, since each vertex labelled 1 or 12 is hanging in a certain
pl*(T), k=0, Corollary (3.12) implies

4.11) 'CoROLLARY. Each vertex with label 1 or 12 is hanging in a certain maxinuim
path-factor of T. &

(4.12) Levma. Edges of types (2-2) and (2-3) are forbidden in T.

Proof. According to Corollary (4.3), no edge of type (2-3) belongs to any maxi-
mum path-factor of 7% Now suppose that there is 2 maximum path-factor § of T
containing an edge, say xy, of type (2-2). So there is an integer J, /20, snch that
either

(D) both the vertices x,y belong to pl'(T) and neither of them belongs to
pt Ty or

(ii) both the vertices x and y belong to pl(T) and only one of them, say ¥,
belongs to pl'™ (7).

In case (i) x and y are the only hanging branching vertices of the tree pl'(T)
(¢f. Fig. 2). Then pl'*}(T) = K, and, by (4.1),

ro(pI(T)) = d(x, pICT)+d(y, pHTY) =4 .

“ -
~\ 2 2/
= <
i \\'\
Y
{ \
! A

Fig. 2. The tree pl(T)

Now observe that if
W:= S o pl{T)

then xy € E(W) and, by Corollary (3.14),

mo(pITY) = k(W)= (d(x, TN ~2)+ (2 (y, BTN~ 2)+1 = mofpl(TD)+1
— a contradiction.

icm

On vertices amd edges in maxtmum path-factors of a tree 97

In case (ii) the vertex x is a hanging branching vertex in a certain tree pl%(T)
with kzI+1. According to Corcllary (3.14), the graph S n pli%(T) is 2 maximum
path-factor of pl%(T). Furthermore, the vertex x with label 2 is a hanging vertex
in § n pl¥(T") — a contradiction of Corollary (4.10). Thus the proof is completed.

(4.13) Lemma. Let x be a hanging branching vertex of degree 3 in some pi*(T)
with k20, pl¥(T)) containing at least two hanging branching vertices, and let the edge e,
of attachment of x be forbidden. Then if ¢ is an edge of a hanging string in pI%(T),
attached to x then e is compuisory in T.

Proof. Since, by Corollary (3.17), the edge e, is forbidden in pl%(T?), e belongs
to every maximum path-factor of pl*(7). Hence, by Corollary (3.17), Lemma (4,13)
follows. ®

5. Colouring procedure. Recall that in Step 6 of Procedure 1 the following number
is determined:

(5.1 h = min{i: pl{(T) = pl™(T)}.

PrOCEDURE 2 (eof colouring some edges of a tree T with vertices labelled by\
Procedure 1).

1. Associate the green colour with every edge of pH(T) and stop if # = Q.

2. In pl(Ty—E(@E*Y(T)), for successive decreasing values of i (=
=h—1,h~-2,..,1,0);

2a. Associate the red colour with each edge of type (2-2) or (2-3) and with each
non-coloured one which is incident to an inner vertex of a green path in pl'*1(T);

2b. Associate the green colour with each edge ¢ which belongs to a hanging
string, P, in pl{T) and is not any edge of attachment of P or belongs to a path which
is a component of that factor of pl{7) which is obtained by deleting all red edges.

Observe that, for any ¢ (0<i<h—1), each component of the graph pli{(T)—
—pltYT) is a component of the forest F(T) (ef. Definition (3.4) of the derived
forest), Consequently, in the graph plT)—E(pl*1(T)) (which is considered in
Step 2 above) no edge incident to a vertex of pI!*1(T") belongs to F,(T). Moreover,
since, by Remark (4.6), no edge of type (2-2) or (2-3) belongs to F.(T), the following
remark is true,

(5.2) Remark. No red edge belongs to the simplest derived forest F(T)
of the tree 7, that is, each red edge is the edge of attachment of a hanging branching
vertex in a certain subiree pli(T") of T. B

Note that the green colour is not associated with any edge of attachment aof
a hanging branching vertex. Hence

(5.3) Remark. Each green edge belongs to F (T). B

According to the colouring procedure above each edge of pli(T)— E{pl'+ {(T)
which remains non-coloured is the edge of attachment of either a hanging string
or a hanging branching vertex in pl(T). Therefore every such edge is incident to
a vertex with label 2. Hence, by Remark (4.6) and the fact that edges of types (2-2)
and {2-3) are red, we have:

z®
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(5.4) Remark, One of the end-vertices of any non-coloured edge has label 2
and the other one has label 1, 12, or 21. &

The following remark is obvious:

(5.5) Remark. All edges incident to a vertex with label 3 are coloured and
exactly two of them are green. B

Let x be a hanging branching vertex in 2 certain pliT) and let e, be the edge
of attachment of x. Now consider the case that d(x, pl'(Z)) = 3 and the edge e,
is red. Then the two remaining edges incident to x in pl'(T) are green (cf. Step 2b
of Procedure 2). Each of the other edges of 7' (if any) which are incident to x is of
type (2-2) and therefore is red (cf. Step 2a of Procedure 2). In the opposite case either
zl(x, pli@N =4 or e, is non-coloured and therefore there are in pli(T) at least 3
non-coloured edges incident to x: we have

(5.6) Remark. Given a vertex x with label 2, either there are at least three
non-coloured edges incident to x or all edges incident to x are coloured and exactly
two of them are green. B

(5.7 Remark. Among the edges incident to a vertex with label 21 either there
are exactly two green edges and the remaining ones are red or there is exactly one
green eédge and the remaining ones are non-coloured. ®

Now Remark (4.7) can be replaced by the following one:

(5.8) Remark. For any vertex v with label 21 there is a subtree pl*(T") such that
the degree d{o, pi*(1)) = 2 and pl(T) contains all green edges of T incident to . 8

(5.9) Remark. The edges incident to a vertex with label 12 are all non-coloured
except possibly one which is green (cf. Remark (4.5)). B

(5.10) Remark. The unique edge incident to any vertex with label 1 is either
green or non-coloured.

We add also three farther remarks, which will be used in the next paper [13].

(5.11) Remark. Deleting red edges from I' does not result in the appearance
of any new hanging vertex.

This follows from Remarks (5.5)+(5.10).

Let 77 stand for the green factor of T, that is, let 7 be a factor of T which
contains all the green and only the green edges of T. Since any vertex of T'is incident
to at most two green edges, we have

(5.12) Remark. Each component of the green factor 77 of T'is a path (possibly
trivial). &
(5.13) Remark. Let P’ be a component of the green factor 77 of T. If one

of the end-vertices of P’ has label 21, then the remaining one has label 1 or 12 and
all the inner vertices (if any) have labels 3. B

Remark (5.13) follows from Procedures 1 and 2 and Remarks (5.7)-(5.10).
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6. Classifications of edges and vertices. Note that Procedure .I associates one
of five labels 1, 2, 3, 12, and 21 to each vertex of a tree 7' Thus performing Procedure 1
gives the partition of the vertex set of T into five or fewer classes. Analogously, per-
forming Procedure 2 gives the partition of the edge set of T into three or fewer
classes which consist of green, red, or non-coloured edges, respectively. Now we
shall show that those two partitions make it possible to classify edges and vertices
of T with respect to their appedrance in all maximum path-factors of T. Certain
auxiliary results have been stated in the preceding sections.

Using descending induction on f where i = &, k—1, ..., 1,0 and making use
of Corollaries (3.17) and (3.18), Lemmas (4.13) and (4.12), and Remark (3.16), we
can prove the following

(6.1) LemmA. Each green edge is compulsory in PI(T) and each red one is
Sorbidden in pP(@), i =0,1,.., h (Note that (for i =0) pl%(T) =T) @
The following obvious lemma is complementary to Lemma (4.9);

(6.2) LemMA. If each non-coloured edge of a tree is fiee, then any vertex with
label either 1 or 12 and any one with label 21 and with exactly one green edge incident
to it is an endvertex of a certain maximum path-factor of the tree.

If 7 denotes a given tree then, according to Corollary (3.12), it suffices to prove
Lemma (6.2) for that subtree pl*(T) in which the vertex in question belongs to
a hanging string. However, then the lemma is obvious.

(6.3) Lemma. Each edge which remains non-coloured after performing Pro-
cedures 1 and 2 is free in T.

Proof. Suppose on the contrary that there is a non-coloured edge which is not
free. Clearly it does not belong to pI®(T). So there is a maximum integer m such
that pi™T # pl®(T), pI™(T) contains a nop-coloured and non-free edge, and in
pl*(T) with k>m each non-coloured edge is free.

Let e be any non-coloured edge from E(pl™(T) — E(pl"* (T7). Hence, according
to Remark (5.4), e is incident with a hanging branching vertex, say », of pl"(I"),
and v has label 2. It suffices to show that e is free in pI™(T). Consider two cases.

Case 1. The edge ¢, of attachment of v either exists and is red or does not
exist. Hence, by Lemma (6.1), if e, exist then it is forbidden in pl™(T"). Therefore,
by Step 2b of Procedure 2 and Remark (5.6), the edge ¢ is the edge of attachment
of one of three or more hanging strings attached to the vertex ». Now it is clear
that e is free.

Case 2. There exists an edge ¢, and e, is non-coloured (possibly ¢ = e,).
So, by Remark (5.6), e is one of three or more non-coloured edges incident, to v.
Let e, = vx where x is the second end-vertex of e, and x belongs to pI™*+*(T). Since x
is not hanging in T, the label of x is different from 1. Hence, by Remark (5.4), the
label of x is either 12 or 21. Let pl*(T) with kzm +1 be the tree with a hanging siring
containing x. If x has label 21, then in pl*(T) there is exactly one green edge incident
to x, since otherwise the edge e, would be red. Hence, since k>m, by the assumption
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on m and by Lemma (6.2), in each case x is an end-vertex of a certain maximum
path-factor in pl(T) and so in pI"* }(T). Therefore, the edge ¢, = xv is not forbidden.
On the other hand, owing to Corollary (3.11), it is not compulsory. Consequently,
the edge e, is free. Hence, one can see that also the edge e is free in pI"™(7). B

Lemmas (6.1) and (6.3) imply

(6.4) THEOREM. An edge of T is compulsory, forbidden, and free ¥ff it is green,
red and non-coloured, respectively,

Now we shall prove the following

(6.5) LEMMA. Any vertex v with label 12 ix inner in a certain maximum path-
Sactor of T.

Proof. First consider the case where

V(pi) = {+} .

Then there is a minimal integer j such that ¥(pl/*1(T)) = {v} and j=0 since the
label of v is not equal to 1. Since, moreover, v is labelled 12, in pl"(T) there are at
least 2 hanging branching vertices, say x and y, whose edges of attachment, say e,
and e, are incident to ». Let 'S'€ & (F;(pI(1))). Then the vertex v is isolated in 7§
and according to formula (3.5), /Se & (pl(T)). On the other hand, each of the
vertices x and y has Iabel 2 and therefore, on the strength of Corollary (4.10), both x
and y are inner in /5. Let e, , e, € E('S) where e, e, are edges incident to x and to y,
respectively. Then the vertex v is inner in the path-factor

IS5—{ey, ez} v {e,, e},

which belongs to & (pl{(T)) since it has as many cdges as ‘S has. Hence, by Cor-
ollary (3.12), the lemma follows.

Now consider the opposite case. According to Procedure 1, there is a minimal
integer k, k20, such that the vertex v is incident to exactly one edge, say e, in
pl**1(T). Therefore e € F,,(T) and, by Remark (5.2), the edge e is not red. Hence,
by Theorem (6.4), e belongs to a certain **Se & (pl***(T)). Owing to the defi-
pition of &, in pl%(7") there is a hanging branching vertex, say x, which is adjacent
to v and pl** (T is a component of F;(pl"(T)). According to Corollary (3.2), there
is a certain *S'e P{F(pl"(T))) which contains **¥'5, v being of degree 1 in 5.
Exchanging only one edge in *S, we can end the proof in a similar way as in the first
case, H

The following theorem gives the classification of vertices of a tree 7" with respect
to their appearance in maximum path-factors of 7.

(6.6) THrEOREM. (i) Each vertex with label 1 is hanging in all Se &#(1).

(i1) Each vertex with label 2 or 3 as well as each vertex with label 21 lying inside
a green path is inmer in all Se & (T).

(ii) For each remaining vertex v (and so with label 12 or possibly 21) there are
81,5, e F(T) such that v is hanging in Sy and inner in S,.
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Proof. (i) is obvious, (i) follows from Lemmas (4.9) and (6.1). To prove (iii)
assume first that  is a vertex labelled 21 which is not inside a green path. Then, by
Remark (5.7), v is incident to exactly one green edge of T. Consequently, from
Lemmas (6.3) and (6.2) it follows that v is a hanging vertex in a certain maximum
path-factor of 7. Moreover, v is inmer in another maximum path-factor of T since,
according to Remarks (5.8) and (5.7) and to Theorem (6.4), v is incident to a com-
pulsory edge as well as to another one, which is free in T Thus (i) holds true for
that v. On the other hand, if v has label 12, then (jii) follows from Corollary (4.11)
and Lemma (6.5).

Now it is easily seen that Theorem (6.6) makes it possible to determine the par-
tition of vertices of the tree Tinto three classes consisting of vertices which in all
maximum path-factors of T are, respectively,

1. always hanging, ‘

2. always inner,

3. neither always hanging nor always inner.

Acknowledgment. The authors are indebted to the referces for suggesting
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