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Particle damping has the promising potential for attenuating unwanted vibrations in
harsh environments especially under high temperatures where conventional damping
materials would not be functional. Nevertheless, a limitation of simple particle damper
(PD) configuration is that the damping effect is insignificant if the local displacement/
acceleration is low. In this research, we investigate the performance of a tuned mass par-
ticle damper (TMPD) in which the particle damping mechanism is integrated into a tuned
mass damper (TMD) configuration. The essential idea is to combine the respective advan-
tages of these two damping concepts and in particular to utilize the tuned mass damper
configuration as a motion magnifier to amplify the energy dissipation capability of parti-
cle damper when the local displacement/acceleration of the host structure is low. We for-
mulate a first-principle-based dynamic model of the integrated system and analyze the
particle motion by using the discrete element method (DEM). We perform systematic
parametric studies to elucidate the damping effect and energy dissipation mechanism of a
TMPD. We demonstrate that a TMPD can provide significant vibration suppression
capability, essentially outperforming conventional particle damper.
[DOI: 10.1115/1.4034777]

Keywords: particle damper, tuned mass damper, tuned mass particle damper, discrete
element method, energy dissipation, vibration suppression

1 Introduction

Passive damping devices are widely used to protect the primary
structures from sudden shocks and/or persistent excitations.
Although viscoelastic materials and fluid dampers are commonly
implemented [1], one major drawback of such devices is that their
performance is sensitive to ambient environment and generally
can only function properly under moderate temperatures. Alterna-
tively, particle damper, owing to the advantage of being robust
with respect to extreme temperatures, has attracted broad interest
[2–6]. The underlying principle of particle damper is the energy
absorption and dissipation through the collision and the friction
between the particles and the hosting enclosure and among the
particles, leading to the attenuation of vibration. While particle
damper is simple in concept, its behavior is very complicated as
the energy dissipation mechanism is highly nonlinear. A few ana-
lytical and experimental studies have been conducted to analyze
the particle damping mechanism [7–9]. There have also been con-
tinuous efforts [10–12] on developing efficient numerical methods
to quantify the particle damping effect using such as the DEM
[13], which keeps track of the motion of all the particles.

The effectiveness of a particle damper depends on many param-
eters, such as size, shape and material of the particles, local exci-
tation level, and geometry of the enclosure [14]. Usually, a
particle damper is attached to region where the level of displace-
ment/acceleration is relatively high. The motions of vertically
vibrating particles in an enclosure may undergo three stages, i.e.,
solid, convective, and gaslike regimes [15,16]. When the
acceleration level is lower than gravity, particles are in the solid
stage as they are locked and move together with the enclosure,
which results in little damping effect. As acceleration increases,
some particles inside the enclosure start to slide over and collide

with each other, dissipating energy via the frictions and collisions.
At this stage, the particles act like fluid with convections inside
the enclosure [15]. Further increase of acceleration level then
yields gaslike motion of particles, especially for dilute or moder-
ately dense particle systems. It is reported that higher damping
capacity may occur in the fluidlike regime since both the collision
and friction dominate the motions of particles [9,17]. For cases
where local displacements/accelerations throughout the structure
are low, the performance of particle damper would be limited.

There exists a well-known passive damping design concept, the
TMD [18]. In such a concept, additional mechanical components
with spring, mass, and damper elements are added to the structure
to form an absorber. In the classical design, the absorber stiffness
is tuned such that the absorber natural frequency matches with the
excitation frequency of concern, e.g., the fundamental frequency
of the host structure, and the damping coefficient is properly tuned
subsequently to maximize the energy dissipation over the inter-
ested frequency range. There have been a series of studies on
TMDs with varying levels of design complexity [19–21]. It is
worth noting that the damping involved in the TMDs is usually
realized by using viscous or hysteretic materials [19] that, again,
may be subjected to limitation in severe environments especially
under high temperatures.

Here, we consider a TMPD shown in Fig. 1, which combines a
beam-type tuned mass damper and a particle damper. The addi-
tional beam essentially serves as the stiffness element of a TMD,

Fig. 1 Schematic of primary beam structure integrated with
the TMPD
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whereas the mass of the TMD is replaced by a particle damper
which at the same time also provides energy dissipation capability
through particle motion. To avoid potential limitation of tradi-
tional TMDs under severe environment, there is no other damping
element involved. In this configuration, the additional beam, in
combination with the particle damper mass, can play the role of
motion magnifier [22]. To facilitate this, the TMPD is connected
to a rigid block attached to the host beam. The host beam together
with the rigid block modeled as tip mass is considered as the pri-
mary structure. The basic tuning criterion is to tune the natural
frequency of the TMPD to be equal to that of the primary struc-
ture. Before taking into consideration its damping ability, a
TMPD is simply an undamped absorber. The magnified level of
displacement/acceleration of the particle damper enclosure in a
TMPD, meanwhile, can yield increased energy dissipation capa-
bility especially when the host structure has low displacement/
acceleration levels, since it can absorb significant portion of the
vibratory energy. There have been, however, very limited studies
concerning the TMPD analysis. Yao et al. [17] presented an
approximate model through simplifying the host structure and the
TMPD into a three degrees-of-freedom (DOFs) system, where the
TMPD was characterized by using viscous damping coefficient
and equivalent stiffness and mass coefficients extracted from cer-
tain operating conditions.

Owing to the nature of particle motions involved, a TMPD is
inherently nonlinear. The intention of this research is to develop a
systematic, first-principle-based analysis of this damping mecha-
nism to elucidate the parametric influences. As shown in Fig. 1, a
beam with tip mass is adopted as the host structure. A coupled
algorithm is formulated that allows the integrated analysis of the
host structure and the TMPD. Three-dimensional DEM is imple-
mented to simulate the particle motion characteristics. In order to
validate the accuracy of the model and the numerical analysis,
experimental investigations on the TMPD and the traditional PD
are conducted under different base excitations. Then, using the
model developed, we quantitatively evaluate the difference in
energy dissipation efficacies of the TMPD and PD and also con-
duct parametric investigations on enclosure dimensions and volu-
metric filling ratios, aiming at providing design guidelines for
TMPD.

2 Formulation of Coupled Analysis of TMPD and
Host Structure

In this section, we formulate a dynamic model for a TMPD that
is integrated with a primary structure. As shown in Fig. 1, the host
beam is cantilevered and has length L1. The TMPD consists of a
beam with length L2 that is connected rigidly with the host beam
at its tip rigid block, and a box enclosed with particles that is
attached to the tip of the TMPD beam. The host beam and the
TMPD beam form a segmented beam structure, while the particles
move vertically inside the box/enclosure. We first outline the
modal analysis of the segmented beam followed by a forced
response expression for beam vibration. We then present the dis-
crete element method to be used for particle motion simulation.
These two motions are finally coupled together based on the com-
patibility conditions of impact/friction and displacement/velocity
between the segmented beam and the particles at the box location.

2.1 Vibration of Segmented Beam

2.1.1 Segmented Beam Modal Analysis. Since the connection
between them is rigid, the host beam and the TMPD beam are
considered as one single beam with two segments associated with
the respective coordinates x1 and x2, as shown in Fig. 1. Each seg-
ment is uniform, with Young’s modulus, mass density, area
moment of inertia, and cross-sectional area as En, qn, In, and An

(n ¼ 1; 2). Assume negligible beam damping, the free vibration of
the segmented beam is described as [23]

EnInw
0000ðxn; tÞ þ qnAn €wðxn; tÞ ¼ 0; n ¼ 1; 2 (1)

where wðxn; tÞ denotes the vertical displacement of the beam at
location xn on segment n. For the above equation, the standard
separation of variables approach can be used, which yields the
expression of the rth normalized mode shape /rnðxnÞ (n ¼ 1; 2)

/rnðxnÞ ¼ an1 cosðbrnxnÞ þ an2 sinðbrnxnÞ
þ an3 cos hðbrnxnÞ þ an4 sin hðbrnxnÞ; n ¼ 1; 2 (2)

where brn is related to the natural frequency xrn as

xrn ¼ b2rn

ffiffiffiffiffiffiffiffiffiffi

EnIn

qnAn

s

(3)

Apparently, as the two segments are connected together, we must
have

b2r1

ffiffiffiffiffiffiffiffiffiffi

E1I1

q1A1

s

¼ b2r2

ffiffiffiffiffiffiffiffiffiffi

E2I2

q2A2

s

(4)

The mode shapes and the natural frequencies are determined
through the boundary conditions at x1 ¼ 0 and x2 ¼ L2 as well as
the compatibility conditions at x1 ¼ L1 and x2 ¼ 0, i.e.,

/r1ð0Þ ¼ 0 (5a)

/0
r1ð0Þ ¼ 0 (5b)

E1I1/
000
r1ðL1Þ � E2I2/

000
r2ð0Þ ¼ �x2

r1Mt1/r1ðL1Þ (5c)

E1I1/
00
r1ðL1Þ � E2I2/

00
r2ð0Þ ¼ x2

r1It1/
0
r1ðL1Þ (5d)

/r1ðL1Þ ¼ /r2ð0Þ (5e)

/0
r1ðL1Þ ¼ /0

r2ð0Þ (5f )

E2I2/
000
r2ðL2Þ ¼ �x2

r2Mt2/r2ðL2Þ (5g)

E2I2/
00
r2ðL2Þ ¼ x2

r2It2/r2ðL2Þ (5h)

Here, Eqs. (5a), (5b), (5e), and (5f) simply represent the displace-
ment and slope conditions, Eqs. (5c) and (5d) indicate that the
shear and moment at the end of the host beam are balanced by the
inertia effects of the rigid block at its tip, and Eqs. (5g) and (5h)
indicate that shear and moment at the end of the TMPD beam are
balanced by the inertia effects of the particle enclosure. In these
equations, Mt1 and Mt2 are the masses of the rigid block and the
particle enclosure, and It1 and It2 are their moments of inertia. The
mode shape solved for the respective beam segment can be writ-
ten uniformly as [23]

/rðxÞ ¼ /r1ðxÞHðL1 � xÞ þ /r2ðx� L1ÞHðx� L1Þ (6)

where x now denotes the coordinate of the entire structure, and H
is the Heaviside function.

A comparison of the natural frequencies and mode shapes
solved analytically based on the above formulation and that
solved by finite-element method is shown in Fig. 2. As can be
seen, the results match well. The parameters used will be
explained in full detail in Sec. 3. In this research, the analytical
mode will be used in beam discretization and the subsequent
vibration analysis.

2.1.2 Beam Vibration Under Base Excitation and TMPD
Effect. The primary structure with TMPD as shown in Fig. 1 is
subjected to base excitation, €gðtÞ ¼ G sinðxtÞ, where G is the
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acceleration amplitude, and x is the excitation frequency, which
is consistent with the experimental condition. Thus, the absolute
transversal motion can be expressed as

wðx; tÞ ¼ wrelðx; tÞ þ gðtÞ (7)

where wrelðx; tÞ is the transversal displacement relative to the
clamped end of the host beam, and g(t) is the base motion. Recall
the modal analysis in Sec. 2.1.1. We apply the assumed mode
method and let the relative transversal displacement be expressed
as

wrelðx; tÞ ¼
X

m

r¼1

/rðxÞgrðtÞ (8)

where grðtÞ is the rth generalized coordinate, and m is the number
of modes used. The force due to the particles in the enclosure,
assumed to act at the center of the bottom of the enclosure, is
denoted as FðtÞdðx� L1 � L2Þ (Fig. 1), where d is the usual Kro-
necker delta function. The beam vibration under base excitation
and TMPD effect is then described by

X

m

r¼1

d2

dx2
E xð ÞI xð Þ d

2/r xð Þ
dx2

� �

gr tð Þ þ
X

m

r¼1

q xð ÞA xð Þ/r xð Þ d
2gr tð Þ
dt2

¼ F tð Þd x� L1 � L2ð Þ � q xð ÞA xð Þ€g
tð Þ

(9)

Multiplying Eq. (9) by an arbitrary mode shape /sðxÞ and inte-
grating over the entire length of the beam, recalling the mode
orthogonality, we can obtain

€gsðtÞ þ 2fsxs _gðtÞ þ x2
sgðtÞ ¼ NsðtÞ (10)

where

NsðtÞ ¼ FðtÞ/sðL1 þ L2Þ �
ðL1

0

q1A1€gðtÞ/sðxÞdx

�
ðL2

L1

q2A2€gðtÞ/sðxÞdx�Mt1€gðtÞ/sðL1Þ

�Mt2€gðtÞ/sðL1 þ L2Þ (11)

In this research, we assume that the beam is subjected to propor-
tional damping and fs is the modal damping ratio. The time-
dependent effect of the particle damper, FðtÞ shown in Eq. (11),
will be determined in Sec. 2.

2.2 Vibration Analysis of Particles Via Discrete Element
Method. This section outlines how the particles in the enclosure
of the TMPD are analyzed. Here, we adopt the DEM [12,13],
which tracks the trajectory of each particle (i.e., discrete element)
incrementally based on first principle. The forces among particles
are based on the contact behaviors. The damper enclosure inter-
acts with the host beam through the force and displacement com-
patibility between the particles and the beam.

2.2.1 Contact Mechanics Model. An important aspect of
modeling particle motion is the selection of the contact mechanics
model. Two particles are in contact and contact forces occur,
when the distance between the centers of two particles is less than
the summation of their radii. Two particles are allowed to overlap
in order to facilitate the calculation of contact forces based on the
model using spring, dashpot, and slider in the normal and tangen-
tial direction as illustrated in Fig. 3 [24]. A number of experimen-
tal and numerical studies have demonstrated that a nonlinear
force–displacement model can effectively describe the contact

mechanics [25,26]. In this study, the nonlinear contact model sug-
gested by Tsuji et al. [24] is implemented.

As shown in Fig. 3, the contact force acting on particle i by
another particle j or the wall has the normal component fnij and
the tangential component f tij. The normal component can be mod-
eled as the summation of the spring force through the Hertzian
contact theory and the damping force [24], i.e.,

fnij ¼ �ðknd3=2nij þ gnijvijnijÞnij (12)

where vij ¼ vi � vj is the velocity of particle i relative to particle
j, dnij is the normal relative displacement between these two par-
ticles, kn is the stiffness of the spring, gnij is the normal damping
coefficient, and nij is the unit vector from the center of particle i
to that of particle j. In the case of contact between two particles,
the normal displacement dnij can be expressed as

dnij ¼ ri þ rj � jpj � pij (13)

where ri, pi, and rj, pj are the radius and the center position of par-
ticles i and j, respectively. The spring stiffness kn can be expressed
as, based on the Hertzian contact theory [27]

Fig. 2 First two mode shapes of the segmented beam: (a) ana-
lytical result (f1 5 5:93Hz and f2 5 10:30Hz) and (b) finite
element result (f1 5 5:99Hz and f2 510:47Hz)

Fig. 3 Sketch of spring, dashpot, and slider model for contact
force
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kn ¼
4

3

ffiffiffiffiffiffiffiffiffiffiffiffi

rirj

ri þ rj

r

EiEj

1� �2j

� �

Ei þ 1� �2i
� �

Ej

(14)

where E and � are the Young’s modulus and Poisson’s ratio of the
particle, respectively. In the case of contact between a particle and
the enclosure wall, the stiffness is

kn ¼
4

ffiffiffiffi

ri
p

3

EiEw

1� �2w
� �

Ei þ 1� �2i
� �

Ew

(15)

where Ew and �w are the Young’s modulus and Poisson’s ratio of
the enclosure wall, respectively. As suggested by Tsuji et al. [24],
the damping coefficient takes the following form:

gnij ¼ a
ffiffiffiffiffiffiffiffiffi

mikn
p

d
1=4
nij (16)

where mi is the mass of particle, and a is a constant coefficient
related to the coefficient of restitution.

The tangential component of the contact force can be decided
by using Coulomb’s friction [3]

f tij ¼ �ljfnijjvtij=jvtijj (17)

In Eq. (17), l is the friction coefficient, and vtij is the relative
velocity at the contact point along the tangential direction, i.e.,

vtij ¼ vij � ðvijnÞnþ rðxi þ xjÞ � n (18)

where xi and xj are the angular velocities of particles i and j,
respectively.

2.2.2 Particle Motion Equations. An individual particle has
two types of motion: translational motion caused by the contact
and gravitational forces and rotational motion induced by the con-
tact forces only. Usually, a particle i is in contact with many other
particles or the enclosure wall at the same time. Therefore, its
motion is characterized by the following equations [12,24]:

mi€p i ¼
X

j

ðfnij þ f tijÞ � mig (19a)

Ii€hi ¼
X

j

ðrnij � f tijÞ (19b)

where pi, hi, mi, and Ii are, respectively, the position vector, the
angular displacement vector, the mass, and the moment of inertia
of particle i, and g is the gravitational acceleration vector. The
finite difference format can be employed to express the transla-
tional and angular velocities as

_p
ðtþDt=2Þ
i ¼ _p

ðt�Dt=2Þ
i þ €pt

iDt (20a)

_h
ðtþDt=2Þ
i ¼ _h

ðt�Dt=2Þ
i þ €htiDt (20b)

The translational and angular positions of particle i at time tþ Dt
are

p
ðtþDtÞ
i ¼ p

ðtÞ
i þ _p

ðtþDt=2Þ
i Dt (21a)

h
ðtþDtÞ
i ¼ h

ðtÞ
i þ _h

ðtþDt=2Þ
i Dt (21b)

In order to improve the computational efficiency of classical
DEM approach, a Verlet table [28] combined with linked cell
method [12] is applied to enhance the contact detection which is
the most time-consuming step. An adaptive strategy for updating

the Verlet table is also employed to further boost the contact
detection efficiency.

2.3 Coupled Analysis of Beam and TMPD Through Itera-
tive Computation in Time-Domain. We can now combine beam
vibration analysis with particle motion analysis. Recall Eq. (10)
where the beam vibration is discretized and converted to the
modal space. To account for the dynamic coupling between the
beam and the TMPD, here we use the first two modes of the beam
with two segments for discretization. We use time-marching
scheme in numerical analysis. As the beam vibrates, we compute
the physical response as the summation of the first two modal
responses subjected to the particle damping effect as well as the
base excitation. The beam motion in turn causes impact and fric-
tion to the particles through the particle–enclosure interaction. We
then use time-marching finite difference again on particle motion
analysis. This procedure repeats throughout the entire simulation
period. The flowchart is shown in Fig. 4.

3 Experimental Validation

3.1 Experimental Setup. To validate the numerical analysis
and to explore the vibration suppression performance of TMPD, a
series of experiments are conducted. Obviously, the selection of
TMPD parameters plays an important role. It is worth noting that
the intent of this research is to elucidate the energy distribution/
dissipation of a primary structure integrated with a TMPD rather
than to provide a rigorous optimization scheme which will be a
possible future research subject for a specific application. There-
fore, the TMPD parameters are selected in a heuristic manner,
mainly based on the undamped vibration absorber concept (or a
TMD without the damping element). That is, for a given host
beam and its tip mass that form the primary structure, we tune the
natural frequency of the TMPD to be equal to that of the primary
structure, such that the TMPD will be able to absorb significant
amount of energy from the primary structure at its resonant fre-
quency. The natural frequency of the TMPD is computed based
upon the enclosure mass and the TMPD beam stiffness (under
cantilever condition). We exclude the particle mass when comput-
ing the natural frequency of the TMPD, because, as will be seen
later, with the motion magnifying effect due to TMPD the par-
ticles become more separated with the enclosure floor. A similar
treatment was suggested by Zhou et al. [29] on the design of an

Fig. 4 Flowchart for the iterative numerical procedure
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improved piezoelectric energy harvester. Both the host beam and
the TMPD beam are made of the same type of aluminum with
density 2700 kg/m3, Young’s modulus 68.9GPa, and Poisson’s
ratio 0.33. The parameters of the beams involved in the experi-
ment are listed in Table 1. The TMPD enclosure is made of cast
aluminum, and the related parameters are listed in Table 2.
Acrylic resin spheres are used as particles involved in TMPD, and
their properties are listed in Table 2 as well. The experimental
setup is shown in Fig. 5. The mass of the accelerometer mounted
on the tip of the primary structure is accounted for in both experi-
ment and numerical analyses.

3.2 Correlation of Experimental and Numerical Results.
Four different configurations are studied experimentally as shown
in Fig. 6: (1) primary structure attached with the empty enclosure
(serving as the baseline); (2) primary structure with a conventional
PD attached to its tip; (3) primary structure with TMPD configura-
tion but without particles (i.e., an undamped vibration absorber
tuned to the primary structure’s natural frequency); and (4) pri-
mary structure integrated with TMPD (particles are filled into the
enclosure). Tip accelerations of the primary structure under sinu-
soidal base movement with constant amplitude are measured. The
vibration shaker excites the structure in swept sine mode in the
frequency range of 4–12 Hz (which covers the first and second
natural frequencies of the integrated system). In order to keep the
amplitude of excitation acceleration constant, the input voltage to
the shaker at each frequency point is adjusted based on the mea-
surement of the accelerometer attached to the base. Since the
response behavior of the structure with particles is generally non-
linear [12], the root-mean-square (RMS) value of the primary sys-
tem acceleration versus the excitation frequency is employed to
quantify the damping effect. Our main objective is to compare
TMPD (configuration (4)) with conventional PD (configuration
(2)). Because our hypothesis is that the TMPD can potentially
magnify the particle motions to amplify the damping effect, we
also compare TMPD with configuration (3) in which no particles
are present. Indeed, as mentioned, configuration (3) is an
undamped absorber targeting at the natural frequency of the pri-
mary structure. To facilitate all these comparisons, we also ana-
lyze configuration (1) which can be considered as the baseline,
i.e., having neither vibration absorbing nor energy dissipation
mechanisms other than its inherent structural damping.

Figures 7–9 show the frequency responses of the primary struc-
ture under these four configurations obtained from the experimen-
tal measurements and the numerical simulations. The base
excitation levels are 0.15m/s2, 0.25m/s2, and 0.3m/s2, respec-
tively. Note that the accelerometer measures the absolute value,
which is the sum of the relative acceleration and the base

acceleration. All the simulations are run for 20 s so the transients
die out, and the initial positions of particles are set to be distrib-
uted randomly to represent realistic situations. As can be seen, for
the four cases, the overall frequency responses and resonant fre-
quencies calculated match closely with the experimental results,
which demonstrates the validity and accuracy of the model that
we have developed. For example, the errors of the first and second
resonant frequencies of the undamped baseline are 1.26% and
2.62%, respectively. In both experimental measurements and
numerical simulations, we can observe the phenomena of fre-
quency shifts, i.e., the peak response frequencies of the system
with particles shifting toward those without particles, as the exci-
tation level increases. This is similar to what is observed in con-
ventional PD, which is caused by particles spending more time
being separated from the enclosure under higher excitation levels
[9]. The small errors of the numerical results (in terms of resonant
frequencies) are possibly due to the slight mismatch between the

Table 1 Dimensions of primary beam structure with TMPD

Beam Length, L (mm) Width, b (mm) Thickness, h (mm) Tip massMt1 and enclosure massMt2 (g)

Primary beam 300.0 38.1 3.175 286.16
TMPD 150.0 25.0 0.810 23.240

Fig. 5 Experimental setup: (a) schematic of the experiment
and (b) prototype

Fig. 6 Schematics of (a) conventional PD and (b) TMPD

Table 2 Parameters of enclosure and particles

Enclosure Particles

Length 34.04mm Particle–particle
normal stiffness

2:5� 109
ffiffiffiffiffiffiffi

r=2
p

N=m3=2

Width 24.64mm Particle–wall
normal stiffness

4:5� 109
ffiffi

r
p

N=m3=2

Height 19.30mm Coefficient of restitution 0.89
Density 2700 kg/m3 Coefficient of friction 0.52
Young’s
modulus

70GPa Particle diameter (2r) 3.2mm
Particle number 210
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mathematical idealization and the actual boundary condition and
other parametric uncertainties.

All the results indicate that the TMPD has the vibration sup-
pression ability among the configurations studied under assigned
excitation levels and frequencies. Figure 7 shows that, when the
external excitation level is low, the vibration suppression perform-
ance of the undamped absorber is actually better than the conven-
tional PD due to the fact that the PD does not exhibit significant
damping ability (i.e., local acceleration less than the gravity, caus-
ing little particle motions). It is worth noting that, under base exci-
tation, the excitation forces applied to the structure as shown in
Eq. (11) are mainly produced by the inertia effects of the beams

and the tip masses. Hence, under the same base excitation acceler-
ation level, the overall excitation forces applied to the structure in
configurations (1) and (2) may be less than those in configurations
(3) and (4). A more comprehensive numerical analysis will be
conducted in Sec. 4.

4 Simulation-Based Parametric Analysis

As the validity of the mathematical model is confirmed in Sec.
3, in this section using numerical simulations we carry out several
parametric analyses to elucidate the vibration suppression and
energy dissipation mechanisms. We report the energy dissipation

Fig. 7 Frequency responses when G5 0.15m/s2. : No damper (experiment); : no
damper (simulation); : with damper (experiment); and : with damper (simulation). (a)
PD and (b) TMPD.

Fig. 9 Frequency responses when G5 0.30m/s2. : No damper (experiment); : no
damper (simulation); : with damper (experiment); and : with damper (simulation). (a)
PD and (b) TMPD.

Fig. 8 Frequency responses when G5 0.25m/s2. : No damper (experiment); : no
damper (simulation); : with damper (experiment); and : with damper (simulation). (a)
PD and (b) TMPD.
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characteristics of particle motions which may not be easily
observed experimentally.

4.1 TMPD Vibration Suppression Capability. Particle
damping is generally nonlinear and its performance depends heav-
ily on a number of parameters, including the excitation amplitude
and frequency. Here in order to more fairly compare the vibration
suppression capability of TMPD with that of conventional PD
under identical excitations, in the numerical model we now apply,
to all four configurations mentioned, an identical harmonic excita-
tion GðtÞ ¼ A sinð2pftÞ at the right end of the primary structure. A
and f are the excitation amplitude and frequency, respectively.
Other parameters remain unchanged (as shown in Tables 1 and 2).

We start from analyzing the vibration response reduction. Fig-
ure 10 shows the frequency response plots for the four different
configurations under an excitation level A¼ 0.11N. From the
figure, we can observe that the maximum amplitude of the original
structure is 11.25mm, which is reduced to 6.89mm by the con-
ventional PD, i.e., a 38.76% reduction. With the TMPD, the maxi-
mum amplitude is reduced to 2.01mm, i.e., an 82.13% reduction.
The results indicate that the TMPD has better performance than
the conventional PD under this excitation level. Recalling the non-
linear relation between the excitation level and the responses, we
further compare the peak response amplitudes of all the four con-
figurations when they are subjected to a series of excitation levels.

For the primary structure integrated with the TMPD, both the first
mode and the second are analyzed as the TMPD adds an addi-
tional DOFs to the system. We take into account that the particle
motions will change the peak response frequencies of the system,
and let the ranges of excitation frequency be 5.66–5.93Hz (for the
first mode) and 9.94–10.31Hz (for the second mode). Here,
5.66Hz and 9.94Hz are the first and second natural frequencies of
the integrated system when all the particles are fixed to the enclo-
sure floor, and 5.93Hz and 10.31Hz are those when all the par-
ticles are not in contact with the enclosure. The actual peak
responses will occur within these frequency ranges. Without loss
of generality, the excitation level is set to be from 0.01N to
0.16N with an interval step of 0.01N and from 0.18N to 0.30N
with interval step of 0.02N. The ratio of the RMS value of the
peak response amplitudes of the primary structure without any
damper to that with various damping devices, rr0=rr , is used to
quantify the vibration suppression effectiveness for each
configuration.

Figure 11 shows the results of peak responses (within the afore-
mentioned frequency ranges) of all the four configurations versus
excitation levels. The ratio is one for the baseline configuration
(1). It can be observed that the TMPD consistently outperforms
the conventional PD as well as the undamped absorber. When the
excitation level is lower than 0.05N, the conventional PD has lit-
tle damping effect, since the gravity essentially locks the particles
together to rest on the floor of the enclosure. The TMPD, in con-
trast, exhibits noticeable vibration suppression capability for both
the first and second resonances even when the excitation force
amplitude is at 0.03N, owing to its motion magnifying effect that
can amplify the particle acceleration to above gravity. This dem-
onstrates the effectiveness of the TMPD at very low level vibra-
tions of the primary structure.

For the conventional PD, as the excitation level increases to
above 0.05N, the particles begin to slide over and collide with
each other, producing more significant damping effect via
momentum exchange and internal energy dissipation. Eventually,
the PD reaches its maximum damping capacity at excitation
amplitude of 0.11N, as illustrated in Fig. 11. Although further
increase of excitation amplitude yields more drastic particle
motions, the energy dissipation capacity appears to saturate and
the peak response reduction actually decreases. Compared with
the conventional PD, the vibration suppression performance of
TMPD is much better, as shown in Fig. 11, yielding as much as
9.37 times more response reduction (for the second resonance).
First and foremost, the motions of the particles in the TMPD are
greatly amplified, resulting in more significant momentum
exchange between the particles and the enclosure as well as
greater energy dissipation inside the enclosure. Second, the
TMPD acts also as an undamped vibration absorber that can store

Fig. 11 Comparison of vibration suppression performances of four configurations under dif-
ferent excitation levels. : Configuration 1 (baseline); : configuration 2 (PD); : con-
figuration 3 (undamped absorber); and : configuration 4 (TMPD). (a) first mode and (b)
second mode.

Fig. 10 Comparison of frequency responses of four configura-
tions when A50.11N. : Configuration 1 (baseline); :
configuration 2 (PD); : configuration 3 (undamped
absorber); and : configuration 4 (TMPD)
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a significant portion of the vibratory energy. Although the main
purpose for us to involve the undamped absorber (configuration
(3)) in this analysis is to analyze the damping mechanisms of the
TMPD, the undamped absorber itself can be used to suppress
vibration. It is well known that an undamped absorber may sup-
press vibration through absorbing a portion of the vibratory
energy from the host structure (while an additional degrees-of-
freedom is added to the primary structure so the response charac-
teristics are changed). For instance, for the first resonant peak
(Fig. 11(a)), the undamped absorber (configuration (3)) has a bet-
ter vibration suppression effect than the PD when the excitation

level is below 0.07N and above 0.20N; for the second resonant
peak (Fig. 11(b)), the vibration suppression effect of the
undamped absorber (configuration (3)) is higher than the PD for
the entire frequency range. Owing to the two combinatorial effects
of increased damping and vibration absorption, the TMPD can
reduce the resonant peak responses drastically. Meanwhile, it can
be observed that the excitation level still affects the vibration
reduction capability of TMPD. As the excitation level increases,
the vibration suppression effect of the TMPD for the first reso-
nance increases before it reaches 0.13N, and that of the TMPD
for the second resonance increases before it reaches 0.24N. If the
excitation level increases further, the respective peak responses
will start to increase again.

We then analyze the energy dissipation mechanisms. In particle
damping, the energy dissipation is mainly due to interparticle
interaction, particle-to-ceiling/floor impact, and particle-to-wall
friction. To further compare the damping effect of TMPD and PD,
we calculate the individual energy dissipation for the case of
A¼ 0.11N during the first 10 s, where the excitation frequencies
are f1 ¼ 7:15Hz (i.e., the first and only peak response frequency)
for the PD case and f2 ¼ 5:70Hz and f3 ¼ 10:00Hz (i.e., the first
and second peak response frequencies) for the TMPD case,
respectively. For the PD, Fig. 12 shows that under this excitation
level, the inherent structural damping dominates the energy dissi-
pation as compared with the particle damping, even though the
PD has already reached its apparent optimal status in terms of
excitation level (see Fig. 11). The particles start to dissipate sys-
tem energy noticeably after 3 s, but the remaining energy of the
steady-state vibrating primary system is still large relative to
the total work done by the external excitation. In contrast, for the
TMPD, it can be observed from Figs. 13(a) and 13(b) that the
interparticle interaction contributes significantly to the overall
damping for both the first and second response peaks, and par-
ticles can quickly start to dissipate the system energy (before 2 s)
due to the motion magnifying effect of TMPD. This results in a
considerably lower remaining energy of the primary structure. It

Fig. 12 Cumulative energies (A5 0.11N) under the PD: (A)
work done by external force, (B) interparticle interaction, (C)
particle-to-ceiling/floor impact, (D) particle-to-wall friction, (E)
inherent damping dissipation, and (F) remaining energy of the
primary structure

Fig. 13 Cumulative energies (A50.11N) under the TMPD: (A) work done by external forces,
(B) interparticle interaction, (C) particle-to-ceiling/floor impact, (D) particle-to-wall friction, (E)
inherent damping dissipation, and (F) remaining energy of the primary structure. (a) First
mode and (b) second mode.

Table 3 Comparison of energy dissipations of PD and TMPD

PD TMPD (mode 1) TMPD (mode 2)

A (N) WE (J) RE (J) RE/WE WE (J) RE (J) RE/WE WE (J) RE (J) RE/WE

0.08 0.107 0.0209 0.195 0.0318 0.00261 0.0821 0.0295 0.000970 0.0329
0.11 0.190 0.0309 0.163 0.0500 0.00331 0.0662 0.0487 0.00104 0.0214
0.13 0.263 0.0457 0.174 0.0673 0.00346 0.0514 0.0652 0.00111 0.0170
0.24 0.928 0.198 0.213 0.273 0.0246 0.0901 0.177 0.00209 0.0118
0.30 1.50 0.340 0.227 0.490 0.0557 0.114 0.284 0.00538 0.0189

Note: WE: work done by external force and RE: remaining energy of the primary structure.
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is worth noting that, for both resonant peak responses, under the
excitation level of A¼ 0.11N, the TMPD does not even reach the
apparent optimal operating condition (see Fig. 11).

We further vary the excitation amplitudes and examine the cor-
responding energy dissipations of the TMPD and the PD. For each
excitation amplitude, we search for the respective response peaks
of the PD and the TMPD. We compare the total work done by the
external excitation forces, the remaining energy of the primary
structure, and the ratio of the remaining energy of the primary
structure to the total external work done, under the resonant peak
frequencies, which are listed in Table 3. Apparently, the lowest
ratio of the remaining energy and the total work done for the PD
and the lowest ratios of the first and second peak for the TMPD
are reached when the excitation amplitudes are 0.11N, 0.13N,
and 0.24N, respectively. These are consistent with the results
shown in Fig. 11. The particles indeed dissipate more energy
when the excitation level is high. The remaining energy of the pri-
mary structure, however, may still be high since the absolute lev-
els of response may also be high as excitation level increases.

4.2 Parametric Influence to TMPD Performance. Using
numerical simulation, we can explore the influence of some
design parameters to the vibration suppression performance of the
TMPD. We first investigate the enclosure geometry. The volume
and width of the enclosure as well as all the other parameters are
kept constant (i.e., the same as those listed in Tables 1 and 2), and
we only change the ratio of the enclosure height to length, denoted
by c. This affects how the particles impact the enclosure ceiling.
Again, we search for the response peaks for the first and second
modes of the integrated system under each c ratio. Figures 14(a)
and 14(b) show the results under different excitation levels
0.20N, 0.24N, and 0.30N, respectively. As can be seen, for small
ratio c, the amplitudes of both the first and second resonant
response peaks are relatively high for all the excitation levels
applied. The reason is that, when the clearance height is small,
many particles only have limited motion and also impact fre-
quently with the enclosure floor/ceiling, so they behave more like
added-on mass to the system. As the ratio increases, the energy
dissipation effect of the TMPD increases and reaches certain opti-
mal value. If the ratio further increases, the energy dissipation
effect saturates since particles will not be able to reach the enclo-
sure ceiling. The frequencies of the peak responses of the system
under different ratios c indeed change, i.e., 5.66Hz, 5.69Hz, and
5.75Hz under ratio c ¼ 1:0, 2.0, and 3.0, respectively, for the first
mode when the excitation amplitude is 0.24N. The ratios of the
remaining energy to the total work done by the external force, for
the first and second modes, are listed in Table 4. It can be
observed that the energy ratios are consistent with the results
shown in Fig. 14.

Fig. 14 Influence of enclosure geometry to the damping effect of TMPD under different exci-
tation levels. : 0.20N; : 0.24N; and : 0.30N. (a) First mode and (b) second mode.

Table 4 Damping performance of TMPD under different enclo-
sure geometries

Mode 1 Mode 2

c 1.0 2.0 3.0 0.5 1.0 2.0
RE/WE 0.0160 0.0044 0.0036 0.0115 0.0065 0.0078

Note: WE: work done by external force and RE: remaining energy of the
primary structure.

Fig. 15 Influence of volumetric filling ratio to the damping performance of TMPD under differ-
ent excitation levels. : 0.20N; : 0.24N; and : 0.30N. (a) First mode and (b) second
mode.
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We also investigate the particle volumetric filling ratio vg that
is defined as the ratio of the volume occupied by the particles to
the volume of the enclosure for the TMPD. Here, the change of vg
is facilitated by varying the height of the enclosure only. Simi-
larly, we search for the response peak amplitudes for the first and
the second modes. Figures 15(a) and 15(b) illustrate the influence
of the particle volumetric filling ratio to the peak responses. The
excitation levels used in this analysis are 0.20N, 0.24N, and
0.30N, respectively. For the first resonant peak, as the volumetric
filling ratio increases after certain value of vg/vgmax where vgmax is
the maximum volumetric filling ratio, the vibration suppression
performance goes down. Before that, it is actually insensitive to
the volumetric filling ratio as particles may not reach the enclo-
sure ceiling. It can be observed that the critical volumetric filling
ratio will decrease as the excitation levels increase, since the
under increased excitation levels the particles are able to impact
the ceiling more easily. A similar observation can be reached for
the second resonant peak, where the critical ratios are vg/
vgmax¼ 0.55, 0.5, and 0.4 for excitation levels of 0.20N, 0.24N,
and 0.30N, respectively, beyond which the vibration suppression
performance goes down. From these results, we can conclude that
while the volumetric filling ratio is an important parameter, there
exists a range within which the TMPD performs in a fairly robust
manner.

5 Conclusion

In this research, we investigate systemically the integration of
particle damping mechanism into the tuned mass damper configu-
ration which forms the TMPD. The TMPD does not employ vis-
cous or hysteretic materials and therefore can be used in harsh
environments especially under high temperature. The vibration
response characteristics of a benchmark beam structure integrated
with TMPD are analyzed by combining beam dynamic analysis
with discrete element-based particle motion analysis. Our analysis
indicates that the TMPD can effectively magnify the particle
motion, thereby enhancing remarkably the energy dissipation
capacity of the particles especially under low vibration scenarios.
With the combinatorial effects of the increased energy dissipation
and the vibration absorption, the TMPD exhibits significantly
enhanced vibration suppression capability than conventional parti-
cle damper.
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