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ON VISUAL FORMALISMS 

The higraph, a general kind of diagramming object, forms a visual formalism 
of topological nature. Higraphs are suited for a wide array of applications to 
databases, knowledge representation, and, most notably, the behavioral 
specification of complex concurrent systems using the higraph-based 
language of statecharts. 

DAVID HAREL 

Visualizing information, especially information of com- 
plex and intricate nature, has for many years been the 

subject of considerable work by many people. The in- 
formation that interests us here is nonquantitative, but 
rather, of a structural, set-theoretical, and relational na- 
ture. This should be contrasted with the kinds of quan- 
titative information discussed at length in [43] and [46]. 
Consequently, we shall be interested in diagrammatic 
paradigms that are essentially topological in nature, not 
geometric, terming them topovisual in the sequel. 

Two of the best known topo-visual formalisms have 
their roots in the work of the famous Swiss mathemati- 
cian Leonhard Euler (1707-1783). The first, of course, is 
the formalism of graphs, and the second is the notion of 
Euler circles, which later evolved into Venn diagrams. 

Graphs are implicit in Euler’s celebrated 1736 paper, in 
which he solved the problem of the bridges of Kiinigs- 

berg 1.121. (An English translation appears in [3].) Euler 
circles first appear in letters written by Euler in the 
early 1760s [13], and were modified to improve their 
ability to represent logical propositions by John Venn in 
1880 [48, 491. (See [19, chap. 21 for more information.‘) 

A graph, in its most basic form, is simply a set of 
point:s, or nodes, connected by edges or arcs. Its role is 

’ Intere.jtingly. both these topo-visual actuevements of Euler were carried out 

during the period in which he could see with one eye only. (Euler lost sight in 

his right eye in 1735. and in the left around IX%.] It is tempting to attribute 

this in part to the fact that the lack of stereoscopic vision reduces one’s ability 

to estimate size and distance. possibly causing a sharper awareness of topolog- 

ical features. 

Part of this work was carried out while the author was at the Computer 

Science Department of Carnegie-Mellon University. Pittsburgh. Pennsylvania. 
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to represent a (single] set of elements S and !some binary 
relation R on them. The precise meaning of the relation 
R is part of the application and has little to do with the 
mathematical properties of the graph itself. (Certain re- 
strictions on the relation R yield special classes of 
graphs that are of particular interest, such a,s ones that 
are connected, directed, acyclic, planar, or bipartite. 
There is no need to elaborate on the use of graphs in 
computer science-they are used extensively in vir- 
tually all branches of the field. The elements repre- 
sented by the nodes in these applications ra-nge from 
the most concrete (e.g., physical gates in a cj.rcuit dia- 
gram) to the most abstract (e.g., complexity classes in a 
classification schema), and the edges have been used to 
represent almost any conceivable kind of relation, in- 
cluding ones of temporal, causal, functional, or episte- 

mological nature. Obviously, graphs can be modified to 
support a number of different kinds of nodes and edges, 
representing different kinds of elements and. relation- 
ships. 

A somewhat less widely used extension of graphs is 

the formalism of hypergraphs (see, e.g., [I]), though 
these are also finding applications in computer science, 
mainly in database theory (see [14], [IS], ami [sI]). A 
hypergraph is a graph in which the relation being spec- 
ified is not necessarily binary: in fact, it need not even 
be of fixed arity. Formally, an edge no longer connects 
a pair of nodes, but rather a subset thereof. ‘This makes 
hypergraphs somewhat less amenable to visual repre- 
sentation, but various ways of overcoming this diffi- 
culty can be conceived (see Figure 1). In analogy with 
graphs, several special kinds of hypergraphs are of par- 
ticular interest, such as directed or acyclic. 

It is important to emphasize that the information 
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conveyed by a graph or a hypergraph is nonmetric and 
captured by the purely topological notion of connected- 
ness (a term taken from [18]); shapes, locations, dis- 
tances, and sizes, for example, have no significance. 

Although not quite as widely used as graphs, Euler 
circles, or Venn diagrams, are often used to represent 
logical propositions, color charts, etc. (see Figure 2). The 

basic idea is to appeal to the two-dimensional case of 
the Jordan curve theorem (e.g., [ll, 30]), which estab- 
lishes that simple closed curves partition the plane into 
disjoint inside and outside regions. A set is then repre- 
sented by the inside of such a curve,’ giving the topo- 
logical notions of enclosure, exclusion, and intersection of 

the curves their obvious set-theoretic meanings: being a 
subset of, being disjoint from, and having a nonempty 

intersection with, respectively.3 
The bottom line is that, whereas graphs and hyper- 

graphs are a nice way of representing a set of elements 
together with some special relation(s) on them, Euler/ 
Venn diagrams are a nice way of representing a collec- 
tion of sets, together with some structural (i.e., set- 
theoretical) relationships between them. The difference 
between the two types of relationships is obvious. The 
structural ones are uniformly interpreted in the 
obvious set-theoretic fashion, in much the same way as 
the = symbol in logical formalisms is uniformly inter- 
preted as the equality predicate, whereas the edge rela- 
tions of graphs and hypergraphs attain different mean- 
ings in different applications. 

The main observation motivating the present work is 
that in numerous computer-related applications the 
complexity of the objects, systems, or situations under 
consideration is due in large part to the fact that both 
capabilities are needed. We have a (usually large) num- 
ber of sets that are interrelated in nontrivial set- 

’ Venn himself was not always consistent in this respect: see 149. p. 1171 01 

[lg. p. 43) for a description of his five-set diagram. 

3The topological paradigm used here is termed insideness in [18] 

theoretic ways, but they are also related via one or 
more additional relationships of special nature, depend- 
ing on the application at hand. Furthermore, among the 
structural, set-theoretic relationships it is often desira- 
ble to identify the Cartesian product of some of the 
sets-an action that can be crucial in preventing cer- 
tain kinds of representations from growing exponen- 

tially in size. In line with these observations, which 
will be supported by examples in the sequel, the pur- 
pose of this article is to extend and combine Euler’s two 

topo-visual formalisms into a tool suitable for dealing 

with such cases. 
In the next section, we introduce higruphs,4 first mod- 

ifying Euler/Venn diagrams somewhat. then extending 

them to represent the Cartesian product, and finally 
connecting the resulting curves by edges or hyperedges. 
[The appendix contains the formal syntax and seman- 
tics of simple higraphs.) We will then illustrate the 
power of the formalism by briefly discussing higraph- 
based versions of such graphical languages as entity- 
relationship diagrams, semantic and associative net- 
works, and dataflow diagrams. Later we will detail 
a less obvious application called statecharts [21], which 
are essentially a higraph-based version of finite-state 
machines and their transition diagrams. 

HIGRAPHS 

Let us start with a simple example of Euler circles (Fig- 

ure 3). As can be seen, we prefer to use rounded rectan- 
gles, or rounded rectilinear shapes (rountungles?), rather 
than circles or unrestricted curves, and shall call the 

areas, or zones, they enclose blobs in the sequel. Sec- 
ond, as the formal definition supplied in the appendix 
shows, we regard each blob as denoting a certain kind 

‘This is not a particularly successful choice of term. but was chosen never- 

theless to be reminiscent of hrgh graphs or hierarchal graphs. though our 

diagrams are not limited to being stratified in the way the word hrerarchrcnl 

might imply. 

FIGURE 1. Graphical Representation of Hypergraphs 
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FIGURE 2. Applications of Euler Circles, or Venn Diagrams 

of set, with the nesting of curves denoting set inclusion, 
not set membership. Thus, Figure 3 can be seen to 
contain several cases of inclusion, disjointness, and 

intersection of sets. 
For our first real departure from Euler and Venn’s 

treatment, we now require that every set of interest be 
represented by a unique blob, complete with its own 
full contour. One of the reasons for this is the desire to 
provide every set with its own area (e.g., for naming or 
labeling purposes). For example, does the A in Figure 3 
represent the difference between the sets represented 
by the two large blobs, or the entire set on the upper 

left? The answer, following Venn’s notational conven- 
tions, would appear to be the former; but then how do 

we label the upper set itself? 
Our solution is illustrated in Figure 4, where the two 

large intersecting blobs are clearly labeled A and D, 
the intersection A n D is labeled C, and the difference 
A - D is called B. In fact, had we left out B and its 
contour we could not refer to A - D at all. More pre- 
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FIGURE 4. Adding Unique Contours for All Identifiable Sets 

cisely, with this “unique-contour” convention, the only 
real, identifiable sets are the atomic sets, that is, those 
represented by blobs residing on the bottom levels of 
the diagram, containing no wholly enclosed blobs 
within. Any other blob merely denotes the compound 
set consisting of the union of all sets represented by 
blobs that are totally enclosed within it. The atomic 
blobs of Figure 4 are thus B, C, E, G, H, I, K, L, M, N. 0, 

Q, S, and, significantly, also T. The fact that T, as a 
Jordan curve, intersects R in Figure 4 does not necessar- 
ily mean that the sets represented by5 T and R really 
intersect or that T - R is nonempty. In fact, in our 

formalism, the intersection of two curves does not, in 
itself, mean anything since unless internal blobs appear 

in the appropriate places neither the difference nor the 
intersection of the sets they represent is itself identifia- 
ble. Thus, as far as the information present in Figure 4, 
T could just as well have been drawn completely dis- 

‘In the sequel. we shall often blur the distinction between a ~cuwe. its associ- 

ated blob. and the set it depicts. 

516 Communications of the ACM May 1988 Volume .31 Number 5 



Articles 

joint from R, since R is defin.ed by the figure to be the 
union of Q and S, whether T’s curve intersects it or not. 
Of course, if T had been entirely enclosed within R, 
things would have been quite different, with R then 
being the union of Q, S, and T. All this might sound a 
little strange, but it is not really restrictive, since one 

can always let T and R intersect and simply add extra 
blobs representing T f~ R and T - R, as is done in 
Figure 5. 

Thus, one might say that empty space in our dia- 
grams always represents nothing at all, except if it is 
the area of an atomic blob, which is one that contains 
no enclosed blobs. An atomic blob always represents 
some identifiable set, though clearly such a set might 

just happen to be an empty one. 

FIGURE 5. Adding Cartesian Products 

We now add the ability to represent the Cartesian 
product. Figure 5 shows the notation used-a partition- 
ing by dashed lines. In it I, for example, is no longer the 
union of K, N, I, L, and M, but, rather, the product of 
the union of the first two with the union of the last 

three. Symbolically, 

We shall call the operands of the product, W and X in 
this case, the orthogonal components of blob J. Actually, 
the Cartesian product is unordered, in the sense that 

A X B is always the same as B X A, so that J is really 
a set of unordered pairs of elements. Thus, our 
x operator is symmetric, and in fact, in the appendix 
we use the symbol @J, instead of X, to denote it. An- 
other consequence of this, and of our previous conven- 
tion regarding set inclusion versus set membership, is 
that the product is also associative. In this way, if c E C, 
k E K, and m E M, then the unordered triple {c, k, m 1 
would be a legal element of the set D of Figure 5, 
without the need to distinguish it from {c, (k, m)]. To 
make this idea work, it helps to assume that all atomic 
sets are pairwise disjoint (i.e., no element appears in 
any two of these sets). 

Decomposing a blob into its orthogonal components 
by topologically partitioning the inner area of a Jordan 
curve yields a unique unambiguous area for each such 

component. Thus, the labels Y, W, and X in Figure 5 
label the appropriate components unambiguously. On 
the other hand, as we shall see, there is another reason 
for wanting sets to have their own blob contours, and if 
so desired an orthogonal component can be enclosed in 
one of its own, as is Z in Figure 5. Notice the somewhat 

awkward location for the labels D and I. There are a 
couple of other possibilities for locating the label of a 
product blob, among which is the one illustrated in 
Figure 6, but we shall remain with that of Figure 5. 

-J- 

FIGURE 6. An Alternative for Labeling Partitioned Blobs 

Now that we have a formalism for representing the 
sets we are interested in and their structural, set-theo- 
retic relationships, it is time to add edges. A higraph is 
obtained by simply allowing edges, or more generally, 

hyperedges, to be attached to the contour of any blobs. 
As in graphs, edges can be directed or undirected, la- 
beled or unlabeled, of one type or of several, etc. In 
Figure 7 we have allowed for a single kind of unlabeled 
directed hyperedge of arity between 2 and 3. Most of 
the arrows in the figure are simple binary edges, such 

1’ 
FIGURE 7. Adding Edges Resulting in a Higraph 
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as the very high-level one connecting E to A, the very 
low-level one connecting N to K, and the interlevel 
one connecting U to E. Others are directed three-way 
hyperedges. such as the one connecting E to both ] and 
I’, and the one connecting both R and M to D. Clearly, 
there is nothing to prohibit self-directed or partially 

self-directed edges, such as the one connecting A to its 
subblob B. The formal meaning of such edges (see the 

appendix) in the graph-theoretic spirit simply associates 
the target blobs with the source blobs via the particular 
relationship the edges represent. Here, then, is the 

other reason for wanting each set of interest to have its 
own contour: to enable it to be connected to others via 
the edges. 

In the sequel the term higraph will be used in a very 
liberal sense, making no real distinction between the 
various possibilities, for example, the edge-based or 

hyperedge-based cases. 

we are free to attach any meaning at all to the relation- 
ship itself and to the way (if any) that it extends down- 

wards to the elements of those sets. Thus, if we take 
the relationship R represented by ordinary arrows in a 
higraph to mean “each element in the source set is 
related to some element in the target set by relationship 
T,” then the information conveyed by Figure 9, for ex- 
ample, cannot really by captured by an ordinary graph 
with T-edges, since one would be forced to decide 
which element in the target set is meant, thus causing 
an overspecification. 

The computer science literature is full of uses of 
graphs, and it appears that many of these can benefit 
from.the extensions offered by higraphs. Consider the 
entity-relationship (E-R) diagrams used in the conceptual 
specification of databases [i’]. These are really hyper- 
graphs with a single type of node that is depicted by a 
rectangle and denotes an entity in the described pool of 

FIGURE 8. Two Representations of a S-clique 

SOME IMMEDIATE APPLICATIONS 
The first thing to notice when attempting to apply hi- 
graphs is that edges connect sets to sets, not elements to 
elements as in graphs. The most common way of inter- 
preting a higraph edge is as a collection of regular 
edges, connecting each element in one set with each 
element in the other. In this way, for example, it is 
possible to represent a 5-clique. as in Figure 8. This all- 

to-all semantics is not mandatory, however, since the 
bare meaning of a higraph edge is that the relationship 
it represents holds between the sets it connects. Hence, 
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FIGURE 9. A Simple Higraph 

data. The hyperedges, whose labels are writien in small 
diamond-shaped boxes (that should not be regarded as 
nodes), capture the intended relationships between en- 
tities. Figure 10 shows a simple example of such a dia- 
gram, representing a small part of the data used by an 
airline company.6 Its information content is clear: 
pilots canflyaircraft,secretariesworkfor 
employees, and employees are paid salaries on 

certain dates (the latter being a three-way relation- 
ship). Notice, however, the is -a edges, informing 
us that pilots and secretaries are really 
employees too. These are conveying inforrnation of a 
totally different kind. Indeed, they capture precisely 
the kind of structural, set-theoretic relations discussed 
earlier. Using the very same “flat” diagrammatic repre- 
sentation for both kinds of relationships can cause a lot 
of confusion, especially in large and intricate cases, as a 
glance at some of the examples in the literature shows. 

6Actually. Figure 10 does some injustIce to the E-R formalism. as it is some- 

times called. by ignoring the additIona features that the formahsm supports. 

such as attributes for both entities. and relationshios and the classification of 

relationships as one-one, many-one. etc. Throughout. we sha.1 have to be 

satisfied with describing only those features of a formalism th.lt are directly 

relevant to our discussion. 
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* dates 

salaries 

FIGURE 10. A Simple E-R Diagram 

Figure 11 shows the way such information can be 
represented in a higraph-based extension of E-R dia- 
grams. The set of employees is divided into the sub- 
sets of interest, secretaries and pilots (with an 
additional blob for all others, if so desired). The 
paid-on edge emanates from the employees blob, 

while the can fly edge emanates from the pilots 
blob only-exactly what one would expect. The work 
for edge rightly connects the secretaries blob with 
its parent blob-employees. The new information has 
been quite easily added: aircraft are now just part 
of the overall equipment, which is related to years 
by the relationship received-on. while the dates 
on which salaries are received have been specified 
as consisting of pairs from the orthogonal components 
month and year. Moreover, independent divisions can 
be represented by overlapping blobs, as illustrated in 
Figure 12, which shows how a new breakup of the 
employees by sex can be added to the previous figure 

FIGURE 11. A Higraph-Based Version (and extension) of Figure 10 
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FIGURE 12. Two Breakups of Employees 

with a couple of additional details. In it we might have 
reason to relate the female pilots or the male 
secretaries to other entities. In practice, overlaps 
should probably be used somewhat sparingly, as overly 
overlapping blobs might detract from the clarity of the 
total diagram, an observation that is in line with the 
often-made claim that a hierarchy is by far the way 
humans prefer to structure things (see [45, chap. 11. 
This opinion is not universally accepted, however, so 
the human-factors aspects of formalisms like higraphs 
would appear to require careful experimental research, 
such as those carried out in [18] and [20]. 

Occasionally, authors have used other labels to cap- 
ture is -a relationships, typically ones that try to de- 
scribe the special nature of the breakup into subsets. As 
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I 

FIGURE 13. Another E-R Diagram (taken from [39]) 

an example consider Figure 13, which is Figure 9 of 
[42] almost verbatim, and our higraph-based Figure 14, 

which contains the same information. 
A formalism that is very similar to that of E-R dia- 

grams, and actually predated it by a number of years 
(see [40]), is that of semantic, or associative, networks. 
These graph-based structures are used widely in artifi- 
cial intelligence for natural language processing and 

knowledge representation, and are discussed in numer- 

/ 
employee 

L / 

FIGURE 14. A Higraph-Based Version of Figure 13 

ous books and papers. (A good survey and history ap- 
pears in [4], and more examples can be found in [6], 
[X7, [&I], and [SO] and in the collection of papers in 
[IY].) Semantic networks can actually be thought of as 
concept-relationship diagrams, with much of the research 
in the area concerned with the association of rich se- 
mantic meaning with the various types of nodes and 
edges. Here, too, is - a edges are used in abundance 
resulting in large, and at times incomprehensible, dia- 
grams. Often, semantic networks contain more than 
one distinct type of is - a edges, corresponding to set 
inclusion, set membership, a physical “being-part-of” 
relationship, etc.’ The way higraphs can be used here is 
exactly as in E-R diagrams; and the advantages become 
all the more significant if such different shades of struc- 
tural is -a relationships can be made visually distinct 
(see the section called “Possible Variations on the 
Theme”). Clearly, it would be naive to claim that the 
profound problematics of knowledge representation can 
be overcome by diagrammatic considerations alone. 
Nevertheless, every little improvement helps. 

In both E-R diagrams and semantic networks, people 
have observed that often the relationships, not only the 
entities and concepts, have to be stratified by levels of 

‘A variety of names have been attached to these, such as USA and lnst in 

[6], SS and EL in [37] (standing for is a. instance. subset. and elemenf, respec- 

tively). and many others elsewhere, such as a kind of, group-of. 

is part-of.etc. 
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detail. This is typically done by considering the dia- 
mond-shaped relationship labels to be nodes of a sec- 

ond kind, and involving them also in structural is a 
relationships with others. Although some people are 
opposed to this visual blurring of the distinction be- 
tween entities and relationships, there is nothing to 
prevent those who are not from transferring this idea to 
the higraph framework. This would yield a blob struc- 

ture also for the relationships, with the edges now serv- 
ing to connect the entities and concepts to their rele- 
vant real, nonstructural relationships. 

It is noteworthy that the area of the blobs in a hi- 
graph can be further exploited in these applications. 
Full E-R diagrams and semantic networks are typically 
laden with attributes, or properties, that are attached as 
additional “stump” nodes to the various entities. These 
attributes are often of the kind that are “inherited 
down” the is -a hierarchy, as the phrase goes. [In fact, 
there are many interesting issues associated with the 

very notion of inheritance; see [5], [45].) In a higraph- 
based representation, the area inside a blob would ap- 
pear to be an ideal place to list, attach, or otherwise 
identify any properties, attributes, or explanations that 
are relevant to that blob and anything enclosed therein. 
Thus, simple inheritance is made possible quite natu- 

rally by the insideness approach to representing the 
subset relationship. 

We should remark that some papers on semantic net- 
works and the E-R model have indeed suggested the 
use of insideness and interblob edges to represent high- 
level entities and relationships, though the ideas do not 
seem to have been pursued to their full potential (see 
[lo], [16], [25], [34], and [36]). Also, the idea of basing 
the decomposition of sets on Cartesian products and 
OR’s is consistent with much of the literature on types. 
(For example, see [5] where these two features are cap- 
tured by the notions of a record and a variant. respec- 
tively.) 

Among the other graph-based formalisms for which 
higraphs appear to be useful are data-flow diagrams. A 
higraph-based version of such diagrams, called activity- 

charts, is one of the graphical languages supported by 
the STATEMATE system of i-Logix and is described in 
[24] and [28]. In activity charts the blobs denote func- 
tions, or activities, with the subset relation representing 
the subfunction relationship. The edges denote the pos- 
sible flow of data. (Cartesian product is not used.) Con- 
sider the activity-chart of Figure 15, which is a simple 
part of the functional decomposition of an automatic 
teller machine. One of the edges therein means that 
the customer’s account-number might possibly flow 
(following, perhaps, a read or write instruction) from 
the identify activity to the update-account ac- 
tivity, or to anywhere in the serve-customer activ- 
ity, that is, to either (or all) of the deposit, with- 
draw, or balance-query subactivities. Another of 
the edges in Figure 15 means that the new amount 
with which the customer’s balance should be adjusted 
might flow from any one of the deposit or withdraw 
activities to the update-account activity. 

FIGURE 15. A Simple Activity Chart 

Higraphs also form the basis of a recent paper [4i’], in 
which a visual language for specifying security con- 
straints in operating systems is presented. The formal- 
ism represents access rights and exceptions thereof as 
distinct kinds of edges in a higraph, the blobs of which 
represent groups of users, files, and other entities. 
Cartesian product is used to represent the breakup of 
files into their components. Reference [47] also contains 
a number of interesting special-purpose extensions to 
the basic higraph formalism. Another use of higraph- 
like ideas appears in [32] and [38] in the form of proof 
diagrams for verifying concurrent programs, and there 
is a simple way of using higraphs as the basis of a 
hypertext system rather than conventional graph. In 
part, many issues that arise in the context of hypertext 
systems, such as multiple hierarchies, superconcepts, 
and composite nodes are treated naturally in the 
higraph formalism. (See [8].) One can also conceive of 
additional applications in visualizing interrupt-driven 
flowcharts and certain kinds of model-collapsing con- 
structions in model theory. 

STATECHARTS: A LESS OBVIOUS APPLICATION 
The previous section notwithstanding, it would appear 
that the most beneficial application of higraphs lies in 
extending state-transition diagrams to obtain the stute- 
charts of [21]. It was actually in the process of trying to 
formulate the underlying graphical concepts embodied 
in (the earlier) statecharts that higraphs emerged. This 
section contains a brief description of the statechart 
formalism; the reader is referred to [21] for further 
details. 

To motivate the discussion, there appears to be agree- 
ment in the literature on software and systems engi- 
neering as to the existence of a major problem in the 
specification and design of large and complex reactive 
systems. A reactive system (see [22] and [39]), in con- 
trast with a transformational system, is characterized by 
being event driven, continuously having to react to 
external and internal stimuli. Examples include tele- 
phones, communication networks, computer operating 
systems, avionics systems, VLSI circuits, and the man- 
machine interface of many kinds of ordinary software. 
The problem is rooted in the difficulty of describing 
reactive behavior in ways that are clear and realistic, 
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FIGURE 16. Depth in State Charts 

and at the same time formal and rigorous, in order to 
be amenable to precise computerized analysis. The be- 
havior of a reactive system is really the set of allowed 
sequences of input and output events, conditions, and 
actions, perhaps with some additional information such 
as timing constraints. 

Most notable among the solutions proposed for this 
problem are Petri nets [41], communicating sequential 
processing (CSP) [26]. the calculus of communicating 
systems (CCS) [Xi], the sequence diagrams of [51], ES- 
TEREI, [2], and temporal logic [39]. Statecharts consti- 
tute yet another attempt at solving this problem, but 
one that is aimed at reviving the classical formalism of 
finite-state machines (FSMs) and their visual counter- 
part, state-transition diagrams, trying to make them 
suitable for use in large and complex applications. In- 
deed, ,people working on the design of really complex 
systems have all but given up on the use of conven- 
tional FSMs and their state diagrams for several rea- 
sons: 

There have been attempts to remove some of these 
drawbacks, mostly by using various kinds of hierarchi- 
cal or communicating state machines. Typically, how- 
ever, these hierarchies provide little help in reducing 
the size of the resulting description, as they (do not 
condense any information. Moreover, the co-mmunica- 
tion between FSMs is usually one-to-one, be:ing channel 
or processor based, and allows for only a single set of 
communicating machines on the highest level of the 
description. Furthermore, for the most part such exten- 
sions are not particularly diagrammatic in spirit, and 
hence one loses the advantages a visual medium might 
offer. 

Statecharts are a higraph-based extension of standard 
state-transition diagrams, where the blobs represent 
states and arrows represent transitions. (For (additional 
statechart features, the reader is again referred to 
[21].)9 As to the basics, we might say that 

state charts = state diagrams + depth 

(1) State diagrams are “flat.” They provide no natu- 
ral noiion of depth, hierarchy, or modularity, and 
therefore do not support stepwise, top-down, or bottom- 
up development. 

+ orthogonality + broadcast communication. 

(2) State diagrams are uneconomical when it comes 
to transitions. An event that causes the very same tran- 
sition from a large number of states, such as a high- 
level interrupt, must be attached to each of them sepa- 
rately resulting in an unnecessary multitude of arrows. 

(3) State diagrams are extremely uneconomical, in- 
deed quite infeasible, when it comes to states (at least 
when .states are interpreted in the usual way as “snap- 
shots” of the situation at a given point in time). As the 
system under description grows linearly, the number of 
states Igrows exponentially, and the conventional FSM 
formalism forces one to explicitly represent them all. 

(4) Finally, state diagrams are inherently sequential 
in nature and do not cater for concurrency in a natural 
way.8 

Depth is represented by the insideness of blobs, as 
illustrated in Figure 16, where 16b may replace 16a. 
The symbols e, f, g, and h stand for events that trigger 
the transitions, and the bracketed c is a condition. 
Thus, g[c] triggers the transition from A to C if and 
when g occurs, but only if c is true at that time. The 

fact that A and C do not overlap and are completely 
inside D means that the latter is the exclusive-or (XOR) 

of the former, so that being in D is tantamount to being 
in either A or C, but not in both. The main point here is 
that the f-arrow, which leaves the contour of D, applies 
to both A and C, as in 16a. This simple higraph-based 
principle, when applied to large collections of states 
with many levels, helps overcome points (1) and (2) 
above (flatness and multilevel events). The iclea of ex- 
ploiting this kind of insideness in describing levels in a 
state-transition diagram appears also in [2O]. It should 
be noted that the small default arrows depend on their 

‘Here. modebng a highly concurrent system by its global states only is ‘Some encouraging experimental evidence as to the appropriatkness of state- 

considered unnatural. charts for system description is discussed in [ZI. sect. 91. 

W 
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encompassing blobs. In Figure 16a state A is singled out 
as being the default, or start state, of the three, a fact 
represented in 16b by the top default arrow. The bot- 
tom one, however, states that C is default among A and 
C if we are already in D and hence alleviates the need 
for continuing the h-arrow beyond D’s boundary. 

Orthogonality is the dual of the XOR decomposition 
of states, in essence an AND decomposition, and is cap- 
tured by the partitioning feature of higraphs, that is, by 

the unordered Cartesian product. In Figure 17b state Y 
consists of two orthogonal components, A and D, related 
by AND: To be in Y is tantamount to being in both A 
and D, and hence the two default arrows. The intended 

semantics of 17b is given by its equivalent “flat” version 
17a, which represents a sort of automata product. No- 
tice the simultaneity of transitions that takes place 
when event e occurs in state configuration (B, F), and 
the merging and splitting transitions that lead to and 
from Y. Note also the special condition [In(G)] attached 
to the f-transition from C, and the way it is reflected in 
Figure 17a. Figure 17 illustrates the heart of the expo- 
nential blowup problem, the number of states in the 
explicit version of Y being the product of the numbers 

(a) 

pearing along a transition in a statechart is not merely 
sent to the “outside world” as an output. Rather, it can 
affect the behavior of the state chart itself in orthogonal 

components. This is achieved by a simple broadcast 
mechanism: Just as the occurrence of an external event 
causes transitions in all components to which it is rele- 
vant (see Figure 17), if event e occurs and a transition 
labeled e/f is taken, the action f is immediately acti- 
vated, and is regarded as a new event, possibly causing 

further transitions in other components. 
Figure 18 shows a simple example of this. If we are in 

(B, F, 1) and along comes the external event m, the next 
configuration will be (C, G, I), by virtue of e being 
generated in H and triggering the two transitions in 
components A and D. This is a chain reaction of length 2. 
If no external event n occurs, the new configuration 
will be (B, E, I). by virtue of a similar chain reaction of 
length 3. 

This concludes our brief account of the basic features 
of statecharts, and we now illustrate the formalism 
with a rather simplified version of the digital watch 
described in [21]. The watch has four external control 
buttons, as well as a main display that can be used to 

A 

P 

FIGURE 17. Orthogonality in State Charts 

of states in the orthogonal components of its higraph 
version. If orthogonality is used often and on many 
levels, the state explosion and sequentiality difficulties 
(points (3) and (4)) are also overcome in a reasonable 
way. This can be further observed by studying the ex- 
amples and references in [21]). 

Figures 16 and 17 do not contain any outputs, and 
hence, orthogonal components can synchronize so far 
only through common events (like e in Figure 17) and 
can affect each other only through [in(state)] condi- 
tions. A certain amount of subtlety is added to the way 
statecharts model concurrency by allowing output 
events. Here, statecharts can be viewed as an extension 
of Mealy machines (see [27]), since output events, 
which are called actions, can be attached optionally to 
the triggering event along a transition. In contrast with 
conventional Mealy machines, however, an action ap- 

(b) 

A P !D 

B 

lx 

e f&l 

C 
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H 
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n/f 

FIGURE 18. Broadcasting in State Charts 
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show the time (hour, minutes, and seconds) or the 
date (weekday, day of month, and month). It has a 
chime that can be enabled or disabled, beeping on the 
hour if enabled. It has an alarm that can also be en- 
abled or disabled, and beeps for z minutes when the 
time in the alarm setting is reached unless any one of 
the buttons is pressed earlier. It has a stopwatch with 
two d.isplay modes (regular and lap), a light for illu- 
mina.tion, and a weak- battery blinking indication. 

Sorne of the external events relevant to the watch are 
a, b, c, and d, which signify the pressing of the four 
buttons, respectively, and b-up, for example, which 

signifies the release of button b. Another event we shall 
be us:ing, 2 -min, signifies that 2 minutes have elapsed 

since the last time a button was pressed. (We choose 
not to get involved here in a syntax for the event 
expressions themselves. In a language of compound 
events that includes a time-out construct, such as 

that of [24] and [28], this last event can be expressed 
easily.) 

2-mm 

[not in (stopvotch)l ( 

I 

isploys 

FIGURE 19. Part of the displays State in a Digital Watch 

Statecharts can be used to describe the behavior of 
the watch in terms of its human interface: namely, how 
the user’s operations, such as pressing buttons, influ- 
ence I hings. It should be noted, however, that the de- 
scriptions that follow do not specify the activities car- 
ried out internally by the watch, only their control. 
Thus, nothing is said here about the time elapsing ac- 
tivity itself, or the technicalities of the beeping, the 
blinking, or the displays. These aspects of a system can 
be described using other means, and should be incorpo- 
rated into the overall specification together with the 
statecharts. (See [24] for one approach to this incorpora- 
tion.) 

Figure 19 shows the basic displays state of the 
watch.. Notice that time is the default state, and there 
is a cycle of pressings of a leading from time through 
the alarm, chime, and stopwatch states back to 
time. There is a general update state, and a special 
state for updating the alarm’s internal setting. The 2 
min event signifies return to time if 2 minutes have 

elapsed in any state other than stopwatch and no 
button has been pressed. 

time f-1 

FIGURE 20. The stopwatch State 

The specification of the watch contains examples of 
orthogonal states on various levels. We should first con- 
sider the stopwatch state, detailed in Figure 20. It has 
two substates, zero and (disp, run), the first being 
the default. Pressing b takes the stopwatch from the 
former to the latter causing it to start running with a 

regular display. Repeatedly pressing b causes it to stop 
and start alternately. Pressing d can be seen to cause 
the display to switch to lap and back to reg, or to 
leave the orthogonal state and return to zero depend- 
ing, as illustrated, on the present state configuration. 
The encircled and starred H is one of the additional 

notations described in [21], and prescribes that, upon 
entering stopwatch from chime by pressing a, the 
state actually entered will be the one in which the 

system was in most recently. Thus, we are entering the 
stopwatch state by “history’‘-hence, the 13. The de- 
fault will be used if this is the first time stopwatch 

is entered, or if the history has been cleared. 
The description of the high levels of the watch also 

uses orthogonality. In Figure 21 the watch is specified 
as being either dead or alive, with the latter consist- 

ing of five orthogonal components. (Notice where the 

FIGURE 21. A High-Level Description of the ‘Watch 
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[not in(stopwatch)l 

FIGURE 22. A State Chart far the Digital Watch 

displays state fits in.) In this figure the events bt - in, 
bt rm, bt - dy and bt wk signify, respectively, the in- 
sertion, removal, expiration, and weakening (below a 
certain level) of the battery. We use t-hits - tm to 

signify that the internal time of the watch has reached 
the internal time setting of the alarm, and t-hits hr 
to signify that it has reached a whole hour. Also, 

beep- rt occurs when either any button is pressed or 2 
minutes have elapsed since entering beep, and beep- 
st occurs 2 seconds after entering c -beep. (As men- 
tioned, these events should also be written formally as 
compound event expressions in a language involving 
time-outs, disjunctions, and so on; see [28].) 

The first of the five components in Figure 21, main, 
specifies the transitions between displaying and beep- 
ing, where displays is simply the state described ear- 
lier (see Figure 19). (In actuality, the displaying activi- 
ties themselves do not shut off when the watch is beep- 
ing, but cannot be changed until control returns to the 

displays state.) The alarm-St component describes 
the status of the alarm, specifying that it can be 
changed using d when control is in the alarm display 
state. The chime - st state is similar, with the addi- 
tional provision for beeping on the hour given within. 
The power state is self-explanatory, where the activity 
that would take place in the weak state would involve 
the displays blinking frantically. 

In considering the innocent-looking light state, the 

default is off, and depressing and releasing b cause 
the light to switch alternately between on and off. 
What is interesting is the effect these actions might 
have elsewhere. If the entire statechart for the parts of 
the watch described so far is contemplated (see Figure 
22), one realizes that pressing b for illumination has 
significant side effects: It will cause a return from an 
update state if we happen to be in one, the stopping of 
the alarm if it happens to be beeping, and a change in 
the stopwatch’s behavior if we happen to be working 
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with it. Conversely, if we use b in displays for any 
one of these things the light will go on, whether we like 

il. or not. These seeming anomalies are all a result of 
the fact that the light component is orthogonal to the 
main component, meaning that its scope is very broad. 
One c:an imagine a far more humble light compo- 
nent, applicable only in the time and date states, 
which would not cause any of these problems. Its speci- 
fication could be carried out by attaching it orthogo- 
nally, not to main, but to a new state surrounding 
time and date, as in Figure 23. 

stopbvat pj m olorm 

1 # I 0 
I I I I 

FIGURE 23. A Smaller Scope for the Light 

As mentioned earlier, this section has only described 
the “no-frills” version of the statecharts. A more com- 
plete ireatment appears in [21], and a formal syntax 

and semantics appear in [23]. The reader may have 
noticed that we have not used intersecting states in the 
statecharts. While intersecting blobs in higraphs do not 

cause any serious semantic problems (see the appen- 
dix), intersecting states in state charts do. In fact, since 
not all syntactically legal higraphs make sense as state- 

charts, it is not even clear how to define an appropriate 
syntax for statecharts with intersecting states (see [21, 
sect. 6.21). A preliminary approach to these problems 

appears in [29]. 

POSSI:BLE VARIATIONS ON THE THEME 

The higraph formalism can be enriched and extended 
in various ways. We shall point to a few of these possi- 
bilities briefly and informally. 

At times it becomes useful to base a formalism on a 

three-valued, rather than a two-valued, underlying 
model. For example, in certain uses of graphs in data- 
bases .and artificial intelligence there arises a need to 
state not only that a certain relationship R holds or does 
not hold between two objects, but also to capture the 
situation whereby we do not know which of these is 
the case. One possibility is to reinterpret the absence of 
an R arrow as denoting the don’t-known situation, and 
have a new kind of arrow representing the negntzve 
information that R definitely does not hold. This simple 
idea can be adopted in higraphs too, as in Figure 24, 
which is suppose to indicate that R holds between A 

and B and does not hold between B and C. and that all 

FIGURE 24. Negative Arrows 

other possibilities (including whether or not R holds 
between C and B)“’ are left open. 

Often a don’t-know option is needed not only for 
arrows, but for blobs as well. That is, we might want to 

represent uncertainty as to the presence or absence of 
identifiable sets, rather than relationships. Accordingly, 
we can use a new blob notation (e.g., one with a dashed 
contour) to denote a set that we are not sure actually 
exists (here one assumes that all regular blobs stand for 
nonempty sets). Figure 25 asserts our uncertainty as to 
whether A - B is empty or not, and also states that if it 
is not empty then the difference is called E and is re- 
lated to F via relationship R. 

FIGURE 25. “Not-Quite-Sure” Blobs 

When higraphs are used in practice (see [21]. [24], 

[28], and [47]), it is useful to be able to “zoom out” of a 
particular view, suppressing low-level details. A good 
example would be going from Figure 22, the detailed 
state-chart description of the watch, to the less detailed 

Figure 21. In such cases there arises a problem with 
edges connected to subblobs that are omitted from the 
new, less detailed view. If we decide to zoom out of the 
likes of Figure 26 by suppressing blobs B and C, it might 
be a mistake to consider Figure 27a as the correct new 
version, since the two are clearly inconsistent. Figure 
27b is better, with its stubs that represent relationships 

to unspecified subblobs. For example, since a state- 
chart arrow whose target is a high-level state A pre- 
scribes entrance to none other than the default substate 

“This is not determined by the arrow from A to B. since. as discussed earlier. 

the fact that R holds between A and B says nothing about what the case is 

for A’s subsets. 
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FIGURE 26. Another Simple Higraph 

FIGURE 27. Two Possible Zoom Outs for Figure 26 

of A, Figure 21 is somewhat inconsistent with Figure 
22. In the present context, a better version would have 
shown the beep- rt arrow crossing the contour of the 
displays state and ending with a stub indicating en- 
trance to a substate (as of now unspecified) that is pos- 
sibly different from the default substate, time. 

One weakness of the higraph formalism is its inabil- 
ity to specify both set inclusion and set membership. 
We have chosen to adopt the former as the meaning of 

blob enclosure, although we could probably have cho- 

sen the latter too without causing too many problems. 
This weakness is all the more apparent when higraphs 
are contrasted with their graph-based equivalents, in 

which set inclusion is depicted by is a edges (see Fig- 
ure 10). In the latter, one need only use an additional 
type of edge, labeled elmnt -of, for instance, to be 
able to represent set membership. We would like to 
claim that this is not much more than a notational 
problem that requires a topo-visual way of distinguish- 
ing between two different kinds of insideness. Most of 

the solutions to this notational problem that come to 
mind are somewhat unsatisfactory, with the exception 

of the one that calls for a three-dimensional basis for 
higraphs, in which the third dimension is responsible 
for such distinctions (e.g., by having set inclusion take 
place in the same plane and set membership be re- 
flected by different levels of planes).” 

An additional possible extension to higraphs is to 
make arrows mean more than a simple connection be- 
tween source and target. (We are assuming ordinary 
directed binary edges here, not, say, hyperedges.) Since 
higraph arrows in general cut across blob contours, we 

might want to say something more about the sequence of 
crossovers that the edge takes on its way from the 

source to the target. This can be achieved trivially by 

drawing the arrow through the appropriate contours in 
the desired order (assuming this order is indeed possi- 

ble, given the basic topology of the blobs). The interest- 
ing case occurs when we want to omit from such a 
sequence one or more of the contours that, topologi- 
tally speaking, must be crossed by any line from the 
source to the target. We would like the D-to-B arrow in 
Figure 26, for example, to enter B, but not to enter A in 
the process. State charts with intersections give rise to 
one interesting motivation for such cases, whereby one 
wants the system to enter only one of two intersecting 

” Visual formalisms that are predominantly (w-dimensional in nature. but 

make some use of a third dimension. are far from being out of the question. 

even if we arc not willing to wait for quality holographic workstations to 

show up. If all we need. as in this case. is the ability to tell when two nested 

blobs are on the same plane or not. then a simple graphical simulation of a 

dynamic left-right shift in point of view would do the job. 

(a) 
FIGURE 26. Skipping and Multiple Crossovers 

(b) 
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states; again, the reader is referred to [Zl, sec. 6.21 for 
cletails. This richer notion of an edge can be repre- 
sented visually by simply allowing arrows to skip edges 
as in Figure 28. Multiple crossovers, if desired, can also 

be represented as illustrated in the figure. Clearly, the 
forma1 semantics would be more elaborate, since a 
finite sequence of blobs, rather than an ordered pair, is 

the interpretation of a directed edge, and a finite set 
thereof, rather than an unordered pair, is the interpre- 

tation of an undirected edge. 

CONCLUSION AND FUTURE WORK 
Higraphs seem to give rise to several interesting mathe- 

matical notions adapted to a large extent from graphs 
and hypergraphs. For example, one can provide reason- 

able definitions of connectivity, transitive closure, plan- 
arity, and acyclicity in higraphs, as well as a couple of 
different notions of “hitrees.” For each of these, we may 
ask for upper and lower bounds on the computational 
complexity of the corresponding algorithmic problems. 
In some cases algorithms and bounds can be carried 
over from the work on graphs and hypergraphs, but one 
gets the feeling that in other cases these bounds can be 
improved by utilizing the special structure of higraphs. 

Some of these algorithmic problems have indeed arisen 
during the implementation of the STATEMATE system 
[24, 281, which supports three higraph-based formal- 

isms. It would appear that the algorithmics of higraphs 
forms a fruitful avenue for further research. 

The main thesis underlying this paper is that the 
intricate nature of a variety of computer-related sys- 

tems and situations can, and in our opinion should, be 
represented by visual formalisms: visual, because they 
are to be generated, comprehended, and communicated 
by humans; and formal, because they are to be manipu- 
lated, maintained, and analyzed by computers. (This 
thesis is consistent with the study in [9], which argues 

for a more visual, nonverbal approach toward mathe- 
matics.) 

Part of our motivation in stressing this point, despite 

the fact that it might appear to be so obvious, is the 
rather different approach that one occasionally finds 

elsewhere. For example, [33] is a compendium of many 
computer-related diagrammatic methods (virtually all 
of which are based on graphs). In our opinion, [33] is 
quite inadequate, since it accepts the visual, but appar- 

ently rejects the formal. For the most part, the methods 
and languages appearing in [33] are described in a man- 
ner that is devoid of semantics, and can therefore be 
used at best as informal aids when working with some 
other, hopefully more rigorous, nonvisual medium. 

One of the implicit points we have tried to make in 
this article is that a considerable amount of mileage can 
be gotten out of basing such formalisms on a small 
number of simple diagrammatic notions, first and fore- 
most among which are those that are topological in 
nature, not geometric. A lot can be gained b:y using 
topo-visual formalisms based on insideness, connected- 
ness, and partitioning, with the semantics as given 
here, before one attempts to attach special significance 

to, for example, shapes, colors, and sizes. 
We are entirely convinced the future is “visual.” We 

believe that in the next few years many more of our 
daily technical and scientific chores will be carried out 
visually, and graphical facilities will be far better and 
cheaper than today’s. The languages and approaches 
we shall be using in doing so will not be merely iconic 
in nature (e.g., using the picture of a trash can to de- 
note garbage collection), but inherently diagrammatic 

in a conceptual way, perhaps also three-dimensional 
and/or animated. They will be designed to encourage 
visual modes of thinking when tackling systems of 
ever-increasing complexity, and will exploit and ex- 
tend the use of our own wonderful visual sy.stem in 
many of our intellectual activities. 

APPENDIX. Formal Definition of Higraphs 

In what follows we present a forma1 (nongraphical) define 
syntax and semantics for higraphs with simple bi- 

nary directed edges. The reader should have no dif- uO(x) = kfl, 

ficulty in extending the edge set E to represent, say, 

hyperedges. 
A higraph is a quadruple 

and u’(x) = u U’(X), 
i=l 

H = (A u‘. s, E), then (r is restricted so that x 4 u+(x). 

where B is a finite set of elements, called blobs, and 
E, the set of edges, is a binary relation on B: 

EEBxB. 

The partitioning function 1~ is defined as 

7~: B ---, zBxB, 

The subblob function u is defined as 

a‘: B -+ 2B. 

It assigns to each blob x E B its set u(x) of subblobs 
and is restricted to being cycle free. Thus, if we 

associating with each blob x E B some equivalence 
relation r(x) on the set of subblobs, c(x). This is 

really just a rigorous way of specifying the breakup 
of x into its orthogonal components, which are now 
defined simply to be the equivalence classes induced 
by the relation VT(X). Indeed, for x E B let us denote 
these classes by K,(X), . . . , ?T&Y). For the orthogonal 
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division into components to be representable graphi- 
cally (and in order to make the semantics cleaner), 
we shall require that blobs in different orthogonal 
components of x are disjoint. Formally, for each x 
we require that no two elements y and z of U(X) can 
intersect-that is, can satisfy u+(y) ft U+(Z) # 0- 
unless they are in the same orthogonal component- 
that is, unless the relation X(X) renders them equiva- 
lent. Clearly, k, = 1 means x is not partitioned into 
components at all. 

the domain of the model M, and p assigns disjoint 
subsets of D to the atomic blobs of H. Thus, 

/.L; A + 2O, 

where if x # y then p(x) II p(y) = 0. We now have to 
show how to extend the association of atomic blobs 
with sets over D to an association of all blobs with 
more complex objects over D. Accordingly, extend ~1 
by defining, inductively, for each x E B, 

This concludes the syntax of higraphs; now for 
the semantics. Two notations are useful. Given a hi- 
graph H, define the set of atomic blobs to be 

A = (x E B / a(x) = 01. 

(Obviously, the finiteness of B and the cycle-freeness 
restriction on u imply A is nonempty.) The unordered 
Cartesian product of two sets S and T is defined as 

S 8 T = (Is, t) J s E S, t E TJ. 

Given a higraph H, a model for H is a pair 

M = (D, ~1, 

where D is a set of unstructured elements” called 

the intuition being that to calculate the semantics of 
a blob x we form the unordered Cartesian product of 
the meanings of its orthogonal components, each of 
which, in turn, is simply the union of the meanings 
of its constituent blobs. In particular, of course, if 
k, = 1, no product is taken, and we really have 

as expected. 
To complete the semantics, note that the edge set 

E induces a semantic relation EM on the p(x)s, de- 
fined by 

“We want to avoid situations in which. say. x and 1x1 are both elements of D (F(X), P(Y)) E EM iff (x, y) E E. 
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