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Abstract—Video texture is a new type of medium which can
provide a new video with a continuously varying stream of images
from a recorded video. It is created by reordering the input
video frames in a way which can be played without any visual
discontinuity. Recently, a new method of generating video textures
has been proposed. It first apply principal components analysis
(PCA) to extract signatures or patterns from the original video
sequence, and then implement an autoregressive process (AR)
model to synthesize new video textures. In this paper, we extend
this video texture generation method by comparing PCA with
other dimensionality reduction techniques such as probabilistic
principal components analysis, kernel principal components anal-
ysis, independent component analysis, local linear embedding and
Isomap. According to our experiments, these approaches prevail
the original approach by providing us video textures with better
quality.

Index Terms—Video texture, computer vision, dimensionality
reduction, autoregressive process

I. INTRODUCTION

Video texture which has been introduced by Schödl et al.
[1], is a new type of medium that can generate a continuous,
infinitely changing stream of images from a recorded video.
The term “video texture” is used because it is very similar
to image textures. This technique can be considered as video-
based rendering (VBR) because it has similar features with
image-based rendering (IBR) technique [2], that is, both of
them are able to reuse the already existing resources to synthe-
size new objects. For video textures, a recorded video is used
to make a new video stream without any visual discontinuity
by changing the order of the original frames. This would be
useful in movie and game industries, since it may create new
objects by reusing existing resources so that time and human
resources may be saved. More applications may be found in
[3] [4] [5] [6]. However, same as the original video textures
technique, all of these works can only generate new video by
just switching the order of frames and the result would suffer
from ‘dead-ends’.

Recently in computer vision, there are increased number
of researches on time series analysis to model the dynamical
characteristics of complex systems. Autoregressive (AR) pro-
cess [7] is a tool used for understanding and predicting future
values in a time series. In [8], Fitzgibbon have introduced a

new method for creating video textures by applying principal
components analysis (PCA) and AR process. All frames in
the generated video are new and consist with the motions
in the original video, and ‘dead ends’ would never appear.
In [9], Campbell et al. have extended this approach to work
with strongly non-linear sequences by applying a spline and a
combined appearance model.

The rest of this paper is organized as follows: We briefly
introduce different dimensionality reduction techniques in sec-
tion 2. Then, we compare the experimental results of applying
different dimensionality reduction techniques to generate video
textures in section 3. Finally, in section 4 we conclude and
describe some topics for future work.

II. DIMENSIONALITY REDUCTION APPROACHES

Dimensionality reduction is an important research topic in
the area of data analysis. The goal of dimensionality reduction
techniques is to discover a low-dimensional subspace that best
represents a given set of data points. In this paper, we extend
the work of Fitzgibbon [8] by comparing PCA with other
representative dimensionality reduction techniques to extract
signatures from video frames and then synthesize new video
textures. The techniques we have applied are: probabilistic
principal components analysis, kernel principal components
analysis, Isomap, local linear embedding and independent
component analysis. In this section, we will give a brief
introduction for each technique individually.

A. Probabilistic Principal Component Analysis

In [10], Bishop has proposed a probabilistic model for PCA
by showing that PCA can be represented as the maximum
likelihood solution of a probabilistic latent variable model.
This novel form of PCA is known as probabilistic principal
component analysis (PPCA).

PPCA can be formulated by first choosing an explicit M -
dimensional latent variable z corresponding to the principal
component subspace and then sampling the D-dimensional
observed variable x conditioned on this latent variable. We
define a Gaussian prior distribution p(z) for the latent variable,
and a conditional Gaussian distribution p(x|z) for the observed
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variable x conditioned on the latent variable z is given by

p(x|z) = N (x|Wz + μ, σ2I) . (1)

Where the latent variable distribution over z is p(z) =
N (z|0, I), the W is a D×M linear transformation matrix, and
the parameters μ and σ2 govern the mean and variance of x,
respectively. By integrating the latent variable z, the marginal
distribution of x is given by

p(x) = N (x|μ,WWT + σ2I) . (2)

The unknown parameters can be evaluated by using maxi-
mum likelihood as shown in [10]. We may obtain

WML = U(L − σ2I)1/2R . (3)

σ2
ML =

1
D − M

D∑

i=M+1

λi . (4)

where U is a D × M matrix whose columns are the
eigenvectors of the covariance matrix of {xn}, the M × M
diagonal matrix L contains the corresponding eigenvalues λn,
R is an arbitrary rotational matrix. Furthermore, it is natural
to extend PPCA to mixtures [11].

B. Kernel Principal Component Analysis

Kernel principal component analysis (Kernel PCA) [12] has
been introduced as a nonlinear generalization of the conven-
tional principal component analysis. First, a given data set
{xn} with N data points is mapped onto a high-dimensional
feature space through a nonlinear transformation function
φ(x). Then, we can perform standard PCA in this feature
space, which represents a nonlinear PCA model in the original
data space. The feature space is constructed using a kernel
function k(xn,xm) = φ(xn)T φ(xm). Rather than computing
the covariance matrix, Kernel PCA computes the principal
eigenvectors of the kernel matrix K. As described in [12],
a projection f of a data point x onto a principal component
in the feature space can be computed as

f =
N∑

n=1

aink(x,xn) . (5)

where ain is an element of the coefficients ai and is
calculated as ai = 1√

λi
vi, vi are the eigenvectors of the

kernel matrix and λi are the corresponding eigenvalues. The
performance of Kernel PCA highly depends on the choice of
the kernel function. In our work, a ‘gaussian kernel’ with the
form k(x,x′) = exp(− ‖ x − x′ ‖2 /0.1) is implemented.

C. Isomap

Isomap [13] is global nonlinear dimensionality reduction
technique which reduces the dimensionality by finding a low
dimensional manifold hidden in observational space. It extends
multidimensional scaling (MDS) technique. Euclidean distance
is used to calculate the dissimilarity between pairs of data
points in MDS. In Isomap, instead of using Euclidean distance,

Geodesic distance on the manifold is used as the measurement
of dissimilarity. Isomap algorithm contains three major steps.
The first step is to determine the neighborhood relations for
all data points by constructing a weighted graph, it uses
edge weights to indicate distances between all data points in
original space. The following step is to discover the geodesic
distances between all pairs of data points on the manifold by
computing the shortest path distances in the weighted graph.
The last step is to apply classical MDS to the dissimilarity
matrix formed by the shortest path distances, constructing an
embedding of the data points in a low-dimensional space.
However, Isomap is not able to uncover the underlying spatio-
temporal structure of the data set. This drawback can be solved
by the modified version of Isomap: spatio-temporal Isomap
(ST-Isomap) [14]. It augments the general Isomap framework
to consider the temporal relationships in local neighborhoods
of data points. Similar as the standard Isomap, ST-Isomap
preserves the intrinsic geometry of the data, and it retains the
structure of temporal coherence as well.

D. Locally Linear Embedding

Locally linear embedding (LLE) [15] is a local nonlinear di-
mensionality reduction technique. It is able to compute a low-
dimensional embedding of the high dimensional data while
preserving the local neighborhood structure of the original
space. For a high-dimensional manifold, it can be decomposed
into many small patches. If there exists sufficient data points,
we may assume that each data point and its neighbors lie
on or close to a locally linear patch of the manifold. Thus,
each data point can be represented by a linear combination of
its neighbors in a form of: xi ≈ ∑

j wijxj . Here, wij is the
coefficient of the local geometry of each patch. The detail of
how to calculate the weight matrix W is described in [15].
The next step is to obtain a linear mapping of each neighbor-
hood structure from high-dimensional coordinates to a lower-
dimensional space. A mapping matrix Y = [y1, y2, ..., yN ] that
preserves the local neighborhood information can be obtained
by minimizing the embedding cost function:

θ(Y) =
∑

i

‖ yi −
∑

j

wijyj ‖2 (6)

Here, the vector yi is the global internal coordinates of the
data point xi on the manifold.

E. Independent Component Analysis

Independent component analysis (ICA) [16] is a statistical
technique for separating a multidimensional random vector into
linear additive subcomponents which are maximally statisti-
cally independent from each other. One of the most essential
features of ICA model is nongaussianity, this feature is the key
to reveal the independence of each components.

The goal of ICA is to maximize the statistical independence
between the components of the basis vectors. Unlike other
dimension reduction techniques, ICA searches for components
which are both statistically independent and non-gaussian.
We can find the independent components by maximizing
nongaussianity, it is an important principle in ICA estimation.
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Fig. 1. (a) The original input video.

III. EXPERIMENTAL RESULTS

In our experiments, the process for generating new video
textures contains three steps: the first step is to implement the
dimensionality reduction techniques to extract the signatures
from the frames of a input video. The second step is to apply
an AR process to predict new frame signatures based on the
signatures we obtained in the previous step. Here, we have a
time series made of a sequence of frame signatures {xn} where
n = 1, ..., N , and N is the total number of frames. A zero-
mean AR process of order p for a series of frame signatures
in a d-dimensional space may be modelled by:

xn =
p∑

k=1

Akxn−k + w (7)

Where the d × d matrices A ≡ (A1, ..., Ap) are the
coefficient matrices of the AR process model. And w is a d-
dimensional random vector drawn from Gaussian white noise
distribution with zero-mean. In our case, the order p is set to 2,
which means, the next frame signature will be generated based
on the previous 2 signatures. The last step is to project these
new frame signatures back to the image space and compose
them together as a video texture. All of our experiments are
done by using Matlab on a Windows platform.

A. Extract Frame Signatures and Synthesize New Video Tex-
tures

In order to test the effect of choosing different dimension re-
duction techniques for creating video textures, we implemented
several input videos.1 For instance, one of the input videos we
used is a video clip of a person moving a pen (as shown in
Fig. 1). It is 15 seconds long and contains 450 frames, and
each frame has a size of 160 × 128 (20480) pixels . For each
frame, the new image vector would be a vector with 20480
dimensions, and the total image matrix for 450 frames is a
450× 20480 matrix, with images in the rows, and dimensions
in the columns.

After acquiring the image matrix, we apply different di-
mensionality reduction techniques to capture the signatures of
frames. In our experiments, the dimensionality of 30 to 40 is
good enough for representing each individual frame. In the
implementation of LLE and Isomap approaches, we use K-
nearest method with the number of neighbors K = 12. In the
case of applying ICA, we implemented the FastICA algorithm.
A ‘gaussian kernel’ with the form k(x,x′) = exp(− ‖
x−x′ ‖2 /0.1) is implemented for the Kernel PCA. At the end

1Some of our input test movies are obtained from the “Video Textures” web
site: http://www.cc.gatech.edu/cpl/projects/videotexture

TABLE I
PERFORMANCES OF DIFFERENT DIMENSION REDUCTION TECHNIQUES

FOR GENERATING VIDEO TEXTURES

Technique Complexity Run-time
PCA O(D3) 30.56

PPCA O(nD2) 38.17
Kernel PCA O(n3) 60.41

Isomap O(n3) 56.05
LLE O(Dn2) 45.49
ICA O(Dn2) 49.20

(a) (b) (c)

(d) (e) (f)

Fig. 2. The first frame that is synthesized by using: (a) PCA , (b) PPCA,
(c) kernel PCA, (D) Isomap, (e) LLE and (f) ICA.

of this step, each frame is represented by its signature which
only has 30 dimensions. 2

Subsequently, AR process is applied to synthesize new
signatures. The number of new signatures is decided manually,
for this input video, we set it to 60. At the end, 60 new frames
are synthesized and then define our video texture.

B. Comparison of the results

We have Implemented six different approaches (PCA,
PPCA, Kernel PCA, Isomap, LLE and ICA) separately, all
of them can produce good quality video textures. Each frame
in the result is new and consists with the motions in the
original video sequence. Fig. 2 illustrates the first frame of the
result generated by PCA, PPCA, kernel PCA, Isomap, LLE
and ICA respectively. Table I demonstrates the computational
complexity and the run-time for generating the new video
texture. In Table I, D is the dimensionality of the input data
in the observed space, n represents the number of input data
points and the unit for measuring run-time is in seconds. The
Fig. 3 shows the signatures extracted by applying different
dimension reduction techniques.

Although the result seems very appealing, there still exist
one problem, which is the occurrence of noise (i.e frames con-
tain some ‘ghost’ in it as shown in Fig. 4). For all the results,
after some periods, the noise will start to become visible and
make the video blur. The reason is that the AR process model
predicts the new frame signature based on previous frames, the

2We have also applied mixtures of probabilistic principal component anal-
ysis [11] to generate the signatures of video frames, but the only good result
we obtained is when the mixture size is equal to one which is same as the
standard PPCA.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The signatures of frames extracted by (a) PCA , (b) PPCA, (c) Kernel
PCA, (D) Isomap, (e) LLE and (f) ICA. The last 100 signatures are newly
created by AR process. Here, the x-axis means the number of frames and
the y-axis represents the value of coefficient of each input frame. Each color
stands for one dimensionality of the frame signature (up to 30-dimensions).

Fig. 4. The synthesized video frame which contains visible noise.

noise is cumulated as the AR process iteratively generates more
new signatures. And this feature reflects the difference among
PCA, PPCA, Kernel PCA, Isomap, LLE and ICA approaches
for generating video textures. Table II demonstrates the noise
start to appear at which frame in the synthesized video texture.

From Table II, we may notice that for PCA, the noise starts
to blur the frame at 16th frame, which is the earliest among
all the six techniques. For PPCA and ICA, the noise appeared
later than others (at 50th and 45th frames, respectively). That
means, a more robust decomposition approach such as PPCA
and ICA would generate more typical signature and therefore
can improve the performance of the result. Among all the six
approaches, PPCA provides the best result. This is reasonable,
for PPCA, it is a latent variable model which conditioned
on the observations data set, and it naturally reduces the
dimensionality of the data from a probabilistic perspective.
The order p of the AR process is another factor that may affect
the performance of synthesizing video textures. According to

TABLE II
THE NOISE START TO BLUR THE RESULT AT WHICH FRAME NUMBER

Dimensionality Reduction Techniques Frame Number
PCA 16th

PPCA 50th
Kernel PCA 18th

Isomap 24th
LLE 20th
ICA 45th

(a) (b) (c)

(d) (e) (f)

Fig. 5. The first frame that is synthesized by using: (a) PCA , (b) PPCA,
(c) Kernel PCA, (D) Isomap, (e) LLE and (f) ICA

(a) (b) (c)

(d) (e) (f)

Fig. 6. The first frame that is synthesized by using: (a) PCA , (b) PPCA, (c)
Kernel PCA, (D) Isomap, (e) LLE and (f) ICA for an animation of cartoon.

our experiments, as the value of p increases, the noise may
blur the results earlier and faster. The reason is that, order p
represents the amount of previous signatures that will be used
for predicting a new signature, higher value of p will make the
noise accumulated much faster. In our case, the best results are
obtained when p is set to 2.

(a) (b) (c)

(d) (e) (f)

Fig. 7. The first frame that is generated by using: (a) PCA , (b) PPCA, (c)
Kernel PCA, (D)Isomap, (e) LLE and (f) ICA for a movie of fountain.
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(a) (b) (c)

(d) (e) (f)

Fig. 8. The first frame that is generated by using: (a) PCA , (b) PPCA, (c)
Kernel PCA, (D)Isomap, (e) LLE and (f) ICA for a movie of flag.

(a) (b) (c)

(d) (e) (f)

Fig. 9. The first frame that is generated by using: (a) PCA , (b) PPCA, (c)
Kernel PCA, (D)Isomap, (e) LLE and (f) ICA for a movie of waterfall.

C. More experimental results

We have also experimented other movies during our study.
Here, the goal is to test the video texture generation approach
on some structurally complex scenarios such as fountain. And
we also investigated to use it on some cartoon movies, since
compared to the real shooted movie, cartoon movies contain
more sparse space and less color intensity. Fig. 5 shows the
synthesized result from a movie which contains a movement of
a burning candle for each dimensionality reduction technique.
In Fig. 6, we illustrate the generated video textures for a
cartoon animation. Fig. 7 demonstrates the results of the video
textures for a movie of fountain. Fig. 8 and Fig. 9 show
the video texture results of a movie of waving flag and a
waterfall, respectively. Tables III demonstrates at which frame

TABLE III
THE NOISE START TO BLUR THE RESULT AT WHICH FRAME NUMBER FOR

DIFFERENT INPUT MOVIES AND TECHNIQUES)

Movie PCA PPCA K-PCA Isomap LLE ICA
Flame (Fig. 5) 17th 47th 21th 20th 18th 38th

Cartoon (Fig. 6) 20th 34th 24th 38th 35th 30th
Fountain (Fig. 7) 13th 39th 15th 22th 24th 35th

Flag (Fig. 8) 17th 40th 19th 25th 22th 34th
Waterfall (Fig. 9) 14th 36th 15th 24th 23th 33th

number the noise start to become visible for the flame, cartoon,
fountain, flag and waterfall movies, respectively. Here, from
Table III we may notice that, for cartoon movie, IsoMap
and LLE provide better solution. This is because a cartoon
movie are more spare compared to the real movies, and
dimensionality reduction techniques based on preserving the
neighborhood relationship such as Isomap and LLE are more
suitable than others 3.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have extended the work of applying PCA
and AR process to generate video textures by replacing PCA
with five other dimension reduction techniques (PPCA, Kernel
PCA, Isomap, LLE and ICA). Based on our experiments, by
using these dimensionality reduction techniques, the quality of
video textures are improved compared with applying PCA to
extract frame signatures. The synthesized video textures may
contain similar motions as the input video and will never be
repeated exactly. All the frames in the results are synthesized
and have never appeared before. By comparing the experimen-
tal results among these dimensionality reduction techniques,
PPCA provides more typical signatures which can be used to
synthesize video texture than others. But unfortunately, noise
may still appear and makes the video frame blur after some
period of time. The results can be improved by reducing the
noise during the process of synthesizing new signatures. One
of the possible solutions for improving the performance is to
apply a more sophisticated model, for predicting the new data,
other than autoregressive process model.
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