
ARTICLES

ON VISUAL FORMALISMS

The higraph, a general kind of diagramming object, forms a visual formalism
of topological nature. Higraphs are suited for a wide array of applications to
databases, knowledge representation, and, most notably, the behavioral
specification of complex concurrent systems using the higraph-based
language of statecharts.

DAVID HAREL

Visualizing information, especially information of com-
plex and intricate nature, has for many years been the

subject of considerable work by many people. The in-
formation that interests us here is nonquantitative, but
rather, of a structural, set-theoretical, and relational na-
ture. This should be contrasted with the kinds of quan-
titative information discussed at length in [43] and [46].
Consequently, we shall be interested in diagrammatic
paradigms that are essentially topological in nature, not
geometric, terming them topovisual in the sequel.

Two of the best known topo-visual formalisms have
their roots in the work of the famous Swiss mathemati-
cian Leonhard Euler (1707-1783). The first, of course, is
the formalism of graphs, and the second is the notion of
Euler circles, which later evolved into Venn diagrams.

Graphs are implicit in Euler’s celebrated 1736 paper, in
which he solved the problem of the bridges of Kiinigs-

berg 1.121. (An English translation appears in [3].) Euler
circles first appear in letters written by Euler in the
early 1760s [13], and were modified to improve their
ability to represent logical propositions by John Venn in
1880 [48, 491. (See [19, chap. 21 for more information.‘)

A graph, in its most basic form, is simply a set of
point:s, or nodes, connected by edges or arcs. Its role is

’ Intere.jtingly. both these topo-visual actuevements of Euler were carried out

during the period in which he could see with one eye only. (Euler lost sight in

his right eye in 1735. and in the left around IX%.] It is tempting to attribute

this in part to the fact that the lack of stereoscopic vision reduces one’s ability

to estimate size and distance. possibly causing a sharper awareness of topolog-

ical features.

Part of this work was carried out while the author was at the Computer

Science Department of Carnegie-Mellon University. Pittsburgh. Pennsylvania.

e) 1988 ACM OOOI-0782/88/0500-0514 $1.50

to represent a (single] set of elements S and !some binary
relation R on them. The precise meaning of the relation
R is part of the application and has little to do with the
mathematical properties of the graph itself. (Certain re-
strictions on the relation R yield special classes of
graphs that are of particular interest, such a,s ones that
are connected, directed, acyclic, planar, or bipartite.
There is no need to elaborate on the use of graphs in
computer science-they are used extensively in vir-
tually all branches of the field. The elements repre-
sented by the nodes in these applications ra-nge from
the most concrete (e.g., physical gates in a cj.rcuit dia-
gram) to the most abstract (e.g., complexity classes in a
classification schema), and the edges have been used to
represent almost any conceivable kind of relation, in-
cluding ones of temporal, causal, functional, or episte-

mological nature. Obviously, graphs can be modified to
support a number of different kinds of nodes and edges,
representing different kinds of elements and. relation-
ships.

A somewhat less widely used extension of graphs is

the formalism of hypergraphs (see, e.g., [I]), though
these are also finding applications in computer science,
mainly in database theory (see [14], [IS], ami [sI]). A
hypergraph is a graph in which the relation being spec-
ified is not necessarily binary: in fact, it need not even
be of fixed arity. Formally, an edge no longer connects
a pair of nodes, but rather a subset thereof. ‘This makes
hypergraphs somewhat less amenable to visual repre-
sentation, but various ways of overcoming this diffi-
culty can be conceived (see Figure 1). In analogy with
graphs, several special kinds of hypergraphs are of par-
ticular interest, such as directed or acyclic.

It is important to emphasize that the information

514 Comm!unicntions of the ACM May 1988 Volume .31 Number 5

Articles

conveyed by a graph or a hypergraph is nonmetric and
captured by the purely topological notion of connected-
ness (a term taken from [18]); shapes, locations, dis-
tances, and sizes, for example, have no significance.

Although not quite as widely used as graphs, Euler
circles, or Venn diagrams, are often used to represent
logical propositions, color charts, etc. (see Figure 2). The

basic idea is to appeal to the two-dimensional case of
the Jordan curve theorem (e.g., [ll, 30]), which estab-
lishes that simple closed curves partition the plane into
disjoint inside and outside regions. A set is then repre-
sented by the inside of such a curve,’ giving the topo-
logical notions of enclosure, exclusion, and intersection of

the curves their obvious set-theoretic meanings: being a
subset of, being disjoint from, and having a nonempty

intersection with, respectively.3
The bottom line is that, whereas graphs and hyper-

graphs are a nice way of representing a set of elements
together with some special relation(s) on them, Euler/
Venn diagrams are a nice way of representing a collec-
tion of sets, together with some structural (i.e., set-
theoretical) relationships between them. The difference
between the two types of relationships is obvious. The
structural ones are uniformly interpreted in the
obvious set-theoretic fashion, in much the same way as
the = symbol in logical formalisms is uniformly inter-
preted as the equality predicate, whereas the edge rela-
tions of graphs and hypergraphs attain different mean-
ings in different applications.

The main observation motivating the present work is
that in numerous computer-related applications the
complexity of the objects, systems, or situations under
consideration is due in large part to the fact that both
capabilities are needed. We have a (usually large) num-
ber of sets that are interrelated in nontrivial set-

’ Venn himself was not always consistent in this respect: see 149. p. 1171 01

[lg. p. 43) for a description of his five-set diagram.

3The topological paradigm used here is termed insideness in [18]

theoretic ways, but they are also related via one or
more additional relationships of special nature, depend-
ing on the application at hand. Furthermore, among the
structural, set-theoretic relationships it is often desira-
ble to identify the Cartesian product of some of the
sets-an action that can be crucial in preventing cer-
tain kinds of representations from growing exponen-

tially in size. In line with these observations, which
will be supported by examples in the sequel, the pur-
pose of this article is to extend and combine Euler’s two

topo-visual formalisms into a tool suitable for dealing

with such cases.
In the next section, we introduce higruphs,4 first mod-

ifying Euler/Venn diagrams somewhat. then extending

them to represent the Cartesian product, and finally
connecting the resulting curves by edges or hyperedges.
[The appendix contains the formal syntax and seman-
tics of simple higraphs.) We will then illustrate the
power of the formalism by briefly discussing higraph-
based versions of such graphical languages as entity-
relationship diagrams, semantic and associative net-
works, and dataflow diagrams. Later we will detail
a less obvious application called statecharts [21], which
are essentially a higraph-based version of finite-state
machines and their transition diagrams.

HIGRAPHS

Let us start with a simple example of Euler circles (Fig-

ure 3). As can be seen, we prefer to use rounded rectan-
gles, or rounded rectilinear shapes (rountungles?), rather
than circles or unrestricted curves, and shall call the

areas, or zones, they enclose blobs in the sequel. Sec-
ond, as the formal definition supplied in the appendix
shows, we regard each blob as denoting a certain kind

‘This is not a particularly successful choice of term. but was chosen never-

theless to be reminiscent of hrgh graphs or hierarchal graphs. though our

diagrams are not limited to being stratified in the way the word hrerarchrcnl

might imply.

FIGURE 1. Graphical Representation of Hypergraphs

May 1988 Volume 32 Number 5 Communications of the ACM 515

Articles

FIGURE 2. Applications of Euler Circles, or Venn Diagrams

of set, with the nesting of curves denoting set inclusion,
not set membership. Thus, Figure 3 can be seen to
contain several cases of inclusion, disjointness, and

intersection of sets.
For our first real departure from Euler and Venn’s

treatment, we now require that every set of interest be
represented by a unique blob, complete with its own
full contour. One of the reasons for this is the desire to
provide every set with its own area (e.g., for naming or
labeling purposes). For example, does the A in Figure 3
represent the difference between the sets represented
by the two large blobs, or the entire set on the upper

left? The answer, following Venn’s notational conven-
tions, would appear to be the former; but then how do

we label the upper set itself?
Our solution is illustrated in Figure 4, where the two

large intersecting blobs are clearly labeled A and D,
the intersection A n D is labeled C, and the difference
A - D is called B. In fact, had we left out B and its
contour we could not refer to A - D at all. More pre-

85
0
I D

1
FIGURE 3. Simple Blobs

I

I

a 0
n

B El C

0 p

00 p s

83

Cl
T

R

D

E u
FIGURE 4. Adding Unique Contours for All Identifiable Sets

cisely, with this “unique-contour” convention, the only
real, identifiable sets are the atomic sets, that is, those
represented by blobs residing on the bottom levels of
the diagram, containing no wholly enclosed blobs
within. Any other blob merely denotes the compound
set consisting of the union of all sets represented by
blobs that are totally enclosed within it. The atomic
blobs of Figure 4 are thus B, C, E, G, H, I, K, L, M, N. 0,

Q, S, and, significantly, also T. The fact that T, as a
Jordan curve, intersects R in Figure 4 does not necessar-
ily mean that the sets represented by5 T and R really
intersect or that T - R is nonempty. In fact, in our

formalism, the intersection of two curves does not, in
itself, mean anything since unless internal blobs appear

in the appropriate places neither the difference nor the
intersection of the sets they represent is itself identifia-
ble. Thus, as far as the information present in Figure 4,
T could just as well have been drawn completely dis-

‘In the sequel. we shall often blur the distinction between a ~cuwe. its associ-

ated blob. and the set it depicts.

516 Communications of the ACM May 1988 Volume .31 Number 5

Articles

joint from R, since R is defin.ed by the figure to be the
union of Q and S, whether T’s curve intersects it or not.
Of course, if T had been entirely enclosed within R,
things would have been quite different, with R then
being the union of Q, S, and T. All this might sound a
little strange, but it is not really restrictive, since one

can always let T and R intersect and simply add extra
blobs representing T f~ R and T - R, as is done in
Figure 5.

Thus, one might say that empty space in our dia-
grams always represents nothing at all, except if it is
the area of an atomic blob, which is one that contains
no enclosed blobs. An atomic blob always represents
some identifiable set, though clearly such a set might

just happen to be an empty one.

FIGURE 5. Adding Cartesian Products

We now add the ability to represent the Cartesian
product. Figure 5 shows the notation used-a partition-
ing by dashed lines. In it I, for example, is no longer the
union of K, N, I, L, and M, but, rather, the product of
the union of the first two with the union of the last

three. Symbolically,

We shall call the operands of the product, W and X in
this case, the orthogonal components of blob J. Actually,
the Cartesian product is unordered, in the sense that

A X B is always the same as B X A, so that J is really
a set of unordered pairs of elements. Thus, our
x operator is symmetric, and in fact, in the appendix
we use the symbol @J, instead of X, to denote it. An-
other consequence of this, and of our previous conven-
tion regarding set inclusion versus set membership, is
that the product is also associative. In this way, if c E C,
k E K, and m E M, then the unordered triple {c, k, m 1
would be a legal element of the set D of Figure 5,
without the need to distinguish it from {c, (k, m)]. To
make this idea work, it helps to assume that all atomic
sets are pairwise disjoint (i.e., no element appears in
any two of these sets).

Decomposing a blob into its orthogonal components
by topologically partitioning the inner area of a Jordan
curve yields a unique unambiguous area for each such

component. Thus, the labels Y, W, and X in Figure 5
label the appropriate components unambiguously. On
the other hand, as we shall see, there is another reason
for wanting sets to have their own blob contours, and if
so desired an orthogonal component can be enclosed in
one of its own, as is Z in Figure 5. Notice the somewhat

awkward location for the labels D and I. There are a
couple of other possibilities for locating the label of a
product blob, among which is the one illustrated in
Figure 6, but we shall remain with that of Figure 5.

-J-

FIGURE 6. An Alternative for Labeling Partitioned Blobs

Now that we have a formalism for representing the
sets we are interested in and their structural, set-theo-
retic relationships, it is time to add edges. A higraph is
obtained by simply allowing edges, or more generally,

hyperedges, to be attached to the contour of any blobs.
As in graphs, edges can be directed or undirected, la-
beled or unlabeled, of one type or of several, etc. In
Figure 7 we have allowed for a single kind of unlabeled
directed hyperedge of arity between 2 and 3. Most of
the arrows in the figure are simple binary edges, such

1’
FIGURE 7. Adding Edges Resulting in a Higraph

May 1988 Volume 31 Number 5 Communications of the ACM 517

Articles

as the very high-level one connecting E to A, the very
low-level one connecting N to K, and the interlevel
one connecting U to E. Others are directed three-way
hyperedges. such as the one connecting E to both] and
I’, and the one connecting both R and M to D. Clearly,
there is nothing to prohibit self-directed or partially

self-directed edges, such as the one connecting A to its
subblob B. The formal meaning of such edges (see the

appendix) in the graph-theoretic spirit simply associates
the target blobs with the source blobs via the particular
relationship the edges represent. Here, then, is the

other reason for wanting each set of interest to have its
own contour: to enable it to be connected to others via
the edges.

In the sequel the term higraph will be used in a very
liberal sense, making no real distinction between the
various possibilities, for example, the edge-based or

hyperedge-based cases.

we are free to attach any meaning at all to the relation-
ship itself and to the way (if any) that it extends down-

wards to the elements of those sets. Thus, if we take
the relationship R represented by ordinary arrows in a
higraph to mean “each element in the source set is
related to some element in the target set by relationship
T,” then the information conveyed by Figure 9, for ex-
ample, cannot really by captured by an ordinary graph
with T-edges, since one would be forced to decide
which element in the target set is meant, thus causing
an overspecification.

The computer science literature is full of uses of
graphs, and it appears that many of these can benefit
from.the extensions offered by higraphs. Consider the
entity-relationship (E-R) diagrams used in the conceptual
specification of databases [i’]. These are really hyper-
graphs with a single type of node that is depicted by a
rectangle and denotes an entity in the described pool of

FIGURE 8. Two Representations of a S-clique

SOME IMMEDIATE APPLICATIONS
The first thing to notice when attempting to apply hi-
graphs is that edges connect sets to sets, not elements to
elements as in graphs. The most common way of inter-
preting a higraph edge is as a collection of regular
edges, connecting each element in one set with each
element in the other. In this way, for example, it is
possible to represent a 5-clique. as in Figure 8. This all-

to-all semantics is not mandatory, however, since the
bare meaning of a higraph edge is that the relationship
it represents holds between the sets it connects. Hence,

(0
\

CO
0

CA

0

\
0,

0
)

FIGURE 9. A Simple Higraph

data. The hyperedges, whose labels are writien in small
diamond-shaped boxes (that should not be regarded as
nodes), capture the intended relationships between en-
tities. Figure 10 shows a simple example of such a dia-
gram, representing a small part of the data used by an
airline company.6 Its information content is clear:
pilots canflyaircraft,secretariesworkfor
employees, and employees are paid salaries on

certain dates (the latter being a three-way relation-
ship). Notice, however, the is -a edges, informing
us that pilots and secretaries are really
employees too. These are conveying inforrnation of a
totally different kind. Indeed, they capture precisely
the kind of structural, set-theoretic relations discussed
earlier. Using the very same “flat” diagrammatic repre-
sentation for both kinds of relationships can cause a lot
of confusion, especially in large and intricate cases, as a
glance at some of the examples in the literature shows.

6Actually. Figure 10 does some injustIce to the E-R formalism. as it is some-

times called. by ignoring the additIona features that the formahsm supports.

such as attributes for both entities. and relationshios and the classification of

relationships as one-one, many-one. etc. Throughout. we sha.1 have to be

satisfied with describing only those features of a formalism th.lt are directly

relevant to our discussion.

510 Communications of the ACM May 1988 Volume 31 Number 5

Articles

* dates

salaries

FIGURE 10. A Simple E-R Diagram

Figure 11 shows the way such information can be
represented in a higraph-based extension of E-R dia-
grams. The set of employees is divided into the sub-
sets of interest, secretaries and pilots (with an
additional blob for all others, if so desired). The
paid-on edge emanates from the employees blob,

while the can fly edge emanates from the pilots
blob only-exactly what one would expect. The work
for edge rightly connects the secretaries blob with
its parent blob-employees. The new information has
been quite easily added: aircraft are now just part
of the overall equipment, which is related to years
by the relationship received-on. while the dates
on which salaries are received have been specified
as consisting of pairs from the orthogonal components
month and year. Moreover, independent divisions can
be represented by overlapping blobs, as illustrated in
Figure 12, which shows how a new breakup of the
employees by sex can be added to the previous figure

FIGURE 11. A Higraph-Based Version (and extension) of Figure 10

-*.

yt-
?

employees (

4 ? __-
can yx fly

+*’

FIGURE 12. Two Breakups of Employees

with a couple of additional details. In it we might have
reason to relate the female pilots or the male
secretaries to other entities. In practice, overlaps
should probably be used somewhat sparingly, as overly
overlapping blobs might detract from the clarity of the
total diagram, an observation that is in line with the
often-made claim that a hierarchy is by far the way
humans prefer to structure things (see [45, chap. 11.
This opinion is not universally accepted, however, so
the human-factors aspects of formalisms like higraphs
would appear to require careful experimental research,
such as those carried out in [18] and [20].

Occasionally, authors have used other labels to cap-
ture is -a relationships, typically ones that try to de-
scribe the special nature of the breakup into subsets. As

May 1988 Volume 31 Number 5 Communications of the ACM 519

Articles

I I

I

FIGURE 13. Another E-R Diagram (taken from [39])

an example consider Figure 13, which is Figure 9 of
[42] almost verbatim, and our higraph-based Figure 14,

which contains the same information.
A formalism that is very similar to that of E-R dia-

grams, and actually predated it by a number of years
(see [40]), is that of semantic, or associative, networks.
These graph-based structures are used widely in artifi-
cial intelligence for natural language processing and

knowledge representation, and are discussed in numer-

/
employee

L /

FIGURE 14. A Higraph-Based Version of Figure 13

ous books and papers. (A good survey and history ap-
pears in [4], and more examples can be found in [6],
[X7, [&I], and [SO] and in the collection of papers in
[IY].) Semantic networks can actually be thought of as
concept-relationship diagrams, with much of the research
in the area concerned with the association of rich se-
mantic meaning with the various types of nodes and
edges. Here, too, is - a edges are used in abundance
resulting in large, and at times incomprehensible, dia-
grams. Often, semantic networks contain more than
one distinct type of is - a edges, corresponding to set
inclusion, set membership, a physical “being-part-of”
relationship, etc.’ The way higraphs can be used here is
exactly as in E-R diagrams; and the advantages become
all the more significant if such different shades of struc-
tural is -a relationships can be made visually distinct
(see the section called “Possible Variations on the
Theme”). Clearly, it would be naive to claim that the
profound problematics of knowledge representation can
be overcome by diagrammatic considerations alone.
Nevertheless, every little improvement helps.

In both E-R diagrams and semantic networks, people
have observed that often the relationships, not only the
entities and concepts, have to be stratified by levels of

‘A variety of names have been attached to these, such as USA and lnst in

[6], SS and EL in [37] (standing for is a. instance. subset. and elemenf, respec-

tively). and many others elsewhere, such as a kind of, group-of.

is part-of.etc.

520 Communications of the ACM May 1988 Volume 37 Number 5

Articles

detail. This is typically done by considering the dia-
mond-shaped relationship labels to be nodes of a sec-

ond kind, and involving them also in structural is a
relationships with others. Although some people are
opposed to this visual blurring of the distinction be-
tween entities and relationships, there is nothing to
prevent those who are not from transferring this idea to
the higraph framework. This would yield a blob struc-

ture also for the relationships, with the edges now serv-
ing to connect the entities and concepts to their rele-
vant real, nonstructural relationships.

It is noteworthy that the area of the blobs in a hi-
graph can be further exploited in these applications.
Full E-R diagrams and semantic networks are typically
laden with attributes, or properties, that are attached as
additional “stump” nodes to the various entities. These
attributes are often of the kind that are “inherited
down” the is -a hierarchy, as the phrase goes. [In fact,
there are many interesting issues associated with the

very notion of inheritance; see [5], [45].) In a higraph-
based representation, the area inside a blob would ap-
pear to be an ideal place to list, attach, or otherwise
identify any properties, attributes, or explanations that
are relevant to that blob and anything enclosed therein.
Thus, simple inheritance is made possible quite natu-

rally by the insideness approach to representing the
subset relationship.

We should remark that some papers on semantic net-
works and the E-R model have indeed suggested the
use of insideness and interblob edges to represent high-
level entities and relationships, though the ideas do not
seem to have been pursued to their full potential (see
[lo], [16], [25], [34], and [36]). Also, the idea of basing
the decomposition of sets on Cartesian products and
OR’s is consistent with much of the literature on types.
(For example, see [5] where these two features are cap-
tured by the notions of a record and a variant. respec-
tively.)

Among the other graph-based formalisms for which
higraphs appear to be useful are data-flow diagrams. A
higraph-based version of such diagrams, called activity-

charts, is one of the graphical languages supported by
the STATEMATE system of i-Logix and is described in
[24] and [28]. In activity charts the blobs denote func-
tions, or activities, with the subset relation representing
the subfunction relationship. The edges denote the pos-
sible flow of data. (Cartesian product is not used.) Con-
sider the activity-chart of Figure 15, which is a simple
part of the functional decomposition of an automatic
teller machine. One of the edges therein means that
the customer’s account-number might possibly flow
(following, perhaps, a read or write instruction) from
the identify activity to the update-account ac-
tivity, or to anywhere in the serve-customer activ-
ity, that is, to either (or all) of the deposit, with-
draw, or balance-query subactivities. Another of
the edges in Figure 15 means that the new amount
with which the customer’s balance should be adjusted
might flow from any one of the deposit or withdraw
activities to the update-account activity.

FIGURE 15. A Simple Activity Chart

Higraphs also form the basis of a recent paper [4i’], in
which a visual language for specifying security con-
straints in operating systems is presented. The formal-
ism represents access rights and exceptions thereof as
distinct kinds of edges in a higraph, the blobs of which
represent groups of users, files, and other entities.
Cartesian product is used to represent the breakup of
files into their components. Reference [47] also contains
a number of interesting special-purpose extensions to
the basic higraph formalism. Another use of higraph-
like ideas appears in [32] and [38] in the form of proof
diagrams for verifying concurrent programs, and there
is a simple way of using higraphs as the basis of a
hypertext system rather than conventional graph. In
part, many issues that arise in the context of hypertext
systems, such as multiple hierarchies, superconcepts,
and composite nodes are treated naturally in the
higraph formalism. (See [8].) One can also conceive of
additional applications in visualizing interrupt-driven
flowcharts and certain kinds of model-collapsing con-
structions in model theory.

STATECHARTS: A LESS OBVIOUS APPLICATION
The previous section notwithstanding, it would appear
that the most beneficial application of higraphs lies in
extending state-transition diagrams to obtain the stute-
charts of [21]. It was actually in the process of trying to
formulate the underlying graphical concepts embodied
in (the earlier) statecharts that higraphs emerged. This
section contains a brief description of the statechart
formalism; the reader is referred to [21] for further
details.

To motivate the discussion, there appears to be agree-
ment in the literature on software and systems engi-
neering as to the existence of a major problem in the
specification and design of large and complex reactive
systems. A reactive system (see [22] and [39]), in con-
trast with a transformational system, is characterized by
being event driven, continuously having to react to
external and internal stimuli. Examples include tele-
phones, communication networks, computer operating
systems, avionics systems, VLSI circuits, and the man-
machine interface of many kinds of ordinary software.
The problem is rooted in the difficulty of describing
reactive behavior in ways that are clear and realistic,

May 2988 Volume 31 Number 5 Communications of the ACM 521

Articles

D s A

I g(c)

ib C

(a)

FIGURE 16. Depth in State Charts

and at the same time formal and rigorous, in order to
be amenable to precise computerized analysis. The be-
havior of a reactive system is really the set of allowed
sequences of input and output events, conditions, and
actions, perhaps with some additional information such
as timing constraints.

Most notable among the solutions proposed for this
problem are Petri nets [41], communicating sequential
processing (CSP) [26]. the calculus of communicating
systems (CCS) [Xi], the sequence diagrams of [51], ES-
TEREI, [2], and temporal logic [39]. Statecharts consti-
tute yet another attempt at solving this problem, but
one that is aimed at reviving the classical formalism of
finite-state machines (FSMs) and their visual counter-
part, state-transition diagrams, trying to make them
suitable for use in large and complex applications. In-
deed, ,people working on the design of really complex
systems have all but given up on the use of conven-
tional FSMs and their state diagrams for several rea-
sons:

There have been attempts to remove some of these
drawbacks, mostly by using various kinds of hierarchi-
cal or communicating state machines. Typically, how-
ever, these hierarchies provide little help in reducing
the size of the resulting description, as they (do not
condense any information. Moreover, the co-mmunica-
tion between FSMs is usually one-to-one, be:ing channel
or processor based, and allows for only a single set of
communicating machines on the highest level of the
description. Furthermore, for the most part such exten-
sions are not particularly diagrammatic in spirit, and
hence one loses the advantages a visual medium might
offer.

Statecharts are a higraph-based extension of standard
state-transition diagrams, where the blobs represent
states and arrows represent transitions. (For (additional
statechart features, the reader is again referred to
[21].)9 As to the basics, we might say that

state charts = state diagrams + depth

(1) State diagrams are “flat.” They provide no natu-
ral noiion of depth, hierarchy, or modularity, and
therefore do not support stepwise, top-down, or bottom-
up development.

+ orthogonality + broadcast communication.

(2) State diagrams are uneconomical when it comes
to transitions. An event that causes the very same tran-
sition from a large number of states, such as a high-
level interrupt, must be attached to each of them sepa-
rately resulting in an unnecessary multitude of arrows.

(3) State diagrams are extremely uneconomical, in-
deed quite infeasible, when it comes to states (at least
when .states are interpreted in the usual way as “snap-
shots” of the situation at a given point in time). As the
system under description grows linearly, the number of
states Igrows exponentially, and the conventional FSM
formalism forces one to explicitly represent them all.

(4) Finally, state diagrams are inherently sequential
in nature and do not cater for concurrency in a natural
way.8

Depth is represented by the insideness of blobs, as
illustrated in Figure 16, where 16b may replace 16a.
The symbols e, f, g, and h stand for events that trigger
the transitions, and the bracketed c is a condition.
Thus, g[c] triggers the transition from A to C if and
when g occurs, but only if c is true at that time. The

fact that A and C do not overlap and are completely
inside D means that the latter is the exclusive-or (XOR)

of the former, so that being in D is tantamount to being
in either A or C, but not in both. The main point here is
that the f-arrow, which leaves the contour of D, applies
to both A and C, as in 16a. This simple higraph-based
principle, when applied to large collections of states
with many levels, helps overcome points (1) and (2)
above (flatness and multilevel events). The iclea of ex-
ploiting this kind of insideness in describing levels in a
state-transition diagram appears also in [2O]. It should
be noted that the small default arrows depend on their

‘Here. modebng a highly concurrent system by its global states only is ‘Some encouraging experimental evidence as to the appropriatkness of state-

considered unnatural. charts for system description is discussed in [ZI. sect. 91.

W

522 Communications of the ACM May 1988 Volume 3 1 Number 5

Articles

encompassing blobs. In Figure 16a state A is singled out
as being the default, or start state, of the three, a fact
represented in 16b by the top default arrow. The bot-
tom one, however, states that C is default among A and
C if we are already in D and hence alleviates the need
for continuing the h-arrow beyond D’s boundary.

Orthogonality is the dual of the XOR decomposition
of states, in essence an AND decomposition, and is cap-
tured by the partitioning feature of higraphs, that is, by

the unordered Cartesian product. In Figure 17b state Y
consists of two orthogonal components, A and D, related
by AND: To be in Y is tantamount to being in both A
and D, and hence the two default arrows. The intended

semantics of 17b is given by its equivalent “flat” version
17a, which represents a sort of automata product. No-
tice the simultaneity of transitions that takes place
when event e occurs in state configuration (B, F), and
the merging and splitting transitions that lead to and
from Y. Note also the special condition [In(G)] attached
to the f-transition from C, and the way it is reflected in
Figure 17a. Figure 17 illustrates the heart of the expo-
nential blowup problem, the number of states in the
explicit version of Y being the product of the numbers

(a)

pearing along a transition in a statechart is not merely
sent to the “outside world” as an output. Rather, it can
affect the behavior of the state chart itself in orthogonal

components. This is achieved by a simple broadcast
mechanism: Just as the occurrence of an external event
causes transitions in all components to which it is rele-
vant (see Figure 17), if event e occurs and a transition
labeled e/f is taken, the action f is immediately acti-
vated, and is regarded as a new event, possibly causing

further transitions in other components.
Figure 18 shows a simple example of this. If we are in

(B, F, 1) and along comes the external event m, the next
configuration will be (C, G, I), by virtue of e being
generated in H and triggering the two transitions in
components A and D. This is a chain reaction of length 2.
If no external event n occurs, the new configuration
will be (B, E, I). by virtue of a similar chain reaction of
length 3.

This concludes our brief account of the basic features
of statecharts, and we now illustrate the formalism
with a rather simplified version of the digital watch
described in [21]. The watch has four external control
buttons, as well as a main display that can be used to

A

P

FIGURE 17. Orthogonality in State Charts

of states in the orthogonal components of its higraph
version. If orthogonality is used often and on many
levels, the state explosion and sequentiality difficulties
(points (3) and (4)) are also overcome in a reasonable
way. This can be further observed by studying the ex-
amples and references in [21]).

Figures 16 and 17 do not contain any outputs, and
hence, orthogonal components can synchronize so far
only through common events (like e in Figure 17) and
can affect each other only through [in(state)] condi-
tions. A certain amount of subtlety is added to the way
statecharts model concurrency by allowing output
events. Here, statecharts can be viewed as an extension
of Mealy machines (see [27]), since output events,
which are called actions, can be attached optionally to
the triggering event along a transition. In contrast with
conventional Mealy machines, however, an action ap-

(b)

A P !D

B

lx

e f&l

C

H

-----se-

m/e m

(’
n/f

FIGURE 18. Broadcasting in State Charts

May 1988 Volume 31 Number 5 Communications of the ACM 523

Articles

show the time (hour, minutes, and seconds) or the
date (weekday, day of month, and month). It has a
chime that can be enabled or disabled, beeping on the
hour if enabled. It has an alarm that can also be en-
abled or disabled, and beeps for z minutes when the
time in the alarm setting is reached unless any one of
the buttons is pressed earlier. It has a stopwatch with
two d.isplay modes (regular and lap), a light for illu-
mina.tion, and a weak- battery blinking indication.

Sorne of the external events relevant to the watch are
a, b, c, and d, which signify the pressing of the four
buttons, respectively, and b-up, for example, which

signifies the release of button b. Another event we shall
be us:ing, 2 -min, signifies that 2 minutes have elapsed

since the last time a button was pressed. (We choose
not to get involved here in a syntax for the event
expressions themselves. In a language of compound
events that includes a time-out construct, such as

that of [24] and [28], this last event can be expressed
easily.)

2-mm

[not in (stopvotch)l (

I

isploys

FIGURE 19. Part of the displays State in a Digital Watch

Statecharts can be used to describe the behavior of
the watch in terms of its human interface: namely, how
the user’s operations, such as pressing buttons, influ-
ence I hings. It should be noted, however, that the de-
scriptions that follow do not specify the activities car-
ried out internally by the watch, only their control.
Thus, nothing is said here about the time elapsing ac-
tivity itself, or the technicalities of the beeping, the
blinking, or the displays. These aspects of a system can
be described using other means, and should be incorpo-
rated into the overall specification together with the
statecharts. (See [24] for one approach to this incorpora-
tion.)

Figure 19 shows the basic displays state of the
watch.. Notice that time is the default state, and there
is a cycle of pressings of a leading from time through
the alarm, chime, and stopwatch states back to
time. There is a general update state, and a special
state for updating the alarm’s internal setting. The 2
min event signifies return to time if 2 minutes have

elapsed in any state other than stopwatch and no
button has been pressed.

time f-1

FIGURE 20. The stopwatch State

The specification of the watch contains examples of
orthogonal states on various levels. We should first con-
sider the stopwatch state, detailed in Figure 20. It has
two substates, zero and (disp, run), the first being
the default. Pressing b takes the stopwatch from the
former to the latter causing it to start running with a

regular display. Repeatedly pressing b causes it to stop
and start alternately. Pressing d can be seen to cause
the display to switch to lap and back to reg, or to
leave the orthogonal state and return to zero depend-
ing, as illustrated, on the present state configuration.
The encircled and starred H is one of the additional

notations described in [21], and prescribes that, upon
entering stopwatch from chime by pressing a, the
state actually entered will be the one in which the

system was in most recently. Thus, we are entering the
stopwatch state by “history’‘-hence, the 13. The de-
fault will be used if this is the first time stopwatch

is entered, or if the history has been cleared.
The description of the high levels of the watch also

uses orthogonality. In Figure 21 the watch is specified
as being either dead or alive, with the latter consist-

ing of five orthogonal components. (Notice where the

FIGURE 21. A High-Level Description of the ‘Watch

524 Communications of the ACM May 1988 Volume 31 Number 5

Articles

[not in(stopwatch)l

FIGURE 22. A State Chart far the Digital Watch

displays state fits in.) In this figure the events bt - in,
bt rm, bt - dy and bt wk signify, respectively, the in-
sertion, removal, expiration, and weakening (below a
certain level) of the battery. We use t-hits - tm to

signify that the internal time of the watch has reached
the internal time setting of the alarm, and t-hits hr
to signify that it has reached a whole hour. Also,

beep- rt occurs when either any button is pressed or 2
minutes have elapsed since entering beep, and beep-
st occurs 2 seconds after entering c -beep. (As men-
tioned, these events should also be written formally as
compound event expressions in a language involving
time-outs, disjunctions, and so on; see [28].)

The first of the five components in Figure 21, main,
specifies the transitions between displaying and beep-
ing, where displays is simply the state described ear-
lier (see Figure 19). (In actuality, the displaying activi-
ties themselves do not shut off when the watch is beep-
ing, but cannot be changed until control returns to the

displays state.) The alarm-St component describes
the status of the alarm, specifying that it can be
changed using d when control is in the alarm display
state. The chime - st state is similar, with the addi-
tional provision for beeping on the hour given within.
The power state is self-explanatory, where the activity
that would take place in the weak state would involve
the displays blinking frantically.

In considering the innocent-looking light state, the

default is off, and depressing and releasing b cause
the light to switch alternately between on and off.
What is interesting is the effect these actions might
have elsewhere. If the entire statechart for the parts of
the watch described so far is contemplated (see Figure
22), one realizes that pressing b for illumination has
significant side effects: It will cause a return from an
update state if we happen to be in one, the stopping of
the alarm if it happens to be beeping, and a change in
the stopwatch’s behavior if we happen to be working

May 1988 Volume 31 Number 5 Communications of the ACM 525

Articles

with it. Conversely, if we use b in displays for any
one of these things the light will go on, whether we like

il. or not. These seeming anomalies are all a result of
the fact that the light component is orthogonal to the
main component, meaning that its scope is very broad.
One c:an imagine a far more humble light compo-
nent, applicable only in the time and date states,
which would not cause any of these problems. Its speci-
fication could be carried out by attaching it orthogo-
nally, not to main, but to a new state surrounding
time and date, as in Figure 23.

stopbvat pj m olorm

1 # I 0
I I I I

FIGURE 23. A Smaller Scope for the Light

As mentioned earlier, this section has only described
the “no-frills” version of the statecharts. A more com-
plete ireatment appears in [21], and a formal syntax

and semantics appear in [23]. The reader may have
noticed that we have not used intersecting states in the
statecharts. While intersecting blobs in higraphs do not

cause any serious semantic problems (see the appen-
dix), intersecting states in state charts do. In fact, since
not all syntactically legal higraphs make sense as state-

charts, it is not even clear how to define an appropriate
syntax for statecharts with intersecting states (see [21,
sect. 6.21). A preliminary approach to these problems

appears in [29].

POSSI:BLE VARIATIONS ON THE THEME

The higraph formalism can be enriched and extended
in various ways. We shall point to a few of these possi-
bilities briefly and informally.

At times it becomes useful to base a formalism on a

three-valued, rather than a two-valued, underlying
model. For example, in certain uses of graphs in data-
bases .and artificial intelligence there arises a need to
state not only that a certain relationship R holds or does
not hold between two objects, but also to capture the
situation whereby we do not know which of these is
the case. One possibility is to reinterpret the absence of
an R arrow as denoting the don’t-known situation, and
have a new kind of arrow representing the negntzve
information that R definitely does not hold. This simple
idea can be adopted in higraphs too, as in Figure 24,
which is suppose to indicate that R holds between A

and B and does not hold between B and C. and that all

FIGURE 24. Negative Arrows

other possibilities (including whether or not R holds
between C and B)“’ are left open.

Often a don’t-know option is needed not only for
arrows, but for blobs as well. That is, we might want to

represent uncertainty as to the presence or absence of
identifiable sets, rather than relationships. Accordingly,
we can use a new blob notation (e.g., one with a dashed
contour) to denote a set that we are not sure actually
exists (here one assumes that all regular blobs stand for
nonempty sets). Figure 25 asserts our uncertainty as to
whether A - B is empty or not, and also states that if it
is not empty then the difference is called E and is re-
lated to F via relationship R.

FIGURE 25. “Not-Quite-Sure” Blobs

When higraphs are used in practice (see [21]. [24],

[28], and [47]), it is useful to be able to “zoom out” of a
particular view, suppressing low-level details. A good
example would be going from Figure 22, the detailed
state-chart description of the watch, to the less detailed

Figure 21. In such cases there arises a problem with
edges connected to subblobs that are omitted from the
new, less detailed view. If we decide to zoom out of the
likes of Figure 26 by suppressing blobs B and C, it might
be a mistake to consider Figure 27a as the correct new
version, since the two are clearly inconsistent. Figure
27b is better, with its stubs that represent relationships

to unspecified subblobs. For example, since a state-
chart arrow whose target is a high-level state A pre-
scribes entrance to none other than the default substate

“This is not determined by the arrow from A to B. since. as discussed earlier.

the fact that R holds between A and B says nothing about what the case is

for A’s subsets.

526 Communications of the ACM May 1988 Volume 32 Number 5

Articles

FIGURE 26. Another Simple Higraph

FIGURE 27. Two Possible Zoom Outs for Figure 26

of A, Figure 21 is somewhat inconsistent with Figure
22. In the present context, a better version would have
shown the beep- rt arrow crossing the contour of the
displays state and ending with a stub indicating en-
trance to a substate (as of now unspecified) that is pos-
sibly different from the default substate, time.

One weakness of the higraph formalism is its inabil-
ity to specify both set inclusion and set membership.
We have chosen to adopt the former as the meaning of

blob enclosure, although we could probably have cho-

sen the latter too without causing too many problems.
This weakness is all the more apparent when higraphs
are contrasted with their graph-based equivalents, in

which set inclusion is depicted by is a edges (see Fig-
ure 10). In the latter, one need only use an additional
type of edge, labeled elmnt -of, for instance, to be
able to represent set membership. We would like to
claim that this is not much more than a notational
problem that requires a topo-visual way of distinguish-
ing between two different kinds of insideness. Most of

the solutions to this notational problem that come to
mind are somewhat unsatisfactory, with the exception

of the one that calls for a three-dimensional basis for
higraphs, in which the third dimension is responsible
for such distinctions (e.g., by having set inclusion take
place in the same plane and set membership be re-
flected by different levels of planes).”

An additional possible extension to higraphs is to
make arrows mean more than a simple connection be-
tween source and target. (We are assuming ordinary
directed binary edges here, not, say, hyperedges.) Since
higraph arrows in general cut across blob contours, we

might want to say something more about the sequence of
crossovers that the edge takes on its way from the

source to the target. This can be achieved trivially by

drawing the arrow through the appropriate contours in
the desired order (assuming this order is indeed possi-

ble, given the basic topology of the blobs). The interest-
ing case occurs when we want to omit from such a
sequence one or more of the contours that, topologi-
tally speaking, must be crossed by any line from the
source to the target. We would like the D-to-B arrow in
Figure 26, for example, to enter B, but not to enter A in
the process. State charts with intersections give rise to
one interesting motivation for such cases, whereby one
wants the system to enter only one of two intersecting

” Visual formalisms that are predominantly (w-dimensional in nature. but

make some use of a third dimension. are far from being out of the question.

even if we arc not willing to wait for quality holographic workstations to

show up. If all we need. as in this case. is the ability to tell when two nested

blobs are on the same plane or not. then a simple graphical simulation of a

dynamic left-right shift in point of view would do the job.

(a)
FIGURE 26. Skipping and Multiple Crossovers

(b)

May 1988 Volume 31 Number 5 Communications of the ACM 527

states; again, the reader is referred to [Zl, sec. 6.21 for
cletails. This richer notion of an edge can be repre-
sented visually by simply allowing arrows to skip edges
as in Figure 28. Multiple crossovers, if desired, can also

be represented as illustrated in the figure. Clearly, the
forma1 semantics would be more elaborate, since a
finite sequence of blobs, rather than an ordered pair, is

the interpretation of a directed edge, and a finite set
thereof, rather than an unordered pair, is the interpre-

tation of an undirected edge.

CONCLUSION AND FUTURE WORK
Higraphs seem to give rise to several interesting mathe-

matical notions adapted to a large extent from graphs
and hypergraphs. For example, one can provide reason-

able definitions of connectivity, transitive closure, plan-
arity, and acyclicity in higraphs, as well as a couple of
different notions of “hitrees.” For each of these, we may
ask for upper and lower bounds on the computational
complexity of the corresponding algorithmic problems.
In some cases algorithms and bounds can be carried
over from the work on graphs and hypergraphs, but one
gets the feeling that in other cases these bounds can be
improved by utilizing the special structure of higraphs.

Some of these algorithmic problems have indeed arisen
during the implementation of the STATEMATE system
[24, 281, which supports three higraph-based formal-

isms. It would appear that the algorithmics of higraphs
forms a fruitful avenue for further research.

The main thesis underlying this paper is that the
intricate nature of a variety of computer-related sys-

tems and situations can, and in our opinion should, be
represented by visual formalisms: visual, because they
are to be generated, comprehended, and communicated
by humans; and formal, because they are to be manipu-
lated, maintained, and analyzed by computers. (This
thesis is consistent with the study in [9], which argues

for a more visual, nonverbal approach toward mathe-
matics.)

Part of our motivation in stressing this point, despite

the fact that it might appear to be so obvious, is the
rather different approach that one occasionally finds

elsewhere. For example, [33] is a compendium of many
computer-related diagrammatic methods (virtually all
of which are based on graphs). In our opinion, [33] is
quite inadequate, since it accepts the visual, but appar-

ently rejects the formal. For the most part, the methods
and languages appearing in [33] are described in a man-
ner that is devoid of semantics, and can therefore be
used at best as informal aids when working with some
other, hopefully more rigorous, nonvisual medium.

One of the implicit points we have tried to make in
this article is that a considerable amount of mileage can
be gotten out of basing such formalisms on a small
number of simple diagrammatic notions, first and fore-
most among which are those that are topological in
nature, not geometric. A lot can be gained b:y using
topo-visual formalisms based on insideness, connected-
ness, and partitioning, with the semantics as given
here, before one attempts to attach special significance

to, for example, shapes, colors, and sizes.
We are entirely convinced the future is “visual.” We

believe that in the next few years many more of our
daily technical and scientific chores will be carried out
visually, and graphical facilities will be far better and
cheaper than today’s. The languages and approaches
we shall be using in doing so will not be merely iconic
in nature (e.g., using the picture of a trash can to de-
note garbage collection), but inherently diagrammatic

in a conceptual way, perhaps also three-dimensional
and/or animated. They will be designed to encourage
visual modes of thinking when tackling systems of
ever-increasing complexity, and will exploit and ex-
tend the use of our own wonderful visual sy.stem in
many of our intellectual activities.

APPENDIX. Formal Definition of Higraphs

In what follows we present a forma1 (nongraphical) define
syntax and semantics for higraphs with simple bi-

nary directed edges. The reader should have no dif- uO(x) = kfl,

ficulty in extending the edge set E to represent, say,

hyperedges.
A higraph is a quadruple

and u’(x) = u U’(X),
i=l

H = (A u‘. s, E), then (r is restricted so that x 4 u+(x).

where B is a finite set of elements, called blobs, and
E, the set of edges, is a binary relation on B:

EEBxB.

The partitioning function 1~ is defined as

7~: B ---, zBxB,

The subblob function u is defined as

a‘: B -+ 2B.

It assigns to each blob x E B its set u(x) of subblobs
and is restricted to being cycle free. Thus, if we

associating with each blob x E B some equivalence
relation r(x) on the set of subblobs, c(x). This is

really just a rigorous way of specifying the breakup
of x into its orthogonal components, which are now
defined simply to be the equivalence classes induced
by the relation VT(X). Indeed, for x E B let us denote
these classes by K,(X), . . . , ?T&Y). For the orthogonal

528 Communications of the ACM May 1988 Volume 3 I Number 5

Articles

division into components to be representable graphi-
cally (and in order to make the semantics cleaner),
we shall require that blobs in different orthogonal
components of x are disjoint. Formally, for each x
we require that no two elements y and z of U(X) can
intersect-that is, can satisfy u+(y) ft U+(Z) # 0-
unless they are in the same orthogonal component-
that is, unless the relation X(X) renders them equiva-
lent. Clearly, k, = 1 means x is not partitioned into
components at all.

the domain of the model M, and p assigns disjoint
subsets of D to the atomic blobs of H. Thus,

/.L; A + 2O,

where if x # y then p(x) II p(y) = 0. We now have to
show how to extend the association of atomic blobs
with sets over D to an association of all blobs with
more complex objects over D. Accordingly, extend ~1
by defining, inductively, for each x E B,

This concludes the syntax of higraphs; now for
the semantics. Two notations are useful. Given a hi-
graph H, define the set of atomic blobs to be

A = (x E B / a(x) = 01.

(Obviously, the finiteness of B and the cycle-freeness
restriction on u imply A is nonempty.) The unordered
Cartesian product of two sets S and T is defined as

S 8 T = (Is, t) J s E S, t E TJ.

Given a higraph H, a model for H is a pair

M = (D, ~1,

where D is a set of unstructured elements” called

the intuition being that to calculate the semantics of
a blob x we form the unordered Cartesian product of
the meanings of its orthogonal components, each of
which, in turn, is simply the union of the meanings
of its constituent blobs. In particular, of course, if
k, = 1, no product is taken, and we really have

as expected.
To complete the semantics, note that the edge set

E induces a semantic relation EM on the p(x)s, de-
fined by

“We want to avoid situations in which. say. x and 1x1 are both elements of D (F(X), P(Y)) E EM iff (x, y) E E.

Acknowledgments. Thanks are due to Ton Kalker,
Doug Tygar, and Jeanette Wing for comments on the
appendix, and to an anonymous referee for a very de-
tailed and thoughtful report.

1.5.

16.

REFERENCES 17.

1. Berge. C. Graphs nnd Hypergmphs. North-Holland, Amsterdam, 1973.
2. Berry. G.. and Cosserat, 1. The ESTEREL synchronous programming

language and its mathematical semantics. In Seminar on Concurrency.
S. Brookes and G. Winskel, Eds. Lecture Notes in Computer Science,
vol. 197. Springer-Verlag. New York. 1985. pp. 389-448.

3. B&s. N.L.. Lloyd, E.K.. and Wilson. R.J. Graph Theory: 1736-1936.
Clarendon Press. Oxford. 1976.

18.

Fagin, R.. Mend&on. A., and Ullman. 1. A simplified universal
relation assumption and its properties. ACM Trans. D&abase Syst. 7.
3 (Sept. 1982), 343-360.
al-Fedaghi, S.S. An entity-relationship approach to modelling petro-
leum engineering database. In Entity-Relationship Approach to Soff-
ware Engineering. C.G. Davis et al.. Eds. Elsevier Science Publishers.
Amsterdam. 1983, pp. 761-779.
Findler. N.V.. Ed. Associative Networks: Representation and Use of
Knowledge by Compufer. Academic Press. New York, 1979.
Fitter. M.. and Green. T.R.G. When do diagrams make good com-
puter languages? Inf. 1. Man-Mach. Sfud. II. 2 (March 1979),
235-261.

19.

20.

4. Brachman, R.J. On the epistemological status of semantic networks.
In Associative Nefworks: Representation and Use of Knowledge by Com-
puter. N.V. Findler. Ed. Academic Press. New York. 1979, pp. 3-50.

5. Cardelli. L.A. Semantics of multiple inheritance in semantics of data
types. Kahn. G. et al. Lecture Notes in Computer Science. vol. 173.
Springer-Verlag. 1984. pp. 51-67.

21.

22.

6. Charniak. E.. and McDermott. D. Introduction 10 Arfificial Intelligence.
Addison-Wesley, Reading, Mass.. 1985.

7. Chen, P.P.-S. The entity-relationship model-toward a unified view
of data. ACM Trans. Database Syst. I. 1 (Mar. 1976). 9-36.

8. Conklin, J. Hypertext: An introduction and survey. IEEE Computer
20, 9 (Sept. 1987). 17-41.

23.

24.

9. Davis, P.J., Anderson. J.A. Nonanalytic aspects on mathematics and
their implication on research and education. SIAM Review 21. 1 (Jan.
1979), 112-127.

10. dos San&. C.S.. Neuhold. E.J.. and Furtado. A.L. A data type ap-
proach to the entity-relationship model. In Entity-Relationship Ap-
proach to Systems Analysis and Design. P.P. Chen, Ed. North-Holland.
Amsterdam. 1980, pp. 103-119.

25.

11. Dugundji. J. Topology. Allyn and Bacon. Boston, Mass., 1966.
12. Euler, L. Solutio problem&is ad geometriam situ pertinentis. Comm.

Acad. Sci. Imp. Petropol. 8 (1736), 128-140.
13. Euler. L. Lettres a unt? Princesse d’AIkmagne. Vol. 2. 1772 (letters

102-108).

26.

27.

14. Fagin. R. Degrees of acyclicity for hypergraphs and relational data-
base schemes. 1. ACM 30, 3 (July 1983). 514-550.

28.

Gardner. M. Logic Machines and Diagrams. 2nd ed. University of
Chicago Press. Chicago, Ill.. 1982.
Green. T.R. Pictures of programs and other processes. or how to do
things with lines. Behau. In[Technol. I. 1 (1982). 3-36.
Harel. D. Statecharts: A visual formalism for complex systems. Sci.
Comput. Pro&nm. 8, 3 (June 1987), 231-274.
Harel, D.. and Pnueli, A. On the development of reactive systems. In
Logics and Models of Concurrent Systems. NATO, ASI Series, vol. 13.
K.R. Apt, Ed. Springer-Verlag. New York, 1985. pp. 477-498.
Harel. D.. Pnueli, A., Schn,idt. J.P., and Sherman, R. On the formal
semantics of statecharts. In Proceedings of the 2nd IEEE Symposium on
Logic in Computer Science (Ithaca. N.Y., June 22-24). IEEE Press. New
York, 1987. pp. 54-64.
Harel. D., Lachover. H.. Naamad. A.. Pnueli. A., Politi. M., Sherman.
R., and Shtul-Trauring. A. STATEMENT: A working environment
for the development of complex reactive systems. In Proceedings of
the Tenth IEEE International Conference on Software Engineering (Singa-
pore, April 13-15). IEEE Press. New York, 1988.
Hendrix, G.G. Expanding the utility of semantic networks through
partitioning. In Proceedings of the 4th Infernational Conference on Arti-
ficial Infelligence (Tbilisi, Georgia. USSR, Sept. 3-8). International
Joint Council on Artificial Intelligence, Cambridge. Mass., 1975,
pp. 115-121.
Hoare, C.A.R. Communicating sequential processes. Commun. ACM
21, 8 (Aug. 1978). 666-677.
Hopcroft. J.E.. and Ullman. J.D. Introduction to Automata Theory. Lan-
guages, and Computation. Addison-Wesley. Reading. Mass., 1979.
i-logic. The languages of STATEMATE. Tech. Rep., i-Logix, Burling-
ton. Mass., 1987.

May 1988 Volume 31 Number 5 Communications of the ACM 529

Articles

29. Kahana, CA. Statecharts with overlapping states. MS. thesis, Dept.
of Mathematics and Computer Science, Bar-Ilan University, Ramat
Can, Israel. 1986 (in Hebrew).

30. Lefschetz. S. lrrtroducfion to Topology. Princeton University Press,
Pnnceton. N.J., 1949.

31. Maier. D.. and Ullman. I.D. Connections in acvclic bvoereranhs. In

32

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

Proceedings of the ACM &mposium on DatnbasbSystems (Los ingeles.
Calif.. March 29-31). ACM. New York, 1982, pp. 34-39.
Manna, Z.. and Pnueli, A. Specification and verification of cencur-
rent programs by V-automata. In Proceedings of fhe 14th ACM Sympo-
sium on Principles of Programming Languages (Munich). ACM, New
York, 1987, pp. l-12.
Martin. J.. and McClure. C. Diagramming Techniques for Analysts and
Programmers. Prentice-Hall, En&wood Cliffs, N.J., 1985.
McSkimin. J.R., and Minker. J. A predicate calculus based semantic
nelwork for deductive searching. In Assouatiue Networks: Representa.
fion and Use of Knowledge by Computer. N.V. Findler. Ed. Academic
Press. New York, 1979, pp. 205-238.
Miiner, R. A Calculus of Communicating Systems. Lecture Notes in
Computer Science, vol. 92. Springer-Verlag. New York. 1980.
Nakano, R. Integrity checking in a logic-oriented ER model. In
Entity-Relationship Approach to Softivare Engineering, C.G. Davis et al..
Ed:;. Elsevier Science Publishers. Amsterdam, 1983. pp. 551-564.
Nilsson, N.J. Prmciples of Arflficial Intelligence. Tioga. Palo Alto.
Calif., 1980.
Owicki. S.. and Lamport. L. Proving Iiveness properties of concur-
rent programs. ACM Trans. Progmm. Lang. Syst. 4. 3 (July 1982),
455495.
Pm&i, A. Applications of temporal logic to the specification and
verification of reactive systems: A survey of current trends. In
Current Trends in Concurrency. J. W. de Bakker et al., Eds. Lecture
Notes in Computer Science. vol. 224. Springer-Verlag. New York,
19E:6. pp. 510-584.
Quillian. M.R. Semantic memory. In Semantic Information Processing.
M. Minsky, Ed. MIT Press, Cambridge, Mass.. 1968. pp. 227-270.
Reisig, W. Pefri Nets: An Introduction. Springer-Verlag. Berlin, 1985.
Schiffner. G.. and Schuermann. P. Multiple views and abstractions
with an extended-entity-relationship model. Comput. Lang. 4. 3/4
(19791, 139-154.
Schmid, C.F. Sfatistical Graphics: Dfrsign Principles and Practices.
Wiley, New York, 1983.
Shapiro, SC. A net structure for semantic information storage. de-
duction. and retrieval. In Proceedings of the 2nd lnfernational Joint
Conference on Artificial Infelllgence. 1971. pp. 512-523.

45. Touretzky, D.S. The Mathematics of Inheritance Systems. Pitman. Lon-
don, and Morgan Kaufmann. Los Altos. Calif. 1986.

46. Tufte, E.R. The Visual Display of Quantitafiue Information. Graphics
Press, Cheshire, Corm.. 1983.

47. Tygar, J.D.. and Wing. J.M. Visual specification of security con-
straints. In The IEEE Workshop on Visual Languages (LinkGping, Swe-
den. Aug. 19-21). IEEE Press. New York, 1987.

48. Venn. J. On the diagrammatic and mechanical representation of
propositions and reasonings. Phil. Mug. (1880). 123.

49. Venn. J. Symbolic Logic. 2nd ed. London. 1894. (Reprinted by Chel-
sea, Bronx, N.Y.. 1971.)

50. Woods, W.A. What’s in a link? Foundations for semantic networks.
In Representation and Understanding. D.G. Bobrow and A.M. Collins,
Eds. Academic Press, New York. 1975. pp. 35-82.

51. Zave. P. A distributed alternative. to finite-state-machine specifica-
tions. ACM Trans. Program. Lang. Sysf. 7. 1 (Jan. 1985), 10-36.

CR Categories and Subject Descriptors: CO [Computer Systems Or-
ganization]: General-sysfems specification methodology; C.3 [Computer
Systems Organization]: Special-Purpose and Application-Based Sys-
tems-real-time systems; D.0 [Software]: General; D.2.1 [Software Engi-
neering]: Requirements/Specifications; D.2.21: Tools and Techniques;
D.2.10 [Software Engineering]: Design; E.0 [Data]: General: E.l [Data]:
Data Structures-graphs: F.l.l [Computation by Abstract Devices]:
Models of Computation-au~omatn: H.l.O [Models and Pr.inciples]: Gen-
eral: 1.2.4 [Artificial Intelligence]: Knowledge Representation Formal-
isms and Methods-semantic networks

General Terms: Design. Languages, Theory
Additional Key Words and Phrases: Higraph. reactive systems. state

charts. visual formalisms

Author’s Present Address: David Harel, Department of Applied Mathe-
matics and Computer Science. The Weizmann Institute of Science,
Rehovot. Israel 76100.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy other&e, or to
republish, requires a fee and/or specific permission.

I 1987 I

8th POW-Symposium on Principles of Distributed Computing

Vancouver, B.C., August 10-12. 1987. Sponsored by ACM

SIGACT and ACM SIGOPS. ISBN: O-89791-239-X. Order No.

536870. ACM SIGACT/SIGOPS Members: $18.00; Others:

$24.00.

S&MOD ‘87-International Conference on Management of Data

Snn Francisco, CA, May 27-29, 1987. Sponsored by ACM

SIGMCID. ISBN: O-89791-236-5. Order No. 472870. ACM/

SIGMCID Members: $27.00; Others: $36.00.

S&PLAN ‘87-Symposium on Interpreters and Interpretive
Techniques

St. Paul, MN, June 24-26. 1987. Sponsored by ACM SIGPLAN.

ISBN: O-89791-235-7. Order No. 548870. ACM/SIGPLAN

Members: $17.00; Others: $23.00.

14th International Symposium on Computer Architecture

Pittsburgh, PA, June 3-6, 1987. Sponsored by ACM: SIGARCH

and IEEE-CS. ISBN: 0-89791-223-O. Order No. 415870. ACM/

SIGARCH/IEEE-CS Members: $35.00; Others: $70.00.

24th DAC-Design Automation Conference

Miami, FL, June 28-July 1. 1987. Sponsored by ACM SIGDA and

IEEE-CS. ISBN: O-89791-234-9. Order No. 477870. ACM

SIGDA/IEEE-CS Members: $47.00; Others: $94.00.

3rd Symposium on Computational Geometry
Waterloo, Ontario, June 8-10, 1987. Sponsored by ACM SIGACT

and SIGGRAPH. ISBM: O-89791-231-4. Order No. 429870.

ACM/SIGGRAPH/SIGACT Members: $20.00; Others: $27.00.

1987 International Conference on Artificial Intelligence and Law

Boston, MA, May 27-29, 1987. Sponsored by Northeastern

University and ACM SIGART. ISBN: O-89791-230-6. Order No.

604870. ACM SIGART Members: $16.00; Others: $21.00.

530 Comnrtrnications of the ACM May 1988 Volume 31 Number 5

